

UNIVERSITY OF WATERLOO

Introduction to Scientific
Computing with Matlab

SAW Training Course

R. William Lewis
Computing Consultant

Client Services – Information Systems & Technology

2007

ii

Table of Contents
1 Matlab Basics .. 1

1.1 Obtaining software ... 1

1.2 Research License, Classroom license .. 1

1.3 Signing up for the Research License ... 1

1.4 Troubleshooting / Problems Running Matlab ... 1

1.5 Matlab Versions .. 1

1.6 Running Matlab ... 1

2 Desktop Environment ... 2

2.1 Command window (input, output) ... 2

2.1.1 Command Window ... 2

2.2 Command history .. 2

2.3 Current directory .. 2

2.4 Workspace .. 3

2.5 Editor ... 3

2.6 Matrices, Arrays .. 3

2.6.1 Dimensions, contents .. 3

2.6.2 Built-in matrices .. 3

2.6.3 Ranges (vectors) .. 4

2.6.4 Manipulating Elements ... 4

2.6.5 Building up matrices.. 5

2.6.6 Matrix operations ... 6

2.6.7 Array operations ... 7

2.7 Functions ... 8

2.7.1 Function, operand, result .. 8

2.7.2 Dimensions of results .. 9

2.7.3 Example Statistical Summary Functions ... 9

2.8 Logical Indexing, Finding Elements ... 11

2.9 Exercises .. 12

2.9.1 Define the following matrices ... 12

2.9.2 Performing matrix and array operations .. 12

iii

2.9.3 Restore your matrix definitions using Command History ... 12

2.9.4 Apply functions to the matrices you have defined ... 12

2.9.5 Investigate the “find” command ... 12

3 Getting Help .. 13

3.1 Help Menu... 13

3.2 Help Window... 13

3.3 Demos ... 14

3.4 Examples ... 14

4 Matlab editor .. 15

4.1 Basics ... 15

4.1.1 Starting editor ... 15

4.1.2 Source navigation .. 15

4.1.3 Saving .. 15

4.1.4 Splitting the editor Window .. 15

4.2 Running your script ... 15

4.3 Function in an m-file ... 15

4.4 Debugging Commands .. 16

4.5 Development Methodology .. 16

4.5.1 Experiment at command line, put working commands into script 16

4.5.2 Identify parameters that will change and make then function arguments 16

4.6 Exercises .. 16

4.6.1 Write a Matlab script to define test data ... 16

4.6.2 Write a Matlab function that adds the sine and cosine of each entry in a matrix 16

5 Plotting .. 17

5.1 Demonstration .. 17

5.1.1 Aside: Cell Mode M-Files... 17

5.2 Creating Plots Interactively ... 17

5.3 Formatting plots interactively ... 19

5.4 Create script file .. 20

6 Importing Data for Analysis .. 21

6.1 Import from Excel ... 21

6.2 Demonstration M file .. 22

iv

6.3 Organize/arrange data .. 22

6.4 Exercises .. 24

6.4.1 Problems with Tail data .. 24

6.4.2 Investigate Correlations .. 24

7 Programming .. 25

7.1 Matlab editor .. 25

7.2 Methodology (test commands, add to script) .. 25

7.3 Testing, debugging, spying as it’s running .. 28

7.4 Exercises .. 29

7.4.1 Fix the function so it can plot a parabola with complex roots.. 29

7.4.2 Handle parabolas with a double root ... 29

1 Matlab Basics

1.1 Obtaining software
Matlab is available on many student labs on campus, including NEXUS labs. For research use, faculty and

staff can purchase a license for themselves and for graduate students. You can also purchase the

student version directly from The MathWorks.

1.2 Research License, Classroom license
There are two site licenses for Matlab on campus. The research license requires payment of a yearly fee.

The classroom license cannot be used for research purposes, and is used in instructional labs. If you are

using matlab for a course, you should be using the classroom license. If you are doing academic

research, you should be using the research license, and are prohibited from using the classroom license.

Commercial use requires a separate license directly from The Mathworks.

1.3 Signing up for the Research License
To buy an annual license for Matlab, visit http://ist.uwaterloo.ca/ew/saw/webstore/. UW accounts are

accepted for payment. The account holder will need to login with their UW user ID and password.

1.4 Troubleshooting / Problems Running Matlab
If you run into any problems with Matlab, remember three things:

1. Your login name must match your UW user ID as entered when your license was purchased.

2. You must have network access to run Matlab. On wireless, you must run MinUWet.

3. Purchases do not take effect immediately, and there are short periods of downtime on the

license servers during the day.

1.5 Matlab Versions
There are two Matlab releases each year. This course is based on R2007a and a newer version R2007b

was released September 1, 2007. Matlab and each of its toolboxes have individual version numbers as

well. Release R2007a corresponds to Matlab 7.4 and version 17.

1.6 Running Matlab
Installing Matlab creates a program group in the Start Menu. In the IST training labs and in NEXUS labs,

you will find Matlab under Start | All Programs | Math & Statistical | Matlab. In the training lab you can

choose to run under either the research or classroom license.

http://ist.uwaterloo.ca/ew/saw/webstore/

2

2 Desktop Environment

2.1 Command window (input, output)

2.1.1 Command Window

Your first interaction with Matlab will be through the Command Window, which shows up as the right

hand half of the Matlab window. This where you can type Matlab commands and view the output of

these commands.

2.2 Command history
In the lower left corner of the Matlab window is a section called “Command History” which will store a

record of the commands you give to Matlab. You can double click on a command to repeat it, or right-

click on a command to copy it, create an M-file, and some other options.

2.3 Current directory
The top left corner of the Matlab window shows the files in the current directory. Matlab uses a path

setting to determine where it looks for code to execute. This path includes the toolboxes that come with

3

Matlab but might not necessarily include the places you save your files. Matlab always sees the current

directory, and this section lets you see the current directory and change it.

2.4 Workspace
The Current Directory tab shares space with the Workspace tab. The Workspace tab shows all of the

variables that are currently defined in your Matlab session. You can view and change these variables as

well as access an array editor from the Workspace.

2.5 Editor
Opening a Matlab m-file gives you access to the Matlab Editor, which is a text editor with some special

features to make it useful for working with Matlab code.

2.6 Matrices, Arrays
The fundamental data structure in Matlab is an array. This will be the main data structure that you work

with, and it will help to remember that even a variable with a single value is a 1x1 array in Matlab.

2.6.1 Dimensions, contents

Each array has dimensions, which are specified with the standards of “n by m” or “n x m” meaning “n

rows” by “m columns”. All elements of the array have the same data type. You can specify a matrix by

typing it between square braces [] with elements separated by spaces and rows separated by

semicolons.

2.6.2 Built-in matrices

To get started building arrays and matrices quickly, you can use these built-in commands. I’ve shown 3x4

matrices for the sake of example and to keep the notation clear:

Command Array

zeros(3,4) 3x4 array full of zeros

ones(3,4) 3x4 array full of ones

eye(3,4) 3x4 matrix with ones on the main diagonal (the identity in
matrix algebra)

rand(3,4) 3x4 array of random numbers from 0 to 1

diag([3 4 2]) 3x3 matrix with specified entries on the main diagonal

magic(3) 3x3 magic square

pascal(3) 3x3 matrix with entries from Pascal’s triangle

4

2.6.3 Ranges (vectors)

To indicate a range in Matlab, you use the colon. E.g.

To specify the increment, use the syntax start:increment:end.

The increment, start and end can all be decimal numbers:

Notice that this range ends at 1.3, the largest number in the pattern specified that is smaller than the

request end point.

2.6.4 Manipulating Elements

In Matlab you can address an individual element of a matrix by using round brackets. For example, to

obtain the item in the 3rd row and 4th column of a matrix A, type A(3,4).The subscripts can be ranges.

5

To specify the last element in a row or column use “end”:

Matlab also allows linear indexing by starting with the first column then moving through each column in

turn:

2.6.5 Building up matrices

To type in a matrix at the command line, separate columns with spaces and rows with semicolons:

6

You can use built in matrices and ranges to build up a bigger matrix by separating columns by a space

and rows by a semicolon:

2.6.6 Matrix operations

It is now important to draw a difference between a matrix and an array. Arrays don’t have a strict

mathematical algebraic structure; they are simply numbers in a grid. Operations on arrays are done

element-wise. Matrices are a special type of mathematical object that have their own algebra.

In Matlab, standard mathematical symbols mean Matrix operations.

7

2.6.7 Array operations

To make a Matlab operation work element-wise, or in a array manner, you use the standard

mathematical symbol with a period before it. Note however that addition is the same for matrices and

arrays.

8

When dimensions don’t match, Matlab tries to do the right thing. You can multiply an array by a single

number (scalar) to multiply each element by that number or add a scalar to an array to add the number

to each element in the array.

2.7 Functions
The commands just used to produce built-in matrices are examples of Matlab functions.

2.7.1 Function, operand, result

Functions take a list of parameters and provide a result. Matlab functions can take one or more

operands of various types, some functions can handle variable numbers of arguments (e.g. zeros(3) or

zeros(3,3)), some require a fixed number of arguments. Functions can also return more than one value,

and this is usually accomplished by assigning the result of the function to a vector.

9

2.7.2 Dimensions of results

Most Matlab functions can take matrix arguments and return results as a matrix. In general it is much

faster to operate on matrices in Matlab than to operate on each element of the matrix in term. This is

called “vectorizing” your code.

2.7.3 Example Statistical Summary Functions

The following statistical functions work on each column of a matrix.

sum Sum (total) of each column

mean Average (mean) of each column

max Maximum of each column

min Minimum of each column

median Median

mode Mode

std Standard deviation

var Variance

A useful trick to get one of these functions to operate on all elements of a matrix is to use linear

indexing.

10

If you use the colon as a linear index, Matlab converts the matrix to a vector:

Combined with a statistical function gives a compact way to operate on the entire matrix rather than on

each column:

11

2.8 Logical Indexing, Finding Elements
Matlab can easily provide you with all elements of a matrix that meet a specified condition.

In this example, the result of A>10 is a matrix, consisting of zeroes and ones, indicating which elements

are greater than 10. The elements that meet the condition are identified by ones and those that do not

meet the condition are identified by zeroes.

This matrix is then used as an index to the matrix A. Because it is the same size as A, it indicates whether

or not to display the particular element of the matrix. If you need to know where these elements are

located, use “find” which tells you the location of the ones, using linear indexing:

12

2.9 Exercises

2.9.1 Define the following matrices

𝐴 =
1 0 1
1 2 3
0 1 2

𝐵 =
−1 2
1 4

𝐶 =

1 1 1 1 0 0
1 1 1 0 1 0
1 1 1 0 0 1
3 0 0 5 4 4
0 2 0 4 5 4
0 0 1 4 4 5

Note that C is made up of four matrices with special structures!

2.9.2 Performing matrix and array operations

Compute matrix operations on A, B, and C. Add the columns, average all elements.

2.9.3 Restore your matrix definitions using Command History

2.9.4 Apply functions to the matrices you have defined

2.9.5 Investigate the “find” command

The find command can return row and column indices instead of linear indices by assigning its result to a

matrix of two variables:

[i, j] = find(A>10);

13

3 Getting Help

3.1 Help Menu
To access the Matlab help system, use the Help menu. Most of the menu options take you to different

places within the help browser.

3.2 Help Window
Matlab Help takes you to the help window.

Browsing through the topics is a good way to learn about Matlab and to learn about new functions and

toolboxes. The search is good for getting documentation on a particular function (if you know its name

already).

14

3.3 Demos
One of the best ways to learn more about Matlab is to use the included Demos. Click on the demos tab

in the help browser or use Help | Demos. You can browse through them by category. A search of the

help system will also give you results for demos.

3.4 Examples
The help system also has lists of all of the examples used in the documentation. This can be another

good way to find useful information about Matlab.

15

4 Matlab editor

4.1 Basics
As you use Matlab, you may find yourself repeating sequences of commands. Or you may develop a way

of analyzing certain data that you need to repeat as new data become available. In order to keep an

accurate record of Matlab commands, and to make your sessions repeatable, you can put Matlab

commands into M-files, which are simply text file with the extension “.m”. You can also use M-files to

define your own functions. Matlab includes an editor which is tailored to editing Matlab code.

4.1.1 Starting editor

The editor is opened by default when you open an M-file. You can create a new M-file by choosing the

option New | M-file from the Current Directory context menu (accessed by right-clicking) or from the

File menu. You can also invoke the editor directly from the Desktop menu.

4.1.2 Source navigation

The Matlab editor shows line numbers on the left to help navigate within your code. You can include

comments in your M-file by starting a line with a % (percent) symbol.

4.1.3 Saving

Until you save your file, Matlab will continue to run the old version on disk. The Matlab editor tells you

there are changes by adding a star * to the file name. Make sure you save before you run your code.

4.1.4 Splitting the editor Window

In the Window menu there are several options to Tile your Editor windows. Tiling lets you view several

files at the same time, and is very useful when working on larger projects. Tiling is especially useful if you

keep your line lengths short.

4.2 Running your script
You can run an M-file by typing its name at command line in the Command Window. Or you can choose

Debug | Run (or click on the Run icon in the toolbar).

4.3 Function in an m-file
A script M-file executes a sequence of commands. Variables defined in your workspace are available to

the script, and variables defined by the script become part of the workspace. While this can be useful, it

can also cause problems if your scripts are used in different contexts. To formalize what information is

passed to and from your M-file, use Matlab functions. This will make your M-file readable and reusable.

You can also write short special-purpose functions that are simpler to code, and so easier to debug.

To define a function called myfunction which takes input a, b and c and returns output A, write “function

A = myfunction(a, b, c)”. The next lines define the function which should assign the value to be returned

into A. Terminate your function with the “end” command. The function must have the same name as

the M-file. Note that when you create a new M-file by right-clicking in the Current Directory tab, Matlab

provides you with a template function definition.

16

4.4 Debugging Commands
A simple way to check the commands in your M-file is to copy them to the Command Window and make

sure they work as expected. Select a command, right-click and choose “Evaluate selection”. You can

also use “Copy” and paste the command to the Command Window to edit it and try variations on it.

Since your commands will likely not work in isolation, you will often need to select all of the commands

that set up the environment. Execute the entire selection by right-clicking and “Evaluate selection”.

For more sophisticated debugging, use the commands in the Debug menu. With a Breakpoint, you

specify a place in your code where Matlab will stop when the code runs. You can then view the

Workspace and see what has been defined, and use Debug | Step to run your code one line at a time.

4.5 Development Methodology
In compiled languages like C, it is common to develop code by writing portions, then compiling and

running them to make sure they work. In Matlab, you can develop your code interactively at the

command line to confirm syntax and proper operation before you put them in your M-file.

4.5.1 Experiment at command line, put working commands into script

Working at the command line lets you try variations on commands and experiment with the syntax of

commands you have not used before. By checking the output interactively you will find errors and

mistakes immediately and be able to put well-formed working commands into your M-file.

4.5.2 Identify parameters that will change and make then function arguments

To write good functions, you should identify which parameters may change and define them as

arguments to your function. In this way you can reuse the function simply by providing different

parameters. Your code will also be clearer and easier to maintain.

4.6 Exercises

4.6.1 Write a Matlab script to define test data

𝑡𝑒𝑠𝑡𝑑𝑎𝑡𝑎 =

1 . 5
1.2 . 8
1.4 1.1
1.8 1.5
2.3 2
3 4

Now you can manipulate the “testdata” matrix and restore it at any time by running your script. Try

manipulating the data at the command line, then add your commands to the script.

4.6.2 Write a Matlab function that adds the sine and cosine of each entry in a matrix

17

5 Plotting

5.1 Demonstration
A demonstration of plotting is in the file “plotting.m”. During the Matlab course, this file is available in

R:\Matlab\plotting.m. After the course, these files are also available on the web at:

http://ist.uwaterloo.ca/ew/saw/matlab/course

There is a corresponding .html file which shows both the Matlab commands and their results.

5.1.1 Aside: Cell Mode M-Files

These M-files use cell mode in the editor, which gives a convenient way of publishing to html. It also

allows for a different way of running your Matlab code. You can select a cell in the editor, press

CTRL+Enter and the code is executed immediately in the workspace. This training does not cover cell

mode but you will see it used in these demonstration files. There is a lot of information about cell mode

in the help system, and it is used extensively in the matlab help system and demos.

5.2 Creating Plots Interactively
Once you have data in your workspace, you can use the Matlab GUI (graphical user interface) to create

plots. The following commands will create some very simple data:

x = 1:10;
y = x.^2;

Select the y variable and click the graph icon to access a menu of plots. These notes will continue with a

stem plot. (You can also right-click on a variable to access plots.)

Matlab opens a figure window with the requested plot. You can also access the list of available plots

from the Figure window by opening the Figure Browser and right clicking on a variable name.

http://ist.uwaterloo.ca/ew/saw/matlab/course

18

Choosing “More Plots” (here or in the Workspace) will open the Plot Catalog.

19

The plot catalog organizes all the different types of Matlab plots and explains how to use them.

5.3 Formatting plots interactively
In an active Figure window, there are menu and toolbar options available. You can see additional

options by choosing “View | Figure Palette” (if it’s not still open) and “View | Property Editor”.

Insert | X-label, type ‚Time‛
Insert | Y-label, type ‚Distance‛
Insert | Title, type ‚Distance travelled‛

Click on data series, change line to dotted, add a marker. Here’s what this looks like, starting from the

basic 2-D line plot.

20

5.4 Create script file
Choose File | Generate M-file. Matlab generates the code needed to reproduce your formatting.

21

6 Importing Data for Analysis

6.1 Import from Excel
The file “gas1.xls” contains price information for gasoline (source

http://www.eia.doe.gov/emeu/international/prices.html) . We will import this data into Matlab for

analysis.

To get started, simply open the data file from within Matlab. This will open the Import Wizard.

22

These defaults will work for this example. Click Finish.

6.2 Demonstration M file
This example is also available in your course folder in R:\Matlab\gasprices.m. The M-file approach uses

the command “xlsread” to bring in Excel data. The remaining commands are those demonstrated below.

6.3 Organize/arrange data
The wizard creates two variables: data and textdata. Double-click on these in the Workspace to view

their contents.

The variable “data” is a 608x7 matrix of floating point numbers (Matlab type double).

23

The matrix “textdata” is a 610x8 cell array. It contains the values which could not be converted to

numbers.

We need to get the dates and names of the columns out of textdata so that they are available in plots.

Here are the commands to extract these portions:

dates = textdata(2:end, 1)
cats = textdata(1, 2:end)

There are missing data, which Matlab shows as “NaN” (not a number). These values will make analysis

and plotting difficult. In this example, we will smooth the data using a moving average filter. This fills in

the missing data and also makes trends easier to see in the plots.

data = smooth(data)

24

To plot the data:

plot(data)
set(gca, ‘XTickLabel’, ‘dates’);
legend(cats);

To analyze the data, we can compute the pair-wise correlation coefficients:

corr(data)

6.4 Exercises

6.4.1 Problems with Tail data

The graph shows a steep drop off in some of the data series. Investigate why this is happening and fix it.

(Hint: it is related to the way we “smoothed” the data.)

6.4.2 Investigate Correlations

Some of the data are highly correlated and some of the correlations are not so strong. Try plotting the

highly correlated data together. Conversely, compare some of the series that do not have such a strong

correlation.

25

7 Programming

7.1 Matlab editor
To get into the Matlab editor, you can double-click on an M-file in the Directory window, or choose File |

Open and pick an m-file, or choose Window | Editor. Creating a new m-file from the Directory window

conveniently creates a function prototype automatically and will save you a little bit of work. Right-click

and choose New M-file. In this section we will work on an M-file called parabola.m. Here is what the

editor looks like when you open a new m-file.

Notice that Matlab automatically inserted a function definition. The Matlab editor automatically applies

colours to your code to make it more readable. Comments begin with a % and are green.

This function will take the parameters for a parabola and plot it. The parabola will be of the form:

𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐

7.2 Methodology (test commands, add to script)
First, we delete the output_args and replace input_args with a,b,c the parameters of the parabola. Let’s

start with a simple plot.

26

To execute the code, type “parabola(1, 2, 1)” at a command window. A plot window will appear.

Unfortunately using a fixed range is not the best idea if we are going to handle a general parabola. There

may be nothing of interest in the specified -10 to 10 domain. E.g. 𝑦 = 𝑥2 − 50𝑥 + 600 has roots x=20

and x=30 and a critical point at x=25. Running “parabola(1, -50, 600)” gives a graph:

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

20

40

60

80

100

120

140

27

We need to find the roots of the polynomial and use these somehow in the plot range. Let’s experiment

at the command window:

p = [1 -50 600]
roots(p)
sort(ans)

We need to sort the output of roots so that we have the smaller root first. Let’s add the following code

to the function:

rts = sort(roots([a b c]));
x1 = rts(1);
x2 = rts(2);
x = rts(1):.1:rts(2);

It would be even better to have the plot range extend on both sides of the roots, rather than just

between the roots.

-10 -5 0 5 10
200

300

400

500

600

700

800

900

1000

1100

1200

20 22 24 26 28 30
-25

-20

-15

-10

-5

0

28

7.3 Testing, debugging, spying as it’s running
Seems easy enough, right? But we never considered what parameters are valid for our function and

what happens if Matlab can’t find the roots!

What happened? Let’s spy on parabola as it runs. In the editor, go to line 9 where the error is occurring,

and choose Debug | Set/Clear Breakpoint or press F12. Now run parabola. The editor opens with the

cursor at line 9.

15 20 25 30 35
-40

-20

0

20

40

60

80

29

To see the value of variables, hover the mouse over them, or look in the workspace.

The problem is apparent: the parabola has complex roots!

7.4 Exercises

7.4.1 Fix the function so it can plot a parabola with complex roots

Your function should choose a relevant range for the plot. Hint: There will always be a real-valued

critical point. If 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, then 𝑦′ = 2𝑎𝑥 + 𝑏 so that 𝑦′ = 0 when 𝑥 = −
𝑏

2𝑎
.

7.4.2 Handle parabolas with a double root

Running parabola(1, -2, 1) gives an apparently empty plot (if you look really closely there is a dot at

(1,0):

30

Investigate what is going wrong in the function and fix it.

