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Image Formation Process

Image formation process can be structured into:

Exposure

Autofocus control

Physically (i.e. optically, electronically, and mechanically) in�uencing:

Captured visual information coming out from the sensor

Subsequent color image processing pipeline

Applies image processing operations onto the captured data
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Colour Imaging Pipeline Overview

Figure: Color Imaging Pipeline: Coarse View
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Exposure & Autofocus

Central aspects of image quality are contrast and sharpness

Both aspects can be improved by image enhancement operations

BUT: primarily their properties should be optimised in the image acquisition process

This is done by exposure and focus control mechanisms in the camera
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Exposure (1)

Exposure is controlled by the �exposure triangle� where each item controls exposure di�erently:

Shutter speed (controls the duration of the exposure)

Aperture (controls the area over which light can enter the camera)

ISO speed (controls the sensitivity of the camera's sensor)

while scene luminance de�nes the required exposure.

Many combinations of the above three settings lead to the same exposure.

Key is knowing which trade-o�s to make, since each setting also in�uences other image
properties:

Aperture a�ects depth of �eld
Shutter speed a�ects motion blur
ISO speed a�ects image noise
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Exposure (2)

Shutter speed can be controlled with a mechanical shutter or electronically

Aperture is controlled by the camera's iris

ISO speed is adjusted by:

Either varying the ampli�cation applied to the sensor's analog output signal before
analog-to-digital (A/D) conversion
Or by remapping e.g. 12 bits worth of sensor CCD output onto 8 bits of digital output in the
camera's A/D converter

In any case, noise is being ampli�ed and even added by the �rst strategy

Exposure control usually requires characterisation of the brightness (or intensity) of the image:

An over- or underexposed image will greatly a�ect output colors

Depending on the measured energy in the sensor, the exposure control system changes the
settings in the exposure triangle

Both the exposure and focus controls may be based on:

Either the actual luminance component derived from the complete RGB image
Or simply the green channel data, which is a good estimate of the luminance signal
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Determining the Brightness (1)

Image is usually divided into blocks and the average luminance signal is measured in each
one of these blocks

Most common method is a centre-weighted average metering:

Luminance is averaged over all blocks while assigning more weight to the central 60 � 80 %
of the image

Other metering approaches:

Spot metering (only central image parts are being used)
Matrix metering (using a honeycomb con�guration to identify objects and their luminance)
More recently, face detection is employed to identify area of speci�c interest (i.e. faces) to
evaluate luminance and optimise exposure for such areas

Exposure control then tries to change the exposure so that metring results �t a middle
grey tone; a so called �18% grey�
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Determining the Brightness (2)

Alternative to �tting the metering results to a speci�c average luminance value:

Explicitly focus onto the luminance value distribution (in image regions or the entire
image) by considering the image histogram.

Histogram represents the dynamic range of the sensor and can be partitioned into e.g. 5
equally sized bins

An underexposed image will be leaning to the left (provided that left histogram regions
represent dark colours)

An overexposed image will be leaning to the right in the histogram

Image details disappear in over- and underexposed images

We want as much as possible of the image to appear in the middle region of the histogram

This can be quanti�ed by computing the mean sample value (MSV), which determines the
balance of the tonal distribution in the image (xi ... number of pixels in histogram region):

MSV =

∑4
i=0(i + 1)xi∑4

i=0 xi

Thus, the image is correctly exposed when MSV ≈ 2.5
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Determining the Brightness (3)

Distribution of luminance values as determined in the metering process can also be combined to
form a measure of exposure based on the type of scene being imaged:

Backlit

Frontlit scene

Nature shot

In a typical image (nature shot), average luminance values are uniformly or randomly
distributed across the scene

Backlit or frontlit scenes may be distinguished by measuring the di�erence between the
average luminance signal in the central area A and background area B.

If the image is excessively frontlit, the average luminance in region A will be much higher
than that in region B, and vice versa in the case of a backlit scene.

Exposure is controlled subsequently so as to maintain the di�erence between the average
signals in these two areas, an estimate of the object-background contrast.
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Metering Problems - Over- and Under-Exposure, Dynamic Range

All metering techniques measure the light re�ected from the scene and assume all tones
within the scene that they are metering to average out to a mid-grey tone

Might not be true for every image!

If the scene has a lot of light tones, the camera will underexpose the image:
Camera's meter gives an exposure reading that renders the light tones as grey
This results in underexposure

To correct this, there are exposure correction settings for taking images e.g. in the snow

Outdoor images (and many indoor ones as well) taken with typical cameras su�er from the
problem of limited dynamic range in the case of an excessively backlit or frontlit scene

Dynamic range refers to the contrast ratio between the brightest pixel and the darkest
pixel in an image

Human visual system (HVS) can adapt to about four orders of magnitude in contrast ratio

sRGB system and typical computer monitors and television sets have a dynamic range of
about two orders of magnitude

This leads to spatial detail in darker areas becoming indistinguishable from black and
spatial detail in bright areas become indistinguishable from white
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HDR Images

High dynamic range (HDR) solves this problem by:

(a) Capturing multiple images of the same scene at varying exposure levels on a single sensor
and combining them by time multiplexing to obtain a fused image that represents the
highlight (bright) and shadow (dark) regions of an image in reasonable detail

(b) Using two sensors with a di�erent sensitivity to light avoiding temporal disturbances

Figure: Fusing images with di�erent exposure
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Autofocus - Active and Passive Systems

There are two di�erent kinds of autofocus systems:

Active AF systems:

Measure distance to the subject independently of the optical system
Subsequently adjust the optical system for correct focus
Various ways to measure distance, including ultrasonic sound waves (e.g. some Polaroid
cameras) and infrared light (early DSC & video cameras)

Passive AF systems:

Determine correct focus by performing passive analysis of the image that is entering the
optical system
They generally do not direct any energy, such as ultrasonic sound or infrared light waves,
toward the subject
However, an autofocus assist beam of usually infrared light is required when there is not
enough light to take passive measurements
→ resulting in a hybrid system
Passive autofocusing can be achieved by phase detection (SLR) or contrast measurement
(DSC, see next slides)
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Autofocus - Active and Passive Systems - Problems

Active systems will typically not focus through windows as sound waves and infrared light
are re�ected by the glass

With passive systems this will generally not be a problem, unless the window is stained

Accuracy of active AF systems is often considerably less than that of passive systems and
therefore problematic when the DoF is small

Active systems may also fail to focus a subject that is very close to the camera since
measurements get inaccurate

As a consequence, active systems are not used in microscopy

Passive systems may not �nd focus when the contrast is low
Notably on large single-colored surfaces (walls, blue sky, etc.) or in low-light conditions

Passive systems are dependent on a certain degree of illumination to the subject (whether
natural or otherwise)

While active systems may focus correctly even in total darkness when necessary

This is the motivation for the AF assist beam

See http://graphics.stanford.edu/courses/cs178/applets/ for nice applets on this
and other topics.
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Autofocus - Phase Detection (1)

Basic principle is like the split-image range�nder focusing aid in a manual-focus SLR

This focusing aid consists of two shallow prisms, which angle your eye's view so it sees
light rays coming from the two opposite edges of the lens

When the lens is correctly focused, these edge rays (by de�nition) must cross at the plane
of the focusing screen

That means objects seen by the left edge of the lens and those seen by the right edge of
the lens will line up with each other as seen through the split-image prisms

If the lens is incorrectly focused, the edge rays will cross either ahead of or behind the
focusing screen

That means the rays from the left edge and right edge will be displaced relative to each
other, and lines will appear �split� through the prisms
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Autofocus - Phase Detection (2)

AF system works the same way, except that instead of the eye it uses a dedicated AF
sensor consisting of two (CCD) arrays

Optics in the AF system work the same way as the split-image prisms, directing light from
the left side of the lens to one CCD, and from the right side of the lens to the other CCD
(analogy to left and right eye)

The patterns of light and dark in the subject cause the individual elements of the CCD
segments to put out di�erent values

Total output of each CCD could be graphed as a wiggly, square-edged waveform
corresponding to the light and dark patterns in the subject

Fig. 3(a) (next slide) shows a ray diagram when the lens is in good focus and (b) shows
the intensity pro�le corresponding to this lens position

When the object is moved farther away, the rays from the upper and lower halves of the
lens no longer intersect at the same locations

Measured energy from the two halves of the lenses are out-of-phase (Figs. 3(c) and (d))

Requires the lens to move relative to the image plane to compensate for this defocus; in
this case, towards the image plane
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Autofocus - Phase Detection (3)

Figure: AF phase detection principle.
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Autofocus - Phase Detection (4)

AF system's CPU compares the waveforms from the two CCDs to see whether or not they
are �in phase�

If not, it can determine the amount and direction of the error based on the direction and
displacement of the two waves relative to each other

It uses this information to drive the AF motor to focus the lens

This is why phase detection is faster compared to contrast detection, since the latter
requires iterative focusing and measuring stages to determine focus.

Fig. 4 (next slide) illustrates how this is actually done in a camera since it is not entirely
obvious how to get rays from the two halves of the lens:
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Autofocus - Phase Detection (5)

Figure: AF phase detection as used in SLR.

NOTE: Image sensor is di�erent from the focus sensor
There is a chance that they are not aligned
Something considered focused by the focus sensor is not always focused on the image sensor

This is why phase-detect autofocus is more prone to front-/back-focusing issues
Enthusiast/high-end cameras have a micro-adjust feature to address this issue
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Autofocus - Contrast Detection

Contrast detection AF is achieved by measuring contrast (or similar values determining
sharpness) within a sensor �eld, through the lens

Intensity di�erence between adjacent pixels of the sensor naturally increases with correct
image focus

Optical system can thereby be adjusted until the maximum contrast is detected

In this method, AF does not involve actual distance measurement at all and is generally
slower than phase detection systems, especially when operating under dim light.

As the AF system cannot calculate whether the subject is in front focus or back focus,
iterative adjustment is required

Does not use a separate sensor:

Contrast detection AF can be more �exible (as it is implemented in software) and potentially
more accurate
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Autofocus - Contrast Detection - Focusing Process

Focusing process typically consists of two components:

An image-based measure which indicates the sharpness of the image (i.e. the degree of
focus)

A search algorithm which yields an image with the highest sharpness value

Depending on the target hardware system, the e�ciency of the search strategies is
determined by:

Number of sharpness evaluations (i.e. the number of images being taken and evaluated)
Computational cost of each sharpness evaluation
Number of stops and directional changes of the focusing adjustment system (i.e. cost of
physical lens movement)
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Autofocus - Contrast Detection - Search Functions

The following search algorithms have been proposed:

Global search: all possible focus positions are visited and the sharpness evaluated.

Binary / Fibonacci search: A divide and conquer algorithm always breaks down the
problem into two sub-problems by partitioning the focus range into sets, two equally sized
sets for binary search and two sets following the golden section rule for Fibonacci search.

Hill Climbing: the maximum is searched by going into the direction of ascending values
with some larger step-size, once the values start descending, search direction is reversed
and small step size is used.

Rule-based search: depending on the value of the gradient, the focus range is partitioned
into four di�erent types of areas where the number of analysed focus position is
proportional to the gradient, also descending values are recorded and are used to steer the
search process. A number of rules de�nes how to proceed under which conditions.

Function �tting: the position of highest sharpness is predicted from some arbitrary
measurement points by �tting a function of known shape or by using a neural network.
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Autofocus - Contrast Detection - Search Function De�nition

Let I denote a set of digital images which are sorted in a way that they come from a
defocused state to an intermediate focus and �nally to an in-focus state

Subsequently, images get de-focused again

An autofocus function is a map f : I → R with the characteristic that f (i) is maximised
as the image comes into focus

Further desired properties (which are eventually required to enable e�cient search
strategies):

The function should have only a single extremum, this avoids potential errors from local
extrema. This means in other words that the function should be monotonically increasing
towards its maximum and monotonically decreasing afterwards.
The extremum should be attained when the system is in focus.
The extremum should have a sharp peak.
The function should react insensitively to other parameters that possibly change during the
process like the mean brightness of the image.
The function should be simple, thus allowing for high execution speed.
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Autofocus - Contrast Detection - Search and Sharpness Functions

Some focus search strategies do not require the underlying sharpness function to exhibit
speci�c properties

A global search is of this type, since the sharpness function does not need to obey any
speci�c property apart from attaining its maximum when the system is in focus

However, the number of evaluations is high when using this approach

More e�cient and intelligent schemes may signi�cantly take advantage or even entirely
rely on certain sharpness function properties to enable fast focusing

Most of the techniques requiring a lower number of evaluations and lens movements rely
on the assumption of a unimodal sharpness function

Binary and Fibonacci search or all variants of hill climbing

Less stringent sharpness function properties are necessary for rule-based search (i.e. a
certain extent of continuity), as well as for function �tting by using functions of known
shape or by using a neural network (in the latter case it is important for the sharpness
function to exhibit the same shape independent of the underlying imagery)

In any case, also the search strategies mentioned at last take advantage of unimodality of
the sharpness function since the search will terminate faster and will be more accurate
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Autofocus - Contrast Detection - Sharpness Measures (1)

Speed is important, thus sharpness measures based on the application of initial integral
transformations (like Fourier or wavelet transform) are usually not considered.
The considered spatial domain techniques can be divided into four main categories:

Functions based on di�erentiation

Functions based on the histogram

Functions based on statistical methods

Functions based on depth of peaks and valleys

Functions based on di�erentiation

As an image comes into focus edges become sharper and therefore the amount of high
spatial frequencies increases

Image gradients are applied or the di�erence of the gray level intensity of pixels in the
neighbourhood is calculated for computing focus measures

Can be divided into methods that use the �rst derivative and methods that use the second
derivative

Examples are given in equations (1), (2), (3), and (4)
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Autofocus - Contrast Detection - Sharpness Measures - Di�erentiation (1)

Boddeke: This method is based on applying a (−1, 0, 1) �lter mask along the horizontal (x)
axis of an image. The focus function is de�ned by squaring and adding all the �ltered pixel
values.

FBoddeke =
X−1∑
x=1

Y∑
y=0

[g(x + 1, y)− g(x − 1, y)]2 , (1)

where X is the width of the image, Y the height of the image and g(x , y) the gray level
intensity of pixel (x , y).

Brenner: Brenner noted that as an image comes into focus, di�erences between a pixel and a
pixel displaced for a certain amount increase:

FBrenner =
X−n∑
x=0

Y∑
y=0

[g(x , y)− g(x + n, y)]2 , (2)

where n is a number specifying the amount of displacement.
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Autofocus - Contrast Detection - Sharpness Measures - Di�erentiation (2)

Laplace: For analysing the high frequencies of the image it is convoluted with the Laplacian
operator which is a second derivative operator:

L = 1
4

 0 −1 0
−1 4 −1
0 −1 0

 .

The Laplace focus measure is computed as follows:

FLaplace =
X−n∑
x=n

Y−n∑
y=n

|L(x , y)|, (3)

where L(x , y) is the convolution of g(x , y) with the mask L and n de�nes the size of the
Laplace operator, which means that L(x , y) is computed as follows:

L(x , y) = 1
4 · [g(x , y) · 4− g(x , y + n)− g(x − n, y)− g(x , y − n)− g(x + n, y)] .
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Autofocus - Contrast Detection - Sharpness Measures - Di�erentiation (3)

Tenengrad: The Tenengrad autofocus function uses the Sobel operator for the calculation that
in turn uses the two convolution masks

Sx =

−1 0 1
−2 0 2
−1 0 1

 Sy =

 1 2 1
0 0 0
−1 −2 −1

 .

FTenengrad =
X−n∑
x=n

Y−n∑
y=n

T (x , y) , (4)

where T (x , y) = S2x (x , y) + S2y (x , y) and Sx(x , y) and Sy (x , y) are the convolutions of the
image with the Sobel operators Sx and Sy . Again, n determines the size of the operator.
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Autofocus - Contrast Detection - Sharpness Measures - Histogram (1)

Functions based on the histogram

Based on the assumption that focused images have a greater number of grey levels than
unfocused images

Defocused images are expected to be a single shade of gray

Hence the number of bins in the histogram that contain occurrences increases as the
image comes into focus

Examples are given in equations (5) and (6)

Mendelsohn and Mayall's Histogram Method: This method calculates the weighted sum of
pixels in the histogram bins that are above a given threshold T and is computed as follows:

FMenMay =
X∑

x=0

Y∑
y=0


g(x , y) · Hg(x ,y), g(x , y) > T

0, else

, (5)

where Hg(x ,y) is the number of pixels with intensity g(x , y).
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Autofocus - Contrast Detection - Sharpness Measures - Histogram (2)

Range: Range is the di�erence between the maximum gray level and the minimum gray level,
as an image comes into focus, the histogram range increases:

FRange = max(g |Hg > 0)−min(g |Hg > 0) , (6)

where Hg is the number of pixels with intensity g .

C. Kauba: Image Processing and Imaging - Image Formation 33/103



Autofocus - Contrast Detection - Sharpness Measures - Statistical (1)

Functions based on statistical methods

Calculate the variance or the standard deviation of the gray level intensities of an image

Also methods that use the autocorrelation functions can be found
This category can be divided into functions that are based on

Image contrast
Correlation measures

Examples are given in equations (7), (8) - (10)

Variance and normalised Variance: The Variance functions are based on image contrast,
which is another feature that characterises sharpness since a well-focused image can be
expected to show strong variation in gray levels.

F(Nor_)Variance =
1

XYg

X∑
x=0

Y∑
y=0

[g(x , y)− g ]2 , (7)

where g is the mean of the gray level intensities of the image. For normalised variance, 1/g is
additionally used as a normalising factor to compensate for the di�erences in average image
brightness among di�erent images.
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Autofocus - Contrast Detection - Sharpness Measures - Statistical (2)

Vollaths' Focusing Measures: These measures are based on the autocorrelation function and
the variance / standard deviation. We consider three variants:

FVollF4 =
X−1∑
x=0

Y∑
y=0

g(x , y) · g(x + 1, y)−
X−2∑
x=0

Y∑
y=0

g(x , y) · g(x + 2, y) , (8)

FVollF5 =
X−1∑
x=0

Y∑
y=0

g(x , y) · g(x + 1, y)− XYg2 , (9)

FVollF11 =
1

XY (XY − 1)
[XY

X−1∑
x=0

Y∑
y=0

g(x , y) · g(x + 1, y)− (
X∑

x=0

Y∑
y=0

g(x , y))2] . (10)
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Autofocus - Contrast Detection - Sharpness Measures - Peaks/Valleys (1)

Functions based on depth of peaks and valleys

Local extrema of the intensity values and their distances are considered

Based on the observation that peaks and valleys are better separated in focused images

Examples are given in equations (11) and (12)

Thresholded Content: This method adds the pixel values that are above a certain threshold
T :

FTh_Cont =
X∑

x=0

Y∑
y=0


g(x , y), g(x , y) ≥ T

0, else

. (11)
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Autofocus - Contrast Detection - Sharpness Measures - Peaks/Valleys (2)

Thresholded Pixelcount: This function computes the number of pixels below (above) a
certain threshold:

FTh_Pixelcount =
X∑

x=0

Y∑
y=0

s[g(x , y),T ] , (12)

with

s[g(x , y),T ] =


0, g(x , y) ≥ T

1, g(x , y) < T

(13)
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Autofocus - Contrast Detection - Sharpness Measures - Combined

Of course, there are also autofocus functions that combine several features of other autofocus
functions.
Examples are given in equations (14, 15) and (10).

Variance of Sobel: The variance of the magnitude of the Sobel gradient is calculated.

FVar_Sobel =
X−n∑
x=n

Y−n∑
y=n

(|S(x , y)| − S)2 , (14)

where S(x , y) =
√
S2x (x , y) + S2y (x , y) and S is the mean of the absolute values of the Sobel

gradient given by

S =
1

(X − n)(Y − n)

X−n∑
x=n

Y−n∑
y=n

S(x , y) . (15)
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Autofocus - Contrast Detection - Sharpness Measures - Parameters

Several functions depend on a threshold or can be used with speci�c parameters

Their behaviour often is signi�cantly in�uenced by these parameters

Fig. 5 as an example for the Laplace function with n = 1 and n = 10, all examples
computed from sequences of 40 hardness testing images with di�erent focus
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Figure: Laplace autofocus function after normalisation applied to a series of 40 images (n = 1, n = 10).
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Autofocus - Contrast Detection - Sharpness Measures - Criteria (1)

Accuracy: The most important criterion an autofocus function should ful�ll is that the
extremum should be attained when the image is in focus. This aspect is important for all focus
search algorithms. A way to score a function for this criteria is to use:

Facc =
1

1 + 0.25 · (maxfound −maxtrue)2
,

where maxtrue is the position of the sharp image in the image stack and maxfound is the
position of the image in the image series that the autofocus function has computed. Facc = 1,
when the autofocus function has computed the right position. The higher the di�erence
between maxtrue and maxfound is, the more Facc goes towards 0.
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Autofocus - Contrast Detection - Sharpness Measures - Criteria (2)

Monotonicity:

For all focus search algorithms relying on a unimodal sharpness function, the function
should be monotonically increasing towards its maximum and monotonically decreasing
afterwards

A function Fmon has been used that calculates the di�erences of all F (i) and F (i + 1)
within the image series, where F (i) denotes an autofocus functions' value of the image on
position i

Fmon = 1, when the autofocus function is monotonically increasing towards its maximum
and monotonically decreasing afterwards

The more often the monotonicity is disturbed, the more Fmon goes towards 0

Therefore initially Fmon = 1, each time the monotonicity is disturbed, 0.075 is subtracted

When the value becomes negative Fmon = 0 and the algorithm stops

It should be noted that autofocus functions which produce more than a single extremum
are scored low by Fmon

C. Kauba: Image Processing and Imaging - Image Formation 41/103



Autofocus - Contrast Detection - Sharpness Measures - Criteria (3)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  5  10  15  20  25  30  35  40

V
o
ll

at
h
F

5
 v

al
u
e

Position

VollathF5 high monotonicity

Position of maximum
VollathF5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  5  10  15  20  25  30  35  40

N
o

rm
al

is
ed

V
ar

ia
n

ce
 v

al
u

e

Position

NormalisedVariance low monotonicity

Position of maximum
NormalisedVariance

Figure: Monotonicity of autofocus function: FVollF5, Fmon = 1 vs. FNor_Variance , Fmon = 0.325.
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Autofocus - Contrast Detection - Sharpness Measures - Criteria (4)

Peak Sharpness:

Sharpness of the peak is another criterion for selecting a good focus measure

A sharp peak makes algorithms possible that do a coarse search for the peak within the
calculated values and come in a �ner state when the values change more signi�cantly.

Especially two-step search and rule-based search may signi�cantly bene�t from distinct
peak sharpness

To accomplish an assessment for that criterion a function Fsharp has been developed that
counts the values of an autofocus function that are above a focus level of 0.3

Few values are expected to be above that threshold if the autofocus function has a sharp
peak

Therefore Fsharp = 1, in case less than 20 percent of the values are above 0.3

The more values are higher than 0.3, the more Fsharp goes towards 0

Fsharp = 0, as soon as more than 50 percent of the values are above 0.3
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Autofocus - Contrast Detection - Sharpness Measures - Criteria (5)
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Figure: Peak Sharpness of autofocus function: FVollF4, Fsharp = 1 vs. FVariance , Fsharp = 0.

Autofocus/focus on white or other uniform areas:

Neither passive method will focus well if there isn't a contrast change in the image
E.g. a solid white wall (or white portions) or concrete �oor or blue sky with no clouds

Measurement is not about distance or intensity of light but contrast within the image
This is why some assist beam systems use a red grid pattern to help AF in low-contrast
situations

C. Kauba: Image Processing and Imaging - Image Formation 44/103



Outline

1 Exposure & Autofocus
Exposure
Autofocus

Active - Phase Detection
Passive - Contrast Detection

2 Colour Imaging Pipeline
Channel Matching
Dark Correction
Defect Concealment
Smear Correction
Gain Nonuniformity Correction
Optics Corrections
Stochastic Noise Reduction
Exposure and White Balance Correction
Demosaicing
Interpolation

Interpolating CFA Generated Data

C. Kauba: Image Processing and Imaging - Image Formation 45/103



Colour Imaging Pipeline

Operates on the acquired image, in most cameras based on three di�erently populated
colour planes
The �rst processing block in the pipeline depicted in Fig. 8, �camera correction�, is
actually a collection of blocks as detailed in Fig. 9

Processing blocks required for a speci�c
camera vary depending upon the hardware
and the user expectations

Lower cost hardware typically leaves more
artifacts in the raw image to be corrected,
but user expectations are often lower as
well

Choice of correction blocks used with a
particular camera is the result of a number
of system engineering and budget decisions

Few, if any, cameras use all of the
processing blocks shown in Fig. 9

Figure: Color Imaging Pipeline: Detailed View
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Colour Imaging Pipeline - Camera Correction

Figure: The stages of camera correction
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Channel Matching

The �rst correction is to match the response of multiple outputs or analog signal processing
chains, such as with a dual output sensor:

Artifacts due to channel mismatch are highly structured

Usually a seam in the middle of the image or a periodic column pattern, the responses for
the multiple outputs must match very closely

The most common form of this correction:

Adaptively compute a dark o�set correction for each output

That will bring similar pixels from each output to match a common value, using reference
dark pixels

The key to successful matching of multiple output channels is to take advantage of the
knowledge of which image pixels came from which output
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Dark Correction

Dark correction is always necessary:

Analog output from the image sensor is rarely precisely �zero� for a zero light condition

Even with the lens cap on, a dark current signal is recorded, which is due to thermally
generated electrons in the sensor substrate
To account for this, two strategies are used:

Place an opaque mask along the edges of the sensor to give an estimate of intensity due to
dark current alone (this value can be corrupted by noise in the dark pixels, so some
smoothing may be used to reduce the dark �oor estimation error)
Capture a dark image for the given exposure time (a second image is taken immediately after
capturing the scene image with no exposure).

In the �rst case, the mean dark current is subtracted from the entire image (this only
works well in case of uniform dark �oor)

In the second one, the dark image itself is subtracted from the captured data

In some cases, the dark �oor is modeled using data from multiple dark captures

By averaging, the impact of temporal noise on the dark �oor estimate is minimised

This technique is still a�ected by changes in sensor temperature and integration time

Astronomical and other scienti�c applications, especially ones using temperature-controlled
sensor, routinely use this technique, made easier by the controlled temperature
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Defect Concealment (1)

Sensor defects are somewhat problematic

They indicate lost data that simply was not sensed

Algorithms for treating defects interpolate the missing data

The most common defects are isolated single pixel defects

Concealment of isolated pixels is usually done with a linear interpolation from the nearest
adjacent pixels of the same color sensitivity.

There are two way of treating these defects:

Applying an impulse noise �lter which tends to (inappropriately) �lter out high-contrast
details such as stars, lights, or specular re�ections
Maintaining a map of defective pixels depending upon a map from the sensor or camera
manufacturer
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Defect Concealment (2)

Bright pixel defects (hot pixels) caused by cosmic ray damage must be concealed without
depending upon a preinstalled map

A camera can implement a dark image capture and bright defect detection scan in
�rmware, usually done at startup

New defects found in the dark image are added to the defect map

Cosmic ray damage tends to produce bright points rather than marginal defects →
detecting these defects is relatively easy

Sensor column defects or other more clustered defects caused e.g. by dirt on the cover
glass of the sensor are much more di�cult to correct:

The latter ones also vary in size depending on the focal length of the lens
Amount of defective/missing data which needs to be corrected/interpolated is higher than
for the single, isolated defects
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Defective Pixel Example - Hot and Stuck Pixels

C. Kauba: Image Processing and Imaging - Image Formation 55/103



Outline

1 Exposure & Autofocus
Exposure
Autofocus

Active - Phase Detection
Passive - Contrast Detection

2 Colour Imaging Pipeline
Channel Matching
Dark Correction
Defect Concealment
Smear Correction
Gain Nonuniformity Correction
Optics Corrections
Stochastic Noise Reduction
Exposure and White Balance Correction
Demosaicing
Interpolation

Interpolating CFA Generated Data

C. Kauba: Image Processing and Imaging - Image Formation 56/103



Smear Correction (1)

Interline smear is a challenging artifact to correct or conceal because the artifacts vary
with scene content

It is manifested as an o�set added to some of the columns in the captured image

Since the added signal will usually vary from column to column, the e�ect will vary with
the original scene content

If a small amount of charge is added to pixels that are well below saturation:

Artifact is manifested as a column that is brighter and lower in contrast than normal

If the sum of scene charge and smear charge saturates the pixels in the column, then the
column looks like a bright defective column

Smear usually a�ects several adjacent columns, so saturated columns become di�cult to
conceal well (high amount of defective data to conceal)
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Smear Correction (2)

Concealment approaches start with the use of dark rows or overclocked rows to estimate
the smear signal that should be subtracted from each column

For example, one may subtract a smear signal from each column and apply a gain
adjustment after the subtraction

Gain adjustment prevents bringing saturated columns down below the maximum code
value, but adds gain variations to each column

In general, high quality smear correction is very di�cult to achieve
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Gain Nonuniformity Correction

Gain non-uniformity is caused by lens e�ects like vignetting or sensor characteristics
Correction is essentially a multiplication of each pixel with a gain map
Early implementations, with very limited memory for storing gain corrections, used simple
separable polynomials
Later implementations stored small images, with a gain value for each colour channel for
small tiles of the image
These maps were often created to make the sensor response to a uniform illumination
completely �at, which left taking lens e�ects and interactions uncompensated

With increasing adoption of CMOS sensors and evolution to smaller pixels, gain
corrections now usually include lens interactions
For a camera with a �xed lens, these are relatively simple
For cameras with interchangeable lenses, this creates new overhead to combine a sensor
gain map with a lens interaction gain map

If lens e�ects get too severe, gain correction is usually limited to minimise noise
ampli�cation
Results in yet another system optimisation, trading o� darkness versus noisiness in the
corners
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Optics Corrections

Common optics distortions: vignetting, geometric distortion, chromatic aberrations
(longitudinal and lateral), and spatially varying reaction to an impulse light source

Geometric distortion is corrected by warping the image to invert the change in
magni�cation

Extent of distortion is usually determined with calibration patterns like checkerboard
images

Lateral chromatic aberration is corrected similarly by applying the procedure to colour
bands separately

Longitudinal chromatic aberration (di�erent color channels are focused at di�erent
distances from the lens) are treated by applying a sharpening �lter to the a�ected colour
bands

As distortion correction may spatially resample the colour channels individually, it is often
included in the processing chain after demosaicing

Convolution with a spatially varying kernel is used to compensate for spatially varying
reaction to an impulse light source
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Stochastic Noise Reduction (1)

All noise reduction operations seek to preserve as much scene information as possible while
smoothing noise

To achieve this e�ciently, it is important to use relatively simple models to discriminate
between scene information and noise information

In the stochastic noise reduction block, greyscale techniques for noise reduction are usually
applied to each colour channel individually

In addition, after demosaicing, inter-colourband correlation may be exploited to distinguish
noise from structural scene information (�colour noise reduction�)

The �rst technique applied is range based �ltering:

This noise reduction is based on smoothing small intensity changes and retaining large ones
Problem: textures and edges with low contrast tend to get over-smoothed
The second artifact is the tendency to switch from smoothing to preservation when
modulation gets larger:
Results in a very nonuniform appearance in textured �elds or edges, with portions of the
texture being smoothed and other portions being much sharper
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Stochastic Noise Reduction (2)

The second technique is based on the likelihood that impulses are noise:

Leads to the use of impulse �ltering noise reduction
Usually using a standard center-weighted median �lter

Characteristic artifact caused by impulse �ltering is elimination of small details from the
scene, especially specular re�ections from eyes and small lights
When applying impulse �lters to CFA data, the �ltering is particularly vulnerable to creating
colored highlights, if an impulse is �ltered out of one or two colour channel(s)
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Exposure and White Balance Correction (1)

HVS:

Has the ability to map �white� colours to the sensation of white

Even though an object has di�erent radiance when it is illuminated with di�erent light
sources

In other words, a sheet of white paper under �uorescent lighting or under incandescent
lighting or even under natural daylight appears to be white, although the actual irradiated
energy produces di�erent colors for di�erent illuminations

This phenomenon is called color constancy

DSC and SLR:

Need to be taught how to map white under the capture illuminant to white under the
viewing illuminant (and other colours accordingly)

White balance adjustment is accomplished by multiplying pixels in each colour channel by
a di�erent gain factor that compensates for a non-neutral camera response and illuminant
imbalance
Application of the gain factors to the CFA data before demosaicing may be preferred:

Some demosaicing algorithms may presume equal responses for the di�erent colour channels
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Exposure and White Balance Correction (2)

Camera's response to typical illuminants, such as daylight, incandescent, and �uorescent,
is easily stored in the camera

In some circumstances, the capture illuminant is known (or can be determined)
For example this is the case for �ash usage or for user controlled illuminant selection on
the camera

Another option to determine illuminant is to consider several possible illuminant classes
and estimate the probability of each illuminant being the actual scene illuminant based on
the colour characteristics

Automated White Balance (AWB):

In most cases, it is desirable to perform white balance without knowledge about the
capture illuminant
Appropriate gain factors need to be determined to correct for illumination imbalance
Current cameras approach this estimation problem with di�erent algorithms having
di�erent responses to scene content and illuminants
Camera manufacturers usually have somewhat di�erent preferences:

E.g. biasing white balance to render images warmer or cooler
Also di�erent approaches to estimating the scene illuminant
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Exposure and White Balance Correction (3)

Best way to do white balance is to take a picture of a neutral object (white or gray) and
deduce the weight of each channel:

If the object is recorded as Rw ,Gw ,Bw

Use weights 1/Rw , 1/Gw , 1/Bw for the three colour channels

One means of performing auto white balance is to assume that a white patch must induce
maximal camera responses in the three channels

The underlying theory is that highlights are specular re�ections that are the colour of the
illuminant

Thus, the white-balanced image has signals given by R/Rmax ,G/Gmax ,B/Bmax

However, the maximum in the three channels is very often a poor estimate of the
illuminant and it does not work for scenes that have no truly specular highlights
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Exposure and White Balance Correction (4)

Most automatic white balance and exposure algorithms are based on some extension of
the gray world model:

Assume all colours in an image will average out to gray, R = G = B
Using this approach, the channels are scaled based on the deviation of the image average
from gray
In this scheme, the white-balanced image has signals given by:

kr ∗ R,G , kb ∗ B

where kr = Gmean/Rmean and kb = Gmean/Bmean

However, the actual gray world model assumes that images of many di�erent scenes will
average out to 18% gray (a midtone gray)

Unfortunately, this says very little about a speci�c image, but the algorithm must work
well for individual images

Therefore, most extensions of the gray world model try to disregard large areas of single
colours (not taking them into account for the average gray calculation):

Avoid having the balance driven one way or another by red buildings, blue skies, or green
foliage
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Demosaicing Introduction

Process of generating three equally populated colour bands with full resolution from an
image captured using a CFA technique

For this purpose, arti�cial data needs to be generated since all three colour bands are
available in sub-sampled form:

I.e. the green channel has 50% and the red and blue channels have 25% of pixels populated,
respectively

The technique used to generate these missing data is called interpolation:
Apart from demosiacing, interpolation is used in:

Image resizing/scaling
Defect concealment / correction (image impairment)
Super-resolution
Many other techniques...

Due to its importance, we �rst shed some light on basic principles of interpolation
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Demosaicing - Interpolation Basics

Classical interpolation is the process to compute an interpolated value g(x) at some
(perhaps non-integer) coordinate x as a linear combination of the samples gk evaluated at
integer coordinates k

The weights being given by the values of the function f (x − k):

g(x) =
∑
k∈Z

gk f (x − k) .

f (x) must vanish for all integer arguments except at the origin, where it must be 1 (i.e.
�interpolation property�)

Summation is performed over all integer coordinates

However, in practice the number of known (or used) samples is always �nite

A large variety of di�erent �interpolation kernels� f (x) is used

Having di�erent properties with respect to resulting quality of the interpolated data,
execution speed of the computation, memory requirement etc.
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Demosaicing - Nearest Neighbour Interpolation

Nearest neighbour kernel is the simplest of all:

fNN(x) = 1 for −0.5 ≤ x < 0.5

fNN(x) = 0 if x < −0.5 and x ≥ 0.5

For any coordinate x where it is desired to compute the value of the interpolated function
g , there is only one sample gk that contributes

Main interest of this approach is its simplicity, the price to pay is a very low quality
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Demosaicing - Linear Interpolation

Linear interpolation still o�ers very low complexity but improves quality as compared to
nearest neighbour interpolation considerably:

fLIN(x) = 1− |x | for |x | < 1

0 otherwise (|x | ≥ 1)

How does this correspond to our usual notion of taking the sum and divide by two ?

For example, consider two pixel values (6 and 10) next to each other and we want to
compute the interpolated value right in the middle of them

Following our general formula, we result in:

g(0) = 10fLIN(−0.5) + 6fLIN(0.5) = 5 + 3 = 8 .

This is exactly the result we expect.

In two dimensions, also called bilinear interpolation, its separable implementation requires
four samples

Here, �rst columns are interpolated, followed by an interpolation of the lines
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Demosaicing - Bilinear and Bicubic Interpolation Example

Figure: Bilinear and Bicubic interpolation
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Demosaicing - Cubic Interpolation

Cubic interpolation:

Produces less blurring of edges and other distortion artifacts than bilinear interpolation

But is more computationally demanding

Polynomials of third degree are used as kernel functions such that more sample points can
be considered

Bicubic interpolation involves �tting a series of cubic polynomials to the pixels contained
in a 4× 4 array of pixels surrounding the calculated address

First, four cubic polynomials are �tted to the control points in the y-direction (the choice
of starting direction is arbitrary)

Next, the fractional part of the calculated pixel's address in the y-direction is used to �t
another cubic polynomial in the x-direction, based on the interpolated pixel values that lie
on the curves

Substituting the fractional part of the calculated pixel's address in the x-direction into the
resulting cubic polynomial then yields the interpolated pixel's brightness value

Bicubic interpolation has found use in many commercial software packages such as Adobe
Photoshop and others
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Demosaicing - Cubic Interpolation - Deriving a Kernel Function (1)

The choice of polynomial used in the (bi)cubic interpolation algorithm can have a signi�cant
impact on the accuracy and visual quality of the interpolated image.

In the following, we demonstrate how to derive a cubic interpolation kernel function
fCUB(x) = f (x):

If the values of a function and its derivative are known at x = 0 and x = 1

Then the function can be interpolated on the interval [0, 1] using a third degree
polynomial:

f (x) = ax3 + bx2 + cx + d , f ′(x) = 3ax2 + 2bx + c

The values of the polynomial and its derivative at x = 0 and x = 1 are given as:

f (0) = d , f (1) = a + b + c + d , f ′(0) = c , and f ′(1) = 3a + 2b + c

The four equations can be rearranged so that they deliver the required polynomials'
coe�cients:

a = 2f (0)− 2f (1) + f ′(0) + f ′(1), b = −3f (0) + 3f (1)− 2f ′(0)− f ′(1), c = f ′(0), and
d = f (0)
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Demosaicing - Cubic Interpolation - Deriving a Kernel Function (2)

Problem:

In most cases (particularly in image processing), we do not know the derivative of the
underlying (image intensity) function

We simply want to interpolate between a list of pixels

Instead of setting the derivative to 0 at each point (which does not lead to smooth curves)

We use the slope of a line between the previous and the next point as the derivative at a
point (the resulting kernel is called �a Catmull-Rom spline�)

Suppose we have the samples g0, g1, g2, and g3
At the positions x = −1, x = 0, x = 1, and x = 2

Then we can assign the values of f (0), f (1), f ′(0) and f ′(1) using the formulas below to
interpolate between:

g1 and g2: f (0) = g1, f (1) = g2, f
′(0) = g2−g0

2 , and f ′(1) = g3−g1
2

Setting these values into the above formula for the polynomial coe�cients we result in:

a = −1/2g0 + 3/2g1 − 3/2g2 + 1/2g3, b = g0 − 5/2g1 + 2g2 − 1/2g3,
c = −1/2g0 + 1/2g2, and d = g1
Resulting in the corresponding polynom: f (g0, g1, g2, g3, x)
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Demosaicing - Cubic Interpolation - Deriving a Kernel Function (3)

For bicubic interpolation, suppose we have the 16 samples (pixels):

gij with i and j going from 0 to 3 and with gij located at (i − 1, j − 1)

Then we can interpolate the area [0, 1]2:

By �rst interpolating the four columns and

Then interpolating the results in the horizontal direction

The formula for the polynom becomes:

f (x , y) = f (f (g0,0, g0,1, g0,2, g0,3, y), f (g1,0, g1,1, g1,2, g1,3, y), (16)

f (g2,0, g2,1, g2,2, g2,3, y), f (g3,0, g3,1, g3,2, g3,3, y), x) . (17)

Alternatively, the formula can be derived if the following function values are known:

f (x , y), fx(x , y), fy (x , y), and fxy (x , y) at the four corners (0, 0), (1, 0), (0, 1), and (1, 1)

The unknown coe�cients aij of the corresponding 2-D polynomial surface
f (x , y) =

∑3
i=0

∑3
j=0 aijx

iy j can be computed by solving a system of 16 linear equations,
similar to the procedure above for the one dimensional case
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Demosaicing - Cubic Interpolation - Example

Compute an interpolation polynomial (the green curve) for the four points on the red curve

The four points g0 = 2, g1 = 4, g2 = 2, and g3 = 3, at the positions x = 1, x = 2, x = 3,
and x = 4 are given (note that the x-positions are di�erent compared to those used in the
derivation)

We compute the resulting polynomials' coe�-
cients as:

a = −1/2 ∗ 2 + 3/2 ∗ 4− 3/2 ∗ 2 + 1/2 ∗ 3
b = 2− 5/2 ∗ 4 + 2 ∗ 2− 1/2 ∗ 3
c = −1/2 ∗ 2 + 1/2 ∗ 2
d = 4

Resulting in the polynom:

f (x) = 7/2(x − 2)3 − 11/2(x − 2)2 + 4

Note: x-2 replaces x due to the shift from
[0, 1] Figure: Example for cubic interpolation
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Demosaicing - Cubic Interpolation - Bicubic Spline Interpolation

Bicubic Spline Interpolation:

Requires the solution of the linear system described above for each grid cell

A �xed kernel with similar properties is often used instead (as derived by Keys):

fKEYS(x) = (a + 2)|x |3 − (a + 3)|x |2 + 1 for 0 ≤ |x | < 1

fKEYS(x) = a|x |3 − 5a|x |2 + 8a|x | − 4a for 1 ≤ |x | < 2

fKEYS(x) = 0 for |x | ≥ 2

Often, a �xed choice is a = 0.5

Many more interpolation kernels do exist:

Lanczos kernel

Sinc kernel

Various types of spline interpolation methods
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Demosaicing - Interpolating CFA Generated Data - Basic Strategies

An important issue for these algorithms is computational cost and ease of hardware
implementation
It has to be noted that many of the techniques described are covered by patents of the
respective camera producers
Often, the actual technique used in a camera is not publicly known

The �rst and most obvious approach is to apply interpolation techniques to each colour
plane independently
Nearest neighbour interpolation makes an arbitrary choice which pixel is selected for
identical distance, bilinear interpolation averages between the neighbours:
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Demosaicing - Interpolating CFA Generated Data - Colour Moire (1)

The examples below illustrate that signi�cant colour artifacts arise with this strategy

The e�ect displayed is called �Colour Moire e�ect (or colour fringes or zipper e�ect)� and
is caused by misinterpreting luminance detail as colour information

Note that also when applying more advanced interpolation (like bicubic techniques), those
e�ects cannot be reduced signi�cantly

Figure: Examples for colour plane interpolation: nearest neighbour vs. bilinear
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Demosaicing - Interpolating CFA Generated Data - Colour Moire (2)

Caused by the poor interpolation results of individual colourplane interpolation:

Sharp luminance transitions cause a sharp transition in the colour planes at di�erent
spatial locations

I.e. the colour planes do not react in a synchronized manner to sharp edges

An example of this e�ect and the situation causing the e�ect is shown below:

Figure: Colour Moire artefact
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Demosaicing - Interpolating CFA Generated Data - Colour Moire (3)

Figure: Principle of color sampling errors

The �gure above illustrates what exactly happens at a sharp luminance transition

As a consequence, it is imperative to incorporate the inter-colourband correlations into the
demosaicing process

A signi�cant number of corresponding approaches have been suggested throughout the
last 2 decades

The tendency is to increase complexity resulting in steadily increasing quality in this �eld
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Demosaicing - Colour Moire Handling - Median Filtering Approach

The �rst approach employs a median �lter to colourplane di�erences. The idea is clear:

Since the colourplanes are out of synchronisation, a di�erence signal contains isolated
maximas in areas where colour fringe occurs (see �gure left for the R-G signal)

Therefore, as illustrated, a median �lter is applied to colour di�erence signals, the results
of which are used with original measurements to compute all the RGB values in each pixel

This is possible as we have one value and two di�erences for each pixel
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Demosaicing - Colour Moire Handling - Median Filtering Approach Example

Example of a �lter's di�erence signal (R-G signal) and a comparison of the colourplane
independent bilinear interpolation (middle) and the median �ltering approach (right).
The latter one (median �ltering approach) shows clearly reduced colour artefacts.

Figure: Median �ltering, left: R-G signal, centre: bilinear interpolation, right: median �ltering result
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Demosaicing - Colour Moire Handling - Colour Hue Constancy (1)

Median �ltering approach is a �rst approach to take into account the strong spectral
correlation between colour components at each pixel

Two main hypotheses are proposed in the literature in this context:

The �rst one assumes a color ratio constancy

The second one is based on color di�erence constancy (where median �ltering obviously relies
on the latter)

Interpolation based on colour hue constancy:

Follows the �rst idea, where hue is understood as the ratio between chrominance and
luminance

I.e. R/G or B/G when the G plane is identi�ed with luminance as it is often done

Exibits problems in case the denominator G takes low values

This happens for instance when saturated red and/or blue components lead to
comparatively low values of green, making the ratios R/G and B/G very sensitive to red
and/or blue small variations
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Demosaicing - Colour Moire Handling - Colour Hue Constancy (2)

The image above is highly saturated in red (left) with its corresponding G plane (right). The
�gure below shows the component ratio R/G (left) and di�erence R-G (right). Note that these
two images carry out less high-frequency information than the green component plane.

Figure: R/G and R-G planes
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Demosaicing - Colour Moire Handling - Colour Hue Constancy (3)

A Sobel �lter is then applied to these two images, so as to highlight the high-frequency
information location

In the right-hand parrot plumage area where red is saturated, the component ratio plane
(left) contains more high-frequency information than the component di�erence plane
(right)

This makes it more artifact-prone when demosaiced by interpolation

Moreover, high colour ratio values may yield to estimated component levels beyond the
data bounds

→ undesirable for the demosaicing result quality
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Demosaicing - Colour Moire Handling - Colour Hue Constancy (4)

Constant hue transition interpolation method:

First interpolates the G plane by some desired method (by-linear or edge-directed, see
below).

Using the assumption that hue is smoothly changing across an objects surface, the hue
value is interpolated
The interploation for the chrominance values are derived from the interpolated hue values

To be more speci�c, the interpolated R hue (R/G ratio) and B hue (B/G ratio) are
multiplied by the G value to determine the missing R and B values at a given pixel position

For example, refering to the Bayer pattern in the �gure on the next slide, the following
formulas are used:

R44 = G44

R33

G33
+ R35

G35
+ R53

G53
+ R55

G55

4

B33 = G33

B22

G22
+ B24

G24
+ B42

G42
+ B44

G44

4
Note that the G values involved in these formulas are the result of the �rst interpolation
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Demosaicing - Colour Moire Handling - Colour Hue Constancy (5)

The �gure below illustrates how this concept can be used employing colourband di�erences
instead of hue:

Figure: Bayer CFA pattern and constant-di�erence-based interpolation

Note: all of the afore mentioned demosaicing algorithms are nonadaptive.

Nonadaptive demosaicing algorithms typically provide satisfactory results in smooth image
regions, while they usually fail in textured regions and edges

C. Kauba: Image Processing and Imaging - Image Formation 94/103



Demosaicing - Adaptive Demosaicing - Edge-Directed Interpolation (1)

Edge-directed interpolation:

Adaptive approach, where the area around each pixel is analysed to determine if a
preferred interpolation direction exists
In practice, the interpolation direction is chosen to avoid interpolation across edges
Instead interpolation is performed along any edges in the image

Figure below shows an example of applying this idea to a single colour band
It can also be applied to any grayscale image and is therefore also a generic adaptive
interpolation approach
In practice, the gradients themselves and their di�erence should exceed some threshold
The idea can also be combined also with bicubic or any other more advanced technique
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Demosaicing - Adaptive Demosaicing - Edge-Directed Interpolation (2)

This idea can be extended to exploit inter-colourband correlation as well (see �gure on the
next slide)

Here, the R and B channels in a larger neighbourhood are used instead of the G channel to
determine gradients, second-order derivatives are used

Once the luminance is determined, chrominance values are are interpolated from the
di�erences bewteen the colour (R and B) and luminance (G) channels (again ratios can be
used as well)

For example (notation of �gure below is used):

R8 =
(R5− G5) + (R9− G9)

2
+ G8 and R4 =

(R3− G3) + (R5− G5)

2
+ G4 .

For the red value in a blue pixel the four di�erences NW, NE, SW, and SE are added,
divided by four, and the corresponding G interpolation value is added
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Demosaicing - Adaptive Demosaicing - Edge-Directed Interpolation (3)

Figure: Edge-directed interpolation involving all colour planes.
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Demosaicing - Adaptive Demosaicing - Adaptive Colour Plane Interpolation

Adaptive colour plane interpolation:

Improves the previous approach by also using colour plane information to interpolate the
green band, i.e. (notation of previous �gure is used):

G5 =
G2 + G8

2
+

2 ∗ R5− R1− R9

2
for δV < δH ,

G5 =
G4 + G6

2
+

2 ∗ R5− R3− R7

2
for δV > δH , and

G5 =
G2 + G4 + G6 + G8

4
+

4 ∗ R5− R1− R3− R7− R9

4
for δV = δH .

Here, in fact second order colour gradients are used in the interpolation

In the original scheme, also δV and δH are more complicated

The colour channels are interpolated using a similar technique

A further re�nement is to use more directions for computing gradient information
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Demosaicing - Adaptive Demosaicing - High Quality Linear Interpolation

High Quality Linear Interpolation:

Very similar to previous one but uses di�erent weights in its interploation scheme
8 di�erent cases are distinguished:

2 to determine the red and green values on a blue pixel
2 to determine the blue and green values on a red pixel
4 to determine the red and blue values on a green pixel (2 for a green pixel in a �red row�
and 2 in a �blue row�)

Figure below shows the corresponding 8 interpolation schemes (which need to be
normalised before application); e.g. used in MATLAB
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Demosaicing - Further Techniques - Pattern Recognition Interpolation (1)

Pattern Recognition Interpolation:

This family of methods aims at identifying a template-based feature in each pixel
neighborhood in order to interpolate according to the locally encountered feature

The �rst step in his
procedure is to �nd the
average of the four
neighboring green pixels,
and classify the neighbours
in comparison to this
average as either:

high (h)
or low (b)

See �gure to the right for
the patterns used to
determine the central pixel
interpolation
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Demosaicing - Further Techniques - Pattern Recognition Interpolation (2)

These values are sorted and denoted as G1, . . . ,G4, M = G2+G3

2

The green pixel Ĝ is then de�ned as an edge if three neighbor pixels share the same
classi�cation

If not, then the pixel can either be a part of a corner or a stripe

If two adjacent neighbour pixels have the same classi�cation, then the pixel is a corner

If two opposite pixels have the same classi�cation, then the pixel is a stripe

If an edge is detected: Ĝ = M

For a stripe: Ĝ = CLIP(M − (S −M)) where S is the average green level over the eight
neighboring pixels labeled as Q in the �gure

For a corner: Ĝ = CLIP(M − (S ′ −M)) where S ′ is the average green level over the eight
neighboring pixels labeled as Q in the �gure

CLIP limits the interpolated value to [G3,G2]

The other colour planes can be interpolated using any of the techniques described before
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Demosaicing - Further Techniques - Homogeneity-Directed Interpolation

Homogeneity-directed interpolation:

The RGB data is �rst interpolated horizontally and vertically, i.e., there are two candidates
for each missing color sample

Both the horizontally and vertically interpolated images are transformed to the CIELAB
space

In the CIELAB space, either the horizontally or the vertically interpolated pixel values are
chosen based on the local homogeneity

The local homogeneity is measured by the total number of similar luminance and
chrominance values of the pixels that are within a neighborhood of the pixel in question
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Demosaicing - Further Techniques - Vector-Based Interpolation

Vector-based interpolation:

Each pixel is considered as a vector in the three dimensional (R,G,B) space

Interpolation is designed to minimise the angle or the distance among neighbouring vectors

After an inital interpolation of missing samples, each pixel is transformed to spherical
coordinates (ρ,Φ, φ):

R = ρ cos(Φ) sin(φ) , R = ρ cos(Φ) cos(φ) , B = ρ sin(Φ) .

In the (ρ,Φ, φ) space, a �ltering operation like median �ltering is applied to the angles only

This forces the chrominance components to be similar

Because ρ is closely related to the luminance component, keeping it unchanged preserves
the luminance discontinuities among neighboring pixels

After the �ltering process, the image is transformed back to the (R, G, B) space
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