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Image Enhancement Introduction

Aim is to pre-process images in order to make them better suited for speci�c applications

Applications might include human viewing but this is not the most important one

More important is the preparation for subsequent image processing operations

Two di�erent application domains of the enhancement methods:

spatial domain methods (Bildraum)
transform domain (e.g., frequency domain-Fourier, time-frequency domain-Wavelets)
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Spatial Domain Methods (1)

f (x , y) is the intensity function of the original image
g(x , y) = T (f (x , y)) is the enhanced image
T represents an operator applied to f (x , y) in a speci�c neighbourhood of (x , y):

often, a squared image region centered in (x , y)
center of this image region is moved from pixel to pixel

Simplest case:

1× 1 neighbourhood, i.e. g only
depends on the value of f at position
(x , y) ab

T is called grey-scale transformation
or transfer function, represented as
s = T (v) with v = f (x , y) and
s = g(x , y)

In the �gure, the x-axis shows the original
grey-scales, while the y-axis shows the values
after transformation.
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Figure: Grey-scale transformation
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Spatial Domain Methods (2)

Largerneighbourhood:

Di�erent types of functions are often denoted as masks, templates, windows or �lter

Usually a small 2-D array (e.g. 3× 3 pixel) is shifted across the image

Computing the enhanced value at each pixel position

Coe�cients in the array are chosen as to emphasize or suppress certain image properties

Example:

Image with constant intensity with isolated pixels exhibiting di�erent intensity (�pop noise�)

Mask is wi = −1 i = 1, . . . 9 except for w5 = 8

Each entry of the mask is multiplied with the pixels positioned below the entry and all the
results are added up

For an area of constant intensity we get 0 as a response

Mask is shifted across the image pixel by pixel
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Spatial Domain Methods (3)

Result


= 0 all pixels identical

> 0 central pixel is larger than surrounding

< 0 central pixel is smaller than surrounding

. . . x − 1 x x + 1 . . .

. . . . . . . . . . . . . . .

y − 1 . . . o o o . . .

y . . . o x o . . .

y + 1 . . . o o o . . .

. . . . . . . . . . . . . . .

w1 w2 w3

w4 w5 w6

w7 w8 w9

Figure: Image and mask

T [f (x , y)] = w1f (x − 1, y − 1) + w2f (x , y − 1) + w3f (x + 1, y − 1) + . . .+ w9f (x + 1, y + 1)
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Changing the Amplitude

Changing the range of grey-scales:

Visualisation of di�erence images after prediction or MC
Clipping is often used in case of a small number of pixels is found at the tails of the
histogram

Contrast is improved additionally

input

ou
tp

ut

clipping

Kontrastverbesserung

z.B. Visualisierung, Differenzbildung

Figure: Modi�cation of grey-scale range

Local vs. global: All techniques discussed here can be applied to the entire image - globally - or
to parts / tiles of the image - locally.
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Contrast Modifcation

Contrast is increased in areas where the slope
of the transfer function (or its tangent) is lar-
ger than 1.

Figure: Contrast Modi�cation

Example: Contrast modi�cation of a com-
puter tomography by applying the logarithm
as transfer function

Figure: Contrast modi�cation of a CT
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Contrast Modifcation - Transfer Functions

Contrast can be modi�ed by using simple transfer functions like

s = rp p = 2, 3, 1/2

Further typical contrast modi�cation techniques:

s = r2 s = r1/2

reverse function s = 1− r inverse function

Figure: Typical contrast modi�cation techniques
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Contrast Modi�cation - Myelin Example

A further example is displayed applying the logarithm function to a Myelin image
(similar s = r1/2).

Figure: Contrast modi�cation of a Myelin
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Histogram Modi�cation (1)

Histogram

Distribution of relative frequency of grey-values in an image (global image description).

Let r be the grey-value of a pixel and 0 ≤ r ≤ 1 with r = 0 = black and r = 1 = white.

We consider the transfer function s = T (r) with the properties

(a) T is monotonically increasing on (0, 1)

(b) 0 ≤ T (r) ≤ 1 for 0 ≤ r ≤ 1

The inverse transform from s to r is r = T−1(s) with 0 ≤ s ≤ 1 with identical properties (a)
and (b).

Consider the grey-values as being contineous random variables

We can represent the original and transformed grey-value distributions by considering their
corresponding density functions pr (r) and ps(s)

Density functions describe the overall impression of the image
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Histogram Modi�cation (2)

Remark: These density functions may be interpreted as a continuous histogram.

0 1

p_r(r)

Figure: Continuous histogram

From elementary probability theory and statistics we know:

If we know pr (r), T (r)

And T−1(s) satis�es the condition (a)

Then the density function of the transformed grey-values is given by:

ps(s) =

[
pr (r)

dr

ds

]
r=T−1(s)

(1)

C. Kauba: Image Processing and Imaging - Image Enhancement 17/99



Outline

1 Spatial Domain Methods

2 Contrast Manipulation & Modi�cation
Changing the Amplitude
Contrast Modifcation
Histogram Modi�cation
Histogram-Equalisation
Explicit Histogram Speci�cation
Gamma Correction

3 Image Smoothing & Denoising
Neighbourhood Averaging
Median Filtering

4 Image Sharpening

5 Transformation-Based Techniques
Fourier Transform
Filtering in Frequency Domain
Wavelet Transformation
Fourier vs. Wavelet
Further Wavelet Transform variants

C. Kauba: Image Processing and Imaging - Image Enhancement 18/99



Histogram-Equalisation (1)

We consider the following transfer function (called cumulative distribution function):

s = T (r) =

∫ r

0
pr (w)dw 0 ≤ r ≤ 1

When computing the derivative with respect to r we result in (fundamental theorem of
calculus):

ds

dr
= pr (r) (2)

When inserting equation (2) into equation (1)
we get:

ps(s) =

[
pr (r)

1

pr (r)

]
r=T−1(s)

= 1 0 ≤ s ≤ 1 .

(3)

1p_s(s)

0 1

Figure: equalised histogram

The result is a uniform density, constant 1. This result is entirely independent of the inverse
function.
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Histogram-Equalisation (2)

Histogram equalisation is achieved by applying the cumulative distribution function (CDF)
as grey-value transfer function

In the equalised histogram all occurence probabilities are equal to 1

Attention: here we are in the � idealised � continuous case!

Examples of CDF and corresponding densities:

Figure: Gaussians and their cumulative distribution functions
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Histogram-Equalisation Example

Example:

pr (r) =

{
−2r + 2 0 ≤ r ≤ 1

0 otherwise

s = T (r) =

∫ r

0
(−2w + 2)dw = −r2 + 2r

r = T−1(s) = 1−
√
1− s

Problem: For natural images no �Function� pr (r) exists.
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Histogram-Equalisation Discretisation

Discretisation
pr (rk) =

nk
n

0 ≤ rk ≤ 1, k = 0, 1, . . . , L− 1

nk . . . number of occurence of grey-scale k
n . . . number of pixel
L . . . number of grey-scales

Discrete Equalisation

sk = T (rk) =
k∑

j=0

nj
n

=
k∑

j=0

pr (rj) k = 0, . . . , L− 1, rk = T−1(sk)

Remark: The inverse function is not required. T (rk) can be derived from pixel statistics.
Due to discretisation the result is an approximation only.
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Discrete Histogram-Equalisation Example

Figure: Histogram equalisation
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Explicit Histogram Speci�cation (1)

Let pr (r) be the original and pz(z) the target density function

First step - the original image is histogram equalised:

s = T (r) =

∫ r

0
pr (w)dw

Assuming the target image to be available, it could be histogram equalised as well:

v = G (z) =

∫ z

0
pz(w)dw

z = G−1(v) would result in the target pixel values.

ps(s) and pv (v) have identical uniform densities (gleichmäÿige Dichte)

It is possible to use s (from the equalised original) instead of v in the inverse process

z = G−1(s) exhibits the desired target density
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Explicit Histogram Speci�cation (2)

Procedure:

1 Equalise original image → s

2 Specify the desired target density and obtain G (z)

3 z = G−1(s)→ z = G−1(T (r))

Problem: The inverse function cannot be computed directly in the discrete case. Thus, the
inverse function is obtained by a mapping grey-scale to grey-scale (table lookup).

Application: Optimisation for speci�c output devices, for which the optimal target histogram is
known, e.g. for large plotters etc.

Remark: Techniques discussed so far can also be applied to n ×m neighbourhoods � in case it
is only a speci�c region which is of interest, this leads to better results.
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From AHE to CLAHE

Global histogram equalisation works well in case the distribution of the pixel values (i.e.
the histogram) is similar throughout the image

In case the image contains areas which are signi�cantly lighter or darker than the overall
histogram suggests, the contrast of those regions will not be su�ciently enhanced.

Adaptive histogram equalisation (AHE):

Transforms each pixel with a transformation function derived from the pixel's
neighbourhood

Can be a �xed square, can be more involved, the computation may be weighted, etc.

CDF computed from pixels in the neighbourhood is used

In case the neighbourhood is a very homogeneous area:

Histogram will be very peaked and the transformation function will map a narrow range of
pixel values to the whole range of the result image
Resulting in an over-ampli�cation of noise
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Contrast Limited Adaptive Histogram Equalisation (CLAHE) (1)

Contrast Limited Adaptive Histogram Equalisation CLAHE:

Contrast is limited in each neighbourhood

Slope of the transformation function determines the contrast ampli�cation

This slope is proportional to the slope of the CDF (which is locally proportional to the
histogram value of the pixel)

Histogram is clipped at some prede�ned histogram value (see �gure)

Limits the slope of the contrast enhance CDF and thus, the amount of contrast
enhancement

Clip-value is often chosen to be 3 times the grey mean value

Due to intensity / luminance loss, it is better to redistribute the lost parts to the other
histogram bins

C. Kauba: Image Processing and Imaging - Image Enhancement 28/99



Contrast Limited Adaptive Histogram Equalisation (CLAHE) (2)

Figure: CLAHE: histogram clipping and interpolation

Computation of CLAHE involves the determination of the transformation function at each
pixel

T is usually approximated only, by computing transformation functions for �xed tiles of an
image grid

Actual output pixel for a speci�c location is then computed using up to four
transformation functions and appropriate bilinear or linear interpolation techniques
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Histogram Equalisation - AHE - CLAHE Comparison
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Gamma Correction - Why Gamma

Brightness/intensity values in digital images are on a linear scale

Perceived brightness/intensity by the human eye increases faster in dark areas and slower
in bright areas

Following an exponential function → non-linear

Another reason: CRT screens

Brightness is roughly correlated to U2 (voltage of the electron tube)

Again, the linear scale of the brightness values in images does not �t the non-linear scale
of the output device

TV stations applied a correction to the video material so that no correction in the TV set
was necessary

We need something to correct this in digital images / viewing devices
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Gamma Correction - Gamma Function

Can be achieved using Gamma correction:

Tries to compensate the di�erent characteristics of capture and viewing devices
Consistent impression of images on di�erent devices
Gamma originates from analog �lm - relation between the incoming light intensity and the
level of blackening on the �lm material:

Slope between H and D in the linear area is denoted as Gamma

Gamma Function:

b = fγ(a) = aγ for a ∈ R, γ > 0

γ is denoted as Gamma value

If a is between [0, 1], fγ stays within [0, 1]
as well, independent of γ

Function always passes (0, 0) and (1, 1)

Can be controlled by one parameter only:
γ Figure: Relation between exposure (H) and

resulting density (D) on the �lm material
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Gamma Correction - Transfer Function

Gamma function fγ(a) can be inverted

Result is a Gamma function fγ̄(b) with γ̄ = 1
γ

Typical Gamma values: 1.8-2.8 for CRT screens, 2.2 for NTSC TV sets and 2.8 for PAL,
0.45 for capturing devices (1/2.2)

Camera with known transfer characteristic: o = I γc , o...Output, I...light intensity

Gamma Correction:

To compensate, we want to have an i
which is proportional to I

Inverse Gamma function is used (as
transfer function) with γ̄c = 1

γc
:

i = fγ̄c (o) = o1/γc

The result is then:

i = o1/γc = (I γc )1/γc = Bγc
1
γc = B1

Figure: Gamma curve and inverse Gamma curve
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Gamma Correction - Practical Considerations

We implicitely assumed that all values are within [0, 1]

Usual pixel values are between [0, 255]

Steps to perform a Gamma correction on images:

1 Map pixel values a linear to â ∈ [0, 1]

2 Apply the Gamma function to â: b̂ = fγ(â) = âγ

3 Map b̂ back linear to b ∈ [0, 255]

Problem:

For γ values < 1, there is a steep slope around 0 (see Fig.)

Usually γ values < 1 are used during compensation (e.g. 0.45 for NTSC cameras)

Results in undesired ampli�cation of noise in pixel values close to zero
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Gamma Correction - Modi�ed Version

Practical solution: Replace the Gamma function with a linear one around 0 (0 ≤ a ≤ a0):

f̄(γ,a0)(a) =

{
s · a 0 ≤ a ≤ a0

(1 + d) · aγ − d a0 ≤ a ≤ 1

with

s =
γ

a0(γ − 1) + a
(1−γ)
0

and d =
1

aγ0(γ − 1) + 1
− 1

For an optimal approximation, small values of a0 should be used

Typical values for ITU
(International
Telecommunications
Union) standard:

γ = 1
2.222 ≈ 0.45 and

a0 = 0.018

Values for the sRGB
standard are similar

Figure: Left: ITU Gamma correction, right: sRGB Gamma correction
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Gamma Correction - Examples

original image γ = 2.22

γ = 0.64 γ = 0.45
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Image Smoothing & Denoising - Neighbourhood Averaging

Aim: E�ects caused by transmission errors or sampling errors should be corrected. These
e�ects are local errors (in the ideal case single independent pixels).

Most popular technique: Neighbourhood Averaging

g(x , y) is obtained by computing averages in a neighbourhood S (M . . . number of pixels in S):

g(x , y) =
1

M

∑
(n,m)∈S

f (n,m)

→

1 1 1
1 1 1
1 1 1

 →

Figure: Averaging with 3× 3 mask

Problem: Edges get signi�cantly softened (blurring)! This e�ect can be handled by applying
thresholding (with threshold T ). If the di�erence between original and �enhanced� pixel value is
too large, averaging is avoided and the original value is set.

ĝ(x , y) =

{
g(x , y) |f (x , y)− g(x , y)| < T

f (x , y) sonst
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Neighbourhood Averaging - Problem

Problem: Edges get signi�cantly softened (blurring)

Can be handled by applying thresholding (with threshold T )

If the di�erence between original and �enhanced� pixel value is too large:

Averaging is avoided and the original value is set

ĝ(x , y) =

{
g(x , y) |f (x , y)− g(x , y)| < T

f (x , y) otherwise
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Median Filtering

Median is used:

Instead of computing
an average in the
neighbourhood

Statistical outlayers in
the neighbourhood are
not included in the
generation of the
enhanced pixel value

Especially for denoising
(e.g. pop noise) the
median-based approach
is often preferable

Original Noisy image

5 x 5 Averaging 5 x 5 Median
C. Kauba: Image Processing and Imaging - Image Enhancement 43/99



Image Filtering / Convolution Example

Figure: Image Convolution with 3x3 kernel example
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Image Filtering / What about the Boundaries? (1)

Problem with the previous example: Filtered image is smaller than the input image
In general: output should be the same size as the input

Filter kernel has to be placed at the image boundaries as well
Which values should be used for the kernel elements �outside� the image?
Several strategies (boundary handling):

Padding with constant value (special case: zero padding)
Replication (either one line or several lines)
Re�ection (or mirroring)
(Cyclic) wrap (repeat)

Figure: Boundary Handling - Constant padding
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Image Filtering / What about the Boundaries? (2)

Figure: Boundary Handling - Replication Padding

Figure: Boundary Handling - Re�ection Padding
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Image Sharpening

Aim: emphasize edges

Idea: di�erence among pixels suggests the existence of an edge

Averaging and sharpening are based on two antagonistic mathematical concepts:

Averaging: details are �integrated'

Sharpening: details are �di�erentiated�

Gradient G [f (x , y)] =

( ∂f
∂x
∂f
∂y

)
1 G points into the direction of the largest growth of f (x , y)

2 |G [f (x , y)]| =

√(
∂f
∂x

)2
+
(
∂f
∂y

)2
∼ mag(G )

mag(G ) . . . magnitude of f , is equal to the largest growth rate of f (x , y)

In image processing mag(G ) is often denoted as Gradient for simplicity.
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Image Sharpening - From Continuous to Discretisation - Visualisation

Discretisation: derivatives are approximated by di�erences

|G [f (x , y)]| =

√
[f (x , y)− f (x + 1, y)]2 + [f (x , y)− f (x , y + 1)]2

As an alternative, absolute values can be used instead of the square root (more e�cient

implementation).

There are several possibilities how to visualise the Gradient image g(x , y) = |G [f (x , y)]|:

g(x , y) = G [f (x , y)] g(x , y) =

{
G [f (x , y)] G ≥ S

f (x , y) otherwise

g(x , y) =

{
Totherwise G ≥ S

f (x , y) otherwise
g(x , y) =

{
T1 G ≥ S

T2 otherwise

Figure: Types of Gradient visualisation
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Image Sharpening - Roberts Operator

Roberts Operator:

|G [f (x , y)]| = max {|f (x , y)− f (x + 1, y + 1)|, |f (x + 1, y)− f (x , y + 1)|}
Overall, the value of the Gradient is proportional to the di�erence among pixels grey-values �
large values for edges, small values for smooth or uniform areas.

Original Roberts Gradient image
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Image Sharpening - Roberts Operator - Examples of Gradient Visualisation

gradient image gradient above threshold

value for gradient if above threshold value for above and below threshold
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Transformation-Based Techniques

Transformations used in image processing are unitary(orthogonal and regular) transformations
and are used for:

Feature extraction to describe certain properties in an e�cient manner (e.g. frequencies: high -
edges, low - luminance). The aim is to be able to conduct certain operations
more e�ciently in the transformed domain (e.g. denoising).

Compression concentration of information

E�cient calculations e.g. a dense matrix is transformed into a sparse matrix, since more
e�cient algorithms do exist for sparse matrices (in sparse matrices � sparsely
populated matrices � many coe�cients are equal to zero).
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Transformation-Based Techniques - Orthogonal Basis (1)

In many cases the concept to represent a signal using orthogonal basis functions is used.

Background: Vectors in 2 dimensional space can be represented by a set of orthogonal (i.e. the
inner product is zero) basis-vectors (orthogonal basis):

(x , y) = α(1, 0) + β(0, 1).

{(1, 0), (0, 1)} are the orthogonal basis-vectors

α and β are the coe�cients which determine the weight of each basis-vector to represent
the vector (x , y)

Orthogonality of the vectors facilitates a minimal number of basis-vectors
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Transformation-Based Techniques - Orthogonal Basis (2)

This concept can be generalised to functions and signals, respectively:

f (x) =
∑
n

< f (x), ψn(x) > ψn(x)

Functions ψn(x) are orthogonal basis functions

< f (x), ψn(x) > are the transform coe�cients which determine the weight of each basis
function to represent a given signal �well'

For an application the coe�cients < f (x), ψn(x) > are computed and processed further

Basis functions ψn(x) are orthogonal → required number to represent the signal is minimal

Fourier transform:

Basis functions are ψn(x) = e−πinx = cos(nx)− i sin(nx)

Frequencies of periodic signals are considered

A Fourier coe�cient < f (x), ψn(x) > represents the strength / energy of the frequency n
in a signal

Obviously, not all signals may be represented e�ciently using this approach
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Fourier Transform

Developed by French Fourier who was very interested in music (violin) and wanted to know
how sounds are created by changing the length of the cords.

Let f (x) be a contineous function,
f̂ (u) is the Fourier transform of f (x)
with respect to frequency u.

f̂ (u) =

∫ ∞
−∞

f (x)e−2πiuxdx (4)

f (x) =

∫ ∞
−∞

f̂ (u)e2πiuxdu (5)

Inversion can be computed if:

f (x) is contineous and can be
integrated

f̂ (u) can be integrated as well

The Fourier transform of a real function is usually of com-
plex values.

f̂ (u) = <(u) + i=(u)

f̂ (u) = |f̂ (u)|e iΦ(u)

|f̂ (u)| =
√
<2(u) + =2(u) Φ(u) = tan−1

(
=(u)

<(u)

)

|f̂ (u)|2 . . . Power-Spectrum (Spektraldichte)

|f̂ (u)| . . . Fourier-Spectrum (Frequenzspektrum)

Φ(u) . . . Phase angle

u . . . Frequency variable
(since e2πiux = cos 2πux + i sin 2πux)
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Discrete Fourier Transform

Interpret the integral as the summation of discrete terms:

f̂ (u) is composed of an in�nite sum of Sine- and Cosine terms,
With parameter u determining the frequency of the Sine/Cosine pair

Discrete Fourier Transform (DFT):
{f (0), f (1), . . . , f (N − 1)} are N uniformly sampled points of a contineous function

f̂ (u) =
1

N

N−1∑
x=0

f (x)e−2πiux u = 0, . . . ,N − 1 (6)

f (x) =
N−1∑
u=0

f̂ (u)e2πiux/N x = 0, . . . ,N − 1 (7)

Two-dimensional:

f̂ (u, v) =
1

MN

M−1∑
x=0

N−1∑
y=0

f (x , y)e−2πi(ux/M+vy/N) (8)

f (x , y) =
M−1∑
u=0

N−1∑
v=0

f̂ (u, v)e2πi(ux/M+vy/N) (9)
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Discrete Fourier Transform - Example

Logarithmic scale: D(u, v) = log(1 + |f̂ (u, v)|) better than |f̂ (u, v)| for display purposes, since
values decrease rapidly for increasing frequency

Figure: Origial image (a) and its Fourier Spectrum (Magnitude) (b)
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Discrete Fourier Transform - Example of Signals (Images)

sinus DFT diag. sinus DFT

rectangle DFT impulses DFT

Figure: DFT Transformations
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Properties of the 2D Fourier Transform (1)

f̂ (0, 0) is identical to the average grey-value of all pixels:

f̂ (0, 0) =
1

MN

M−1∑
x=0

N−1∑
y=0

f (x , y)

Separability

f̂ (u, v) =
1

M

M−1∑
x=0

 1

N

N−1∑
y=0

f (x , y)e−2πivy/N

 e−2πiux/M

f (x , y) =
M−1∑
u=0

(
N−1∑
v=0

f̂ (u, v)e2πivy/N

)
e2πiux/M

The two dimensional transform may be implemented as a consecutive conduct of two
one-dimensional transforms, i.e. applying a DFT to all rows and subsequently to all
columns (or vice versa).
The foundation of this property is the separability of the underlying basis functions, i.e.:

e−2πi(ux+vy) = e−2πiuxe−2πivy
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Properties of the 2D Fourier Transform (2)

Translation

f̂ (u − u0, v − v0) = f (x , y)e2iπ(u0x/M+v0y/N) (10)

f (x − x0, y − y0) = f̂ (u, v)e−2iπ(ux0/M+vy0/N) (11)

The origin of the Fourier Transform (0, 0) can be moved to the center of the frequency plane
(M/2,N/2) by multiplying f (x , y) with (−1)x+y

Set u0 = M/2 and v0 = N/2:

f̂ (u −M/2, v − N/2) = f (x , y)e iπ(x+y) = (−1)x+y f (x , y)

A shift in f (x , y) does not a�ect |f̂ (u, v)| (shift invariance of the DFT):

|f̂ (u, v)e−2πi(ux0/M+vy0/N)| = |f̂ (u, v)|
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Properties of the 2D Fourier Transform (3)

Periodicity

f̂ (u, v) = f̂ (u + N, v) = f̂ (u, v + M) = f̂ (u + aN, v + bM)

Symmetry In case f (x , y) is real-valued:

f̂ (u, v) = f̂ ∗(−u,−v) |f̂ (u, v)| = |f̂ (−u,−v)|

Caused by the conjugate symmetry property around the origin, half of the transform
coe�cients are redundant. Symmetry and periodicity facilitate to keep the entire period
and to shift the origin of the transform domain into (M/2,N/2) as described before.
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Properties of the 2D Fourier Transform (4)

Linear combination

k1f (x , y) + k2g(x , y)⇔ k1f̂ (u, v) + k2ĝ(u, v)

Scaling

af (x , y) = af̂ (u, v) contrasting to f (ax , by) =
1

ab
f̂ (u/a, v/b)

Scaling can be shown as follows (1-dim.):

for f (x): f̂ (u) =
∫∞
−∞ f (x)e−2πiuxdx

for f (ax): f̂ (u) =
∫∞
−∞ f (ax)e−2πiuxdx

Multiplication of the integral and the exponent by a/a leads to:
1/a

∫∞
−∞ f (ax)e−2πiax(u/a)adx

Applying a substitution of variables s = ax (ds = adx):
1/a

∫∞
−∞ f (s)e−2πis(u/a)ds

This expression is evidently equal to 1

a f̂ ( u
a )

A contracted function (a > 1) consequently exhibits a Fourier transform with reduced
amplitude and horizontal stretching in frequency space
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Laplacian and Convolution (Theorem)

Laplacian:

∇2f (x , y) =
∂f

∂x2
+

∂f

∂y2

̂∇2f (x , y) = −(2π)2(u2 + v2)f̂ (u, v)

Convolution: Convoluting the mask h(x) with the image f (x) is de�ned as

h(x) ∗ f (x) =

∫ ∞
−∞

h(α)f (x − α)dα

Convolution Theorem:

f (x) ∗ g(x)⇔ f̂ (u) · ĝ(u) (12)

f (x) · g(x)⇔ f̂ (u) ∗ ĝ(u) (13)

f (x) ∗ g(x) . . . exhibits increasing computational complexity with increasing size of the mask f .

f̂ (u) · ĝ(u) . . . no increasing complexity if mask f is known
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Applications of the Convolution Theorem

The convolution theorem can be applied for:

Reduction of complexity of convolution: Fourier Transforms of f and g are computed and
the results multiplied, the product is inverse Fourier transformed

Pays o� with a mask size larger than 202 pixels

Filtering in frequency domain
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Fast Fourier Transform

FFT was published in 1968 by Cooley and Tuckey

Relies on an idea of C.F. Gauss in the area of matrix factorisation

The computational complexity of the DFT when applied to N data points is (N2)

Too high even for today's advanced hardware

FFT reduces complexity to (N logN)

Enabler of an application of Fourier techniques in signal processing
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Filtering in Frequency Domain

g(x , y) = h(x , y) ∗ f (x , y) (14)

ĝ(u, v) = ĥ(u, v) · f̂ (u, v) (15)

ĥ(u, v) . . . Transfer function
g(x , y) . . . Shifting the mask h(x , y) across the image f (x , y)

Procedure (f (x , y) is given):

Compute f̂ (u, v)

choose ĥ(u, v) in a way, that the resulting image emphasises certain properties

Compute the enhanced image by applying the inverse Fourier transform to ĥ(u, v) · f̂ (u, v)
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Di�erent Types of Filters

Figure: Di�erent types of �lters
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Lowpass Filter

Lowpass Filter: Edges and sharp transitions are phenomena of high frequency nature. If these
parts are suppressed in the frequency domain, the image gets smoothed.
ĥ(u, v) is the Ideal Lowpass Filter (ILPF)

ĥ(u, v) =

{
1 D(u, v) ≤ D0

0 D(u, v) > D0

D0 is the so-called Cut-o� Frequency

D(u, v) = (u2 + v2)1/2 is the distance between (u, v) and the origin

Applying ĥ(u, v) · f̂ (u, v) zeros high frequency parts (edges), low frequency parts are
retained.

Filters of this type a�ect real- and imaginary parts but do not change the phase
(zero-phase shift)
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Lowpass Filter Problems and the Butterworth Filter

Problems with Ideal Low Pass Filter:

Can not be implemented in electronic hardware

Cutting the frequencies very sharply results in artefacts (ringing):

The shape of h(x , y) (which determines the rings when convolved with a bright spot)
depends on the value of D0

Radii of the resulting rings are inverse proportional to the value of D0

Small D0 generates a low number of broad rings strong ringing)
With increasing D0 the number of rings increases but their breadth decreases.

Butterworth Filter (BLPF):

ĥ(u, v) =
1

1 + (D(u, v)/D0)2n

The Butterworth Lowpass Filter is a transfer function of order n. There is no discontinuity and
thus, less artefacts occur.
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Lowpass Filter Example
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Highpass Filter and the Butterworth Filter (HP)

Highpass Filter: By analogy to lowpass �lters, highpass �lters allow high frequencies to pass,
thus, edges and sharp transitions get emphasised.
ĥ(u, v) is the Ideal Highpass Filter (IHPF):

ĥ(u, v) =

{
0 D(u, v) < D0

1 D(u, v) ≥ D0

Butterworth Filter (BHPF):

ĥ(u, v) =
1

1 + (D0/D(u, v))2n

The Butterworth highpass �lter ist a transfer function of order n.

Edges and sharp transitions are kept and less artefacts occur.

In order to retain a certain amount of lower frequencies, a constant value can be added to
the transfer function (High Frequency Emphasis).

Additionally, histogram equalisation can be applied to improve the result
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Highpass Filter Example
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Bandpass Filter

Bandpass Filter:
A speci�c (middle) frequency band is determined to pass and ĥ(u, v) is designed
correspondingly:

Figure: Bandpass Filter Example
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Bandpass Filter for Speci�c Frequency Bands

More speci�c �ltering techniques take speci�c properties of eventual disturbances into account:
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Wavelet Transformation - Motivation

Using the Fourier transform, it is not possible to perform frequency �ltering on a local scale.
Windowed Fourier transform

Short term Fourier transform (STFT)

Cuts the signal into pieces (by applying smooth window functions)

Applies the Fourier Transform to the single pieces

PROBLEM: Width of the window functions have to be determined a priori

Results in frequency information loss no matter how the �xed window size is chosen

SOLUTION: A comprehensive solution to this dilemma is given by the Wavelet Transform:

Wa,b(f ) = |a|−1/2
∫ ∞
−∞

f (t)ψ

(
t − b

a

)
dt (16)

ψa,b(s) = |a|−1/2ψ
(
s − b

a

)
(17)

The functions in equation (17) are named �Wavelets�, ψ(s) is the mother wavelet.
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Wavelet Transformation - Mother Wavelets

Examples for mother wavelets are:

ψ(s) = (1− s2)e
s2

2 Mexican Hat (18)

ψ(s) =
sin(2πs)− sin(πs)

πs
Shannon Wavelet (19)

ψ(s) =


1 0 ≤ s ≤ 1/2

−1 1/2 ≤ s ≤ 1

0 other

Haar Wavelet (20)

Wavelet transform depends on two parameters (a and b):

Changing a, the wavelets in equation (17) describe di�erent local �frequency bands�

Large a describe broad, rather low frequent functions,

Small a describe slim, �ne detailed functions, rather representing high frequencies on a
local scale

Changing parameter b translates the time-space center of the function (which is in s = b)

All wavelets are consequently translated and scaled versions of the mother wavelet
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Wavelet Transformation - Mexican Hat Wavelet Example
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Multiresolution Analysis - Idea

Representation of signals as di�erent levels of approximation (i.e. resolution) and the
di�erences among those resolutions:

Orthogonal basis functions are being applied, parameters a and b are discretised

a = am0 , b = nb0a
m
0 with m, n ∈ Z and a0 > 1, b0 > 1

Common choice is a0 = 2 and b0 = 1

Wm,n(f ) = 2−m/2
∫ ∞
−∞

f (t)ψ(2−mt − n) dt

A MRA is obtained by a series of approximation and detail spaces nested into each other,
functions φ(t) and ψ(t) are the respective orthonormal basis for these nested subspaces.

φ(t) =
∑
n

h(n)φ(2t − n) (21)

ψ(t) =
∑
n

g(n)φ(2t − n) (22)

g(n) = (−1)nh(1− n)
φ(t) . . . scaling function
ψ(t) . . . wavelet function

`Scaling Equation� relates scaling function (dilated by factor 2) to its dilated/translated versions
(functions with lower �frequency� are represented by identical ones with higher frequency).
Important: The sequence h(n) determines the resulting functions in a unique manner (i.e.
given h(n), φ(t) and ψ(t) are uniquely de�ned).
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Multiresolution Analysis - Graphical Representation

Applying h(n) and g(n) and down-sampling (skipping every second coe�cient)

Iterative, recursive �ltering of the low pass part leads to same coe�cients as a Wavelet
transform → MRA represents a Wavelet transform without �Wavelets�

High pass coe�cients correspond to Wavelet coe�s., low pass coe�cients to scaling coe�s.

Reconstruction/Synthesis by upsampling (�lling a 0's after every coe�cient) and
applying the �inverse� �lters h̄(n) and ḡ(n) (orthogonal to the orginal ones)
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Fast Wavelet Transform

A fast wavelet transform in the one-
dimensional case (complexity O(N) with N...
number of elements in the input signal):

input = (a, b, c , d , e, f , . . .) h(n) = (1, 2, 3, 4)

WT1 = a + 2b + 3c + 4d

WT2 = b + 2c + 3d + 4e

detail signal

h

h

g

g

Figure: 1D Wavelet Transform, note that only
the detail spaces and the last approximation
space are kept as coe�cients

Variants to handle border sample points in case of one-dimensional computation:

Periodisation, signal extension, mirroring, zero-padding

Further information on how to derive the FWT from the DWT:
http://fourier.eng.hmc.edu/e161/lectures/wavelets/node7.html

General information about DWT and its applications:
https://de.mathworks.com/help/wavelet/ug/fast-wavelet-transform-fwt-algorithm.html
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Fast Wavelet Transform - Haar Wavelet Example (1)

Discrete input signal with 8 values

Wavelets are shifted and scaled version of the original Haar Wavelet

FWT coe�cients: h(n) = [ 1√
2
, 1√

2
], g(n) = [ 1√

2
,− 1√

2
]

Approximation space by using h(n) and detail space by using g(n) (nested)
Recall the scaling and wavelet function from the previous slide!

Reconstruction with orthogonal �lters to h(n) and g(n): h̄(n) = [ 2√
2
, 2√

2
] and

ḡ(n) = [ 2√
2
,− 2√

2
]
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Fast Wavelet Transform - Haar Wavelet Example (2)

Input a b c d e f g h

level 1: h(n) āb := a
2

+ b
2

c̄d := c
2

+ d
2

ēf := e
2

+ f
2

ḡh := g
2

+ h
2

level 1: g(n) a
2
− b

2

c
2
− d

2

e
2
− f

2

g
2
− h

2

level 2: h(n) ¯abcd := āb
2

+ c̄d
2

¯efgh := ēf
2

+ ḡh
2

level 2: g(n) āb
2
− c̄d

2

ēf
2
− ḡh

2

level 3: h(n) ¯abcdefgh :=
¯abcd
2

+
¯efgh
2

level 3: g(n)
¯abcd
2
− ¯efgh

2

Input 12 4 6 8 4 2 5 7
level 1: h(n) 8 7 3 6
level 1: g(n) 4 -1 -1 -1

level 2: h(n) 7.5 4.5
level 2: g(n) 0.5 -1.5

level 3: h(n) 6

level 3: g(n) 1.5

a (12) 1.5+6+0.5+4=12
b (4) 6+1.5+0.5-4=4
c (6) 6+1.5-0.5-1=6
d (8) 6+1.5-0.5-(-1)=8
e (4) 6-1.5-1.5+1=4
f (2) 6-1.5-1.5-1=2
g (5) 6-1.5-(-1.5)-1=5
h (7) 6-1.5-(-1.5)-(-1)=7

Table: FWT Haar Wavelet example (done with h(n) = [ 1
2
, 1
2

] and g(n) = [ 1
2
,− 1

2
]) for easier calculation,

for reconstruction h̄(n) = [1, 1] and ḡ(n) = [1,−1] have then to be applied
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2D Wavelet Transform

row filtering / downsampling

c
o
lu

m
n
 filte

rin
g
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n
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lin

g

original

image

h

g

h

g

h

g

detail

detaildetail

LL

Figure: 2D Wavelet Transform

A transform of a two-dimensional function is
necessary (for images)
By analogy to the Fourier case (enabled by
separable functions):

Image is �rst transformed along the
rows using a one-dimensional transform

Subsequently the already transformed
columns are transformed using again a
one-dimensional transform

Usually, as it is the case for the
one-dimensional transform,
downsampling (with a factor 2) is
applied
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2D Wavelet Transform - Visualisation 1. Level

horizontal low-pass

horizontal high-pass

vertical low-pass

vertical high-pass

Figure: 2D Wavelet Transform: Visualisation 1. Level

C. Kauba: Image Processing and Imaging - Image Enhancement 88/99



2D Wavelet Transform - Visualisation 2. and 3. Level

second filtering step third filtering step

Figure: 2D Wavelet Transform: Visualisation 2.+3. Level; in-place transformation due to subsampling
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2D Wavelet Transform - Full Example

Figure: Wavelet Transform example
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2D Wavelet Transformation - Daubechies Wavelets

Special Wavelets to ful�ll desired properties

Orthogonal Wavelets with a compact support

Forming a bi-orthogonal �lter bank

Widely used in signal analysis and compression

Can be implemented easily and e�ciently using FWT
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Filtering and Denoising in the Wavelet Domain

Filtering in the Wavelet Domain:

Lowpass Filter setting detail-subbands to 0.

Highpass Filter setting LL-subband (and low frequency detail-subbands) to 0.

Bandpass Filter Subband of interest for the application has to be retained, the rest is set to 0.

Remark: Setting the LL-Subband to 0, removes the graya-scale information entirely, only high
frequency edge information is retained.

Denoising: is achieved by thresholding in the wavelet domain. Only coe�cients above a
certain threshold are retained.

Application: Wavelet Transform is used for signal decorrelation in in the context of
compression in

JPEG2000 and

MPEG-4 VTC (visual texture coding).

Furthermore, wavelets are well suited for many tasks in signal- and image analysis.
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Denoising in the Wavelet Domain - Example

Figure: Denoising in the Wavelet/Fourier domain
Figure: Denoising in Wavelet/Fourier domain:
Results
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Fourier vs. Wavelet

Arrangement of the di�erent frequencies for
both transform domains:

Fourier Wavelet

high frequency low frequency

Figure: Fourier and Wavelet Transform

Fourier transform: a coe�cient
represents the global frequency content
of the entire image with frequencies u
and v .

Wavelet transform: a coe�cient
represents the local frequency content
at scale 2i in a certain neighbourhood
in the image

In case an entire frequency band needs
to be processed, Fourier methods are
more appropriate, for local phenomena
wavelet transforms are a better choice

According to signal theory, frequency
and location can not be exactly
determined at the same time
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Wavelet Packet Transform (WP)

Basic Idea:

Iteration of the decomposition is not restricted to the low-pass sub-band

It is applied to all wavelet sub-bands recursively

This leads to a much better (frequency) resolution, especially of the high frequency image
part

Best Basis selection:

Technique to choose the speci�c sub-tree for representing the signal

Allows to represent the signal in the most compact manner

Application: in compression techniques (FBI-standard, J2K Part II), sub-trees are selected
by optimising (information) cost functions

Local Distcriminant Bases:

Technique to choose the speci�c sub-tree for representing the signal

Allows to represent the signal in a way that allows to distinguish among di�erent signal
classes

Idea is to select the most discriminative features for a classi�cation problem

Application: texture classi�cation is the most e�ective application area
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A trous Algorithmus

Problem: Classical fast wavelet transform su�ers from shift variance due to the downsampling
stage in the transform

Figure: A trous Visualisation

Shift invariance is achieved by
omitting downsampling, by
sacri�cing the compact and
redundant-free representation

In this manner, each
decomposition level produces
data of the same amount as the
original signal

Contrasting to the CWT the fast
wavelet transform (DWT) can be
used

Scaling is coarse (powers of two,
�octaves�)
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Continuous Wavelet Transform (CWT)

Direct computation of the transform coe�cients with O(N2) complexity

For this algorithm, an actual wavelet in explicit formulation is required to compute the
inner products between signal and basis function

Note the di�erence to the DWT algorithm

CWT is usually only used in one-dimensional application due to the large quantities of
data produced and the high computational complexity
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