
Image Processing and Imaging
Edge Detection

Christof Kauba

Fachbereich Computerwissenschaften

Universität Salzburg

Wintersemester 2020/21

ALZBURG
NIVERSITY 
ODRON
ARIS 

C. Kauba: Image Processing and Imaging - Edge Detection 1/34



1 Introduction

2 Techniques Using the 1st Derivative

3 Techniques Using the 2nd Derivative

4 Canny Edge Detector

5 Line Finding Algorithms
Simple Kernels
Hough Transformation

C. Kauba: Image Processing and Imaging - Edge Detection 2/34



Outline

1 Introduction

2 Techniques Using the 1st Derivative

3 Techniques Using the 2nd Derivative

4 Canny Edge Detector

5 Line Finding Algorithms
Simple Kernels
Hough Transformation

C. Kauba: Image Processing and Imaging - Edge Detection 3/34



Edge Detection Introduction

Edges are pixels, in which the image intensity function changes its magnitude

Crack edges are a virtual edge entity between pixels

The are three di�erent types of gradient operators:

1 Operators approximating the derivative of the image intensity function by di�erences:
∂f
∂x = f (x + 1)− f (x)

2 Operators approximating the zero-crossings of the second derivative of the image intensity
function: ∂2f

∂2x
= f (x + 1) + f (x − 1)− 2f (x)

3 Operators mapping the image intensity function to a parameterised edge model

C. Kauba: Image Processing and Imaging - Edge Detection 4/34



Edge Detection - 1st and 2nd Derivative

Kante

f f’

f’’

Figure: Visual: 1. derivative vs. 2. derivative (try to identify two errors in this graphic!)

C. Kauba: Image Processing and Imaging - Edge Detection 5/34



Edge Detection - Numerics 1st and 2nd Derivative

Figure: Numerics: 1. vs. 2. derivative

C. Kauba: Image Processing and Imaging - Edge Detection 6/34



Outline

1 Introduction

2 Techniques Using the 1st Derivative

3 Techniques Using the 2nd Derivative

4 Canny Edge Detector

5 Line Finding Algorithms
Simple Kernels
Hough Transformation

C. Kauba: Image Processing and Imaging - Edge Detection 7/34



Roberts Operator

The Roberts operator uses a 2× 2 neighbourhood with two convolution masks, thereby not
considering the orientation of the edges

Roberts Operators

1 0

0 -1

0 1

-1 0

Starting Point

Operator Direction

Figure: Roberts Operator

Disadvantage:
High sensitivity against noise, since only a small number of pixels is used in the approximation

C. Kauba: Image Processing and Imaging - Edge Detection 8/34



Compass Operators (1)

The following operators are called Compass Operators, since they determine the orientation of
the gradient. A mask is applied in eight orientations, the largest response determines the
gradient's orientation.

Prewitt operator:

Prewitt Operators

-1 0 1

-1 0 1

-1 0 1

-1 -1 -1

0 0 0

1 1 1

Starting Point

Operator Direction

0 1 1

-1 0 1

-1 -1 0

Sobel operator:

Sobel Operators

-1 0 1

-2 0 2

-1 0 1

-1 -2 -1

0 0 0

1 2 1

Starting Point

Operator Direction

Robinson operator:

h1 =

 1 1 1
1 −2 1
−1 −1 −1


Kirsch operator:

h1 =

 3 3 3
3 0 3
−5 −5 −5



C. Kauba: Image Processing and Imaging - Edge Detection 9/34



Compass Operators (2)

Disadvantages

Sensitivity to noise
Sensitivity to the size of the object and scale / type of the edge (step edge vs. ramp edge)
In many cases it is easier to locate zero-crossings than maxima or minima (see �gure
about numerics)

Figure: Sobel operator example

C. Kauba: Image Processing and Imaging - Edge Detection 10/34



Compass Operators (3) - Examples

Source Prewitt operator

Sobel operator Roberts operator

C. Kauba: Image Processing and Imaging - Edge Detection 11/34



Outline

1 Introduction

2 Techniques Using the 1st Derivative

3 Techniques Using the 2nd Derivative

4 Canny Edge Detector

5 Line Finding Algorithms
Simple Kernels
Hough Transformation

C. Kauba: Image Processing and Imaging - Edge Detection 12/34



Laplace Operator

Laplace operator is a good choice if:

If an application only requires the magnitude of the gradient regardless of its orientation

Laplace operator is rotation invariant

Recall: it can be computed e�ciently in the Fourier domain

52(x , y) =
∂2f (x , y)

∂x2
+
∂2f (x , y)

∂y2
(1)

In most cases, it is approximated using 3× 3 masks for 4- und 8-neighbourhoods:

h4 =

0 1 0
1 −4 1
0 1 0

 h8 =

1 1 1
1 −8 1
1 1 1



C. Kauba: Image Processing and Imaging - Edge Detection 13/34



Mexican Hat Operator (1)

Mexican Hat Operator (also denoted as Marr-Hildreth Operator) uses a two-dimensional Gauss
�lter as a smoothing operator:

G (x , y) = e−
x2+y2

2σ2

Standard deviation σ is proportional to the size of the neighbourhood the �lter is operating on.
To compute the second derivative (in order to identify zero-crossings) the Laplace operator is
applied to the smoothed image:

52 (G (x , y , σ) ∗ f (x , y)) linear→
(
52G (x , y , σ)

)
∗ f (x , y)

52G is image independent and thus can be computed in advance.

r2 = x2 + y2

G (r) = e−
r2

2σ2

G ′(r) = − r

σ2
e−

r2

2σ2

G ′′(r) =
1

σ2

(
r2

σ2
− 1

)
e−

r2

2σ2

Replacing r2 by x2 + y2

We obtain the Laplacian of Gaussian

(LoG)

Resembles the shape of a sombrero, i.e.
Mexican Hat:

h(x , y) =
1

σ2

(
x2 + y2

σ2
− 1

)
e−

x2+y2

2σ2 (2)

C. Kauba: Image Processing and Imaging - Edge Detection 14/34



Mexican Hat Operator (2) - Graphical Representation

LoG(x,y)

-4
-3

-2
-1

 0
 1

 2
 3 -4

-2

 0

 2

 4

-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5

Figure: Mexican Hat

C. Kauba: Image Processing and Imaging - Edge Detection 15/34



Mexican Hat Operator (3)

Examples for increasing values of σ:
The larger those values, the more responses we get from coarse edges (large σ in the Gauss
mask leads to a strong smoothing e�ect).

Original small σ

increasing σ large σ

C. Kauba: Image Processing and Imaging - Edge Detection 16/34



Mexican Hat Operator (4)

Remark: 52G can be approximated e�ciently by a di�erence of two Gauss-masks with
di�erent sigma (Di�erence of Gaussian).

Advantage:
By selecting σ, it is possible to set the scale with respect to which the edge property should be
determined.

Disadvantages:

signi�cant smoothing

trend to form closed curves (plate of sphagetti)

C. Kauba: Image Processing and Imaging - Edge Detection 17/34



Outline

1 Introduction

2 Techniques Using the 1st Derivative

3 Techniques Using the 2nd Derivative

4 Canny Edge Detector

5 Line Finding Algorithms
Simple Kernels
Hough Transformation

C. Kauba: Image Processing and Imaging - Edge Detection 18/34



Canny Edge Detector - Introduction

Has been developed in 1986

Has been theoretically proven to be optimal with respect to the following criteria for noisy
step edges:

Detection no important edges are missed and no false edges are listed (low value for false
negative and false positive edges)

Localisation distance among actual edge position and computed edge position is minimal

One response multiple responses to one edge are minimised

For a demo: http://www.ii.metu.edu.tr/ ion528/demo/lectures/6/4/ and
http://www.cs.washington.edu/research/imagedatabase/demo/edge/

C. Kauba: Image Processing and Imaging - Edge Detection 19/34



Canny Edge Detector - Techniques

Canny Edge Detector achieves these results by applying the following techniques:

thresholding with hysteresis improves detection performance in the presence of noise. Edge
pixels have to satisfy the following conditions:

edge-magnitude > high threshold

edge-magnitude > low threshold and is connected to an edge pixel > high

threshold

non-maximal suppression only local maxima of the edge image are processed further

feature synthesis approach :

all edges with respect to a small scale (i.e. �ne detail edges, small σ) are
marked
A predictor for larger σ (see Mexican Hat) is used to predict edge pixels for a
larger σ:

Smoothing of the small scale edges
The predicted values are then compared to the actual ones and only those
actual values are kept as additional values, which are signi�cantly larger than
the prediced ones
This procedure is conducted for several values of σ

C. Kauba: Image Processing and Imaging - Edge Detection 20/34



Canny Edge Detector - Examples Thresholding

Original t1=255, t2=1

t1=255, t2=220 t1=128, t2=1

C. Kauba: Image Processing and Imaging - Edge Detection 21/34



Canny Edge Detector - Algorithm

1 iterate 2 until 5 for increasing values of σ

2 convolve the image with Gaussian with σ
3 compute gradient magnitude and direction
4 �nd position of the edges (non-maximal suppression)

5 thresholding with hysteresis
6 feature synthesis approach

Figure: Canny Edge Detector: di�erent σ

C. Kauba: Image Processing and Imaging - Edge Detection 22/34



Outline

1 Introduction

2 Techniques Using the 1st Derivative

3 Techniques Using the 2nd Derivative

4 Canny Edge Detector

5 Line Finding Algorithms
Simple Kernels
Hough Transformation

C. Kauba: Image Processing and Imaging - Edge Detection 23/34



Outline

1 Introduction

2 Techniques Using the 1st Derivative

3 Techniques Using the 2nd Derivative

4 Canny Edge Detector

5 Line Finding Algorithms
Simple Kernels
Hough Transformation

C. Kauba: Image Processing and Imaging - Edge Detection 24/34



Simple Kernels

A line is a curve that does not bend sharply. In case a line has a width of one or two pixels, a

gradient image can be generated using the following function and mask:

f (i , j) = max(0,max
k

(g ∗ hk))

h1 =



0 0 0 0 0
0 −1 2 −1 0
0 −1 2 −1 0
0 −1 2 −1 0
0 −1 2 −1 0
0 0 0 0 0



C. Kauba: Image Processing and Imaging - Edge Detection 25/34



Outline

1 Introduction

2 Techniques Using the 1st Derivative

3 Techniques Using the 2nd Derivative

4 Canny Edge Detector

5 Line Finding Algorithms
Simple Kernels
Hough Transformation

C. Kauba: Image Processing and Imaging - Edge Detection 26/34



Hough Transformation (1)

Maps edge pixels to a parametric model of a curve of a certain type

To be applied, we have to know which curves we are looking for:

Straight line:

Is de�ned by two points A = (x1, y1) and B = (x2, y2)

All lines passing through A are given by y1 = mx1 + c , for arbitrary m and c (this equation
is associated with the parameter space m, c)

In this representation, all lines through A are given by c = −x1m + y1

Lines through B are given by c = −x2m + y2

Only common point of those two lines in the m, c parameter space is the point
representing the line connecting A and B

Each line the the image is represented by a single point in the m, c parameter space

C. Kauba: Image Processing and Imaging - Edge Detection 27/34



Hough Transformation (2)

The points (1,3), (2,2) and (4,0) are situated on the line we are looking for, while (4,3) is not.

y x Gives Transposed

3 1 3 = m 1 + c c = -1 m + 3

2 2 2 = m 2 + c c = -2 m + 2

0 4 0 = m 4 + c c = -4 m

3 4 3 = m 4 + c c = -4m + 3

C. Kauba: Image Processing and Imaging - Edge Detection 28/34



Hough Transformation (3)

Based on the line de�nition as discussed so far, we obtain the following procedure:

1 determine all potential line pixels (edge detection)

2 determine all lines passing through these line pixels

3 transform these lines into (m, c)-parameter space

4 determine point (a, b) in parameter space, which is the result of the Hough transform of
the line y = ax + b ((a, b) is the only tupel that occurs several times)

Remark: Only a limited number of lines is considered passing through the line pixels. Collecting
the parameters of all admissible lines results in an accumulator array, the elements of which are
denoted accumulator cells.

For each line pixel, potential lines which point into an admissible direction are determined, the
parameters m and c are recorded and the value of the corresponding accumulator cell A(m, c)
is incremented. Lines in the image are found by taking local maxima of the accumulator array.

C. Kauba: Image Processing and Imaging - Edge Detection 29/34



Hough Transformation (4)

Advantage:

Robust against noise

Advantage and disadvantage:

Missing line parts are interpolated

Disadvantages:

Brute force approach with high complexity: O(Am−2) with A ... size of the image space
and m ... number of parameters (e.g. 2 in case of a straight line)

High memory consumption. Was improved for several cases in the literature

Instead of one target line, several similar lines are found. Plateaus instead of peaks in
parameter space. These plateaus need to be combined to a single peak

Check out the visualisation:
http://liquiddandruff.github.io/hough-transform-visualizer/

In the general setting the curve equation f (x , a) = 0 with a being the vector of curve
parameters is used.

C. Kauba: Image Processing and Imaging - Edge Detection 30/34



Hough Transformation - Alternate Line Equation

In actual implementations the usage of the common line equation y = mx + c for m→∞ is
sub-optimal in case of large slope. The line equation r = x cos(θ) + y sin(θ) is better in such
cases.

C. Kauba: Image Processing and Imaging - Edge Detection 31/34



Hough Transformation - Examples 1

C. Kauba: Image Processing and Imaging - Edge Detection 32/34



Hough Transformation - Examples 2

Figure: Example for Hough transform

C. Kauba: Image Processing and Imaging - Edge Detection 33/34



Hough Transformation - Algorithm

1 Quantisation of the parameter space, dimension n of this space is the number of
parameters in a

2 Generate the n-dimensional accumulator array A(a) and set A(a) = 0
3 ∀(x1, y1) in the appropriately thresholded gradient image increase accumulator cell A(a) in

case of f (x , a) = 0
4 Local maxima in the accumulator array are the curves we have been looking for

Circles: (x1 − a)2 + (y1 − b)2 = r2 three parameters and a corresponding three
dimensional accumulator array are required
By analogy: for more complicated curves, high dimensional accumulator cells are used
Due to the high complexity, often local variants of the Hough transform are used

C. Kauba: Image Processing and Imaging - Edge Detection 34/34


	Introduction
	Techniques Using the 1st Derivative
	Techniques Using the 2nd Derivative
	Canny Edge Detector
	Line Finding Algorithms
	Simple Kernels
	Hough Transformation


