Image Processing and Imaging Edge Detection

Christof Kauba Fachbereich Computerwissenschaften Universität Salzburg

Wintersemester 2020/21

C. Kauba: Image Processing and Imaging - Edge Detection

LODRON VERSITY SALZBURG

- 2 Techniques Using the 1st Derivative
- 3 Techniques Using the 2nd Derivative
- 4 Canny Edge Detector
- **5** Line Finding Algorithms
 - Simple Kernels
 - Hough Transformation

Outline

- 2 Techniques Using the 1st Derivative
- 3 Techniques Using the 2nd Derivative
- 4 Canny Edge Detector
- 5 Line Finding Algorithms
 - Simple Kernels
 - Hough Transformation

- Edges are pixels, in which the image intensity function changes its magnitude
- Crack edges are a virtual edge entity between pixels

The are three different types of gradient operators:

- Operators approximating the derivative of the image intensity function by differences: $\frac{\partial f}{\partial x} = f(x+1) - f(x)$
- 2 Operators approximating the zero-crossings of the second derivative of the image intensity function: $\frac{\partial^2 f}{\partial^2 x} = f(x+1) + f(x-1) 2f(x)$
- 3 Operators mapping the image intensity function to a parameterised edge model

Edge Detection - 1st and 2nd Derivative

Figure: Visual: 1. derivative vs. 2. derivative (try to identify two errors in this graphic!)

Edge Detection - Numerics 1st and 2nd Derivative

- 2 Techniques Using the 1st Derivative
- 3 Techniques Using the 2nd Derivative
- 4 Canny Edge Detector
- 5 Line Finding Algorithms
 - Simple Kernels
 - Hough Transformation

The Roberts operator uses a 2×2 neighbourhood with two convolution masks, thereby not considering the orientation of the edges

Figure: Roberts Operator

Disadvantage:

High sensitivity against noise, since only a small number of pixels is used in the approximation

Compass Operators (1)

The following operators are called *Compass Operators*, since they determine the orientation of the gradient. A mask is applied in eight orientations, the largest response determines the gradient's orientation.

Prewitt operator:

Sobel operator:

Robinson operator:

$$h_1=egin{pmatrix} 1 & 1 & 1\ 1 & -2 & 1\ -1 & -1 & -1 \end{pmatrix}$$

Kirsch operator:

 $h_1 = \begin{pmatrix} 3 & 3 & 3 \\ 3 & 0 & 3 \\ -5 & -5 & -5 \end{pmatrix}$

C. Kauba: Image Processing and Imaging - Edge Detection

Compass Operators (2)

Disadvantages

- Sensitivity to noise
- Sensitivity to the size of the object and scale / type of the edge (step edge vs. ramp edge) In many cases it is easier to locate zero-crossings than maxima or minima (see figure about numerics)

Figure: Sobel operator example

Compass Operators (3) - Examples

Sobel operator

Prewitt operator

Roberts operator

- 2 Techniques Using the 1st Derivative
- 3 Techniques Using the 2nd Derivative
- 4 Canny Edge Detector
- 5 Line Finding Algorithms
 - Simple Kernels
 - Hough Transformation

Laplace operator is a good choice if:

- If an application only requires the magnitude of the gradient regardless of its orientation
- Laplace operator is rotation invariant
- Recall: it can be computed efficiently in the Fourier domain

$$\bigtriangledown^2(x,y) = rac{\partial^2 f(x,y)}{\partial x^2} + rac{\partial^2 f(x,y)}{\partial y^2}$$

In most cases, it is approximated using 3×3 masks for 4- und 8-neighbourhoods:

$$h_4 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \qquad h_8 = \begin{pmatrix} 1 & 1 \\ 1 & -8 \\ 1 & 1 \end{pmatrix}$$

(1)

Mexican Hat Operator (1)

Mexican Hat Operator (also denoted as Marr-Hildreth Operator) uses a two-dimensional Gauss filter as a smoothing operator:

$$G(x,y) = e^{-\frac{x^2+y^2}{2\sigma^2}}$$

Standard deviation σ is proportional to the size of the neighbourhood the filter is operating on. To compute the second derivative (in order to identify zero-crossings) the Laplace operator is applied to the smoothed image:

$$\bigtriangledown^2 (G(x,y,\sigma) * f(x,y)) \stackrel{\text{linear}}{\to} (\bigtriangledown^2 G(x,y,\sigma)) * f(x,y)$$

 $\bigtriangledown^2 G$ is image independent and thus can be computed in advance.

Replacing r^2 by $x^2 + y^2$

- We obtain the Laplacian of Gaussian (LoG)
- Resembles the shape of a sombrero, i.e. Mexican Hat:

$$h(x,y) = \frac{1}{\sigma^2} \left(\frac{x^2 + y^2}{\sigma^2} - 1 \right) e^{-\frac{x^2 + y^2}{2\sigma^2}}$$
(2)

Mexican Hat Operator (2) - Graphical Representation

Mexican Hat Operator (3)

Examples for increasing values of σ :

The larger those values, the more responses we get from coarse edges (large σ in the Gauss mask leads to a strong smoothing effect).

Original

Remark: $\bigtriangledown^2 G$ can be approximated efficiently by a difference of two Gauss-masks with different sigma (Difference of Gaussian).

Advantage:

By selecting σ , it is possible to set the scale with respect to which the edge property should be determined.

Disadvantages:

- significant smoothing
- trend to form closed curves (plate of sphagetti)

- 2 Techniques Using the 1st Derivative
- 3 Techniques Using the 2nd Derivative
- 4 Canny Edge Detector
- **5** Line Finding Algorithms
 - Simple Kernels
 - Hough Transformation

- Has been developed in 1986
- Has been theoretically proven to be optimal with respect to the following criteria for noisy step edges:
- Detection no important edges are missed and no false edges are listed (low value for false negative and false positive edges)
- Localisation distance among actual edge position and computed edge position is minimal One response multiple responses to one edge are minimised
- For a demo: http://www.ii.metu.edu.tr/ ion528/demo/lectures/6/4/ and http://www.cs.washington.edu/research/imagedatabase/demo/edge/

Canny Edge Detector - Techniques

Canny Edge Detector achieves these results by applying the following techniques:

thresholding with hysteresis improves detection performance in the presence of noise. Edge pixels have to satisfy the following conditions:

- edge-magnitude > high threshold
- edge-magnitude > low threshold and is connected to an edge pixel > high threshold

non-maximal suppression only local maxima of the edge image are processed further

feature synthesis approach :

- all edges with respect to a small scale (i.e. fine detail edges, small σ) are marked
- A predictor for larger σ (see Mexican Hat) is used to predict edge pixels for a larger σ :
 - Smoothing of the small scale edges
 - The predicted values are then compared to the actual ones and only those actual values are kept as additional values, which are significantly larger than the prediced ones
 - \blacksquare This procedure is conducted for several values of σ

Canny Edge Detector - Examples Thresholding

Canny Edge Detector - Algorithm

- 1 iterate 2 until 5 for increasing values of σ
- 2 convolve the image with Gaussian with σ
- 3 compute gradient magnitude and direction
- 4 find position of the edges (non-maximal suppression)
- 5 thresholding with hysteresis
- 6 feature synthesis approach

Figure: Canny Edge Detector: different σ

- 2 Techniques Using the 1st Derivative
- 3 Techniques Using the 2nd Derivative
- 4 Canny Edge Detector
- 5 Line Finding Algorithms
 - Simple Kernels
 - Hough Transformation

- 2 Techniques Using the 1st Derivative
- 3 Techniques Using the 2nd Derivative
- 4 Canny Edge Detector
- Line Finding Algorithms
 Simple Kernels
 Hough Transformation

A line is a curve that does not bend sharply. In case a line has a width of one or two pixels, a gradient image can be generated using the following function and mask:

f

$$(i,j) = \max(0, \max_k(g*h_k))$$
 $h_1 = egin{pmatrix} 0 & 0 & 0 & 0 \ 0 & -1 & 2 & -1 & 0 \ 0 & -1 & 2 & -1 & 0 \ 0 & -1 & 2 & -1 & 0 \ 0 & -1 & 2 & -1 & 0 \ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$

- 2 Techniques Using the 1st Derivative
- 3 Techniques Using the 2nd Derivative
- 4 Canny Edge Detector
- Line Finding Algorithms
 Simple Kernels
 Hough Transformation

- Maps edge pixels to a parametric model of a curve of a certain type
- To be applied, we have to know which curves we are looking for:

Straight line:

- Is defined by two points $A = (x_1, y_1)$ and $B = (x_2, y_2)$
- All lines passing through A are given by $y_1 = mx_1 + c$, for arbitrary m and c (this equation is associated with the parameter space m, c)
- In this representation, all lines through A are given by $c = -x_1m + y_1$
- Lines through B are given by $c = -x_2 m + y_2$
- Only common point of those two lines in the m, c parameter space is the point representing the line connecting A and B
- Each line the the image is represented by a single point in the m, c parameter space

The points (1,3), (2,2) and (4,0) are situated on the line we are looking for, while (4,3) is not.

У	х	Gives	Transposed
3	1	3 = m 1 + c	c = -1 m + 3
2	2	2 = m 2 + c	c = -2 m + 2
0	4	0 = m 4 + c	c = -4 m
3	4	3 = m 4 + c	c = -4m + 3

C. Kauba: Image Processing and Imaging - Edge Detection

Based on the line definition as discussed so far, we obtain the following procedure:

- **1** determine all potential line pixels (edge detection)
- 2 determine all lines passing through these line pixels
- 3 transform these lines into (m, c)-parameter space
- determine point (a, b) in parameter space, which is the result of the Hough transform of the line y = ax + b ((a, b) is the only tupel that occurs several times)

Remark: Only a limited number of lines is considered passing through the line pixels. Collecting the parameters of all admissible lines results in an *accumulator array*, the elements of which are denoted *accumulator cells*.

For each line pixel, potential lines which point into an admissible direction are determined, the parameters m and c are recorded and the value of the corresponding accumulator cell A(m, c) is incremented. Lines in the image are found by taking local maxima of the accumulator array.

Hough Transformation (4)

Advantage:

Robust against noise

Advantage and disadvantage:

Missing line parts are interpolated

Disadvantages:

- Brute force approach with high complexity: O(A^{m-2}) with A ... size of the image space and m ... number of parameters (e.g. 2 in case of a straight line)
- High memory consumption. Was improved for several cases in the literature
- Instead of one target line, several similar lines are found. Plateaus instead of peaks in parameter space. These plateaus need to be combined to a single peak

Check out the visualisation:

http://liquiddandruff.github.io/hough-transform-visualizer/

In the general setting the curve equation f(x, a) = 0 with a being the vector of curve parameters is used.

C. Kauba: Image Processing and Imaging - Edge Detection

Hough Transformation - Alternate Line Equation

In actual implementations the usage of the common line equation y = mx + c for $m \to \infty$ is sub-optimal in case of large slope. The line equation $r = x \cos(\theta) + y \sin(\theta)$ is better in such cases.

Hough Transformation - Examples 1

Hough Transformation - Examples 2

Hough Transformation - Algorithm

- **1** Quantisation of the parameter space, dimension n of this space is the number of parameters in a
- 2 Generate the *n*-dimensional accumulator array A(a) and set A(a) = 0
- 3 ∀(x₁, y₁) in the appropriately thresholded gradient image increase accumulator cell A(a) in case of f(x, a) = 0
- 4 Local maxima in the accumulator array are the curves we have been looking for
- Circles: (x₁ a)² + (y₁ b)² = r² three parameters and a corresponding three dimensional accumulator array are required
- By analogy: for more complicated curves, high dimensional accumulator cells are used
- Due to the high complexity, often local variants of the Hough transform are used

