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Abstract—JPEG XR is considered as a lossy sample data
compression scheme in the context of iris recognition techniques.
It is shown that by optimising the JPEG XR quantisation strategy,
JPEG XR default quantisation as well as JPEG2000 based iris
recognition can be improved in terms of EER. The optimised
JPEG XR quantisation strategy shows good performance across
a wide range of iris feature extraction techniques, but has to be
adapted for each target bitrate separately.
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I. INTRODUCTION

In distributed biometric systems, the compression of sample

data may become imperative under certain circumstances,

since the data acquisition stage is often dislocated from the

feature extraction and matching stage. In such environments

the sample data have to be transferred via a network link to

the respective location, often over wireless channels with low

bandwidth and high latency. Therefore, a minimisation of the

amount of data to be transferred is highly desirable, which

is achieved by compressing the data before transmission and

any further processing. See Fig. 1 for an illustration involving

JPEG XR for compressed data transmission.

Fig. 1. System View.

As an alternative, the application of feature extraction before

transmission looks promising due to the small size of template

data but cannot be done under most circumstances due to the

prohibitive computational demand of these operations (current

sensor devices are typically far too weak to support this

while compression can be done e.g. in dedicated low power

hardware).

In order to maximise the benefit in terms of data reduction,

lossy compression techniques are often suggested. Given the

potential impact of lossy compression techniques on biometric

recognition performance, it is imperative to carefully select

and optimise appropriate codecs and to study their correspond-

ing effect on recognition accuracy.

While current international standards define the application

of JPEG2000 for lossy iris sample data compression, we focus

in this paper on the optimised application of the recent JPEG

XR still image coding standard. We experimentally compare

the achieved results to a JPEG2000 based (and therefore stan-

dard conformant) environment. In particular, besides reviewing

the effects of applying different settings concerning the use of

the optional Photo Overlap Transform (POT) as a part of JPEG

XR’s Lapped Biorthogonal Transform (LBT), we optimise

the JPEG XR quantisation strategy with respect to balancing

quantisation strength among the three different frequency

bands of the LBT. In Section 2, we review related standards

and literature in the area of lossy iris sample data compression,

while in Section 3, JPEG XR basics and especially the

quantisation strategy are briefly explained. Section 4 presents

experiments where we first shortly review the four different

iris recognition systems employed in this study. Subsequently,

the optimisation of the JPEG XR quantisation scheme is

explained. Experimental results comparing optimised JPEG

XR, different LBT variants in JPEG XR, and JPEG2000 are

shown with respect to iris recognition accuracy in terms of

EER. Section 5 concludes the paper.

II. BIOMETRIC IRIS SAMPLE COMPRESSION

During the last decade, several algorithms and standards

for compressing image data relevant in biometric systems have

evolved. The certainly most relevant one is the ISO/IEC 19794

standard on Biometric Data Interchange Formats, where in its

former version (ISO/IEC 19794-6:2005), JPEG and JPEG2000

(and WSQ for fingerprints) were defined as admissible formats

for lossy compression, whereas for lossless and nearly lossless

compression JPEG-LS as defined in ISO/IEC 14495 was

suggested. In the most recently published version (ISO/IEC

FDIS 19794-6 as of August 2010), only JPEG2000 is included



for lossy compression while the PNG format serves as lossless

compressor [1]. These formats have also been recommended

for various application scenarios and standardised iris images

(IREX records) by the NIST Iris Exchange1 program.

The ANSI/NIST-ITL 1-2011 standard on “Data Format for

the Interchange of Fingerprint, Facial & Other Biometric Infor-

mation” (2nd draft as of February 2011, former ANSI/NIST-

ITL 1-2007) supports both PNG and JPEG2000 for the lossless

case and JPEG2000 only for applications tolerating lossy

compression.

In literature on compressing iris imagery, rectilinear [2],

[3], [4], [5] as well as polar [6], [7], [8], [9] iris sample data

formats has been considered. With respect to employed com-

pression technology, we find JPEG [3], [4], [5], JPEG2000 [2],

[3], [4], [5], and other general purpose compression techniques

[4], [5] being investigated. Superior compression performance

of JPEG2000 over JPEG is seen especially for low bitrates

(thus confirming the choice of the above-referenced standards),

however, for high and medium quality, JPEG is found still to

be competitive in terms of impacting recognition accuracy.

Apart from applying the respective algorithms with their

default settings and standard configurations, work has been

done to optimise the compression algorithms to the application

domain: For JPEG2000, it has been proposed to invoke RoI

coding for the iris texture area [10] whereas the removal of the

image background before compression has also been suggested

(i.e. parts of the image not being part of the eye like eye-

lids are replaced by constant average gray [3]). For JPEG,

an optimisation of quantisation matrices has been proposed

to achieve better matching accuracy compared to the standard

values for rectangular iris image data [11] as well as for polar

iris images [8], [9].

The JPEG XR standard has only recently been investigated

in the context of biometric systems [12]. It has been found

to eventually represent an interesting alternative to JPEG2000

in iris recognition systems due to its simpler structure and

less demanding implementations in terms of memory and

CPU resources, while providing almost equal recognition

performance.

III. JPEG XR BACKGROUND

Originally developed by Microsoft and termed “HD Photo”,

JPEG XR got standardised by ITU-T and ISO in 2009 [13],

which makes it the most recent still image coding standard.

The original scope was to develop a coding scheme target-

ing “extended range” applications which involves higher bit-

depths as currently supported. However, much more than 10

years after JPEG2000 [14] development and 10 years after

its standardisation it seems to be reasonable to look for a

new coding standard to eventually employ “lessons learnt”

in JPEG2000 standardisation. In particular, the focus is on

a simpler scheme which should offer only the amount of

scalability actually required for most applications (as opposed

1http://iris.nist.gov/irex/

to JPEG2000 which is a rather complex scheme offering

almost unconstraint scalability).

JPEG XR is a transform coding scheme showing the clas-

sical three-stage design: transform, quantisation, and entropy

encoding. The transform operates on macroblocks consisting

of 16 (arranged in 4 by 4) 4×4 pixel blocks. The first stage of

the integer-based transform is applied to all 4×4 pixel blocks

of a macroblock. Subsequently, the resulting coefficients are

partitioned into 240 “high pass (HP) coefficients” and 16

coefficients corresponding to the lowest frequency in each

block. The latter are aggregated into a square data layout (4

x 4 coefficients) onto which the transform is applied for a

second time. The result are 15 “low pass (LP) coefficients”

and a single “DC” coefficient (per macroblock).

In fact, the transform used in JPEG XR is more complicated

as compared to JPEG, it is a so-called “two-stage lapped

biorthogonal transform (LBT)” which is actually composed

of two distinct transforms: The Photo Core Transform (PCT)

and the Photo Overlap Transform (POT). The PCT is similar

to the widely used DCT and exploits spatial correlation within

the 4 x 4 pixels block, however, it suffers from the inability

to exploit inter-block correlations due to its small support and

from blocking artifacts at low bitrates. The POT is designed

to exploit correlations across block boundaries as well as to

mitigate blocking artifacts.

(a) No compression (b) LBT=0

(c) LBT=1 (d) LBT=2

Fig. 2. Rectilinear example images.

Each stage of the transform can be viewed as a flexible

concatenation of POT and PCT since the POT is functionally

independent of the PCT and can be switched on or off, as

chosen by the encoder (this is signalled by the encoder in

the bitstream). There are three options: disabled for both

PCT stages (LBT=0), enabled for the first PCT stage but

disabled for the second PCT stage (LBT=1), or enabled for

both PCT stages (LBT=2). In recent work is has been shown



that surprisingly, no clear advantage of any of these options

with respect to recognition performance can be observed [12].

(a) Extracted texture

(b) Iris Code

Fig. 3. No compression applied.

Fig. 2 shows sample images for the uncompressed case and

the three transform settings of JPEG XR (LBT=0,1,2) with

“uniform” quantisation parameter q = 100 (see below).

(a) Extracted texture

(b) Iris Code

Fig. 4. LBT=0, HD=0.35.

Figs. 3 - 6 visualise corresponding extracted iris textures

as well as computed Masek Iris Codes (see next section)

for the four settings shown in Fig. 2. When computing the

Hamming Distance (HD) to the iris code derived from the

uncompressed image in Fig. 3, we result in 0.35 for LBT=0,

0.403 for LBT=1, and 0.385 for LBT=2.

(a) Extracted texture

(b) Iris Code

Fig. 5. LBT=1, HD=0.403.

In this work we specifically focus on the quantisation

strategy in JPEG XR. After the LBT transform, the coefficients

in the DC,LP,HP bands are quantised by a (integer) value q in

the range 1 - 255. In the case of “uniform” quantisation (which

is the default setting), all three bands are quantised with the

same value. For controlling the amount of compression, q is

scaled but can only be of integer type. However, JPEG XR also

allows to apply different quantisation parameters for the DC,

LP, and HP subbands besides the uniform strategy (in any case,

the coefficients within one of these subbands are all quantised

with an identical value). This corresponds to giving different

emphasis to low frequency (DC band), mid frequency (LP

band), and high frequency (HP band) information, respectively.

The aim of this work is to optimise the quantisation pa-

rameter settings for the three DC,LP,HP bands in the context

of iris recognition instead of applying the default uniform

strategy. Results will also shed light on the question which

(a) Extracted texture

(b) Iris Code

Fig. 6. LBT=2, HD=0.385.

frequency bands do carry the most discriminative information

in iris imagery.

Since our experiments are focused on the evaluation of

those quantisation-related questions, we do not describe the

subsequent JPEG XR stages in the following, please consult

the standard or related publications with respect to these issues

[13].

IV. EXPERIMENTS ON OPTIMISING JPEG XR

COMPRESSION OF IRIS SAMPLE DATA

A. Iris Recognition and Iris Database

It is crucial to assess the effects of compressing iris samples

using a set of different iris recognition schemes since it can be

expected that different feature extraction strategies will react

differently when being confronted with compression artefacts

and reduced image quality in general.

Many iris recognition methods follow a quite common

scheme [15], close to the well known and commercially most

successful approach by Daugman [16]. In our pre-processing

approach (following e.g. Ma et al. [17]) we assume the texture

to be the area between the two almost concentric circles of the

pupil and the outer iris. These two circles are found by contrast

adjustment, followed by Canny edge detection and Hough

transformation. After the circles are detected, unwrapping

along polar coordinates is done to obtain a rectangular texture

of the iris. In our case, we always re-sample the texture to

a size of 512x64 pixels. Subsequently, features are extracted

from this iris texture (which has also been termed polar iris

image). We consider the following four techniques in this

work, which are selected to represent a broad variety of

different template generation concepts:

(1) A wavelet-based approach proposed by Ma et al. [17] is

used to extract a bit-code. The texture is divided into N stripes

to obtain N one-dimensional signals, each one averaged from

the pixels of M adjacent rows. We used N = 10 and M = 5

for our 512x64 pixel textures (only the 50 rows close to the

pupil are used from the 64 rows, as suggested in [17]). A

dyadic wavelet transform is then performed on each of the

resulting 10 signals, and two fixed subbands are selected from

each transform. This leads to a total of 20 subbands. In each

subband we then locate all local minima and maxima above

some threshold, and write a bitcode alternating between 0 and

1 at each extreme point. Using 512 bits per signal, the final

code is then 512x20 bit. Matching different codes is done by

computing the Hamming Distance.

(2) Again restricting the texture to the same N = 10 stripes as

described before, we use a custom C implementation similar



to Libor Masek’s Matlab implementation2 of a 1-D version

of the Daugman iris recognition algorithm as the second

feature extraction technique. A row-wise convolution with a

complex Log-Gabor filter is performed on the texture pixels.

The phase angle of the resulting complex value for each pixel

is discretized into 2 bits. Those 2 bits of phase information

are used to generate a binary code, which therefore is 512x20

bit (again, Hamming Distance can be used for similarity

determination).

(3) The third algorithm has been proposed by Ko et al. [18].

Here feature extraction is performed by applying cumulative-

sum-based change analysis. The algorithm discards parts of

the iris texture, from the right side [45
o to 315

o] and the

left side [135
o to 225

o], since the top and bottom of the iris

are often hidden by eyelashes or eyelids. Subsequently, the

resulting texture is divided into basic cell regions (these cell

regions are of size 8× 3 pixels). For each basic cell region an

average gray scale value is calculated. Then basic cell regions

are grouped horizontally and vertically (one group consists of

five basic cell regions). Finally, cumulative sums over each

group are calculated to generate an iris-code. If cumulative

sums are on an upward slope or on a downward slope these

are encoded with 1s and 2s, respectively, otherwise 0s are

assigned to the code. In order to obtain a binary feature vector

(to enable Hamming Distance computation for comparison)

we rearrange the resulting Iris Code such that the first half

contains all upward slopes and the second half contains all

downward slopes. With respect to the above settings the final

iris-code consists of 2400 bits.

(4) Finally, we employ the feature extraction algorithm of Zhu

et al. [19] which applies a 2-D wavelet transform to the polar

image first. Subsequently, first order statistical measures are

computed from the wavelet subbands (i.e. mean and variance)

and are concatenated into a feature vector. The similarity

between two of these real-valued feature vectors is determined

by computing the corresponding l2-Norm.

We used the CASIAv3 Interval dataset3 in the experiments.

It consists of NIR images with 320 × 280 pixels in 8 bit

grayscale .jpeg format (high quality) of 249 persons, where

for many persons both eyes are available which leads to 391

(image) classes overall.

For intra-class matches (genuine user matches), we con-

sider all possible template pairs for each class (overall 8882

matches), while for inter-class matches (impostor matches) the

first two templates of the first person are matched against all

templates of the other classes (overall 2601 matches).

B. Compression Techniques Settings

In JPEG XR quantisation, we aim at optimising the relation

among the quantisation parameters for the three subbands DC,

LP, and HP, i.e. we look for the triple q:r:s which provides the

best solution in terms of recognition performance (measured

in equal error rate (EER)). Since it is not obvious that there

2http://www.csse.uwa.edu.au/˜pk/studentprojects/

libor/sourcecode.html
3http://www.cbsr.ia.ac.cn/IrisDatabase.htm/

exists a unique optimal solution independent of target bit rate,

we look for an optimal q:r:s triple with respect to a certain

target bitrate. Since the number of q:r:s triples is way too large

to be tested exhaustively, we have quantised the search space

into 18 DC bands, and 15 LP and 15 HP bands, respectively.

Still 4050 possible combinations need to be considered, but

this is more tractable compared to 255
3

= 16581375 triples

without quantisation.

For enabling a fair comparison between the various quan-

tised triples in the experiments, the same bitrate has to be

targeted for all configurations. While specifying a target bitrate

is straightforward in JPEG2000, JPEG XR suffers from the

same weakness as JPEG being unable to explicitly specify

a target bitrate. Therefore we have employed a wrapper-

program, continuously scaling the JPEG XR quantisation

triples (i.e. multiplication of all three components with the

same factor) to achieve a certain target bitrate (given in bytes

per pixel bpp). Since q,r,s can attain integer values only, target

bitrates are approximated as accurate as possible. In Fig. 7 we

show an example of approximating a target bitrate of 0.1968

bytes/pixel for more then 2500 images. On average we get

0.1966 bytes/pixel with a maximal deviation of +5.97% and

-6.21%.

Fig. 7. Rate adaptation approximation.

For experimentation, we use the official JPEG-XR reference

software 1.8 (as of September 2009) and for JPEG2000

compression, imagemagick 8.6.6.0.4-3 (employing libJASPER

1.900.1-7+b1) is used with standard settings.

The optimisation is done minimising the EER of the Masek

implementation by setting LBT=0 since this is the fastest

variant and there are no clear recognition advantages of using

LBT=1,2 [12].

The questions we want to answer with our experiments are

as follows:

1) Do the optimised settings outperform the “uniform”

JPEG XR default settings ?

2) Do the optimised settings outperform JPEG2000 ?

3) Do the optimised settings also generalise to other bitrates

(since they have been computed for a single target

bitrate) ?

4) Do the optimised settings also generalise to other feature

extraction schemes (since they have been computed for



the Masek Iris Code) ?

C. Experimental Results

Fig. 8 shows computed tuples r:s, when all triples are

normalised with q = 1. Out of all considered 4050 r:s(:1)

triples, blue dots show configurations when the obtained EER

is at least 5% better as compared to uniform q:r:s, and red di-

amonds depict configurations with at least 15% improvement.

The target bitrate for the optimisation has been set to 0.19

bytes/pixel (filesize is 17 kBytes) for all experimental results

shown. Note that experiments with different target bitrates lead

to highly similar results with respect to the answers to the four

questions raised above, but of course not with respect to the

actual triples q:r:s computed.

Fig. 8. Result Distribution

We clearly note that the best triples are not close to the

uniform setting q:r:s = 1 but 1 < r < 2 and 2.9 < s < 4.

This means that the higher frequency gets, the more severe

quantisation should be applied.

Fig. 9 shows the results of two good q:r:s configurations for

varying the bitrate in compression (x-axis) and performing iris

recognition with the Masek Iris Code EER is plotted on the y-

axis). For a comparison, we plot the curves for LBT=0,1,2 with

uniform q:r:s and a curve obtained from applying JPEG2000.

For both configurations we observe that for the optimisation

target bitrate, the optimised q:r:s triple is clearly superior to the

“uniform” JPEG XR variants and also superior to JPEG2000.

However, this superiority does not at all extend to other

bitrates. The bitrate range where these triples exhibit better

performance is quite limited. This means that in an application,

specific q:r:s triples need to be optimised for different target

bitrates. The behaviour of those two configurations as shown

in Figs. 9.a and 9.b is very similar except for the the range

of bytes/pixel < 0.15. Here the better preservation of LP and

to a lesser extent HP data for q:r:s = 1:1.19:2.93 leads to

performance close or even better to JPEG2000 (see Fig. 9.a).

Note that for bitrates > 0.05, in many cases EER derived

from lossy compression is superior to the values computed

from uncompressed data - this effect has been observed in

many studies and is due to the de-noising effect of moderate

compression settings.

(a) q:r:s = 1:1.19:2.93

(b) q:r:s = 1:1.97:3.15

Fig. 9. Recognition with Masek Iris Code.

Finally, we want to answer the question in how far the good

results of the computed triples do generalise to different types

of feature extraction schemes and resulting Iris Codes without

explicit optimisation for the respective algorithms.

In Fig. 10, we compare the behaviour of the three re-

maining feature extraction techniques when applied to sample

data which have been compressed using the triple q:r:s =

1:1.97:3.15 – which has been optimised for the Masek Iris

Code at bitrate 0.19 bytes/pixel. We notice that for the target

bitrate, the EER values are fairly good for all three types of

iris codes. While for the Ma and Ko variants, the result is

better compared to JPEG2000 and all three uniform variants,

the Zhu variant is slightly inferior to LBT=2 only, but superior

to all other compression schemes including JPEG2000. So it

seems that this q:r:s configuration is able to preserve texture

information for the targeted bitrate very well, no matter which

subsequent feature extraction technique is being applied.

On the other hand, we notice again that the bitrate range

where this good behaviour is observed is actually quite limited

(except for the Ko Iris Code, where we see good results for

lower bitrates also). The specifically good results at bitrate

0.05 bytes/pixel for the Ko and Zhu feature extraction schemes

are probably due to optimal denoising behaviour at this

compression ratio for these two schemes.

V. CONCLUSION

We have found that optimising the JPEG XR quantisation

strategy leads to improved iris recognition results for a wide



(a) Ma Iris Code

(b) Ko Iris Code

(c) Zhu Iris Code

Fig. 10. q:r:s = 1:1.97:3.15

range of different feature extraction types. The optimised strat-

egy does not only outperform the default quantisation strategy

but also iris recognition relying on JPEG2000 compression.

The observed behaviour is only found in a small range of

bitrates close to the target bitrate that has been used for

optimisation, however, the optimised parameters for a specific

feature extraction technique do also provide good results for

other types of Iris Codes. The general trend with respect to

the importance of different frequency bands is that as opposed

to the JPEG XR default configuration, middle LP frequencies

and even more pronounced high HP frequencies should be

quantised more severely compared to the low frequency DC

information.
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