
Grundlagen Bildverarbeitung

Imaging & Image Processing

Univ.-Prof. Dr. Andreas Uhl

WS 2016/2017

Abstract

The basis of this material are course notes compiled by students which
have been corrected and adapted by the lecturer. The students’ help is
gratefully acknowledged.

Some of the images are taken from websites without prior authoriza-
tion. As the document is only used for non-commercial purposes (teaching
students) we hope that nobody will be offended!

1

Contents

1 Introduction 11

1.1 Literature on Image Processing 11

1.2 Overview and Related Terms . 12

1.2.1 Digital Image Processing 12

1.3 Low level digital image processing tasks 12

2 Image Acquisition and Representation 13

2.1 Human Visual System & Optical Principles 13

2.2 Sensors . 20

2.3 Image Properties . 28

2.3.1 Color Representation . 29

2.3.2 Resolution and Quantisation 31

2.3.3 Metric properites of digital images 31

2.3.4 Histograms . 33

2.4 Image Representation . 33

2.5 Traditional Data Structures . 34

2.5.1 Matrices . 34

2.5.2 Chains . 35

2.5.3 Run length coding . 35

2.5.4 Topological Data Structures 35

2.5.5 Relational Structures . 36

2.6 Hierarchical Data Structures . 36

2.6.1 Pyramids . 37

2.6.2 Quadtrees . 38

2.7 Perception . 38

3 Image Enhancement 39

3.1 Spatial Domain Methods . 39

3.2 Contrast Manipulation & Modification 40

3.2.1 Changing the Amplitude 40

3.2.2 Contrast Modification . 41

3.2.3 Histogram Modification 41

3.2.4 Histogram-Equalisation 43

3.2.5 Explicit Histogram Specification 46

3.3 Image smoothing & Denoising . 47

3.3.1 Neighbourhood Averaging 47

2

3.3.2 Median Filtering . 48

3.4 Image Sharpening . 49

3.5 Transformation-based Techniques 50

3.5.1 Fourier Transform . 51

3.5.2 Filtering in Frequency domain 54

3.5.3 Wavelet Transformation 57

3.5.4 Fourier vs. Wavelet . 63

3.5.5 Further Wavelet Transform variants 64

4 Image Restauration 66

4.1 Image Distortion . 67

4.2 Distortion determination . 67

4.2.1 Image Analysis . 68

4.2.2 Experimental distortion determination 68

4.2.3 Distortion determination by modelling 68

4.3 Distortion Removal . 70

4.4 Wiener Filtering . 72

5 Edge Detection 73

5.1 Techniques using the 1. derivative 73

5.1.1 Roberts Operator . 73

5.1.2 Compass operators . 75

5.2 Techniques using the 2. derivative 76

5.2.1 Laplace Operator . 76

5.2.2 Mexican Hat Operator . 77

5.3 Canny Edge Detector . 78

5.4 Line Finding Alogrithms . 80

5.4.1 Simple Kernels . 80

5.4.2 Hough Transformation . 80

6 Image Segmentation 84

6.1 Thresholding . 85

6.2 Thresholding Variations . 85

6.3 Threshold Selection . 86

6.4 Edge-based Techniques . 89

6.4.1 Thresholding of Edge Images 89

6.4.2 Edge Relaxation . 89

6.4.3 Completing Edge Chains using Graph Search 91

3

6.4.4 Active Contours - Snakes / Level Set Segmentation 94

6.5 Region-based Techniques . 94

6.5.1 Region Growing . 94

6.5.2 Region Merging . 95

6.5.3 Region Splitting . 95

6.5.4 Template Matching . 96

6.5.5 Watershed Segmentation 96

6.5.6 Mean Shift Segmentation 96

6.5.7 Graph Cut Segmentation 98

7 Morphological Image Processing 99

7.1 Morphological Image Processing 100

7.1.1 Set Theory Nomenclature 100

7.1.2 Erosion and Dilation . 101

7.1.3 Opening and Closing . 102

7.2 Shrinking . 102

7.3 Thinning . 103

7.4 Skeletonization . 103

7.5 Pruning . 104

7.6 Thickening . 104

7.7 Application: Watershed Segmentation 105

8 Image Formation 109

8.1 Exposure & Autofocus . 110

8.1.1 Exposure . 110

8.1.2 Autofocus (AF) . 112

8.2 Colour Imaging Pipeline . 121

8.2.1 Channel Matching . 121

8.2.2 Dark Correction . 122

8.2.3 Defect Concealment . 123

8.2.4 Smear Correction . 123

8.2.5 Gain Nonuniformity Correction 124

8.2.6 Optics Corrections . 124

8.2.7 Stochastic Noise Reduction 124

8.2.8 Exposure and White Balance Correction 125

8.2.9 Demosaicing . 126

8.2.10 Colour Noise Reduction 136

4

8.2.11 Colour Correction . 136

8.2.12 Tone Scale and Gamma Correction 136

8.2.13 Edge Enhancement - Sharpening 136

8.2.14 Compression . 136

5

List of Figures

1 Electromagnetic spectrum . 13

2 Human eye and retina. 14

3 Color und luminance perception: Rods and cones. 14

4 Perceived intensity depends on surroundings. 15

5 Image formation in the eye . 15

6 Using a plain sensor as a camera does not work. 15

7 Using a barrier with hole improves the situation. 15

8 Influence of focal length on object size. 16

9 Historic pinhole cameras and tradeoff size of pinhole / sharpness. 16

10 Introduction of the lens. 17

11 Effects of changing aperture and thick lenses. 17

12 Thin lens scenario. 17

13 Deriving the thin lens formula. 18

14 Extreme settings. 18

15 Effect of focal length on image size. 18

16 Effect of focal length on image content. 19

17 Depth of field and circle of confusion. 19

18 Effect of using an aperture (object in focus). 19

19 Effect of using an aperture (object non fucused). 19

20 Computing the size of the circle of confusion. 20

21 Some selected problems with lenses. 21

22 1D and 3D sensing devices. 21

23 Photoelectric effect. 22

24 CCD sensor. 22

25 CMOS sensor. 23

26 Schematic comparison of CCD and CMOS sensors. 23

27 Comparing CCD and CMOS sensors: Respective properties . . . 23

28 FF and IT CCD configurations. 24

29 Smearing and blooming effects in CCDs configurations. 25

30 FT and FIT CCD configurations. 25

31 Microlens principle. 26

32 Approaches to colour sensing. 27

33 CFA examples. 27

34 Non-spatial multiplexing colour sensing (multichip system. 27

35 Non-spatial multiplexing colour sensing (Foveon system). 28

6

36 Means of transportation following the classical digital camera ap-
proach. 28

37 source image . 29

38 image as 2D-set of brightness values 29

39 source image . 30

40 RGB decomposition of figure 39 30

41 YUV decomposition of figure 39 30

42 Resolution of figure 39 . 31

43 Quantisation of figure 39 . 31

44 pixel neighborhoods . 32

45 contiguity paradoxes . 32

46 grid types . 32

47 crack edges . 33

48 image histogram for figure 39 . 33

49 images with same histogram . 33

50 chain data structure . 35

51 region adjacency graph . 36

52 relational data structure . 36

53 image pyramids . 37

54 T-pyramid data structure . 38

55 quadtree . 38

56 Grey-scale transformation . 39

57 Image and mask . 40

58 Modification of grey-scale range 40

59 Contrast Modification . 41

60 Contrast modification of a CT 41

61 Typical contrast modification techniques 42

62 Contrast modification of a Myelin 42

63 Contineous histogram . 43

64 equalised histogram . 44

65 Gaussians and their cumulative distribution functions 44

66 Histogram equalisation . 45

67 CLAHE: histogram clipping and interpolation 47

68 Averaging with 3× 3 maske . 48

69 Denoising . 48

70 Image Sharpening . 49

71 Types of Gradient visualisation 50

7

72 Origial image and its Fourier Spectrum (Magnitude) 52

73 DFT Transformations . 52

74 Different types of filters . 55

75 ILPF . 56

76 IHPF . 58

77 BPF . 59

78 Filtering specific frequency bands 59

79 Wavelet Transform . 61

80 2D Wavelet Transform . 62

81 2D Wavelet Transform: Visualisation 1. Level 62

82 2D Wavelet Transform: Visualisation 2.+3. Level 62

83 Wavelet Transform example . 63

84 Fourier and Wavelet Transform 63

85 Denoising in the Wavelet/Fourier domain 64

86 Denoising in Wavelet/Fourier domain: Results 65

87 A trous Visualisation . 66

88 Example: Smoothing as image distortion 67

89 Beispiel Inverse Filterung . 70

90 Example for Inverse Filtering with noise 71

91 Example: Pseudo-Inverse Filtering 72

92 Wiener Filtering . 73

93 Visuell: 1. derivative vs. 2. derivative (try to identify two errors
in this graphic !) . 74

94 Numerics: 1. vs. 2. derivative . 74

95 Roberts Operator . 74

96 Prewitt operator . 75

97 Sobel operator . 75

98 Sobel operator example . 75

99 Edge detection examples . 76

100 Mexican Hat . 77

101 LoG Example . 78

102 Edge Detection Examples: thresholding 79

103 Canny Edge Detector: different σ 80

104 Fundamental idea of the Hough transformation 81

105 Alternative line formula . 82

106 Example for Hough transform . 82

107 Example for Hough transform . 83

8

108 Example for Hough transform . 83

109 Circular Hough transform . 84

110 Concept of optimal thresholding 87

111 Example for optimal thresholding: Histogram 87

112 Example for optimal Thresholding: Result 87

113 Edge properties . 90

114 Graph representation of an edge image 91

115 Example for Dynamic Programming: (a) Edge image (b) Graph
with costs (c) admissible paths E, A-E is optimal (d) optimal
paths to D,E,F (e) optimal paths to G,H,I (f) Backtracking from
H determines lowest-cost path . 93

116 splitting/merging . 95

117 Mean-shift procedure in feature space 97

118 Constructing basins of attraction 98

119 Representing images as graphs. 98

120 Segmenting images as graph partitioning. 99

121 Problems with minimum cut. 99

122 Binary neighborhood encoding 100

123 Morphological image processing 101

124 Erosion and dilation . 101

125 Opening and closing (auch in der Figure !) 102

126 Thinning . 103

127 Skeletonization . 104

128 Principles: Watersheds and basins 105

129 Zones of influence of basins . 106

130 Original, gradient image, watersheds, original with watersheds . . 106

131 Oversegmentation . 107

132 Watersheds with internal and external markers 108

133 Example: All variants . 108

134 Dam construction with dilation 109

135 Color Imaging Pipeline: Coarse View. 110

136 Fusing images with different exposure. 112

137 AF phase detection principle. 114

138 AF phase detection as used in SLR. 114

139 Laplace autofocus function after normalisation applied to a series
of 40 images (n = 1, n = 10). 119

140 Accuracy of autofocus function: FV ar Sobel, Facc = 1, vs. FV ollF11,
Facc = 0.138. 120

9

141 Monotonicity of autofocus function: FV ollF5, Fmon = 1 vs. FNor V ariance,
Fmon = 0.325. 120

142 Peak Sharpness of autofocus function: FV ollF4, Fsharp = 1 vs.
FV ariance, Fsharp = 0. 121

143 Color Imaging Pipeline: Detailed View. 122

144 The stages of camera correction. 122

145 Bilinear and Bicubic interpolation 127

146 Example for cubic interpolation 129

147 Bilinear colorplane interpolation 129

148 Examples for color plane interpolation: nearest neighbour vs.
bilinear . 130

149 Color Moire artefact . 130

150 Principle of color sampling errors 130

151 Median filtering approach . 131

152 Median filtering result . 131

153 Original image and G plane . 131

154 R/G and R-G planes . 132

155 Sobel filter output of R/G and R-G planes 132

156 Bayer CFA pattern and constant-difference-based interpolation . 133

157 Edge-directed interpolation on a single colour plane. 133

158 Edge-directed interpolation involving all colour planes. 134

159 8 interpolation schemes for High Quality Linear Interpolation . . 134

160 Patterns used to determine the central pixel interpolation 135

10

1 Introduction

1.1 Literature on Image Processing

There are many books about the subject so here are some examples . . .

• Fundamentals of Digital Image Processing, Anil K. Jain

• Fundamentals of Electronic Image Processing, Arthur R. Weeks Jr.

• Digital Image Processing, Rafael C. Gonzalez, Richard E. Woods

• Image Processing, Analysis, and Machine Vision, Milan Sonka, Vaclav
Hlavac, Roger Boyle

The most important Journals for publication on the subject are . . .

• IEEE Transactions on Image Processing (TIP)

• IEEE Transactions on Circuits and Systems for Video Technology

• Computer Vision and Image Understanding

• SPIE Journal of Electronic Imaging

• Image and Vision Computing

• Signal Processing: Image Communication

• International Journal on Imaging and Graphics

• IEEE Transactions on Medical Imaging1

Three of the most important conferences on image processing and computer
vision . . .

• IEEE International Conference on Image Processing (ICIP)

• SPIE Symposium on Electronic Imaging

• IEEE Computer Vision and Pattern Recognition (CVPR)

• IEEE International / European / Asian Conference on Computer Vision
(I/E/ACCV)

• IEEE International Conference on Accustic, Speech and Signal Processing
(ICASSP)

1image processing 6= imaging!

11

1.2 Overview and Related Terms

1.2.1 Digital Image Processing

• Vision allows humans to perceive and understand the world surrounding
us.

• Computer vision aims to duplicate the effect of human vision by electron-
ically perceiving and understanding an image.

• Giving computers the ability to see is not an easy task – we live in a three
dimensional (3D) world, and when computers try to analyze objects in 3D
space, available visual sensors (e.g. TV cameras) usually give two dimen-
sional (2D) images, and this projection to a lower number of dimensions
incurs an enormous loss of information.

• In order to simplify the task of computer vision understanding, two levels
are usually distinguished:

low level image processing Low level methods usually use very little
knowledge about the (semantic) content of images. Classical image
processing.

high level image processing (understanding) High level processing
is based on knowledge, goals, and plans of how to achieve those goals.
Artificial intelligence (AI) methods are used in many cases. High level
image processing can be identified with computer vision and tries to
imitate human cognition and the ability to make decisions according
to the information contained in the image.

This course deals almost exclusively with (low level) image processing.

1.3 Low level digital image processing tasks

Low level computer vision techniques overlap almost completely with digital
image processing, which has been practiced for decades. The following sequence
of processing steps is commonly recognized:

Image Acquisition An image is captured by a sensor (such as a TV camera)
and digitized

Preprocessing computer suppresses noise (image pre-processing) and maybe
enhances some object features which are relevant to understanding the
image. Edge extraction is an example of processing carried out at this
stage

Image segmentation computer tries to separate objects from the image back-
ground

Object description and classification (in a totally segmented image) may
also be understood as part of low level image processing, however, it is
often seen as part of high level processing.

12

2 Image Acquisition and Representation

2.1 Human Visual System & Optical Principles

We see light – but what is that ? These three are the same

• Light: pure energy

• Electromagnetic waves: energy-carrying waves emitted by vibrating elec-
trons

• Photons: particles of light

The electromagnetic spectrum as visualised in Fig. 1 is classically partitioned
into the following seven bands (where for each waveform, the speed is identical,
i.e. the speed of light (300,000,000 meters per second):

• Radio waves: communication

• Mirowaves: used to cook

• Infrared: “Heat Waves”

• Visible light: what humans see

• Ultraviolet: Causes sunburn

• X-Rays: Penetrate tissue

• Gamma rays: Most energetic

Figure 1: Electromagnetic spectrum

The human eye acts like a camera (or is a camera ?): The eye has an iris like
a camera (used to control the aperture by radial muscels), focusing is done by
changing the shape of the lens, but what is the sensor ? Photoreceptor cells (rods
– “Stäbchen”, and cones – “Zäpfchen”) in the retina ! In Fig. 2 the location of
the Fovea is shown, which is a small region of high resolution containing mostly
cones. The optic nerve consists of 1 million flexible fibers used to transfer the

13

acquired data for further processing. The region where the optic nerve leaves
the retina is called the “disc’, in this area there are no potoreceptors, thus, we
are blind in this area !

Figure 2: Human eye and retina.

Cones are less sensitive, operate in high light, and are respensible for colour
vision. There are three types of them, which perceive different portions of the
visible light spectrum: Red, green, and blue. Rods are highly sensitive, operate
at night, and provide gray-scale vision only. It is interesting to note that these
support peripheral vision only (see the distribution !) – so why are there more
stars off-center ?

Figure 3: Color und luminance perception: Rods and cones.

The human visual system can perceive approximately 1010 different light inten-
sity levels. However, at any one time we can only discriminate between a much
smaller number – brightness adaptation. Similarly, the perceived intensity of
a region is related to the light intensities of the regions surrounding it (see so
called “Mach Bands” in Fig. 4).

Muscles within the eye are used to change the shape of the lens allowing us
focus on objects that are near or far away. An image is focused onto the retina
causing rods and cones to become excited which ultimately send signals to the
brain. As shown in Fig. 5, the function of the lens has to be taken into account.

When trying to build a camera, we need some medium to emulate / replace
the retina. In the last millennium, film was used which was able to record light
due to a chemical reaction, nowadays, digital sensor took over. The first idea
to build a camera is to put a sensor / film in front of an object like shown in
Fig. 6.

14

Figure 4: Perceived intensity depends on surroundings.

Figure 5: Image formation in the eye

Figure 6: Using a plain sensor as a camera does not work.

We don’t get a reasonable image as the information on the sensor is extremely
blurred , basically each single object point is projected to each sensor element.
This observation motivates the use of a barrier with a small aperture only, where
a small amount of rays is able to pass. This concept is called “pinhole camera”
which significantly reduces the blurring effect, the principle is visualised in Fig.
7.

Figure 7: Using a barrier with hole improves the situation.

15

Each point in the scene projects to a single point (or very small area) point the
image. The focal length f is the distance between the pinhole and the sensor
as shown in Fig. 8. If we double f we double the size of the projected object.

Figure 8: Influence of focal length on object size.

Although already known long ago (Aristoteles, “old” chinese history, etc.), pin-
hole cameras have severe limitations. The aperture (the “hole”) must be very
small to obtain a clear image. As a consequence, as the pinhole size is reduced,
less light is received by the image plane (i.e. sensor). Further, if pinhole size
is comparable to wavelength of incoming light, “diffraction” effects effects blur
the image (as shown in Fig. 9). The strategy to obtain differently sized ob-
jects on the sensor is not very convenient (varying the barrier – sensor distance
significantly).

Figure 9: Historic pinhole cameras and tradeoff size of pinhole / sharpness.

For these reasons, the pinhole concept is replaced by introducing a lens (now
we finally arrive very close to the human model), which focuses light onto the
sensor. At a specific distance, objects are “in focus”, other points project to a
“circle of confusion” in the image, which results in blur. Changing the shape of
the lens (as is done in the human eye) changes the focal distance. Parallel rays
are focused onto a single point, the focal point. When lenses are used, f denotes
the distance between the plane of the lens and the focal point. An aperture of
certain size restricts the range of rays passing through the lens and influences
required exposure time (compare: pinhole size).

Changing the aperture also affects the depth of field: A smaller aperture in-
creases the range in which the object is approximately in focus (we will see this
in more detail, see Fig. 11). Usually, we consider lenses to be “thin” lenses,
i.e. that the thickness of the lens is negligible compared to the focal length. In
modern lenses, this is harldy the case !

In Fig. 12, the principle of generating clear and blurred images depending on
the position of the sensor plane relative to the focal point and the lense plane
is shown. We denote by y the object size and by y′ the size of the object in the

16

Figure 10: Introduction of the lens.

Figure 11: Effects of changing aperture and thick lenses.

image; further we denote by d the distance between object and lens plane and
by d′ the distance between sensor and lens plane. f is the focal length.

Figure 12: Thin lens scenario.

In Fig. 13, we visualise the principle of deriving the “thin lens formula” using
simple geometric principles (i.e. triangle simularity properties). Exploiting the
yellow triangles’ similarity, we obtain

y′

d′
=
y

d
=⇒ y′

y
=
d′

d
.

Similarly, exploiting the green triangles’ similarity, we obtain

y′

d′ − f
=
y

f
=⇒ y′

y
=
d′ − f
f

.

Equating the right side of both equations we result in

y′

y
=
d′

d
=
d′ − f
f

=⇒ d′

d
=
d′

f
− 1 =⇒ 1

d
=

1

f
− 1

d′
.

17

Figure 13: Deriving the thin lens formula.

This equation means that under thin lens assumptions objects are in focus for
which the equation 1

d′ + 1
d = 1

f is correct.

The consequences of this result for extreme situations are illustrated in Fig. 14:
Objects at infinity focus at f : If d −→∞ then d′ −→ f . By analogy, when the
object gets closer, the focal plane moves away from f . At the limit: If d −→ f
then d′ −→ ∞, i.e. an object at distance f requires the focal plane to be at
infinity.

Figure 14: Extreme settings.

Varying the focal length f (i.e. applying a zoom or changing the lens) results in
a different image size as a consequence. We set M as the relation between y and

y′, i.e. M = y′

y = d′

d . As a consequence of the thin lens equation (1
d′ + 1

d = 1
f),

M = f
d−f for d > f , i.e. M gets larger for increasing f (see Fig. 15).

Figure 15: Effect of focal length on image size.

However, the sensor has a fixed size of course. As shown in Fig. 16, as f gets
larger, smaller parts of the world project onto the sensor, the image becomes
more telescopic. On the contrary, as f gets smaller, more world points project
onto the sensor, the images become more wide angle in nature.

The depth of field (“Tiefenschärfe”) is the range of object distances d over which
the object in the image are sufficiently well focused. In Fig. 17 the connection
between the circle of confusion (the area of the sensor in the focal plane, onto
which out of focus objects are projected) and the depth of field is visualised.

18

Figure 16: Effect of focal length on image content.

Figure 17: Depth of field and circle of confusion.

Introducing the aperture changes the situation. Fig. 18 shows that when using
an aperture, less rays arrive at the focal plane, so there is not much difference
except that the image is darker (thus requiring a longer exposure time).

Figure 18: Effect of using an aperture (object in focus).

When considering the situation of out-of-focus points, the usage of the aperture
has an additional effect: The circle of confusion is smaller, thus leading to a
sharper (less blurry) image (see Fig. 19).

Figure 19: Effect of using an aperture (object non fucused).

In fact, it is possible to derive an explicit relation between the diameter of the
circle of confusion b (denoted as “blur circle” in Fig. 20) and the diameter of the

19

aperture d (note that object and image distance to the lens are inconsistently
denoted as o and i′ in the figure, respectively).

Based on observing similar triangles, b = d
i′ (i
′ − i) for two object distances o, o′

and their respective images distances i′, i. Since the distance (i′ − i) cannot be
determined reasonably, we want to express b with f and o, o′ instead. For both
pairs o, i′ and o′, i the thin lens equation holds:

1

i′
+

1

o
=

1

f
and

1

i
+

1

o′
=

1

f
.

Figure 20: Computing the size of the circle of confusion.

From these formulas we can isolate i and i′ and may derive

(i′ − i) =
f

(o′ − f)

f

(o− f)
(o− o′) .

Using this formula, we are able to compute the diameter of the circle of confusion
based on objects’ distance and the focal length f . This is important to exactly
determine the exact depth of field – since this is the range for which the diameter
of the circle of confusion is smaller than the resolution of the sensor. I.e. as
long as all information within the circle of confusion is mapped to a single pixel,
there is no blur.

Unfortunatley, several problems arise with the usage of lenses (see Fig. 21),
some of which can be corrected, others are hard to correct (spherical aberration:
Spherical lenses are the only easy shape to manufacture, but are not correct for
perfect focus, different refractive indices leading to different focal points for
different parts of the lens), and some of which may be used to identify certain
specific lenses as done in image forensics.

2.2 Sensors

Besides classical stationary array sensors as found in digital cameras, also sens-
ing devices with moving sensor elements and toroidal sensor areas have been
developed as seen in Fig. 22. Moving sensor elements are found in scanners,
while for “sweeping” fingerprint readers the finger is moved across a line of senor
pixels.

In medical imaging a source of radiation is often moved to generate different
perspectives of the data, in the shown tomography example to produce a set of

20

Figure 21: Some selected problems with lenses.

Figure 22: 1D and 3D sensing devices.

cross section images (but this can be applied to any organic material, e.g. also
for generating cross section images of wood-logs).

The effect of radiation on the semiconductor is to kick electrons from the valence
to the conducting band (still inside the material, see Fig. 23) – this effect
can be read out and digitised. Classically, these electrons are collected and
accumulated in the photosensitive cells, and once a control switch is activated,
transfered out of these cells to be converted into measurable electrical quantities,
i.e. charge/voltage. We require linearity between incoming light and resulting
charge/voltage which is usually given, if not, a linearisation is being applied.
Sensors with sensitivity against different bands of the electromagnetic spectrum

21

can be constructed by using different types of semiconductor material. Silicium
is well suited for the visible range and near-infrared (this is why we need to have
near-infrared filters in our digital cameras), while material like e.g. Germanium
and others are suited for the far-infrared range.

Figure 23: Photoelectric effect.

The two major types of sensors are CCD and CMOS sensors.

Figure 24: CCD sensor.

CCD sensor (for charge coupled device, see Fig. 24) consists in photosensitive
cells able to store charge produced by the light-to-electron conversion; in addi-
tion, the charge can be transferred to an interconnected, adjacent cell. In this
case charges are shifted out of the sensor (bigger sensors, better quality, but
additional circuitry).

CMOS sensors (for complimentary metal oxide semiconductor, see Fig. 25), con-
sist of transistors within the photossensitive cell which perform charge-to-voltage
conversion and allow the pixels to be read individually (higher integration, less
power consumption, but less sensitive, higher noise).

Fig. 26 shows a schematic comparison of the two technologies. The resulting
different properties are summarised in Fig. 27.

There are different types of CCD configuartions / techniques which have some
distinct properties which make them useful for different types of cameras /
applications: full frame (FF), frame transfer (FT), interline transfer (IT) and
frame interline transfer (FIT) (see also Figs. 28 and 30). These are frontside
illuminated, that is, built so that the light enters on the same surface of the
device that holds the circuitry, and they are almost all single-tap, having only

22

Figure 25: CMOS sensor.

Figure 26: Schematic comparison of CCD and CMOS sensors.

Figure 27: Comparing CCD and CMOS sensors: Respective properties

one output point. In all of the figures, the light gray areas are sensitive to
light and the dark gray areas are covered with aluminum. The arrows show the
direction of charge motion when the electrodes are operating.

The Full Frame CCD image sensor (FF, see Fig. 28 left) is the simplest type.
It consists of a set of photosensitive registers arranged next to each other in
columns with a transport register at the bottom configured so that each well
can receive charge from a different column. In a typical operating cycle, light is
prevented from reaching the sensor by a shutter and then the charge is cleared
from the photosensitive registers while the image sensor is in the dark. The
shutter is opened for the desired exposure interval and then closed. In the dark,
the charge in all of the columns is shifted down by one row so that the last
row moves into the horizontal transport register. A faster clock then moves
the charge packets in the horizontal transport register to the sampling node to

23

generate the output voltage. When the row is complete, the next row is moved
down for readout. This process is repeated until all rows have been read. The
sensor is then ready for another exposure. Without shutter, a disadvantage is
“charge smearing” (see Fig. 29) caused by light falling on the sensor whilst the
accumulated charge signal is being transferred to the readout register. However,
mechanical shutters have lifetime issues and are relatively slow. FF are typically
the most sensitive CCD’s available but charge readout is rather slow. There are
two strategies to cope with the disadvantages of the FF CCD.

Figure 28: FF and IT CCD configurations.

The Frame Transfer architecture (FT, see Fig. 30 left) was developed as the
first CCD type suitable for continuous (video) imaging. In an FT sensor, the
exposure and readout functions of the sensor are physically separated with the
exposure section built essentially identical to an FF sensor and a storage section
almost a copy of the exposure section but covered with an opaque layer (usually
aluminum). In an FT sensor, the exposure and readout can occur almost simul-
taneously because while the exposure section collects light for a new image, the
previous image, held in the storage section, is shifted out.

The FT sensor is slightly more complicated to operate that an FF sensor be-
cause the exposure and storage section need separate shift drivers. In a typical
cycle for a simple 30 frame-per-second progressive scan video camera, the expo-
sure section is collecting light and the charge is not moving while the previous
information in the storage section is shifting down to the readout section line by
line. After the shifting is complete, the two sections are connected to the same
clocks and the entire image is quickly moved down from the exposure section to
the storage section. The line shift rate during the transfer is typically several
hundred times faster than the readout line shifting rate. Since the charge pat-
tern moves down very rapidly, the vertical charge smearing is reduced (but not
eliminated) relative to the FF case. After the shift, the scanning is disconnected
from the exposure section and the readout resumes at a slower shift rate. Due
to the high speed of the transfer, no mechanical shutter is required / used.

Generally, the CCD cells in the storage section are smaller than the pixels in
the exposure section because there is no need to efficiently collect light, no need
to provide a square matrix and no need to provide anti-blooming protection
(protection against cross-photosensitive cell charge shift for high energetic light
points – blooming occurs when the charge in a pixel exceeds the saturation level
and the charge starts to fill adjacent pixels, see Fig. 29). A few extra rows are
usually added at the top of the storage section and covered with the opaque
layer to provide a buffer between the edge of the light-collecting pixels and the
storage cells. This prevents stray light from getting into the first few rows of

24

Figure 29: Smearing and blooming effects in CCDs configurations.

the storage area that contain image data where it can generate spurious charge
that can produce white background patches in the image.

FT devices have typically faster frame rates than FF devices and have the advan-
tage of a high duty cycle i.e. the sensor is always collecting light. FTs have the
sensitivity of the full frame device and do not need a mechanical shutter but are
typically more expensive due to the larger sensor size needed to accommodate
the frame storage region.

In Interline Transfer (IT, see Fig. 28 right) sensors, the exposure and storage
sections are alternated column by column in the same area of the silicon. Each
column of photosensitive elements has next to it a vertical transfer register
covered with aluminum. The group of transfer registers makes up the storage
area. Light is collected in the photoelements, and then the accumulated charge
is moved from all photoelements simultaneously into the neighboring transfer
registers. After this move, the charge is shifted vertically, one line at a time,
into the output register for readout.

Figure 30: FT and FIT CCD configurations.

Although the photoelements appear to be in columns as in FT sensors, the pho-
toelements in IT sensors are not connected together vertically because there is
no need to shift vertically in the photosensitive areas. The very rapid image
acquisition virtually eliminates image smear, at least for long exposure times.
Additionally, because the photoelements are all isolated vertically from one an-
other, the possibility of blooming along the photoelement columns is essentially
eliminated. Antiblooming drains can be added between each column of pho-
toelements and the transfer register for the column to the left as part of the iso-
lation structure required between them. When the photoelements are isolated

25

on all sides like this, blooming can be kept under very tight control. Altering
the voltages at the photodiode so that the generated charges are injected into
the substrate, rather than shifted to the transfer channels, can electronically
shutter interline-transfer CCDs.

Interline devices have the disadvantage that the interline mask effectively re-
duces the light sensitive area of the sensor. This can be partially compensated
by the use of microlens arrays to increase the photodiode fill factor (see Fig. 31).
The compensation usually works best for parallel light illumination but for some
applications which need wide angle illumination the sensitivity is significantly
compromised.

The Frame Interline Transfer approach (FIT, see Fig. 30 right) was developed
to provide both very low vertical smearing and electronic exposure control.
Smearing in FT sensors, which have no exposure control, can be reduced only
so far as the image can be moved rapidly from the imaging section to the storage
section while IT sensors, which do have exposure control, have more smearing as
the exposure time is reduced (the relation between exposure time and transfer
time gets problematic). The FIT sensor is a combination of IT and FT in which
the exposure section of an FT sensor is replaced by an IT sensor array. After
the exposure, the charge can be shifted to the vertical transfer registers under
the aluminum shields as in an IT device, but is then immediately shifted at
high speed into an FT storage array below. As a result, the time available for
accumulation of unwanted charge from light leaking under the shields is reduced
to typically less than 1 millisecond with any exposure setting. The smearing is
thus reduced by both the effect of the shields and the rapid transfer out of the
exposure section. The disadvantage is of course the high cost due to the large
sensor area and the reduction of the sensor area by analogy to the IT case.

Figure 31: Microlens principle.

In both CMOS and CCD all photosensitive cell are sensitive to visible light,
detect only brightness, not color. How to sense colour then ? There are different
approaches (see Fig. 32):

• Colour Filter Array (CFA): Spatial multiplexing – sensors are made sen-
sitive to red, green or blue using a filter coating that blocks the comple-
mentary light (note that this is similar to human cones !).

• 3 detectors: Foveon system using three layer sensors.

• Take 3 shots: temporal multiplexing or three different sensors.

Of course, the approach using three different sensors (usually CCD, see Fig.
34) avoids spatial multiplexing, but the camera needs to be bulky and therefore

26

Figure 32: Approaches to colour sensing.

Figure 33: CFA examples.

gets expensive. Additionally, the amount of light reaching the sensor is reduced.
Nikon Dichrioc is an example, which uses a microlense on top of a triplet of
photoreceptors. Using dichroic filters wavelengths of light are separated to reach
specific photoreceptors which record red, green, and blue wavelengths.

Figure 34: Non-spatial multiplexing colour sensing (multichip system.

Foveon X3 (see Fig. 35) is used in Sigma cameras and based on CMOS tech-
nology. There are three layers of photodiodes, silicon absorbs different “colors”
at different depth, each layer captures a different color. No spatial multiplexing
required.

So far, camera development has really followed the human visual system quite
closely. If in the area of developing vehicules or means of transportation we
had followed the same strategy, we had no cars, no bikes, no planes, no ships,

27

Figure 35: Non-spatial multiplexing colour sensing (Foveon system).

no spacecrafts but bipedal robots as in Fig. 36. As we shall see later, luckily
imaging modalities have advanced beyond classical digital still image cameras
(stereo vision, video, multiview video, range scanners like LIDAR / time of
flight, structured light cameras, etc.).

Figure 36: Means of transportation following the classical digital camera ap-
proach.

Fucussing done in cameras is fundamentally different as compared to the HVS
– the lense does not change its shape (due to restrictive material properties)
but cameras change the distance between lens and sensor surface to adjust for
different object distances, something we cannot accomplish with our physiology.
This can be done manually (eventually controlled by the HVS depending on the
type of camera) or automatically (i.e. autofocus systems, see Chapter “Image
Formation”).

2.3 Image Properties

A signal is a function depending on some variable with physical meaning. Signals
can be

• one-dimensional (e.g. dependent on time),

• two-dimensional (e.g. images dependent on two co-ordinates in a plane),

• three-dimensional (e.g. describing an object in space),

• or higher-dimensional

28

A scalar function may be sufficient to describe a monochromatic image, while
vector functions are to represent, for example, color images consisting of three
component colors.

Figure 37: source image

Instead of an signal function a two-dimensional image matrix is used. Each
element of the image matrix represents one pixel (picture element) with its
position uniquely identified by the row- and column-index. The value of the
matrix element represents the brightness value of the corresponding pixel within
a discrete range.

Figure 38: image as 2D-set of brightness values

2.3.1 Color Representation

In the RGB color modell (see figure 40) the luminance value is encoded in each
color channel while in the YUV color modell (see figure 41) the luminance is
only encoded in the Y channel.

29

Figure 39: source image

Y ≈ 0.5Green + 0.3Red + 0.2Blue

red channel green channel blue channel

Figure 40: RGB decomposition of figure 39

luminance channel (Y) red-green balance (U=B-Y) yellow-blue balance (V=R-Y)

Figure 41: YUV decomposition of figure 39

Y + U = Y + (B − Y) = Y − Y +B = B

Y + V = Y + (R− Y) = Y − Y +R = R

Y −B −R = (R+G+B)−B −R = G

Palette Images (i.e. “Malen nach Zahlen”) include a lookuptable where an
index identifies a certain color in unique way. Pixels do not carry luminance or
color information but the index. Numerically close indices do not necessarily
correspond to similar colors (e.g. .GIF).

30

2.3.2 Resolution and Quantisation

• Resolution (see figure 42) is the partition of the image into fixed seg-
ments (discretisation) - each segment is represented by a picutre element
(pixel) which exhibits a constant luminance or colour value (resolution is
the number of pixels used to represent the image content in both image
dimensions).

• Quantisation (see figure 43) is the discrete number of gray or colour values
used to represent luminance or colour information in a pixel (Bit per Pixel
bpp).

• Storage requirements for an image is given as b = N ·M · ln(F).

• The quality and perceivable detail of a digital image depends on the pa-
rameters N , M und F ab.

with N , M . . . height and width of the image given in pixels; F . . . numer of
luminance values or colour values per pixel.

raster 1/2 raster 1/4 raster 1/8

Figure 42: Resolution of figure 39

256 colors 64 colors 16 colors

Figure 43: Quantisation of figure 39

2.3.3 Metric properites of digital images

The distance between two pixels in a digital image is a significant quantitative
measure.
The distance between points with co-ordinates (i, j) and (h, k) may be defined
in several different ways . . .

euclidean distance DE((i, j), (h, k)) =
√

(i− h)2 + (j − k)2

city block distance D4((i, j), (h, k)) = |i− h|+ |j − k|

31

chessboard distance D8((i, j), (h, k)) = max{|i− h|, |j − k|}

Pixel adjacency is another important concept in digital images. You can either
have a 4-neighborhood or a 8-neighborhood as depicted in figure 44.

Figure 44: pixel neighborhoods

It will become necessary to consider important sets consisting of several adjacent
pixels. So we define a regions as a contiguous set (of adjacent pixels).

There exist various contiguity paradoxes of the square grid as shown in fig-
ure 45.

digital line closed curve paradox

Figure 45: contiguity paradoxes

One possible solution to contiguity paradoxes is to treat objects using 4-neighborhood
and background using 8-neighborhood (or vice versa). A hexagonal grid (as de-
picted in figure 46) solves many problems of the square grids. Any point in the
hexagonal raster has the same distance to all its six neighbors.

square grid hexagonal grid

Figure 46: grid types

Border R is the set of pixels within the region that have one or more neighbors
outside R. We distinguish between inner and outer borders.

An edge is a local property of a pixel and its immediate neighborhood – it is a
vector given by a magnitude and direction. The edge direction is perpendicular
to the gradient direction which points in the direction of image function growth.

32

Four crack edges are attached to each pixel, which are defined by its relation
to its 4-neighbors as depicted in figure 47. The direction of the crack edge is that
of increasing brightness, and is a multiple of 90 degrees, while its magnitude is
the absolute difference between the brightness of the relevant pair of pixels.

pixel

crack edge

Figure 47: crack edges

The border is a global concept related to a region, while edge expresses local
properties of an image function.

2.3.4 Histograms

Figure 48: image histogram for figure 39

Brightness histogram provides the frequency of the brightness value z in an
image. Figure 48 shows the brightness histogram of the image in figure 39.
Histograms lack the positional aspect as depicted in figure 49.

Figure 49: images with same histogram

However, histograms offer interesting properties, like rotation-invariance as well
as shift-invariance, which means that the histogram does not change if the
image is rotated or shifted (e.g. a circular wrapping of the entre image). These
properties are of major importance in case of object detection or tracking.

2.4 Image Representation

iconic images consists of images containing original data; integer matrices
with data about pixel brightness.

33

E.g., outputs of pre-processing operations (e.g., filtration or edge sharpen-
ing) used for highlighting some aspects of the image important for further
treatment.

segmented images Parts of the image are joined into groups that probably
belong to the same objects. It is useful to know something about the
application domain while doing image segmentation; it is then easier to
deal with noise and other problems associated with erroneous image data.

geometric representations hold knowledge about 2D and 3D shapes. The
quantification of a shape is very difficult but very important.

relational models give the ability to treat data more efficiently and at a higher
level of abstraction. A priori knowledge about the case being solved is
usually used in processing of this kind.
Example: counting planes standing at an airport using satellite images
. . .
A priori knowledge

• position of the airport (e.g., from a map)

• relations to other objects in the image (e.g., to roads, lakes, urban
areas)

• geometric models of planes for which we are searching

• . . .

2.5 Traditional Data Structures

Some of the tradition data structures used for images are

• matrices,

• chains,

• graphs,

• lists of object properties,

• relational databases,

• . . .

2.5.1 Matrices

Most common data structure for low level image representation Elements of
the matrix are integer numbers. Image data of this kind are usually the direct
output of the image capturing device, e.g., a scanner.

34

2.5.2 Chains

Chains are used for description of object borders. Symbols in a chain usually
correspond to the neighborhood of primitives in the image.
The chain code for the example in figure 50 starting at the red marked pixel is:

00007766555555660000064444444422211111122344445652211

0

1
2

3

4

5
6

7

Figure 50: chain data structure

If local information is needed from the chain code, it is necessary to search
through the whole chain systematically.

• Does the border turn somewhere to the left by 90 degrees?

• A sample pair of symbols in the chain must be found - simple.

If global information is needed, the situation is much more difficult. For example
questions about the shape of the border represented by chain codes are not
trivial.

Chains can be represented using static data structures (e.g., one-dimensional
arrays). Their size is the longest length of the chain expected. Dynamic data
structures are more advantageous to save memory.

2.5.3 Run length coding

not covered here.

2.5.4 Topological Data Structures

Topological data structures describe images as a set of elements and their
relations.

This can be expressed in graphs (evaluated graphs, region adjacency graphs).
For a region adjacency graph as an example of a topological data structure see
figure 51.

35

0

1 2

4
53

0

1 2

3 4

5

Figure 51: region adjacency graph

2.5.5 Relational Structures

Information is concentrated in relations between semantically important parts
of the image: objects, that are the result of segmentation. For an example see
figure 52.

This type of data structure is especially appropriate for higher level image un-
derstanding.

4
5

21

3

50

100

150

200

250

50 100 150 200 250 300 350 400 450

no. object name colour min. row min. col. inside

1 sun yellow 30 30 2
2 sky blue 0 0 –
3 ball orange 210 80 4
4 hill green 140 0 –
5 lake blue 225 275 4

Figure 52: relational data structure

2.6 Hierarchical Data Structures

Computer vision is by its nature very computationally expensive, if for no other
reason than the amount of data to be processed. One of the solutions is using
parallel computers (brute force). Many computer vision problems are difficult
to divide among processors, or decompose in any way.

Hierarchical data structures make it possible to use algorithms which decide a
strategy for processing on the basis of relatively small quantities of data. They
work at the finest resolution only with those parts of the image for which it
is necessary, using knowledge instead of brute force to ease and speed up the
processing.

36

Two typical structures are pyramids and quadtrees.

Problems associated with hierarchical image representation are:

• Dependence on the position, orientation and relative size of objects.

• Two similar images with just very small differences can have very different
pyramid or quadtree representations.

• Even two images depicting the same, slightly shifted scene, can have en-
tirely different representations.

2.6.1 Pyramids

A matrix pyramid (M-pyramid) is a sequence {ML,ML−1, . . .} of images. ML

has the same dimensions and elements as the original image. Mi−1 is derived
from Mi by reducing the resolution by one half (see figure 53). Therefore square
matrices with dimensions equal to powers of two are required. M0 corresponds
to one pixel only.

half resolution

difference

difference

difference

compute prediction; save difference

Figure 53: image pyramids

Only the difference between the prediction for Mi (computed from Mi−1) and
the real Mi is saved for each level i of the pyramid (see figure 53). Methods to
reduce the image can be:

• subsampling

• averaging

• weighted averaging (Gauss’sche Bildpyramide)

• Laplace pyramide

Pyramids are used when it is necessary to work with an image at different
resolutions simultaneously. An image having one degree smaller resolution in
a pyramid contains four times less data, so that it is processed approximately
four times as quickly.

37

A T-pyramid is a tree, where every node of the T-pyramid has 4 child nodes (as
depicted in figure 54).

Level 0

Level 1

Level 2

Figure 54: T-pyramid data structure

2.6.2 Quadtrees

Quadtrees are modifications of T-pyramids. Every node of the tree except the
leaves has four children (NW: north-western, NE: north-eastern, SW: south-
western, SE: south-eastern). Similarly to T-pyramids, the image is divided into
four quadrants at each hierarchical level, however it is not necessary to keep
nodes at all levels. If a parent node has four children of the same value (e.g.,
brightness), it is not necessary to record them. For an example refer to figure 55.

0

10 11

13
120 121

122 123

32

0 2 3

10 11 13

120 122 123121

Figure 55: quadtree

2.7 Perception

As we have already observed, visual perception according to the Human Visual
System (HVS) does not exactly correspond to the numerical values of single
pixel but is highly context dependent.

Definition 1 (Contrast) is the local change of luminance / intensity, defined
das the fraction between the average object luminance and the average back-
ground luminance.

Contrast is a logarithmic property. i.e. no linear relation between the numerical
contrast values and the perceptual ones (in case of higher luminance we need
more contrast to achieve the same impression as in low luminance conditions).

38

Acuity (“Sehschärfe”) is best when luminance does not change too fast or too
slow. In either cases HVS performance is much weaker and we face the problem
of high inter-observer variability. Also, we have the “multiresolution property”
caused by the non-uniform distibution of receptors in the retina.

3 Image Enhancement

The aim of Image Enhancement is to pre-process images in order to make them
better suited for specific applications. These applications might include human
viewing but this is not the most important one. More important is the prepa-
ration for subsequent image processing operations. We distinguish between:

• spatial domain methods (Bildraum)

• transform domain (e.g., frequency domain-Fourier, time-frequency domain-
Wavelets)

3.1 Spatial Domain Methods

f(x, y) is the intensity function of the original image and g(x, y) = T (f(x, y))
is the enhanced image. T represents on operator applied to f(x, y) in a specific
neighbourhood2 of (x, y).

Simplest case: 1 × 1 neighbourhood, i.e. g only depends on the value of f at
position (x, y) ab. T is called grey-scale transformation or transfer function
(see figure 56) represented as s = T (v) with v = f(x, y) and s = g(x, y)

dark light

da
rk

lig
ht

hervorgehobener Bereich
(mehr Kontrast)Transferfunktion

dark light

da
rk

lig
ht

binäre
Transformation

Figure 56: Grey-scale transformation

In the figure, the x-axis shows the original grey-scales, while the y-axis shows
the values after transformation.

Largerneighbourhood: Different types of functions are often denoted as masks,
templates, windows or filter. In most cases a small 2-D array (e.g. 3×3 pixel) is
shifted across the image, computing the enhanced value at each pixel position.

2often, this is a squared image region centered in (x, y). The center of this image region is
moved from pixel to pixel.

39

The coefficients in the array are chosen as to emphasize or suppress certain
image properties.

Example: Given an image with constant intensity with isolated pixels exhibiting
different intensity (“pop noise”); we select the mask to be wi = −1 i = 1, . . . 9
except for w5 = 8, each entry of the mask is multiplied with the pixels positioned
below the entry and all the results are added up. For an area of constant
intensity we get 0 as a response, the mask is shifted across the image pixel by
pixel (see figure 57).

Result

= 0 all pixels identical

> 0 central pixel is larger than surrounding

< 0 central pixel is smaller than surrounding

. . . x− 1 x x + 1 . . .

.
y − 1 . . . o o o . . .
y . . . o x o . . .

y + 1 . . . o o o . . .
.

w1 w2 w3

w4 w5 w6

w7 w8 w9

Figure 57: Image and mask

T [f(x, y)] = w1f(x−1, y−1)+w2f(x−1, y)+w3f(x−1, y+1)+. . .+w9f(x+1, y+1)

3.2 Contrast Manipulation & Modification

3.2.1 Changing the Amplitude

Changing the range of grey-scales (see figure 58: Visualisation of difference
images after prediction or MC; clipping is often used in case of a small number of
pixels is found at the tails of the histogram - contrast is improved additionally).

input

ou
tp

ut

clipping

Kontrastverbesserung

z.B. Visualisierung, Differenzbildung

Figure 58: Modification of grey-scale range

Local vs. global: All techniques discussed here in this section can be applied to
the entire image - globally - or to parts / tiles of the image - locally.

40

3.2.2 Contrast Modification

Contrast is increased in areas where the slope of the transfer function (or its
tangent) is larger than 1.

Figure 59: Contrast Modification

As an example, we show the contrast modification of a computer tomography
by applying the logarith as transfer function in figure 60.

Figure 60: Contrast modification of a CT

Contrast can be modified by using simple transfer functions like

s = rp p = 2, 3, 1/2

(see also figure 59). Further typical contrast modification techniques are shown
in figure 61.

A further example is displayed applying the logarithm function to a Myelin
image (similar s = r1/2) in fig. 62).

3.2.3 Histogram Modification

Histogram: Distribution of relative frequency of grey-values in an image (global
image description).

Let r be the grey-value of a pixel and 0 ≤ r ≤ 1 with r = 0 = black and
r = 1 = white. We consider the transfer function s = T (r) with the properties

(a) T is monotonically increasing on (0, 1)

(b) 0 ≤ T (r) ≤ 1 for 0 ≤ r ≤ 1

41

s = r2 s = r1/2

reverse function s = 1− r inverse function

Figure 61: Typical contrast modification techniques

Figure 62: Contrast modification of a Myelin

42

The inverse transform from s to r is r = T−1(s) with 0 ≤ s ≤ 1 with identical
properties (a) und (b).

Consider the grey-values as being contineous random variables. We can repre-
sent the original and transformed grey-value distributions by considering their
corresponding density functions pr(r) and ps(s). The density functions describe
the overall impression of the image.

0 1

p_r(r)

Figure 63: Contineous histogram

Remark: These density functions may be interpreted as a contineous histogram.

From elementary probability theory and statistics we know:
If we know pr(r), T (r), and T−1(s) satisfies the condition (a), the density func-
tion of the transformed grey-values is given by:

ps(s) =

[
pr(r)

dr

ds

]
r=T−1(s)

(1)

3.2.4 Histogram-Equalisation

We consider the following transfer function (called cumulative distribution func-
tion):

s = T (r) =

∫ r

0

pr(w)dw 0 ≤ r ≤ 1

When computing the derivative with respect to r we result in (fundamental
theorem of calculus):

ds

dr
= pr(r) (2)

When inserting equation (2) into equation (1) we get:

ps(s) =

[
pr(r)

1

pr(r)

]
r=T−1(s)

= 1 0 ≤ s ≤ 1 . (3)

The result is a uniform density, constant 1. This result is entirely independent
of the inverse function. Funktion.

Histogram equalisation is achieved by applying the cumulative distribution func-
tion (CDF) as grey-value transfer function. In the equalised histogram all oc-
curence probabilities are equal to 1 (attention: here we are in the – idealised –
contineous case !. Fig. 65 shows examples of CDF and corresponding densities.

43

1p_s(s)

0 1

Figure 64: equalised histogram

Figure 65: Gaussians and their cumulative distribution functions

Example:

pr(r) =

{
−2r + 2 0 ≤ r ≤ 1

0 otherwise

s = T (r) =

∫ r

0

(−2w + 2)dw = −r2 + 2r

r = T−1(s) = 1−
√

1− s

Problem: For natural images no “Function” pr(r) exists.

Discretisation

pr(rk) =
nk
n

0 ≤ rk ≤ 1, k = 0, 1, . . . , L− 1

nk . . . number of occurence of grey-scale k
n . . . number of pixel
L . . . number of grey-scales

Discrete Equalisation

sk = T (rk) =

k∑
j=0

nj
n

=

k∑
j=0

pr(rj) k = 0, . . . , L− 1, rk = T−1(sk)

Remark: The inverse function is not required. T (rk) can be derived from pixel
statistics. Due to discretisation the result is an approximation only.

An image enhanced by histogram equalisation is shown in figure 66. In addition
to the original and the enhanced image the corresponding histograms are shown.

44

original image histogram

enhanced image histogram

Figure 66: Histogram equalisation

45

3.2.5 Explicit Histogram Specification

Let pr(r) be the original and pz(z) the target density function. In the first step,
the original image is histogram equalised:

s = T (r) =

∫ r

0

pr(w)dw

Assuming the target image to be avaialable, it could be histogram equalised as
well:

v = G(z) =

∫ z

0

pz(w)dw

z = G−1(v) would result in the target pixel vaues.

ps(s) and pv(v) have identical uniform densities3. Therefore it is possible to use
s (from the equalised original) instead of v in the inverse process. So z = G−1(s)
exhibits the desired target density.

Procedure:

1. Equalise original image → s

2. Specify the desired target density and obtain G(z)

3. z = G−1(s)⇒ z = G−1(T (r))

Problem: The inverse function cannot be computed directly in the discrete case
we have here. Thus, the inverse function is obtained by a mapping grey-scale
to grey-scale (table lookup).

Application: Optimisation for specific output devices, for which the optimal
target histogram is known, e.g. for large plotters etc.

Remark: The techniques discussed so far can also be applied to n ×m neigh-
bourhoods – in case it is only a specific region which is of interest, this leads to
better results. As an example, we discuss contrast limited adaptive histogram
equalisation (CLAHE). Classical, global histogram equalisation works well in
case the distribution of the pixel values (i.e. the histogram) is similar through-
out the image. In case the image contains areas which are significantly lighter
or darker than the overall histogram suggests, the contrast of those regions will
not be sufficiently enhanced.

Adaptive histogram equalisation (AHE) transforms each pixel with a tranfor-
mation function derived from the pixels neighbourhood (can be a fixed square,
can be more involved, the computation may be weighted, etc.) – again, the CDF
computed from pixels in the neighbourhood is used. In case the neighbourhood
is a very homogeneous area, the histogram will be very peaked and the trans-
formation function will map a narrow range of pixel values to the whole range
of the result image, resulting in an over-amplification of noise.

This is where CLAHE comes in: The contrast is limited in each neighbourhood
– since the slope of the transformation function determines the contrast ampli-
fication and this slope is proportional to the slope of the CDF (which is locally

3gleichmäßige Dichte

46

proportional to the histogram value of the pixel), the histogram is clipped at
some predefined histogram value as shown in Fig. 67. This limits the slope of
theof contrast enhance CDF and thus, the amount of contrast enhanceent. The
clip-value of often chosen to be 3 times the grey mean value. Due to intensitiy /
luminance loss, it is better to redistribute the lost parts to the other histogram
bins.

Figure 67: CLAHE: histogram clipping and interpolation

Since the computation of CLAHE involves the determination of the transfor-
mation function at each pixel, it is usually approximated only, by computing
transformation functions for fixed tiles of an image grid. The actual output
pixel for a specific location is then computed using up to four transformation
functions and appropriate bilinear or linear interpolation techniques as shown
in the Fig. 67.

3.3 Image smoothing & Denoising

Aim: Effects caused by transmission errors or sampling errors should be cor-
rected. These effects are local errors (in the ideal casse single independent
pixel)!

The most popular technique is Neighbourhood Averaging described in the fol-
lowing.

3.3.1 Neighbourhood Averaging

g(x, y) is obtained by computing averages in a neighbourhood S:

g(x, y) =
1

M

∑
(n,m)∈S

f(n,m)

M . . . number of pixels in S.

In neighbourhood averaging masks like shown in figure 57 are used for defining
the neighbourhood:

Problem: Edges get significantly softened (blurring)! This effect can be handled
by applying thresholding (with threshold T). If the difference between original
and “enhanced” pixel value is too large, averaging is avoided and the origianl
vaulue is set.

ĝ(x, y) =

{
g(x, y) |f(x, y)− g(x, y)| < T

f(x, y) sonst

47

→

1 1 1
1 1 1
1 1 1

 →

Figure 68: Averaging with 3× 3 maske

3.3.2 Median Filtering

Instead of computing an average in the neighbourhood a median is used instead.
Statistical outlyers in the neighbourhood are not included in the generation of
the enhanced pixel value. Especially for denoising (e.g. pop noise) the median-
based approach is often preferable (see Fig. 69).

Original Noisy image

5 x 5 Averaging 5 x 5 Median

Figure 69: Denoising

48

3.4 Image Sharpening

The aim of image sharpening is to emphasize edges;
Idea: Difference among pixels suggests the existence of an edge.

Averaging and sharpening are based on two antagonistic mathematical concepts:
While in averaging, detail are “integrated”, sharpening “differentiates” details.

Gradient G[f(x, y)] =

(
∂f
∂x
∂f
∂y

)

1. G points into the direction of the largest growth of f(x, y)

2. |G[f(x, y)]| =
√(

∂f
∂x

)2

+
(
∂f
∂y

)2

∼ mag(G)

mag(G) . . . magnitude of f , is equal to the largest growth rate of f(x, y).

In image processing mag(G) is often denoted as Gradient for simplicity.

Discretisation
Derivatives are approximated by differences:

|G[f(x, y)]| =
√

[f(x, y)− f(x+ 1, y)]
2

+ [f(x, y)− f(x, y + 1)]
2

As an alternative, absolute values can be used instead of the square root (more
efficient implementation).

Roberts Operator (see also chapter 5.1.1) and Fig. 70).

|G[f(x, y)]| = max {|f(x, y)− f(x+ 1, y + 1)|, |f(x+ 1, y)− f(x, y + 1)|}

Overall, the value of the Gradient is proportional to the difference among pixels
grey-values – large vaues for edges, small values for smooth or uniform areas.

Original Roberts Gradient image

Figure 70: Image Sharpening

There are several possibilities how to visualise the Gradient image g(x, y) =
|G[f(x, y)]|:

49

g(x, y) = G[f(x, y)] g(x, y) =

{
G[f(x, y)] G ≥ S
f(x, y) sonst

g(x, y) =

{
Tconst G ≥ S
f(x, y) sonst

g(x, y) =

{
T1 G ≥ S
T2 sonst

Figure 71: Types of Gradient visualisation

3.5 Transformation-based Techniques

Transformations used in image processing are unitary4 transformations and are
used for:

Feature extraction to describe certain properties in an efficient manner (e.g.
frequencies: high - edges, low - luminance). The aim is to be able to
conduct certain operations more efficiently in the transformed domain
(e.g. denoising).

Compression concentration of information

Efficient calculations e.g. a dense matrix is transformed into a sparse ma-
trix, since more efficient algorithms do exist for sparse martices (in sparse
matrices – sparsely populated matrices – many coefficients are equal to
zero).

In many cases the concept to represent a signal using orthogonal basis functions
is used.

Background: Vectors in 2 dimensional space can be represented by a set of
orthogonal (i.e. the inner product is zero) basis-vectors (orthogonal basis):

(x, y) = α(1, 0) + β(0, 1).

{(1, 0), (0, 1)} are the orthogonal basis-vectors. α and β are the coefficients
which determine the weight of each basis-vector to represent the vector (x, y).
The orthogonality of the vectors facilitates a minimal number of basis-vectors.

This concept can be generalised to functions and signals, respectively.

f(x) =
∑
n

< f(x), ψn(x) > ψn(x)

Functions ψn(x) are orthogonal basis functions, < f(x), ψn(x) > are the trans-
form coefficients which determine the weight of each basis function to represent
a given signal “well”. For an application the coefficients < f(x), ψn(x) > are
computed and processed further. Since the basis functions ψn(x) are orthogonal,
the required number to represent the signal is minimal.

e.g.: In case of the Fourier transform (see below) the basis functions are ψn(x) =
e−πinx = cos(nx)−i sin(nx). Here, frequencies of periodic signals are considered.
A Fourier coefficient < f(x), ψn(x) > represents the strength / energy of the
frequency n in a signal. Obviously, not all signals may be represented efficiently
using this approach.

4orthogonal and regular

50

3.5.1 Fourier Transform

Developed by French Fourier who was very interested in music (violin) and
wanted to know how sounds are created by changing the length of the cords. For
more background, see e.g. http://de.wikipedia.org/wiki/Fourier-Transformation .

Let f(x) be a contineous function, f̂(u) is the Fourier transform of f(x) with
respect to frequency u.

f̂(u) =

∫ ∞
−∞

f(x)e−2πiuxdx (4)

f(x) =

∫ ∞
−∞

f̂(u)e2πiuxdu (5)

The inversion can be computed in case f(x) is contineous and can be integrated

and in case f̂(u) can be integrated as well.

The Fourier transform of a real function is usually of complex values.

f̂(u) = <(u) + i=(u)

f̂(u) = |f̂(u)|eiΦ(u)

|f̂(u)| =
√
<2(u) + =2(u) Φ(u) = tan−1

(
=(u)

<(u)

)
|f̂(u)|2 . . . Power-Spectrum (Spektraldichte)

|f̂(u)| . . . Fourier-Spectrum (Frequenzspektrum)
Φ(u) . . . Phase angle
u . . . Frequency variable (since e2πiux = cos 2πux+ i sin 2πux)

If we interpret the integral as the summation of discrete terms, it gets clear
that f̂(u) is composed of an infinite sum of Sine- and Cosine terms, where the
parameter u determines the frequency of the Sine/Cosine pair.

Discrete Fourier Transform (DFT) {f(0), f(1), . . . , f(N − 1)} are N uni-
formly sampled points of a contineous function. The DFT is defined as

f̂(u) =
1

N

N−1∑
x=0

f(x)e−2πiux u = 0, . . . , N − 1 (6)

f(x) =

N−1∑
u=0

f̂(u)e2πiux/N x = 0, . . . , N − 1 (7)

Two-dimensional

f̂(u, v) =
1

MN

M−1∑
x=0

N−1∑
y=0

f(x, y)e−2πi(ux/M+vy/N) (8)

f(x, y) =

M−1∑
u=0

N−1∑
v=0

f̂(u, v)e2πi(ux/M+vy/N) (9)

51

For Display-purposes it is better to use D(u, v) = log(1+|f̂(u, v)|) than |f̂(u, v)|,
since values decrease rapidly for increasing frequency.

Examples of DFT transforms are visualised in figures 72 and 73.

Figure 72: Origial image and its Fourier Spectrum (Magnitude)

sinus DFT diag. sinus DFT

rectangle DFT impulses DFT

Figure 73: DFT Transformations

Properties of the 2D Fourier Transform

• f̂(0, 0) is identical to the average grey-value of all pixels

f̂(0, 0) =
1

MN

M−1∑
x=0

N−1∑
y=0

f(x, y)

52

• Separability

f̂(u, v) =
1

M

M−1∑
x=0

(
1

N

N−1∑
y=0

f(x, y)e−2πivy/N

)
e−2πiux/M

f(x, y) =

M−1∑
u=0

(
N−1∑
v=0

f̂(u, v)e2πivy/N

)
e2πiux/M

This means that the two dimensional transform my be implemented as
a consecutive conduct of two one-dimensional transforms, i.e. applying a
DFT to all rows and subsequentl to all columns (or vice versa). The foun-
dation of this property is the separability of the underlying basis functions,
i.e. e−2πi(ux+vy) = e−2πiuxe−2πivy.

• Translation

f̂(u− u0, v − v0) = f(x, y)e2iπ(u0x/M+v0y/N) (10)

f(x− x0, y − y0) = f̂(u, v)e−2iπ(ux0/M+vy0/N) (11)

Set u0 = M/2 and v0 = N/2

f̂(u−M/2, v −N/2) = f(x, y)eiπ(x+y) = (−1)x+yf(x, y)

The origin of the Fourier Transform (0, 0) can be moved to the conter of
the frequency plane (M/2, N/2) by multiplying f(x, y) with (−1)x+y and

a shift in f(x, y) does not affect |f̂(u, v)| (shift invariance of the DFT).

|f̂(u, v)e−2πi(ux0/M+vy0/N)| = |f̂(u, v)|

• Periodiosity

f̂(u, v) = f̂(u+N, v) = f̂(u, v +M) = f̂(u+ aN, v + bM)

• Symmety In case f(x, y) real-valued:

f̂(u, v) = f̂∗(−u,−v) |f̂(u, v)| = |f̂(−u,−v)|

Caused by the conjugate symmetry property around the origin, half of the
transform coefficients are redundant. Symmetry and periodicity facilitate
to keep the entire period and to shift the origin of the transform domain
into (M/2, N/2) as described before.

• Linear combination

k1f(x, y) + k2g(x, y)⇔ k1f̂(u, v) + k2ĝ(u, v)

• Scaling

af(x, y) = af̂(u, v) contrasting to f(ax, by) =
1

ab
f̂(u/a, v/b)

53

Scaling can be shown as follows (1-dim.): f̂(u) =
∫∞
−∞ f(x)e−2πiuxdx forf(x).

For f(ax) we get by analogy f̂(u) =
∫∞
−∞ f(ax)e−2πiuxdx. Multiplication of

the integral and the exponent by a/a leads to 1/a
∫∞
−∞ f(ax)e−2πiax(u/a)adx.

Applying a substitution of variables s = ax (ds = adx) we result in

1/a
∫∞
−∞ f(s)e−2πis(u/a)ds. This expression is evidently equal to 1

a f̂(ua).
A contracted function (a > 1) consequently exhibits a Fourier transform
with reduced amplitude and horizontal stretching in frequency space.

Laplacian

∇2f(x, y) =
∂f

∂x2
+

∂f

∂y2

̂∇2f(x, y) = −(2π)2(u2 + v2)f̂(u, v)

Convolution Convoluting the mask h(x) with the image f(x) is defined as

h(x) ∗ f(x) =

∫ ∞
−∞

h(α)f(x− α)dα

Convolution Theorem

f(x) ∗ g(x)⇔ f̂(u) · ĝ(u) (12)

f(x) · g(x)⇔ f̂(u) ∗ ĝ(u) (13)

f(x) ∗ g(x) . . . exhibits increasing computational complexity with increasing size of the mask f .

f̂(u) · ĝ(u) . . . no increasing complexity if mask f is known

Thus, the convolution theorem is applied to . . .

Reduction of complexity of convolution Fourier Transforms of f and g
are computed and the results multiplied, the product is inverse Fourier
transformed (pays off with a mask size larger than 202 pixels)

Filtering in Frequency space (see chapter 3.5.2)

Fast Fourier Transformation (FFT) FFT was published in 1968 by Cooley
and Tuckey but relies on an idea of C.F. Gauss in the area of matrix factorisa-
tion. The computational complexity of the DFT when applied to N datapoints
is O(N2) which is too high even for todays advanced hardware. FFT reduces
complexity to O(N logN) and is the enabler of an application of Fourier tech-
niques in signal processing.

3.5.2 Filtering in Frequency domain

g(x, y) = h(x, y) ∗ f(x, y) (14)

ĝ(u, v) = ĥ(u, v) · f̂(u, v) (15)

54

ĥ(u, v) . . . Transfer function
g(x, y) . . . Shifting the mask h(x, y) across the image f(x, y)

Procedure (f(x, y) is given)

• Compute f̂(u, v)

• choose ĥ(u, v) in a way, that the resulting image emphasises certain prop-
erties

• Compute the enhanced image by applying the inverse Fourier transform
to ĥ(u, v) · f̂(u, v)

In figure 74 shows the filters described in the following.

Figure 74: Different types of filters

Lowpass Filter Edges and shrp transitions are phenomena of high frequency
nature. If these parts are surpressed in the frequency domain, the image gets
smoothed.

ĥ(u, v) is the Ideal Lowpass Filter (ILPF)

ĥ(u, v) =

{
1 D(u, v) ≤ D0

0 D(u, v) > D0

D0 is the so-called Cut-off Frequency and D(u, v) = (u2 + v2)1/2 is the distance

between (u, v) and the origin. Applying ĥ(u, v) · f̂(u, v) zeros a high frequency
parts (edges), low frequency parts are retained (see Fig. 75). Filters of this type
affect real- and imaginary parts but do not change the phase (zero-phase shift).

55

Figure 75: ILPF

56

Problems

• can not be implemented in electronic hardware

• cutting the frequencies very sharply results in artefacts (ringing)

The shape of h(x, y) (which determines the rings when convolved with a
bright spot) depends on the value of D0. The radii of the resulting rings
are invers proportional to the value of D0 (i.e.: small D0 generates a low
number of broad rings strong ringing). With increasing D0 the number of
rings increases but their breadth decreases.

Butterworth Filter (BLPF)

ĥ(u, v) =
1

1 + (D(u, v)/D0)2n

The Buttermorth Lowpass Filter is a transferfunction of order n. There is no
discontinuity and thus, less artefacts occur.

Highpass Filter By analogy to Lowpass filters, highpass filters allow high
frequencies to pass, thus, edges and sharp transitions get emphasised.

ĥ(u, v) is the Ideal Highpass Filter (IHPF) (see Fig. 76).

ĥ(u, v) =

{
0 D(u, v) < D0

1 D(u, v) ≥ D0

Butterworth Filter (BHPF)

ĥ(u, v) =
1

1 + (D0/D(u, v))2n

The Butterworth highpass filter ist a transfer function of order n. Edges and
sharp transitions are kept and less artefacts occur. In order to retain a certain
amount of lower frequencies, a constant value can be added to the transfer
function (High Frequency Emphasis). Additionally, histogram equalisation can
be applied to improve the result.

Bandpass Filter A specific (middle) frequency band is determined to pass

and ĥ(u, v) is designed correspodingly (fora result see Fig. 77).

More specific filtering techniques take specific properties of eventual disurbances
into account (see e.g. Fig. 78).

3.5.3 Wavelet Transformation

Motivation
Using the Fourier transform, it is not possible to perform frequency filtering
on a local scale. For that purpose, the windowed Fourier transform or
short term Fourier transform (STFT) is used, which basically cuts the signal
into pieces (by applying smooth window functions), and applies the Fourier

57

Figure 76: IHPF

58

Figure 77: BPF

Figure 78: Filtering specific frequency bands

59

Transform to the single peices. However, the width of the window functions
have to be determined a priori, which results in frequency information loss no
matter how the fixed window size have been chosen. A comprehensive solution
to this dilemma is given by the Wavelet Transform.

Wa,b(f) = |a|−1/2

∫ ∞
−∞

f(t)ψ

(
t− b
a

)
dt (16)

ψa,b(s) = |a|−1/2ψ

(
s− b
a

)
(17)

The functions in equation (17) are named “Wavelets”, ψ(s) is the mother
wavelet . Examples for mother wavelets are:

ψ(s) = (1− s2)e
s2

2 Mexican Hat (18)

ψ(s) =
sin(2πs)− sin(πs)

πs
Shannon Wavelet (19)

ψ(s) =

1 0 ≤ s ≤ 1/2

−1 1/2 ≤ s ≤ 1

0 sonst

Haar Wavelet (20)

The Wavelet transform depends on two parameters (a and b). Changing a,
the wavelets in equation (17) describe different local “frequency bands”. Large
a describe broad, rather low frequent functions, small ones describe slim, fine
detailed functions, rather representing high frequencies on a local scale. Chang-
ing parameter b translates the time-space center of the function (which is in
s = b). All wavelets are consequently translated and scaled versions of the
mother wavelet.

Multiresolution Analysis Idea
Representation of signals as different levels of approximation (i.e. resolution)
and the differences among thsoe resolutions. Orthogonal basis functions are
being applied, parameters a and b are discretised: a = am0 , b = nb0a

m
0 with

m,n ∈ Z and a0 > 1, b0 > 1. A common choice is a0 = 2 and b0 = 1.

Wm,n(f) = 2−m/2
∫ ∞
−∞

f(t)ψ(2−mt− n) dt

A MRA is obtained by a series of approximation and detail spaces nested into
each other, functions φ(t) and ψ(t) are the respective orthonormal basis for
these nested subspaces.

φ(t) =
∑
n

h(n)φ(2t− n) (21)

ψ(t) =
∑
n

g(n)φ(2t− n) (22)

g(n) = (−1)nh(1− n)
φ(t) . . . scaling function
ψ(t) . . . wavelet function

60

The “Scaling Equation” relates the scaling function (dilated by factor 2) to
its dilated and translated versions (functions with lower “frequency” are repre-
sented by identical functions with higher frequency). Important: The sequence
h(n) determines the resulting functions in a unique manner (i.e. given h(n),
φ(t) and ψ(t) are uniquely defined).

Fast Wavelet Transform A fast wavelet transform in the one-dimensional
case:

input = (a, b, c, d, e, f, . . .) h(n) = (1, 2, 3, 4)

WT1 = a+ 2b+ 3c+ 4d

WT2 = b+ 2c+ 3d+ 4e

detail signal

h

h

g

g

Figure 79: Wavelet Transform

Variants to handle border sample points in case of one-dimensional computation:

• Periodisation

• Signal extension

• Mirroring

• Zero-Padding

2D Wavelet Transform For images, a transform of a two-dimensional func-
tion is necessary. By analogy to the Fourier case (enabled by separable func-
tions), the image is first transformed along the rows using a one-dimensional
transform, subsequently the already transformed columns are transformed us-
ing again a one-dimensional transform. Usually, as it is the case for the one-
dimensional transform, downsampling (with a factor 2) is applied. A visualisa-
tion of the entire process is shown in figure 80. An example for an image after
wavelet transform is shown in figure 83.

Filtering in the Wavelet Domain

Lowpass Filter setting detail-subbands to 0.

Highpass Filter setting LL-subband (and low frequency detail-subbands) to
0.

Bandpass Filter Subband of interest for the application has to be retained,
the rest is set to 0.

61

row filtering / downsampling

c
o
lu

m
n
 filte

rin
g
 / d

o
w

n
s
a
m

p
lin

g

original

image

h

g

h

g

h

g

detail

detaildetail

LL

Figure 80: 2D Wavelet Transform

horizontal low-pass

horizontal high-pass

vertical low-pass

vertical high-pass

Figure 81: 2D Wavelet Transform: Visualisation 1. Level

second filtering step third filtering step

Figure 82: 2D Wavelet Transform: Visualisation 2.+3. Level

62

Figure 83: Wavelet Transform example

Remark: Setting the LL-Subband to 0, removes the graya-scale information
entirely, only high frequency edge information is retained.

Denoising Denoising is achieved by thresholding in the wavelet domain. Only
coefficients above a certain threshold are retained.

Application Wavelet Transform is used for signal decorrelation in in the con-
text of compression in

• JPEG2000 and

• MPEG-4 VTC (visual texture coding).

Furthermore, wavelets are well suited for many tasks in signal- and image anal-
ysis.

3.5.4 Fourier vs. Wavelet

Fourier Wavelet

high frequency low frequency

Figure 84: Fourier and Wavelet Transform

In case of the Fourier transform, a coefficient represents the global frequency
content of the entire image with frequencies u and v. In case of the wavelet
transform, a coefficient represents the local frequency content at scale 2i in a
certain neighbourhood in the image. For this reason, in case an entire frequency

63

band needs to be processed, Fourier methods are more appropriate, for local
phenomena wavelet transforms are a better choice. In figure 84 the arrangement
of the different frequencies for both transform domains is visualised.

Figure 85: Denoising in the Wavelet/Fourier domain

3.5.5 Further Wavelet Transform variants

Wavelet Packet Transform (WP) Basic Idea: The iteration of the decom-
position is not restricted to the low-pass subband but is applied to all wavelet
subbands recursively. This leads to a much better (frequency) resolution, espe-
cially of the high frequency image parts.

Best Basis selection: Is a technique to choose the specific subtree for represent-
ing the signal, which allows to represent the signal in the most compact manner.
iApplication is in compression techniques (FBI-standard, J2K Part II), subtrees
are selected by optimising (information) cost functions.

Local Distcriminant Bases: Is a technique to choose the specific subtree for
representing the signal, which allows to represent the signal in a way that allows
to distinguish among different signal classes. The idea is to select the most
discriminative features for a classification problem, texture classification is the
most effective application area.

A trous Algorithmus The classical fast wavelet transform suffers from shift
variance due to the downsampling stage in the transform. Shift invariance is

64

Figure 86: Denoising in Wavelet/Fourier domain: Results

65

achieved by omitting downsampling, by sacrificing the compact and redundant-
free representation (in this manner, each decomposition level produces data of
the same amount as the original signal), see Fig. 87. Contrasting to the CWT
the fast wavelet transform (DWT) can be used. Scaling is coarse (powers of
two, “octaves”).

Figure 87: A trous Visualisation

Continuous Wavelet Transform (CWT) Direct computation of the trans-
form coefficients with O(N2) complexity. For this algorithm, an actual wavelet
in explicit formulation is required to compute the inner products between sig-
nal and basis function (note the difference to the DWT algorithm !). CWT is
usually only used in one-dimensional application due to the large quantities of
data produced and the high computational complexity.

4 Image Restauration

Image restauration improves image quality in case of an existing image distortion
which should be removed. Contrasting to image enhancement the aim is to
restore a (virtual) original image. Either the type of distortion is known or it
has to be estimated. Reasons for existing distortions include: defocus, motion
blur, noise (transmission errors, sensor noise, . . .), defects in the optical system
(Hubble), etc.).

deterministic methods for images with low amount of noise and known dis-
tortion function

stochastic methods try to identify the best restauration with respect to some
statistical error-criterion (e.g. least-squares criterion)

66

The better the distortion is known, the better it can be removed and the better is
the resulting restauration. In many cases, the distortion needs to be estimated:

a priori estimation distortion is known or is obtained before the restauration
starts

a posteriori estimation image analysis based on interesting pixels (e.g. edges,
straight lines, homogeneous areas) and it is attempted to estimate / re-
construct their original properties.

4.1 Image Distortion

In the following scheme we assume a position invariant linear distortion and
independent additive noise:

g(x, y) = h(x, y) ∗ f(x, y) + v(x, y) (23)

v(x, y) . . . noise
h . . . distortion (position invariant)

Following from linearity and the convolution theorem, we can represent the
distorted signal in the DFT domain as follows:

ĝ(u, v) = ĥ(u, v) · f̂(u, v) + v̂(u, v)

smoothed image Gauss kernel (1-D)

Figure 88: Example: Smoothing as image distortion

4.2 Distortion determination

There are several alternatives how to determine (estimate, approximate) the
image distortion present. Since all these techniques are are approximative by
nature, these ideas are called “blind deconvolution”.

67

4.2.1 Image Analysis

In the distorted image we choose image regions with “obvious” image content,
e.g. a sharp edge. The corresponding image part is denoted gs(x, y). For this
image region we create an approximation fas (x, y) of the original image. Due to
the selection of the region noise should not affect the result too much, thus we
are able to compute the distortion function in the DFT domain for the region
selected:

ĥs(u, v) =
ĝs(u, v)

f̂as (u, v)

Due to the assumed position invariance, the distortion function can be gener-
alised to the entire image.

4.2.2 Experimental distortion determination

Here we assume that the equipment used to take the distorted image is available
(or at least the same or similar model). We capture an image similar to the one
subject to restauration and try to generate a distortion highly similar to the
one to model by systematic testing of the system configurations (e.g. different
camera settings). Once identified, we take an image of an intensive point light
source, to obtain the impulse response of the distortion (a distortion of the
considered type is uniquely characterised by its impulse response). The DFT of
an impulse is a constant A, thus we get:

ĥ(u, v) =
ĝ(u, v)

A

4.2.3 Distortion determination by modelling

Here we exploit knowledge about models of physical processes.

68

Examples for simple distortions are . . .

relative (uniform) motion between camera and object f(x, y) moves in
a way such that x0(t) and y0(t) are the time-dependent motion components
in x and y direction.

The entire image exposition is obtained by intergating the image function
over the time-frame of the shutter being opened T :

g(x, y) =

∫ T

0

f(x− x0(t), y − y0(t))dt

ĝ(u, v) =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)e−2πi(ux+vy)dxdy

ĝ(u, v) =

∫ ∞
−∞

∫ ∞
−∞

[∫ T

0

f(x− x0(t), y − y0(t))dt

]
e−2πi(ux+vy)dxdy

The integration order can be swapped:

ĝ(u, v) =

∫ T

0

[∫ ∞
−∞

∫ ∞
−∞

f(x− x0(t), y − y0(t))e−2πi(ux+vy)dxdy

]
dt

The expression between [] is the DFT of the shifted function f(x−x0(t), y−
y0(t)). Using the translation properties of the DFT and the independence

between f̂(u, v) and t we obtain

ĝ(u, v) =

∫ T

0

f̂(u, v)e−2πi(ux0(t)+vy0(t))dt = f̂(u, v)

∫ T

0

e−2πi(ux0(t)+vy0(t))dt

Thus, we set ĥ(u, v) =
∫ T

0
e−2πi(ux0(t)+vy0(t))dt. Setting for example

x0(t) = at/T and y0(t) = 0 we get motion only in x-direction (Ex.: Taking
pictures from a moving car). At time t = T the image moved by distance
a. We get

ĥ(u, v) =

∫ T

0

e−2πiuat/T =
T

πua
sin(πua)e−πiua

For two-dimensional motion (also y0(t) = bt/T as well) we get:

ĥ(u, v) =
T

π(ua+ vb)
sin(π(ua+ vb))e−πi(ua+vb)

Defocus

ĥ(u, v) =
J1(ar)

ar
mit r2 = u2 + v2

J1(x) =

∞∑
k=0

(−1)k(x/2)2k+1

k!(k + 1)!

J1 . . . Bessel function Order 1
a . . . Extent of Defocus

Atmospherical Turbulence

ĥ(u, v) = e−c(u
2+v2)5/6

c is determined experimentally

69

4.3 Distortion Removal

In order to remove the distortion, we need to construct a restoration filter,
exhibiting a transfer function invers to the distortion: ĥ−1(u, v). The resulting
procedure is denoted “Inverse Filtering”.

f̂(u, v) = ĝ(u, v) · ĥ−1(u, v)− v̂(u, v) · ĥ−1(u, v)

In case the noise contribution is not too high, restauration is identical to inverse
convolution.

DFT of the smoothed image DFT of the Gauss kernels

DFT after inverse filtering image after restauration

Figure 89: Beispiel Inverse Filterung

In case of the noise contribution is too high or ĥ(u, v) is too small we result in a

large value for v̂(u, v) · ĥ−1(u, v) which dominates the inverse filtering. Fig. 90
shows the result of inverse filtering with high noise contribution: the smoothed
image (originally given as (float data type) has been casted to char data type,
resulting in significant (quantisation) noise. The result of inverse filtering is
quite poor as a result.

70

smoothed image (char) difference (with respect to float image)

DFT of smoothed image (Byte) DFT of Gauss kernel

DFT after inverse filtering image after restauration

Figure 90: Example for Inverse Filtering with noise

71

This phenomenon leads to the definition of the “Pseudo-inverse Filtering”:

ĥ−1(u, v) =

{
h−1(u, v) if |ĥ(u, v)| > T

0 if |ĥ(u, v)| ≤ T

Obviously, the case of ĥ(u, v) being too small is “corrected” to prevent a large

value for v̂(u, v) · ĥ−1(u, v). Still, large values for v̂(u, v) still remain unsolved
(noise contribution),

DFT after pseudo-inverse Filtering Image after pseudo-inverse Filtering

Figure 91: Example: Pseudo-Inverse Filtering

4.4 Wiener Filtering

Wiener filering additionally exploits a priori knowledge about the noise contri-
bution. This type of restauration delivers an estimation of the non-distorted
image f̄ with minimal error f(i, j) − f̄(i, j) with respect to some determined
metric. sxx and sηη are the spectral densities of the noise and the original
(non-distorted) images. Of course, these values are difficult to obtain.

ˆ̄f(u, v) = ĥw(u, v) · ĝ(u, v) (24)

ĥw(u, v) =
ĥ∗(u, v)

|ĥ(u, v)|2 + sxx(u,v)
sηη(u,v)

(25)

In order to be able to conduct this type of filtering, information about the
distortion and statistical knowledge about the noise are required. An example
is given in figure 92.

Since the actual knowledge required for this process (e.g. computation of the
spectral density of the noise) might be hard or impossible to obtain, a “param-
eterised” Wiener filter can be employed:

ĥKw (u, v) =
ĥ∗(u, v)

|ĥ(u, v)|2 +K

72

Original distorted image Wiener filtering

Figure 92: Wiener Filtering

In the process, K is optimised until the best result is reached. This can be
improved by using so-called “constrained least square” filters. Intuitively this
means that the optimisation of K is done with respect to some least squares
criterium, e.g. to maximise image smoothness (or minimisation of image varia-
tions), expressed in terms of a gradient operator.

5 Edge Detection

The terms edge and crack edge have been already introduced in Chapter 2.3.3.

To recall that: Edges are pixels, in which the image intensity function changes its
magnitude. Crack edges are a virtual edge entity between pixels (see figure 47).

The are three different types of gradient operators:

1. Operators approximating the derivative of the image intensity function by
differences: ∂f

∂x = f(x+ 1)− f(x)

2. Operators approximating the zero-crossings of the second derivative of the

image intensity function: ∂2f
∂2x = f(x+ 1) + f(x− 1)− 2f(x)

3. Operators mapping the image intesity function to a paramertised edge
model

5.1 Techniques using the 1. derivative

5.1.1 Roberts Operator

The Roberts operator (see figure 95) uses a 2 × 2 neighbourhood with two
convolution masks thereby not considering the orientation of the edges.

Disadvantage
High sensitivity against noise, since only a low number of pixels is used in the
approximation.

73

Kante

f f’

f’’

Figure 93: Visuell: 1. derivative vs. 2. derivative (try to identify two errors in
this graphic !)

Figure 94: Numerics: 1. vs. 2. derivative

Roberts Operators

1 0

0 -1

0 1

-1 0

Starting Point

Operator Direction

Figure 95: Roberts Operator

74

5.1.2 Compass operators

The following operators are called Compass Operators, since they determine the
orientation of the gradient. A mask is applied in eight orientations, the largest
response determines the gradients orientation.

Prewitt operator (see figure 96)

Prewitt Operators

-1 0 1

-1 0 1

-1 0 1

-1 -1 -1

0 0 0

1 1 1

Starting Point

Operator Direction

0 1 1

-1 0 1

-1 -1 0

Figure 96: Prewitt operator

Sobel operator (see figure 97 and figure 98)

Sobel Operators

-1 0 1

-2 0 2

-1 0 1

-1 -2 -1

0 0 0

1 2 1

Starting Point

Operator Direction

Figure 97: Sobel operator

Figure 98: Sobel operator example

Robinson operator

h1 =

 1 1 1
1 −2 1
−1 −1 −1

Kirsch operator

h1 =

 3 3 3
3 0 3
−5 −5 −5

In figure 99 we visualise the application of various edge detectors.

Disadvantages

75

Source Prewitt operator

Sobel operator Roberts operator

Figure 99: Edge detection examples

• Sensitivity against noise

• Sensitivity againest the size of the object and scale / type of the edge (step
edge vs. ramp edge). In many cases it is easier to locate zero-crossings
than maxima or minima (see figure 94).

5.2 Techniques using the 2. derivative

5.2.1 Laplace Operator

If an application only requires the magnitude of the gradient regardless of its
orientation, the Laplace operator is a good choice, which is rotation invariant
(recall: it can be computed effectively in the Fourier domain).

52 (x, y) =
∂2f(x, y)

∂x2
+
∂2f(x, y)

∂y2
(26)

In most cases, it is approaximated using 3×3 masks for 4- und 8-neighbourhoods:

h4 =

0 1 0
1 −4 1
0 1 0

 h8 =

1 1 1
1 −8 1
1 1 1

76

5.2.2 Mexican Hat Operator

The Marr-Hildreth Operator (also denoted as Mexican Hat Operator) uses a
two-dimensional Gauss filter as a smoothing operaor:

G(x, y) = e−
x2+y2

2σ2

The standard deviation σ is proportional to the size of the neighbourhood the
filter is operating on.

To compute the second derivative (in order to identify zero-crossings) the Laplace
operator is applied to the smoothed image:

52 (G(x, y, σ) ∗ f(x, y))
linear→

(
52G(x, y, σ)

)
∗ f(x, y)

52G is image independent and thus can be computed in advance.

r2 = x2 + y2

G(r) = e−
r2

2σ2

G′(r) = − r

σ2
e−

r2

2σ2

G′′(r) =
1

σ2

(
r2

σ2
− 1

)
e−

r2

2σ2

replacing r2 by x2+y2 again, we obtain the Laplacian of Gaussian (LoG), which
resambles the shape of a sombrero, i.e. Mexican Hat (see figure 100).

h(x, y) =
1

σ4

(
x2 + y2

σ2
− 1

)
e−

x2+y2

2σ2 (27)

LoG(x,y)

-4
-3

-2
-1

 0
 1

 2
 3 -4

-2

 0

 2

 4

-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5

Figure 100: Mexican Hat

Fig. 101 shows some examples for increasing values of σ, the larger those values,
the more responses we get from coarse edges (large σ in the Gauss mask leads
to a strong smoothing effect).

77

Original small σ

increasing σ large σ

Figure 101: LoG Example

Remark: 52G can be approximated efficiently by a difference of two Gauss-
masks with different sigma (Difference of Gaussian).

Advantage
By selecting σ, it is possible to set the scale with respect to which the edge
property should be determined.

Disadvantage

• significant smoothing

• trend to form closed curves (plate of sphagetti)

5.3 Canny Edge Detector

The Canny Edge Detector (see figure 103 for an example) has been developed
in 1986 and has been theoretically proven to be optimal with respect to the
following criteria for noisy step edges

Detection no important edges are missed and no false edges are listed (low
value for false negative and false positive edges)

Localisation distance among actual edge position and computed edge position
is minimal

One response multiple responses to one edge are minimised

Canny Edge Detector achieves these results by applying the following tech-
niques:

78

thresholding with hysteresis improves detection performance in the pres-
ence of noise. Edge pixels have to satisfy the following conditions:

• edge-magnitude > high threshold

• edge-magnitude > low threshold and is connected to an edge pixel >
high threshold

Original t1=255, t2=1

t1=255, t2=220 t1=128, t2=1

Figure 102: Edge Detection Examples: thresholding

non-maximal suppression only local maxima of the edge image are pro-
cessed further.

feature synthesis approach all edges with respect to a small scale (i.e. fine
detail edges, small σ) are marked. A predictor for larger σ (see sec-
tion 5.2.2) is used to predict edge pixels for a larger σ: Smoothing of
the small scale edges. In the comparison to the actual computed values
only those values are additionally kept as compared to the predicted ones,
which are significantly larger. This procedure is conducted for several
values of σ.

79

Algorithm

1. iterate 2 until 5 for increasing values of σ

2. convolve the image with Gaussian with σ

3. compute gradient magnitude and direction

4. find position of the edges (non-maximal suppression)

5. thresholding with hysteresis

6. feature synthesis approach

Figure 103: Canny Edge Detector: different σ

For a demo: http://www.ii.metu.edu.tr/~ion528/demo/lectures/6/4/ and
http://www.cs.washington.edu/research/imagedatabase/demo/edge/.

5.4 Line Finding Alogrithms

5.4.1 Simple Kernels

A line is a curve that does not bend sharply.

In case a line has a width of one or two pixels, a gradient image can be generated
using the following function and mask:

f(i, j) = max(0,max
k

(g ∗ hk)

h1 =

0 0 0 0 0
0 −1 2 −1 0
0 −1 2 −1 0
0 −1 2 −1 0
0 −1 2 −1 0
0 0 0 0 0

5.4.2 Hough Transformation

Hough transform maps edge pixels to a parametric model of a curve of a certain
type. In order to be applied, we have to know which curves we are looking for.

A straight line is defined by two points A = (x1, y1) and B = (x2, y2). All
lines passing through A are given by y1 = mx1 + c, for arbitrary m and c (this

80

equation is associated with the parameter space m, c). In this representation,
all lines through A are given by c = −x1m+ y1, those through B are given by
c = −x2m+y2. The only common point of those two lines in the m, c parameter
space is the point representing the line connecting A and B. Each line the the
image is represented by a single point in the m, c parameter space.

Figure 104: Fundamental idea of the Hough transformation

The points (1,3), (2,2) and (4,0) are situated on the line we are looking for,
while (4,3) is not.

y x Gives Transposed

3 1 3 = m 1 + c c = -1 m + 3
2 2 2 = m 2 + c c = -2 m + 2
0 4 0 = m 4 + c c = -4 m
3 4 3 = m 4 + c c = -4m + 3

Based on the line-definition as discussed so far, we obtain the following proce-
dure:

1. determine all potential line pixels (edge detection)

2. determine all lines passing through these line pixels

3. transform these lines into (m, c)-parameter space

4. determine point (a, b) in parameter space, which is the result of the Hough
transform of the line y = ax+b ((a, b) is the only tupel that occured several
times).

Remark: Only a limited number of lines is considerd passing through the line
pixels. Collecting the parameters of all admissible lines results in an accumulator
array , the elements of which are denored accumulator cells.

For each line pixel, potential lines which point into an admissible direction are
determined and the parameters m and c are recorded and the value of the
corresponding accumulator cell A(m, c) is incremented. Lines in the image are
found by taking local maxima of the accumulator array.

Advantage
Robust against noise

81

Advantage and disadvantage
Missing line parts are interpolated

In actual iplementations the usage of the common line equation y = mx+ c für
m → ∞ is suboptimal in case of large slope. The line equation r = x cos(θ) +
y sin(θ) is better for such cases. Check out the visualisation:
http://www.vision.ee.ethz.ch/~buc/brechbuehler/hough.html

Figure 105: Alternative line formula

Figure 106: Example for Hough transform

In the general setting the curve equation f(x, a) = 0 with a being the vector of
curve parameters is used.

82

Figure 107: Example for Hough transform

Figure 108: Example for Hough transform

83

Algorithm

1. Quantisation of the parameter space, dimension n of this space is the
number of parameters in a

2. generate the n-dimensional accumulator array A(a) and set A(a) = 0

3. ∀(x1, y1) in the appropriately thresholded gradient image increase accu-
mulator cell A(a) in case of f(x, a) = 0

4. local maxima in the accumulator array are the curves we have been looking
for

For circles (x1−a)2 +(y1−b)2 = r2 three parameters and a corresponding three
dimensional accumulator array are required. By analogy, for more complicated
curves, high dimensional accumulator cells are used. Due to the high complexity,
often local variants of the Hough transform are used.

Figure 109: Circular Hough transform

6 Image Segmentation

Image segmentation is one of the most important stages in the image analysis
process. The main aim is to identify parts of the image exhibiting a high corre-
lation with real world objects or areas. The key to success is to grasp (at least
parts of) the semantics of the image content.

complete segmentation a set of regions / objects with empty intersection
which uniquely correspond to real objects. In many cases expert knowl-
edge applied in artificial intelligence methods is required. However, there
are some applications which are simple enough to generate good results
with simpler approaches, e.g. text with letters and numbers, objects in
front of uniform background and high contrast in general.

partial segmentation : regions which are homogeneous with respect to some
criterion are identified, however, to do not necessariliy correspond to ob-
jects of the scene (in many cases, over-segmentation occurs, i.e. to many
regions are found).

Segmentation techniques can be grouped into three classes:

1. Techniques which use global information about the image or parts of
it (e.g. the histogram)

84

2. Edge-based techniques try to generate closed edge-chains as object
borders

3. Region-based techniques try to generate homogeneous regions (the
latter two techniques solve a dual problem: each region can be de-
scribed by its closed border curve and each curve describes a region
which is enclosedby the curve.

6.1 Thresholding

Thresholding is the simplest segmentation technique, but due to its high speed
it is still of importance. An intensity constant or threshold is determined to
separate objects and background. Thus, the input image is transformed into a
binary segemented output image as follows:

g(i, j) =

{
1 f(i, j) ≥ T
0 f(i, j) < T

Thus, thresholding is a suited approach in case objects are not joined and object
gray-scale is different from background gray-scale.

Of course, a central question is the selection of the threshold. Using a fixed
threshold is successful in rare cases only. Variable thresholding is often more
successful (T = T (f, fc) with fc for the image part considered) which varies the
threshold value as a function of changing image part characteristic.

6.2 Thresholding Variations

Band Thresholding gray-scales in a specific gray-scale range / band are de-
termined to be object pixels (as opposed to background or non-interest
pixels). For example, segmentation of cells or cell parts in microscopic im-
ages, known gray-scales caused by known material density in CT-images)

g(i, j) =

{
1 f(i, j) ∈ D
0 otherwise

Multi Thresholding employs several thresholds and the output image is not
binary.

g(i, j) =

1 for f(i, j) ∈ D1

2 for f(i, j) ∈ D2

3 for f(i, j) ∈ D3etc.

Semi Thresholding The aim is to remove background but to keep gray-scale
information in the objects

g(i, j) =

{
f(i, j) for f(i, j) ≥ T
0 otherwise

85

6.3 Threshold Selection

In a text, it is known that letters cover a certain share of the text image pixels
(1/p of the image area). In this situation, it is straightforward to select the
threshold by analysing the histogram, such that 1/p of the image is ≤ T (is
denoted “p-tile thresholding”).

However, in most cases we do not have such informations. Thus, threshold
selection is done by analysing the histogram:

• Objects with uniform gray-scale which is different from the (uniform)
grayscale of the background: the histogram is bimodal . The threshold
is selected to be the minimal value between the two extrema.

• In case of multimodal histograms thresholds need / can be selected be-
tween two corresponding maxima – either, different segmentation results
are obtained or multithresholding has to be applied.

Problem
How can we decide if a histogram is bimodal or multimodal ? Usually, bimodal
techniques take the largest two maxima and set T as a minimum in between
(“mode method”). In order to avoid that two close local maxima are selected,
a minimal distance in terms of gray-scales should be enforced. Alternatively,
the histogram can be smoothed. Attention: a bimodal histogramm does not
guarantee a correct segmentation, e.g. 50% B/W pixel mixed or concentrated
on one image side result in an identical bimodal histogramm.

Further Strategies to Select Thresholds

local neighbourhoods Consideration of local neighbourhoods when generat-
ing the histogram (e.g. by assigning weights to pixels in order to supress
pixels with large gradient - in this case the histogram does not contain
pixels of the border curve but only object and background pixels)

Optimal Thresholding Histogram is approximated by a weighted sum of
probability densities – the threshold is selected to be the minimal proba-
bility between the maxima of the distributions.

Problem: Estimation of the parameters of the distributions and identi-
fication of the type of the distribution (normal distribution is often as-
sumed).

Iterative Threshold Selection We assume the existence of regions with two
dominating gray-scales. The corners of the image contain background
pixel.

In iteration t we compute the averages µtB (background) and µtO (object),

86

Figure 110: Concept of optimal thresholding

Figure 111: Example for optimal thresholding: Histogram

Figure 112: Example for optimal Thresholding: Result

87

and the segmentation in step t is defined to be

T t =
µt−1
B + µt−1

O

2

µtB =

∑
B f(i, j)

number of background pixel

µtO =

∑
O f(i, j)

number of object pixel
T t+1 =

µtB + µtO
2

If T t+1 = T t, stop.

Otsu Thresholding This variant assumes a bimodal histogram and selects
thresholds by histogram analysis. Thus, once the histogram with proba-
bility P (i) in bin i has been established, its fast. The basic idea is to find
the threshold that minimizes the weighted intra-class variance:

σ2
intra(t) = qO(t)σ2

O(t) + qB(t)σ2
B(t)

where qO(t) =
∑t
i=1 P (i) and qB(t) =

∑I
i=t+1 P (i) and the class means

defined as µO(t) =
∑t
i=1

iP (i)
qO(t) and for background by analogy. Finally,

the individual class variances are given as

σ2
O(t) =

t∑
i=1

(i− µO(t))2 P (i)

qO(t)

and the background variance by analogy. Now, we could actually stop
here. All we need to do is just run through the full range of t values
[1,256] and pick the value that minimizes σ2

intra.

But the relationship between the intra-class and inter- class variances can
be exploited to generate a recursion relation that permits a much faster
calculation: For any given threshold, the total variance is the sum of
the weighted intra-class variances and the inter-class cariance (which is
the sum of weighted squared distances between the class means and the
overall mean).

σ2 = σ2
intra(t) + σ2

inter(t) = σ2
intra(t) + qO(t)(1− qO(t))(µO(t)− µB(t))2

Since the overall variance does not depend on a threshold, minimizing
the intra-class variance is the same as maximizing inter-class variance.
σ2
inter(t) can be computed more efficiently as compared to σ2

intra(t) by a
recursion when running through the range of t values:

• Initialisation: qO(1) = P (1), µO = 0

• Recursion

1. qO(t+ 1) = qO(t) + P (t+ 1)

88

2. µO(t+ 1) = qO(t)µO(t)+(t+1)P (t+1)
qO(t+1)

3. µB(t+ 1) = µ−qO(t+1)µO(t+1)
1−qO(t+1)

Thresholding in hierarchical data structures uses a pyramidal data struc-
ture (see also section 2.6). Regions are identified in the low resolution
image and are further refined in the higher resolutions. Two variants are
possible:

1. Segmentation in the low-resolution image using thresholding; in the
next higher resolution pixels close to the region border are re-assigned
to object(s) or background, this is done successively until the highest
resolution.

2. A significant pixel detector is applied in the lowest resolution im-
age and determines pixels different to their neighbourhood. This is
usually done with 3 x 3 masks which indicate a central pixel being dif-
ferent from their neighbourhood. Such pixels correspond to regions
in full resolution. The corresponding image part in full resolution is
thresholded using T being between the gray-scale of the significant
pixel and the average of the other 8-neighbours (this is done locally
with different thresholds for different regions).

The advantage of hierarchical techniques is their higher robustness against
noise, since the initial segmentations start with a significantly smoothed
image.

6.4 Edge-based Techniques

Edge-based segmentation techniques are the oldest ones. But edge detection
does not result in a segmented image. For this purpose, edge pixels need to be
connected to edge chains, which correspond to region borders. The following
three subsections are dedicated to this kind of segmentation.

6.4.1 Thresholding of Edge Images

Small edge values correspond to non-significant gray-scale changes; these values
can be excluded by a simple thresholding procedure. Further processing can
be done by further excluding isolated edge pixels or edge-chains with a length
below a certain length threshold.

6.4.2 Edge Relaxation

Edge thresholding is often impacted by noise which results in missing edge-chain
parts to form complete region borders. Edge relaxation assesses edge property
in the context of neighbouring pixels (compare thresholding with hysteresis).
Under consideration of edge magnitude and edge continuation an iterative pro-
cess increases or decreases the edge property. For this algorithm, edges are
considered as crack edges (see section 2.3.3).

89

The edge property is investigated at both ends of an edge in all three possible
edge continuation directions. Edge e has a crossing at each side and there are
three possible continuation direction (see figure 113). Each crossing is assessed
according to its number of “leaving” edges and the form of the crossing. The
initial edge property c1(e) is the normalised magnitude of the crack edge. Edge
property converges from iteration to iteration to 0 or 1.

e e

e e

0-0 1-1

2-0 3-3

starke Kante
schwache Kante

0-0 isolated edge - 0-2 dead end -
0-3 dead end -
0-1 neutral 0 2-2 bridge 0
2-3 bridge 0 3-3 bridge 0
1-2 continuation + 1-3 continuation +
1-1 continuation ++

Figure 113: Edge properties

Algorithm (2. and 3. are iterated)

1. evaluate edge property c1(e) for all crack edges in the image

2. determine edge types in the neighbourhood and determine crossing types

3. update ck+1(e) for for each edge corresponding to its type and ck(e)

4. stopping criterion (e.g. in case of convergence to 0 or 1)

Assessment of crossing types
Crossing is of type i, if type(i) = maxk((type(k)), k = 0, 1, 2, 3

type(0) = (m− a)(m− b)(m− c) type(1) = a(m− b)(m− c)
type(2) = ab(m− c) type(3) = abc

a, b, c . . . normalised values of neighbouring edges
m . . . m = max(a, b, c, q)
q . . . constant; q ∼ 0.1

Example: (a, b, c) = (0.5, 0.05, 0.05) is a type 1 crossing, (0.3, 0.2, 0.2) is a type
3 one.

90

Similar results are obtained by counting the number of edges at a crossing above
a threshold.
Update Step

Increasing edge property : ck+1(e) = min(1, ck(e) + δ)

Decreasing edge property : ck+1(e) = max(0, ck(e)− δ)

δ is typically selected from 0.1 - 0.3 (for strong and weak modification), sim-
pler if only one value is used. In the version discussed so far, often only slow
convergence is achieved.

Improved Update Step

ck+1(e) =

{
1 ck+1(e) > T1

0 ck+1(e) ≤ T2

6.4.3 Completing Edge Chains using Graph Search

Initial situation: Begin and end of an edge chain
Graph: set of edges xi and paths [xi, xj] connecting these edges

We consider oriented and weighted paths and denote the weights as “costs”.

Edge search is transformed into search for an optimal path in a weighted graph.
We search for the best path connecting begin and end of an edge chain. We
assume to have information about edge magnitude (gradient magnitude) s(x)
and edge orientation (gradient direction) φ(x). Each (edge-)pixel corresponds to
a node in the graph, weigthed with s(x). Two edges xi and xj can be connected
by a path, if φ(xi) and φ(xj) fit together: xi has to be one of the three existing
neighbours of xj in the direction d ∈ [φ(xi) − π/4, φ(xj) + π/4] and s(xi) und
s(xj) ≥ T .

Figure 114: Graph representation of an edge image

Based on his set-up, classical graph search techniques can be applied. Let xA
and xB be begin and end-point of the edge chain. We define an expansion
technique plus a cost function f(xi), which allows to conduct an estimation of
the costs of a path between xA and xB passing through xi. The cost function
has to be monotonic with respect to path length and it has to be possible to
partition the computation of the function among several path parts.

91

g(xi) costs from xA to xi
sum of the costs of the nodes in the path connecting xA and xi

h(xi) costs from xi to xB (estimation)

Nielson’s A-Algorithm (heuristic graph search)

1. expand xA and put all successors into an OPEN-List with pointers back
to xA; compute costs for all nodes.

2. if OPEN-List is empty, the algorithm failed.
otherwise: determine xi in the list with the lowest costs f(xi) and remove
this node. If xi = xB follow the pointers to identify the best path and
stop.

3. no “stop” occured in 2. Expand xi and put the successors into the OPEN-
List with pointers back to xi; compute their costs; go to 2.

It is important to include a strategy against the occurence of loops in the algo-
rithm. The estimation ĥ(xi) of h(xi) has significant influence to the behaviour
of the search process (search can be accelerated - less precise - or search can
degenerate to full search).

Variants

ĥ(xi) = 0 : No heuristics is included and the search degenerates into a breadth-
first search. Heuristic methods do not guarantee to find the optimal result
but they are faster.

ĥ(xi) > h(xi) : The algorithm is fast, but the minimal cost result cannot be
guaranteed.

ĥ(xi) = h(xi) : The search is able to identify the path with lowest costs while
using a minimal number of expanded nodes. In general, we find that the
number of expandend nodes is the smaller, the closer ĥ(xi) is to h(xi).

ĥ(xi) ≤ h(xi) : The search identifies the path with lowest costs, however, for
each part of the path we find that actual costs are larger than estimated
costs.

Branch and Bound algorithms maximal admissible costs are defined and
more expensive paths are no longer considered in the search.

Multiresolution Processing Ideas described so far are applied to low-
resolution-image data first, and transferred to higher resolution subse-
quently (usually in a prediction - correction framework).

Applicable cost functions:

• Edge magnitude: high magnitude → reliable edge → small costs (e.g.
direct costs: difference to largest edge magnitude in the image).

• Curvature: Difference of edge orientations

• Distance to end-point of edge chain

92

• Distance to known or estimated or conjectured position of the edge chain

Dynamic Programming

Background: Bellmann’s principle of optimimality – independent of the path
leading to node E, there is an optimal path connecting E and the end point. In
other words: If the optimal path connecting begin and end point point passes
through E, also the partial paths begin point → E and E → end point have to
be optimal.

1. Construct the graph and the rating (based on weights) of all partial paths
between two layers.

2. In each layer, determine for each node E the lowest-cost partial path con-
necting the preceeding layer to E.

3. Determine the lowest-cost node in the final layer.

4. Backtracking along the identified optimal partial paths identifies the over-
all optimal path.

Figure 115: Example for Dynamic Programming: (a) Edge image (b) Graph
with costs (c) admissible paths E, A-E is optimal (d) optimal paths to D,E,F
(e) optimal paths to G,H,I (f) Backtracking from H determines lowest-cost path

93

6.4.4 Active Contours - Snakes / Level Set Segmentation

These techniques iteratively adapt a closed curve to image content by optimis-
ing energy functionals: External term (attracts the contour toward the closest
image edge, obviously gradient information is used) and internal terms (force
the contour to be continuous and smooth). Important questions are how to
select the initial curve and how to weight the different terms in the functional.
[For AISP, more details in the “Medical Imaging” lecture].

6.5 Region-based Techniques

Such techniques are primary applied to noisy images since under such conditions
edge detection is difficult and results are not very reliable. Also, in circumstances
where the major difference among pixels of different objects is not their differing
luminance (e.g. different structure - texture), edge-based techniques may fail
due to lacking contrast. The strategy is to partition an image into regions of
maximal homogeneity.

Homogeneity
Homogeneity is often defined based on gray-values (e.g. average gray-value,
shape of a local histogram) or uses textur properties etc.

Target regions exhibit the follwoing property (apart from their zero intersec-
tion):

H(Ri) = True i = 1, . . . , S

H(Ri ∪Rj) = False i 6= jandRi adjacent to Rj

S . . . number of regions, H(Ri) is a binary evaluation of homogeneity of Ri;
this means that regions are homogeneous and maximal (i.e. if they would be
larger, homogeneity is lost).

In the following sections we discuss region-based techniques.

6.5.1 Region Growing

Starting from seed pixels, new (adjacent) candidates are investigated and added
to the region, in case homogeneity is maintained.

1. Choose seed pixel(s).

2. Check neighbouring pixels following a chosen strategy and add them to
the region if the are “similar” to the seed.

3. Repeat step 2) for the newly added pixels; stop if no more epixels can be
added.

Criteria how to define similarity (or homogeneity of the region) include aver-
age intensity, variance, colour (histograms), texture, motion, shape, etc. The
selection of seed points is highly application dependent and can be done similar
to marker selection in watershed segmentation (see next section), the simplest
choice is to select intensity / colour values corresponding to the highest peaks
in the histograms.

94

6.5.2 Region Merging

1. segment image into small regions satisfying the homogeneity requirement

2. define criteria to merge those regionens (merging)

3. apply merging until it is no longer possible

Different technique differ in terms of their initial segmentations and the differ-
ent criteria for homogeneity. An improvement is the additional employment of
edge inforation: neighbouring regions are merged if a significant share of their
common border consists of weak edges. The result of edge relaxation can be
used to determine if an edge is weak or not.

6.5.3 Region Splitting

Contrasting to Region Merging we start with the entire image which usually does
not satisfy the homogeneity criterum. The image is split into regions satisfying
this constraint.

Remark: Merging is not dual to splitting even if the same hoogeneity criterium
is used ! See splitting and merging in figure 116 applied to a chess board, where
identical average gray-value is used as criterium to rate homogeneity. In case
of splitting the criterium is a medium gray for all for image quadrants (so the
criterium is fulfilled and no splitting is applied), in case of merging it is black
or white until the size of the chess-board pattern is reached (i.e. we result in
black and white regions corresponding to the fileds of the board).

source mergingsplitting

Figure 116: splitting/merging

95

Application
In many cases a combination of splitting and subsequent merging is applied –
the datastructure employed is often a quadtree (split and merge):

1. Define an initial segmentation into regions, a criterium for homogeneity
and a pyramidal data structure.

2. In case a region in the data structure is not homogeneous, it is split into its
four children regions; In case four regions corresponding to the same parent
can be merged, they are merged. If no further region can be processed,
GOTO 3)

3. In case two neighbouring regions (either in different levels of the pyramid
or with different parent nodes) can be merged according the critierium for
homogeneity the are merged.

4. Regions too small are merged with the most similar neighbouring region.

6.5.4 Template Matching

Known objects are identified by computing the difference to given templates –
thus, a template needs to be generated representing the object of interest as
well and as general as possible.

6.5.5 Watershed Segmentation

Watershed segementation uses techniques from morphological image process-
ing and is therefore discussed in the follwoing section as final application of
morphological operations.

6.5.6 Mean Shift Segmentation

Image segmentation can be viewed as a clustering task, i.e. “similar” pixels are
clustered into one region. This leads to the following procedure:

1. Represent each pixel in the image with a vector (e.g. intensity, colors,
colour and location, texture descriptors, etc.)

2. Choose distance weights (which vector component is more important than
others, e.g. color vs. location)

3. Apply k-means clustering

4. Pixels belong to the segment corresponding to cluster centers

Different representations of pixels lead to different segmentation results (e.g. if
location is not at all employed, clusters are not spatially coherent).

K-means Clustering: Given a set of pixels (x1, . . . , xn) and represent each
pixel by its associated vector. K-means clustering aims to partition the n pixels

96

into K sets (K ≤ n) S = {S1, S2, . . . , SK} so as to minimize the within-cluster
sum of squares (WCSS):

arg min
S

k∑
i=1

∑
xj∈Si

||xj − µi||2

with µi the mean or centroid of pixels in cluster Si. This is usually done in
two steps. In the assignment step, each pixel is assigned to the cluster whose
mean yields the least WCSS (geometrically, this corresponds to a partitioning
of the pixels according to the Voronoi diagram generated by the means). In the
update step, the new means / centroids in the new clusters are computed.

This approach has some severe drawbacks:

• Sensitive to initialisation (how to choose initial µi – e.g. random, uni-
form partitioning – similar to the question how to select seeds in region
growing).

• K - the number of image segments has to be chosen a priori.

• Sensitive to outliers.

• A key limitation of K-means is its cluster model. The concept is based
on spherical clusters that are separable in a way so that the mean value
converges towards the cluster center.

The mean shift algorithm is a nonparametric clustering technique which does
not require prior knowledge of the number of clusters, and does not constrain the
shape of the clusters. The idea is that clusters are places where data points (i.e.
pixels) tend to be close together in feature space. Thus, instead of initialising
cluster centers and selecting the number of clusters, the mean shift algorithm
seeks modes or local maxima of density in the feature space.

Figure 117: Mean-shift procedure in feature space

The actual mean shift procedure selects a pixel, applies a window in feature
space around the pixels’ feature and subsequently, the mean of the pixels’ neigh-
bouring feature vectors is computed. The center of the window is shifted to the
position of the mean (centroid) and the procedure is iterated until the mean
does not change its position. So a local maximum – a mode – is found (see Fig.
117).

97

Figure 118: Constructing basins of attraction

The set of all feature vectors that converge to the same mode defines the basin
of attraction of that mode. The points – pixels – which are in the same basin
of attraction are associated with the same cluster and form image regions (Fig.
118).

6.5.7 Graph Cut Segmentation

We represent images as graphs by (see Fig. 119)

• assigning a vertex to each pixel,

• defining edges between neighbouring pixels,

• weighting edges according to the similarity of pixels (affinity of vertices),
i.e. distance between representation vectors.

Figure 119: Representing images as graphs.

Segmenting an image thus corresponds to cutting this graph into segments, i.e.
removing edges that cross between graph parts corresponding to similar regions
(see Fig. 120). Obviously, it is easiest to break links that have low affinity (since
similar pixels should be in the same segments and dissimilar pixels should be in
different segments).

Graph Cut is the set of edges the removal of which makes a graph discon-
nected and of course, a graph cut provides a segmentation. The cost of a cut

98

Figure 120: Segmenting images as graph partitioning.

is determined by the sum of weights of the cut edges. The minumum cut (with
lowest costs) tends to cut off very small, isolated components (see Fig. 121),
a problem which is resolved by the normalised cut: Here the cost of an edge
connecting A and B is normalised by the costs of all edges involving A and by
the costs of all edges involving B. Minimizing these costs leads to more robust
graph cuts.

Figure 121: Problems with minimum cut.

7 Morphological Image Processing

Disclaimer: This section is a shortened and edited version of the section 18.7
Binary Image Processing from the book Fundamentals of Digital Image
Processing pages 470 to 475.

Binary images—those having only two gray levels—constitute an important sub-
set of digital images. A binary image (e.g., a silhouette or an outline) normally
results from an image segmentation operation. If the initial segmentation is not
completely satisfactory, some form of processing done on the binary image can
often improve the situation.

Many of the processes discussed in this section can be implemented as 3 ×
3 neighborhood operations. In a binary image, any pixel, together with its
neighbors, represents nine bit of information. Thus, there are only 29 = 512
possible configurations for a 3× 3 neighborhood in a binary image.

Convolution of a binary image with a 3 × 3 kernel (see figure 122) generates
a nine-bit (512-gray-level) image in which the gray level of each pixel specifies
the configuration of the 3 × 3 binary neighborhood centered on that point.

99

Neighborhood operations thus can be implemented with a 512-entry look-up
table with one-bit output.

16 8 4

2132

64 128 256

0 128+32+8+2=170 511

Figure 122: Binary neighborhood encoding

This approach can be used to implement a logical operation called a hit-or-
miss transformation. The look-up table is loaded to search for a particular
pattern—for example, all nine pixels being black. The output is one or zero,
depending on whether the neighborhood matches the mask. If, whenever the
pattern is matched (a hit), the central pixel is set to white and the central pixel
of all other configurations is left unchanged (a miss), the operation would reduce
solid objects to their outlines by eliminating interior points.

7.1 Morphological Image Processing

A powerful set of binary image processing operations developed from a set-
theoretical approach comes under the heading of mathematical morphology. Al-
though the basic operations are simple, they and their variants can be concate-
nated to produce much more complex effects. Furthermore, they are amenable
to a look-up table implementation in relatively simple hardware for fast pipeline
processing. While commonly used on binary images, this approach can be ex-
tended to gray-scale images as well.

In general case, morphological image processing operates by passing a structur-
ing element over the image in an activity similar to convolution (see figure 123).
Like the convolution kernel, the structuring element can be of any size, and it
can contain any complement of 1’s and 0’s. At each pixel position, a specified
logical operation is performed between the structuring element and the under-
lying binary image. The binary result of that logical operation is stored in
the output image at that pixel position. The effect created depends upen the
size and content of the structuring element and upon the nature of the logical
operation.

For this introduction to the subject, we concentrate on the simplest case, namely,
the use of a basic 3×3 structuring element containing all 1’s. With this restric-
tion, it is the logical operation that determines the outcome.

7.1.1 Set Theory Nomenclature

In the language of morphological processing, both the binary image, B, and the
structuring element, S, are sets defined on a two-dimensional Cartesian grid,
where the 1’s are the elements of those sets.

100

logical

operation

structuring

element
input image

output pixel

Figure 123: Morphological image processing

We denote by Sxy the structuring element after it has been translated so that
its origin is located at the point (x, y). The output of a morphological operation
is another set, and the operation can be specified by a set-theoretical equation.

7.1.2 Erosion and Dilation

The basic morphological operations are erosion and dilation (see figure 124).
By definition, a boundary point is a pixel that is located inside an object, but
that has at least one neighbor outside the object.

inner pixel

boundary pixel Erosion Dilationoriginal image

Figure 124: Erosion and dilation

Simple erosion is the process of eliminating all the boundary points from an
object, leaving the object smaller in area by one pixel all around its perimeter. If
the object is circular, its diameter decreases by two pixels with each erosion. If it
narrows to less than three pixels thick at any point, it will become disconnected
(into two objects) at that point. Objects no more than two pixels thick in any
direction are eliminated. Erosion is useful for removing from a segmented image
objects that are too small to be of interest.

General erosion is defined by

E = B⊗ S = {x, y|Sxy ⊆ B} (28)

The binary image E that results from eroding B by S is the set of points
(x, y) such that if S is translated so that its origin is located at (x, y), then it
is completely contained within B. With the basic 3 × 3 structuring element,
general erosion reduces to simple erosion.

Simple dilation is the process of incorporating into the object all the back-
ground points that touch it, leaving it larger in area by that amount. If the

101

object is circular, its diameter increases by two pixels with each dilation. If
the two objects are seperated by less than three pixels at any point, they will
become connected (merged into one object) at that point. Dilation is useful for
filling holes in segmented objects.

General dilation is defined by

D = B⊕ S = {x, y|Sxy ∩B 6= ∅} (29)

The binary image B that results from dilating B by S is the set of points
(x, y) such that if S is translated so that its origin is located at (x, y), then its
intersection with B is not empty. With the basic 3×3 structuring element, this
reduces to simple dilation.

7.1.3 Opening and Closing

Openingoriginal image Dilation

Figure 125: Opening and closing (auch in der Figure !)

The process of erosion followed by dilation is called opening. It has the effect
of eliminating small thin objects, breaking objects at thin points, and generally
smoothing the boundaries of larger objects without significantly changing their
area. Opening is defined by

B ◦ S = (B⊗ S)⊕ S (30)

The process of dilation followed by erosion is called closing. It has the effect of
filling small and thin holes in objects, connecting nearby objects, and generally
smoothing the boundaries of objects without significantly changing their area.
Closing is defined by

B • S = (B⊕ S)⊗ S (31)

Often, when noisy images are segmented by thresholding, the resulting bound-
aries are quite ragged, the objects have false holes, and the background is pep-
pered with small noise objects. Successive openings or closings can improve
the situation markedly. Sometimes several iterations of erosion, followed by the
same number of dilations, produces the desired effect.

7.2 Shrinking

When erosion is implemented in such a way that single-pixel objects are left
intact, the process is called shrinking. This is useful when the total object
count must be preserved.

102

Shrinking can be used iteratively to develop a size distribution for a binary
image containing approximately circular objects. It is run alternately with a
3×3 operator that counts the number of single-pixel objects in the image. With
each pass, the radius is reduced by one pixel, and more of the objects shrink
to single-pixel size. Recording the count at each iteration gives the cumulative
distribution of object size. Highly noncircular objects (e.g., dumbbell-shaped
objects) may break up while shrinking, so this technique has its restrictions.

7.3 Thinning

original image thinning : phase 1

thinning : phase 2final image

Figure 126: Thinning

Erosion can be programmed as a two-step process that will not break objects.
The first step is a normal erosion, but it is conditional; that is, pixels are
marked as candidates for removal, but are not actually eliminated. In the second
pass, those candidates that can be removed without destroying connectivity
are eliminated, while those that cannot are retained. Each pass is a 3 × 3
neighborhood operation that can be implemented as a table-lookup operation.

Thinning reduces a curvilinear object to a single-pixel-wide line. showing its
topology graphically (see figure 126).

7.4 Skeletonization

An operation realted to thinning is skeletonization, also known as medial axis
transform or the grass-fire technique. The medial axis is the locus of the centers
of all the circles that are tangent to the boundardy of the object at two or more
disjoint points. Skeletonization is seldom implemented, however, by actually
fitting circles inside the object.

103

thinning

skeletonization

Figure 127: Skeletonization

Conceptually, the medial axis can be thought of as being formed in the following
way. Imagine that a patch of grass, in shape of the object, is set on fire all around
the periphery at once. As the fire progresses inward, the locus of points where
advancing fire lines meet is the medial axis.

Skeletonization can be implemented with a two-pass conditional erosion, as
with thinning. The rule for deleting pixels, however, is slightly different (see
figure 127).

7.5 Pruning

Often, the thinning or skeletonization process will leave spurs on the resulting
figure. These are short branches having an endpoint located within three or so
pixels of an intersection.

Spurs result from single-pixel-sized undulations in the boundary that give rise to
a short branch. They can be removed by a series of 3×3 operations that remove
endpoints (thereby shortening all the branches), followed by reconstruction of
the branches that still exist. A three-pixel spur, for example, disappears after
three iterations of removing endpoints. Not having an endpoint to grow back
from, the spur is not reconstructed.

7.6 Thickening

Dilation can be implemented so as not to merge nearby objects. This can be
done in two passes, similarly to thinning. An alternative is to complement the
image and use the thinning operation on the background. In fact, each of the
variants of erosion has a companion dilation-type operation obtained when it is
run on a complemented image.

Some segmentation techniques tend to fit rather tight boundaries to objects so
as to avoid erroneously merging them. Often, the best boundary for isolating
objects is too tight for subsequent measurement. Thickening can correct this
by enlarging the boundaries without merging separate objects.

104

7.7 Application: Watershed Segmentation

A good (animated) visualisation and several examples may be found at:
http://cmm.ensmp.fr/~beucher/wtshed.html

Watersheds separate different (water)basins – in order to be able to transfer this
notion into image processing context, the image is interpreted as three dimen-
sional structure: Luminance values are interpreted as height measure (elevation
at the corresponding image coordinates). In many cases a gradient image is used
for further processing. Region borders (i.e. edge chains) correspond to “high
valued” edge chains and inner areas with low gradient correspond to basins (see
Fig. 128).

Figure 128: Principles: Watersheds and basins

Basins are homogeneous in the sense that all pixels belonging to a catchment
basin are connected to the minimum value of the basin by a path, the pixel
of which are monotonically decreasing in direction to the minumum. Basins
represent the regions of the segemented image, the watersheds represent region
borders.

There are two differnt approaches to watershed transform:

1. The first approach determines a “downstream” path to a minimum for
each pixel. A catchment basin is defined as the set of pixels the path
of which leads to the same minimum. A problem of this approach is
the unique determination of the path (which can be facilitated by local
gradients in the contineous case).

2. The second appraoch is dual to the first one and uses “flooding”: catch-
ment basins are flooded from below (assume that holes are at the location
of minima in the 3D surface , when submerging the surface, water enters
through the holes). As soon as two catchment basins would be fused due
to rising water, a dam is construted to prevent this. The value of the dam
pixels is set to the maximum value of the image.

Subsequently, we focus onto the second technique. For preprocessing, pixels are
sorted according to their gray-scale, the gray-scale histogram is computed, and
a list of pointers is built pointing at pixels with gray-scale h. In this manner,
all pixels with a specific gray-scale can be addressed efficiently. Assume that
flooding has been propagated until gray-scale k. Each pixel with gray-scale ≤ k
has been uniquely assigned to a basin and carries its label. In the next step all
pixels with gray-scale k + 1 are processed. A pixel with this gray scale can be

105

assigned to basin l in case at least one direct neighbour carries label l. In order
to determine membership to a basin, zones of influence are defined: The zone of
influence of a basin l are the positions of the not-assigned but connected pixels
with gray-scale k + 1, the distance to l of which is smaller than to any other
basin.See Fig. 129 for a visualisation.

Figure 129: Zones of influence of basins

All pixels with gray-scale k + 1 belonging to the influence zone of the basin
l are assigned the label l, which means that catchment basins grow. Not-yet
assigned pixels are processed successively, pixels without label correspond to
new basins and get a new label. The border separating the catchment basins ae
the watersheds. Fig. 130 illustrates the entire procedure.

Figure 130: Original, gradient image, watersheds, original with watersheds

Note that so far, we have not described how to explicitly construct dams – this
will be explained subsequently using morphological operators. When applying
watershed segmentation as described so far, we result in significant oversegmen-

106

tation quite often (i.e. too may regions are formed, see Figs. 131 and 133.c),
Since the number of minima is simply too high (e.g. caused by noise).

Figure 131: Oversegmentation

In order to limit this effect, the follwoing strategy can be applied:

• Image smoothing (e.g. Gauss filtering with large σ)

• Marker: Only “internal markers” are accepted as local minima, i.e. con-
tigous regions with identical gray-scale surrounded by pixels with larger
value.

Fig. 132 left shows internal markers. Subsequently the watershed algorithm is
applied to the image. The resulting watershed lines are denoted as “external
markers”, which partition the image into regions, where each region contains a
single object with its associated background. Now we can apply a watershed
procedure or thresholding to each region to arrive at the desired segmentation.
Fig. 132 right and 133.d show corresponding results. As an additional mea-
sure, the number of internal markers can be limited or a minimum size can be
required.

Dam construction

In case of the requirement of an explicit dam construction process during flood-
ing, the flooding step n−1 right before a fusion of two catchment basins is taken
as the initial stage for dam construction (see the two black regions in Fig. 134).
The fused region after step n is denoted as q (depicted in white). Subsequently,
dilation is applied to the two black regions using a constant 1 3 x 3 structuring
element, satisfying two conditions:

1. The center of the structuring element resides in q.

2. Dilation is only applied without a fusion of the two regions.

In the example, the first dilation step can be conducted without any problems,
the two black regions are enlarged consistently. In the second dilation run

107

Figure 132: Watersheds with internal and external markers

Figure 133: Example: All variants

108

several points do not satisfy the first condition, that is why the perimeter curve
is disconnected. Points satisfying the first condition but not the second one are
defined to be dam points. These are set to the maximal luminance value in
order not to get over-flooded again. Then, flodding is continued.

Figure 134: Dam construction with dilation

8 Image Formation

The image formation process can be structured into exposure and autofocus con-
trol which physically (i.e. optically, electronically, and mechanically) influence
the captured visual information coming out from the sensor and the subsequent

109

color image processing pipeline, which applies image processing operations onto
the captured data.

Figure 135: Color Imaging Pipeline: Coarse View.

8.1 Exposure & Autofocus

Central aspects of image quality are contrast and sharpness. While both aspects
can be improved by image enhancement operations, primarily their properties
should be optimised in the image acquisition process. This is done by exposure
and focus control mechanisms in the camera.

8.1.1 Exposure

Exposure is controled by the “exposure triangle” where each item controls ex-
posure differently:

• shutter speed (controls the duration of the exposure),

• aperture (controls the area over which light can enter the camera), and

• ISO speed (controls the sensitivity of the camera’s sensor),

while scene luminance defines the required exposure. One can therefore use
many combinations of the above three settings to achieve the same exposure.
The key, however, is knowing which trade-offs to make, since each setting also
influences other image properties. For example, aperture affects depth of field,
shutter speed affects motion blur and ISO speed affects image noise. Shutter
speed can be controled with a mechanical shutter or electronically, aperture
is controled by the camera’s iris, and ISO speed is adjusted by either varying

110

the amplification applied to the sensors analog output signal before analog-to-
digital (A/D) conversion or by remapping e.g. 12 bits worth of sensor CCD
output onto 8 bits of digital output in the camera’s A/D converter. In any case,
noise is being amplified and even added by the first strategy.

Exposure control usually requires characterization of the brightness (or inten-
sity) of the image: an over- or underexposed image will greatly affect output
colors. Depending on the measured energy in the sensor, the exposure control
system changes the settings in the exposure triangle. Both the exposure and
focus controls may be based on either the actual luminance component derived
from the complete RGB image or simply the green channel data, which is a
good estimate of the luminance signal.

For determining the brightness of the image, it is usually divided into blocks
and the average luminance signal is measured in each one of these blocks. The
most common method is a centre-weighted average metering where luminance is
averaged over all blocks while assigning more weight to the central 60 – 80 % of
the image. Other metering approaches include spot metering (only central image
parts are being used) and matrix metering (using a honeycomb configuration
to identify objects and their luminance). Also more recently, face detection is
employed to identify area of specific interest (i.e. faces) to evaluate luminance
and optimise exposure for such areas. The exposure control then tries to change
the exposure so that metring results fit a middle grey tone; a so called “18%
grey”.

An alternative to fitting the metering results to a specific average luminance
value is to explicitly focus onto the luminance value distribution (in image re-
gions or the entire image) by considering the image histogram. The histogram
represents the dynamic range of the sensor and can be partitioned into e.g. 5
equally sized bins. An underexposed image will be leaning to the left (provided
that left histogram regions represent dark colours), while an overexposed image
will be leaning to the right in the histogram. Image details disappear in over-
and underexposed images, hence, we want as much as possible of the image
to appear in the middle region of the histogram. This can be quantified by
computing the mean sample value (MSV), which determines the balance of the
tonal distribution in the image:

MSV =

∑4
i=0(i+ 1)xi∑4

i=0 xi

where xi is the number of pixels in histogram region i. Thus, the image is
correctly exposed when MSV ≈ 2.5.

The distribution of luminance values as determined in the metering process can
also be combined to form a measure of exposure based on the type of scene
being imaged: backlit or frontlit scene or a nature shot. In a typical image
(nature shot), average luminance values are uniformly or randomly distributed
across the scene. Backlit or frontlit scenes may be distinguished by measuring
the difference between the average luminance signal in the central area A and
background area B. If the image is excessively frontlit, the average luminance in
region A will be much higher than that in region B, and vice versa in the case
of a backlit scene. The exposure is controlled subsequently so as to maintain

111

the difference between the average signals in these two areas, an estimate of the
object-background contrast.

All metering techniques measure the light reflected from the scene and assume
all tones within the scene that they are metering to average out to a mid-grey
tone (which might not be true). If the scene has a lot of light tones, the camera
will underexpose the image. The camera’s meter gives an exposure reading that
renders the light tones as grey, and this results in underexposure (to correct
this, there are exposure correction settings for taking images e.g. in the snow).

Outdoor images (and many indoor ones as well) taken with typical cameras
suffer from the problem of limited dynamic range in the case of an excessively
backlit or frontlit scene. Dynamic range refers to the contrast ratio between the
brightest pixel and the darkest pixel in an image. The human visual system
(HVS) can adapt to about four orders of magnitude in contrast ratio, while the
sRGB system and typical computer monitors and television sets have a dynamic
range of about two orders of magnitude. This leads to spatial detail in darker
areas becoming indistinguishable from black and spatial detail in bright areas
become indistinguishable from white.

High dynamic range (HDR) solves this problem by (a) capturing multiple images
of the same scene at varying exposure levels on a single sensor and combining
them by time multiplexing to obtain a fused image that represents the high-
light (bright) and shadow (dark) regions of an image in reasonable detail or
by (b) using two sensors with a different sensitivity to light avoiding temporal
disturbances.

Figure 136: Fusing images with different exposure.

8.1.2 Autofocus (AF)

Active AF systems measure distance to the subject independently of the optical
system, and subsequently adjust the optical system for correct focus. There are
various ways to measure distance, including ultrasonic sound waves (e.g. some
Polaroid cameras) and infrared light (early DSC & video cameras).

Passive AF systems determine correct focus by performing passive analysis of
the image that is entering the optical system. They generally do not direct any
energy, such as ultrasonic sound or infrared light waves, toward the subject.
However, an autofocus assist beam of usually infrared light is required when
there is not enough light to take passive measurements resulting in a hybrid
system. Passive autofocusing can be achieved by phase detection (SLR) or

112

contrast measurement (DSC, see below).

Active systems will typically not focus through windows, since sound waves and
infrared light are reflected by the glass. With passive systems this will generally
not be a problem, unless the window is stained. Accuracy of active AF systems
is often considerably less than that of passive systems and therefore problematic
when the DoF is small. Active systems may also fail to focus a subject that is
very close to the camera since measurements get inaccurate. As a consequence,
active systems are not used in microscopy.

Passive systems may not find focus when the contrast is low, notably on large
single-colored surfaces (walls, blue sky, etc.) or in low-light conditions. Pas-
sive systems are dependent on a certain degree of illumination to the subject
(whether natural or otherwise), while active systems may focus correctly even
in total darkness when necessary. This is the motivation for the AF assist beam.

See http://graphics.stanford.edu/courses/cs178/applets/ for nice ap-
plets on this and other topics.

AF Phase Detection The basic principle is like the split-image rangefinder
focusing aid in a manual-focus SLR. This focusing aid consists of two shallow
prisms, which angle your eye’s view so it sees light rays coming from the two
opposite edges of the lens. When the lens is correctly focused, these edge rays
(by definition) must cross at the plane of the focusing screen; that means objects
seen by the left edge of the lens and those seen by the right edge of the lens
will line up with each other as seen through the split-image prisms. If the lens
is incorrectly focused, the edge rays will cross either ahead of or behind the
focusing screen; that means the rays from the left edge and right edge will be
displaced relative to each other, and lines will appear “split” through the prisms.

The AF system works the same way, except that instead of the eye it uses a
dedicated AF sensor consisting of two (CCD) arrays. Optics in the AF system
work the same way as the split-image prisms, directing light from the left side
of the lens to one CCD, and from the right side of the lens to the other CCD.
The patterns of light and dark in the subject cause the individual elements of
the CCD segments to put out different values, so that the total output of each
CCD could be graphed as a wiggly, square-edged waveform corresponding to
the light and dark patterns in the subject. Fig. 137(a) shows a ray diagram
when the lens is in good focus, and (b) shows the intensity profile corresponding
to this lens position. When the object is moved farther away, the rays from the
upper and lower halves of the lens no longer intersect at the same locations, and
the measured energy from the two halves of the lenses are out-of-phase (Figs.
137(c) and (d)) and requires the lens to move relative to the image plane to
compensate for this defocus; in this case, towards the image plane.

Thus, the AF system’s CPU compares the waveforms from the two CCDs to
see whether or not they are “in phase” – if not, it can determine the amount
and direction of the error based on the direction and displacement of the two
waves relative to each other, and it uses this information to drive the AF motor
to focus the lens. This is why phase detection is faster compared to contrast
detection, since the latter requires iterative focusing and measuring stages to
determine focus.

113

Figure 137: AF phase detection principle.

Fig. 138 illustrates how this is actually done in a camera since it is not entirely
obvious how to get rays from the two halves of the lens.

Figure 138: AF phase detection as used in SLR.

Because the image sensor is different from the focus sensor, there is a chance
that they are not aligned and something considered focused by the focus sensor
is not always focused on the image sensor. This is why phase-detect autofocus
is more prone to front-/back-focusing issues (enthusiast/high-end cameras have
a micro-adjust feature to address this issue).

AF Contrast Detection Contrast detection AF is achieved by measuring
contrast (or similar values determining sharpness) within a sensor field, through
the lens. The intensity difference between adjacent pixels of the sensor naturally
increases with correct image focus. The optical system can thereby be adjusted
until the maximum contrast is detected. In this method, AF does not involve
actual distance measurement at all and is generally slower than phase detection
systems, especially when operating under dim light. Furthermore, as the AF
system cannnot calculate whether the subject is in front focus or back focus,
iterative adjustment is required. As it does not use a separate sensor, however,
contrast detection AF can be more flexible (as it is implemented in software)
and potentially more accurate.

This, for a contrast detection AF system, the focusing process typically consists

114

of two components: an image-based measure which indicates the sharpness of
the image (i.e. the degree of focus), and a search algorithm which yields an
image with the highest sharpness value. Depending on the target hardware
system, the efficiency of the search strategies is determined by the number of
sharpness evaluations (i.e. the number of images being taken and evaluated),
the computational cost of each sharpness evaluation, and the number of stops
and directional changes of the focusing adjustment system (i.e. cost of physical
lens movement). The following search algorithms have been proposed:

• Global search: all possible focus positions are visited and the sharpness
evaluated.

• Binary / Fibonacci search: A divide and conquer algorithm always breaks
down the problem into two subproblems by partitioning the focus range
into sets, two equally sized sets for binary search and two sets following
the golden section rule for Fibonacci search.

• Hill Climbing: the maximum is searched by going into the direction of as-
cending values with some larger step-size, once the values start descending,
search direction is reversed and small step size is used.

• Rule-based search: depending on the value of the gradient, the focus range
is partitioned into four different types of areas where the number of anal-
ysed focus position is proportional to the gradient, also descending values
are recorded and are used to steer the search process. A number of rules
defines how to proceed under which conditions.

• Function fitting: the position of highest sharpness is predicted from some
arbitrary measurement points by fitting a function of known shape or by
using a neural network.

Let I denote a set of digital images which are sorted in a way that they come
from a defocused state to an intermediate focus and finally to an in-focus state.
Subsequently, images get de-focused again. An autofocus function is a map
f : I → R with the characteristic that f(i) is maximised as the image comes
into focus. Further desired properties (which are eventually required to enable
efficient search strategies, see below):

• The function should have only a single extremum, this avoids potential
errors from local extrema. This means in other words that the function
should be monotonically increasing towards its maximum and monotoni-
cally decreasing afterwards.

• The extremum should be attained when the system is in focus.

• The extremum should have a sharp peak.

• The function should react insensitively to other parameters that possibly
change during the process like the mean brightness of the image.

• The function should be simple thus allowing for high execution speed.

115

While some focus search strategies do not require the underlying sharpness func-
tion to exhibit specific properties, the more efficient and intelligent schemes may
significantly take advantage or even entirly rely on certain sharpness function
properties to enable fast focusing. A global search is of the first type, since
the sharpness function does not need to obey any specific property apart from
attaining its maximum when the system is in focus. However, the number of
evaluations is high when using this approach. Most of the techniques requiring
a lower number of evaluations and lens movements rely on the assumption of
a unimodal sharpness function, like binary and Fibonacci search or all variants
of hill climbing. Less stringent sharpness function properties are necessary for
rule-based search (i.e. a certain extent of continuity), as well as for function
fitting by using functions of known shape or by using a neural network (in the
latter case it is important for the sharpness function to exhibit the same shape
independent of the underlying imagery). In any case, also the search strategies
mentioned at last take advantage of unimodality of the sharpness function since
the search will terminate faster and will be more accurate.

As usually speed is important, sharpness measures based on the application of
initial integral transformations (like Fourier or wavelet transform) are usually
not considered. Thus, we restrict the attention to spatial domain techniques,
which can be divided into four main categories:

• Functions based on differentiation: As an image comes into focus
edges become sharper and therefore the amount of high spatial frequencies
increases. Image gradients are applied or the difference of the gray level
intensity of pixels in the neighbourhood is calculated for computing focus
measures. This category can be divided into methods that use the first
derivative and methods that use the second derivative. Examples are given
in equations (32), (33), (34), and (37).

• Functions based on the histogram: Histogram autofocus functions
are based on the assumption that focused images have a greater number
of grey levels than unfocused images. Defocused images are expected to
be a single shade of gray, hence the number of bins in the histogram that
contain occurrences increases as the image comes into focus. Examples
are given in equations (35) and (36).

• Functions based on statistical methods: These methods calculate the
variance or the standard deviation of the gray level intensities of an image.
Also methods that use the autocorrelation functions can be found. This
category can be divided into functions that are based on image contrast
and those that are based on correlation measures. Examples are given in
equations (41), (44) - (46).

• Functions based on depth of peaks and valleys: Local extrema
of the intensity values and their distances are considered, based on the
observation that peaks and valleys are better separated in focused images.
Examples are given in equations (38) and (39).

Of course, there are also autofocus functions that combine several features of
other autofocus functions. Examples are given in equations (42) and (46).

116

Boddeke: This method is based on applying a (−1, 0, 1) filter mask along the
horizontal (x) axis of an image. The focus function is defined by squaring and
adding all the filtered pixel values.

FBoddeke =

X−1∑
x=1

Y∑
y=0

[g(x+ 1, y)− g(x− 1, y)]2 , (32)

where X is the width of the image, Y the height of the image and g(x, y) the
gray level intensity of pixel (x, y).

Brenner: Brenner noted that as an image comes into focus, differences between
a pixel and a pixel displaced for a certain amount increase:

FBrenner =

X−n∑
x=0

Y∑
y=0

[g(x, y)− g(x+ n, y)]2 , (33)

where n is a number specifying the amount of displacement.

Laplace: For analysing the high frequencies of the image it is convoluted with
the Laplacian operator which is a second derivative operator:

L = 1
4

 0 −1 0
−1 4 −1
0 −1 0

 .

The Laplace focus measure is computed as follows:

FLaplace =

X−n∑
x=n

Y−n∑
y=n

|L(x, y)|, (34)

where L(x, y) is the convolution of g(x, y) with the mask L and n defines the
size of the Laplace operator, which means that L(x, y) is computed as follows:

L(x, y) = 1
4 · [g(x, y) · 4− g(x, y+ n)− g(x− n, y)− g(x, y− n)− g(x+ n, y)] .

Mendelsohn and Mayall’s Histogram Method: This method calculates
the weighted sum of pixels in the histogram bins that are above a given threshold
T and is computed as follows:

FMenMay =

X∑
x=0

Y∑
y=0

g(x, y) ·Hg(x,y), g(x, y) > T

0, else

, (35)

where Hg(x,y) is the number of pixels with intensity g(x, y).

Range: Range is the difference between the maximum gray level and the min-
imum gray level, as an image comes into focus, the histogram range increases:

FRange = max(g|Hg > 0)−min(g|Hg > 0) , (36)

where Hg is the number of pixels with intensity g.

Tenengrad: The Tenengrad autofocus function uses the Sobel operator for the
calculation that in turn uses the two convolution masks

117

Sx =

−1 0 1
−2 0 2
−1 0 1

 Sy =

 1 2 1
0 0 0
−1 −2 −1

 .

FTenengrad =

X−n∑
x=n

Y−n∑
y=n

T (x, y) , (37)

where T (x, y) = S2
x(x, y) + S2

y(x, y) and Sx(x, y) and Sy(x, y) are the convolu-
tions of the image with the Sobel operators Sx and Sy. Again, n determines the
size of the operator.

Thresholded Content: This method adds the pixel values that are above a
certain threshold T :

FTh Cont =

X∑
x=0

Y∑
y=0

g(x, y), g(x, y) ≥ T

0, else

. (38)

Thresholded Pixelcount: This function computes the number of pixels below
(above) a certain threshold:

FTh Pixelcount =

X∑
x=0

Y∑
y=0

s[g(x, y), T] , (39)

with

s[g(x, y), T] =

0, g(x, y) ≥ T

1, g(x, y) < T

(40)

Variance and normalised Variance: The Variance functions are based on
image contrast, which is another feature that characterises sharpness since a
well-focused image can be expected to show strong variation in gray levels.

F(Nor)V ariance =
1

XY g

X∑
x=0

Y∑
y=0

[g(x, y)− g]2 , (41)

where g is the mean of the gray level intensities of the image. For normalised
variance, 1/g is additionally used as a normalising factor to compensate for the
differences in average image brightness among different images.

Variance of Sobel: The variance of the magnitude of the Sobel gradient is
calculated.

FV ar Sobel =

X−n∑
x=n

Y−n∑
y=n

(|S(x, y)| − S)2 , (42)

where S(x, y) =
√
S2
x(x, y) + S2

y(x, y) and S is the mean of the absolute values

of the Sobel gradient given by

S =
1

(X − n)(Y − n)

X−n∑
x=n

Y−n∑
y=n

S(x, y) . (43)

118

Vollaths’ Focusing Measures: These measures are based on the autocorrela-
tion function and the variance / standard deviation. We consider three variants:

FV ollF4 =

X−1∑
x=0

Y∑
y=0

g(x, y) · g(x+ 1, y)−
X−2∑
x=0

Y∑
y=0

g(x, y) · g(x+ 2, y) , (44)

FV ollF5 =

X−1∑
x=0

Y∑
y=0

g(x, y) · g(x+ 1, y)−XY g2 , (45)

FV ollF11 =
1

XY (XY − 1)
[XY

X−1∑
x=0

Y∑
y=0

g(x, y) · g(x+ 1, y)− (

X∑
x=0

Y∑
y=0

g(x, y))2] .

(46)

Several functions depend on a threshold or can be used with specific parameters,
their behaviour often is significantly influenced by these parameters, Fig. 139
for the Laplace function with n = 1 and n = 10, all examples computed from
sequences of 40 hardness testing images with different focus.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40

L
ap

la
ce

 v
al

u
e

Position

Laplace Modifier = 1

Position of maximum
Laplace

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40

L
ap

la
ce

 v
al

u
e

Position

Laplace Modifier = 10

Position of maximum
Laplace

Figure 139: Laplace autofocus function after normalisation applied to a series
of 40 images (n = 1, n = 10).

Accuracy: The most important criterion an autofocus function should fulfil is
that the extremum should be attained when the image is in focus. This aspect
is important for all focus search algorithms including full search of course. A
way to score a function for this criteria is to use

Facc =
1

1 + 0.25 · (maxfound −maxtrue)2
,

where maxtrue is the position of the sharp image in the image stack and
maxfound is the position of the image in the image series that the autofocus
function has computed. Facc = 1, when the autofocus function has computed
the right position. The higher the difference between maxtrue and maxfound is,
the more Facc goes towards 0. Fig. 140 shows an example with high and poor
accuracy.

Monotonicity: For all focus search algorithms relying on a unimodal sharpness
function (like hill-climbing etc.), the function should be monotonically increas-
ing towards its maximum and monotonically decreasing afterwards. For that

119

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40

V
ar

ia
n

ce
O

fS
o

b
el

 v
al

u
e

Position

VarianceOfSobel high accuracy

Position of maximum
VarianceOfSobel

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40

V
o

ll
at

h
G

o
u

g
h

F
1

1
 v

al
u

e

Position

VollathGoughF11 low accuracy

Position of maximum
VollathGoughF11

Figure 140: Accuracy of autofocus function: FV ar Sobel, Facc = 1, vs. FV ollF11,
Facc = 0.138.

a function Fmon has been used that calculates the differences of all F (i) and
F (i + 1) within the image series, where F (i) denotes an autofocus functions’
value of the image on position i. Fmon = 1, when the autofocus function is
monotonically increasing towards its maximum and monotonically decreasing
afterwards. The more often the monotonicity is disturbed, the more Fmon goes
towards 0. Therefore initially Fmon = 1, each time the monotonicity is dis-
turbed, 0.075 is subtracted. When the value becomes negative Fmon = 0 and
the algorithm stops. It should be noted that autofocus functions which pro-
duce more than a single extremum are scored low by Fmon. Fig. 141 shows an
example with high and poor monotonicity.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40

V
o

ll
at

h
F

5
 v

al
u

e

Position

VollathF5 high monotonicity

Position of maximum
VollathF5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40

N
o

rm
al

is
ed

V
ar

ia
n

ce
 v

al
u

e

Position

NormalisedVariance low monotonicity

Position of maximum
NormalisedVariance

Figure 141: Monotonicity of autofocus function: FV ollF5, Fmon = 1 vs.
FNor V ariance, Fmon = 0.325.

Peak Sharpness: The sharpness of the peak is another criterion for selecting
a good focus measure. A sharp peak makes algorithms possible that do a coarse
search for the peak within the calculated values and come in a finer state when
the values change more significantly. Especially two-step search and rule-based
search may significantly benefit from distinct peak sharpness. To accomplish an
assessment for that criterion a function Fsharp has been developed that counts
the values of an autofocus function that are above a focus level of 0.3. Few
values are expected to be above that threshold if the autofocus function has a
sharp peak, therefore Fsharp = 1, in case less than 20 percent of the values are
above 0.3. The more values are higher than 0.3, the more Fsharp goes towards
0, Fsharp = 0, as soon as more than 50 percent of the values are above 0.3. Fig.
142 shows an example with high and poor peak sharpness.

120

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40

V
o

ll
at

h
F

4
 v

al
u

e

Position

VollathF4 high sharpness

Position of maximum
VollathF4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40

V
ar

ia
n
ce

 v
al

u
e

Position

Variance low sharpness

Position of maximum
Variance

Figure 142: Peak Sharpness of autofocus function: FV ollF4, Fsharp = 1 vs.
FV ariance, Fsharp = 0.

Regarding focus on white or other uniform areas, neither passive method will
focus well if there isn’t a contrast change in the image ... a solid white wall (or
white portions of your test sheet) or concrete floor or blue sky with no clouds
... since the actual measurement is not about distance or intensity of light but
rather contrast within the image. This is why some assist beam systems use a
red grid pattern to help AF in low-contrast situations.

8.2 Colour Imaging Pipeline

The colour imaging pipeline operates on the acquired image, in most cameras
based on three differently populated colour planes. The first processing block in
the pipeline depicted in Fig. 143, “camera correction”, is actually a collection
of blocks as detailed in Fig. 144. The processing blocks required for a specific
camera vary depending upon the hardware and the user expectations. Lower
cost hardware typically leaves more artifacts in the raw image to be corrected,
but the user expectations are often lower as well, so the choice of correction
blocks used with a particular camera is the result of a number of system en-
gineering and budget decisions. Few, if any, cameras use all of the processing
blocks shown in Fig. 144.

n In some cases, users save images to a raw capture format and use sophisticated
desktop software for processing, enabling a degree of control over the processing
chain not usually exercised by the casual user. While these blocks are presented
in a specific order in this discussion, the ordering chosen for a specific camera is
dependent upon the causes of the artifacts needing correction and interactions
between the effects. Usually, the preferred order of correction blocks is roughly
the inverse of the order in which the artifacts are caused. Each of these cor-
rection blocks is complicated by the artifacts that have not yet been corrected.
For example, if a dark correction is computed before defect concealment is com-
pleted, care should be taken to avoid using defective pixels in calculation of
statistics for dark correction.

8.2.1 Channel Matching

The first correction discussed here is to match the response of multiple outputs
or analog signal processing chains, such as with a dual output sensor. Because

121

Figure 143: Color Imaging Pipeline: Detailed View.

Figure 144: The stages of camera correction.

the artifacts due to channel mismatch are highly structured, usually a seam in
the middle of the image or a periodic column pattern, the responses for the mul-
tiple outputs must match very closely. The most common form of this correction
is to adaptively compute a dark offset correction for each output that will bring
similar pixels from each output to match a common value, using reference dark
pixels. The key to successful matching of multiple output channels is to take
advantage of the knowledge of which image pixels came from which output.

8.2.2 Dark Correction

Dark correction is always necessary, since the analog output from the image
sensor is rarely precisely “zero” for a zero light condition. Even with the lens
cap on, a dark current signal is recorded, which is due to thermally generated
electrons in the sensor substrate. To account for this, two strategies are used;
place an opaque mask along the edges of the sensor to give an estimate of
intensity due to dark current alone (this value can be corrupted by noise in the
dark pixels, so some smoothing may be used to reduce the dark floor estimation

122

error), or capture a dark image for the given exposure time (a second image is
taken immediately after capturing the scene image with no exposure). In the
first case, the mean dark current is subtracted from the entire image (this only
works well in case of uniform dark floor), and in the second, the dark image
itself is subtracted from the captured data.

In some cases, the dark floor is modeled using data from multiple dark captures.
By averaging multiple dark captures, the impact of temporal noise on the dark
floor estimate is minimized. This technique is still affected by changes in sensor
tem- perature and integration time. Astronomical and other scientific applica-
tions, especially ones using a temperature-controlled sensor, routinely use this
technique, made easier by the controlled temperature.

8.2.3 Defect Concealment

Sensor defects are somewhat problematic, since they indicate lost data that sim-
ply was not sensed. Algorithms for treating defects interpolate the missing data.
The most common defects are isolated single pixel defects. Concealment of iso-
lated pixels is usually done with a linear interpolation from the nearest adjacent
pixels of the same color sensitivity (see Demosaicing section for interpolation
techniques).

There are two way of treating these defects: First, by applying an impulse noise
filter which tends to (inappropriately) filter out high-contrast details such as
stars, lights, or specular reflections. Second, by maintaining a map of defective
pixels depending upon a map from the sensor or camera manufacturer.

However, bright pixel defects caused by cosmic ray damage must be concealed
without depending upon a preinstalled map, so a camera can implement a dark
image capture and bright defect detection scan in firmware, usually done at
startup. New defects found in the dark image are added to the defect map.
Because cosmic ray damage tends to produce bright points rather than marginal
defects, detecting these defects is relatively easy.

Sensor column defects or other more clustered defects caused e.g. by dirt on
the cover glass of the sensor are much more difficult to correct as the latter also
vary in size depnding on the focal length of the lens.

8.2.4 Smear Correction

Interline smear is a challenging artifact to correct or conceal because the artifacts
vary with scene content. It is manifested as an offset added to some of the
columns in the captured image. Since the added signal will usually vary from
column to column, the effect will vary with the original scene content.

If a small amount of charge is added to pixels that are well below saturation,
the artifact is manifested as a column that is brighter and lower in contrast
than normal. If the sum of scene charge and smear charge saturates the pixels
in the column, then the column looks like a bright defective column. Smear
usually affects several adjacent columns, so saturated columns become difficult
to conceal well.

Concealment approaches start with the use of dark rows or overclocked rows

123

to estimate the smear signal that should be subtracted from each column. For
example, one may subtract a smear signal from each column and apply a gain
adjustment after the subtraction. The gain adjustment prevents bringing satu-
rated columns down below the maximum code value, but adds gain variations
to each column. In general, high quality smear correction is very difficult to
achieve.

8.2.5 Gain Nonuniformity Correction

The correction of gain non-uniformity (caused by lens effects like vignetting or
sensor characteristics) is esentially a multiplication of each pixel with a gain
map. Early implementations, with very limited memory for storing gain correc-
tions, used simple separable polynomials. Later implementations stored small
images, with a gain value for each color channel for small tiles of the image.
These maps were often created to make the sensor response to a uniform illu-
mination completely flat, which left taking lens effects and interactions uncom-
pensated.

With increasing adoption of CMOS sensors and evolution to smaller pixels, gain
corrections now usually include lens interactions. For a camera with a fixed lens,
these are relatively simple. For cameras with interchangeable lenses, this creates
new overhead to combine a sensor gain map with a lens interaction gain map.

When lens effects get too severe, gain correction is usually limited to minimize
noise amplification. This results as yet another system optimization, trading off
darkness versus noisiness in the corners.

8.2.6 Optics Corrections

In addition to vignetting, geometric distorion, chromatic aberrations (longitu-
dinal and lateral), and spatially varying reaction to an impulse light source.
Geometric distortion is corrected by warping the image to invert the change in
magnification, the extent of distortion is usually determined with calibration
patterns like checkerboard images. Lateral chromatic aberration is corrected
similarly by applying the procedure to colour bands separately. Longitudinal
chromatic aberration (different color channels are focused at different distances
from the lens) are treated by applying a sharpening filter to the affected colour
bands. Because distortion correction may spatially resample the colour chan-
nels individually, it is often included in the processing chain after demosaicing.
Convolution with a spatially varying kernel is used to compensate for spatially
varying reaction to an impulse light source.

8.2.7 Stochastic Noise Reduction

All noise reduction operations seek to preserve as much scene information as
possible while smoothing noise. To achieve this efficiently, it is important to use
relatively simple models to discriminate between scene information and noise
information.

In the stochastic noise reduction block, grayscale techniques for noise reduction

124

are usually applied to each color channel individually, while after demosaicing,
inter-colourband correlation may be exploited to distinguish noise from struc-
tural scene information (“colour noise reduction”).

The first technique applied is range based filtering: This noise reduction is based
on smoothing small intensity changes and retaining large ones. Thus, textures
and edges with low contrast tend to get over-smoothed. The second artifact is
the tendency to switch from smoothing to preservation when modulation gets
larger. This results in a very nonuniform appearance in textured fields or edges,
with portions of the texture being smoothed and other portions being much
sharper.

The second technique is based on the likelihood that impulses are noise which
leads to use of impulse filtering noise reduction, usually using a standard center-
weighted median filter. The characteristic artifact caused by impulse filtering is
elimination of small details from the scene, especially specular reflections from
eyes and small lights. When applying impulse filters to CFA data, the filtering
is particularly vulnerable to creating colored highlights, if an impulse is filtered
out of one or two color channel(s), but left in the remaining channel(s).

8.2.8 Exposure and White Balance Correction

The HVS has the ability to map “white” colours to the sensation of white, even
though an object has different radiance when it is illuminated with different
light sources. In other words, a sheet of white paper under fluorescent light-
ing or under incandescent lighting or even under natural daylight appears to
be white, although the actual irradiated energy produces different colors for
different illuminations. This phenomenon is called color constancy.

DSC and SLR need to be taught how to map white under the capture illuminant
to white under the viewing illuminant (and other colours accordingly). White
balance adjustment is accomplished by multiplying pixels in each color channel
by a different gain factor that compensates for a non-neutral camera response
and illuminant imbalance. Application of the gain factors to the CFA data
before demosaicing may be preferred, since some demosaicing algorithms may
presume equal responses for the different color channels.

The camera¿s response to typical illuminants, such as daylight, incandescent,
and fluorescent, is easily stored in the camera. In some circumstances, the
capture illuminant is known (or can be determined). For example this is the
case for flash usage or for user controlled illuminant selection on the camera.
Another option to determine illuminant is to consider several possible illuminant
classes and estimate the probability of each illuminant being the actual scene
illuminant based on the colour characteristics.

In most cases, it is desirable to perform automated white balance, i.e. without
knowledge about the capture illuminant. In this case, appropriate gain factors
need to be determined to correct for illumination imbalance. Current cameras
approach this estimation problem with different algorithms having different re-
sponses to scene content and illuminants. Camera manufacturers usually have
somewhat different preferences, for example, biasing white balance to render
images warmer or cooler, as well as different approaches to estimating the scene

125

illuminant.

The best way to do white balance is to take a picture of a neutral object (white
or gray) and deduce the weight of each channel. If the object is recorded as
Rw, Gw, Bw, use weights 1/Rw, 1/Gw, 1/Bw for the three colour channels.

One means of performing auto white balance is to assume that a white patch
must induce maximal camera responses in the three channels. The underlying
theory is that highlights are specular reflections that are the colour of the illumi-
nant. Thus, the white-balanced image has signals given byR/Rmax, G/Gmax, B/Bmax
. However, the maximum in the three channels is very often a poor estimate
of the illuminant and it does not work for scenes that have no truly specular
highlights.

Most automatic white balance and exposure algorithms are based on some ex-
tension of the gray world model: Assume all colors in an image will average out
to gray, R = G = B. Using this approach, the channels are scaled based on the
deviation of the image average from gray. In this scheme, the white-balanced
image has signals given by kr ∗ R,G, kb ∗ B, where kr = Gmean/Rmean and
kb = Gmean/Bmean.

However, the actual gray world model assumes that images of many different
scenes will average out to 18% gray (a midtone gray). Unfortunately, this says
very little about a specific image, but the algorithm must work well for individual
images. Therefore, most extensions of the gray world model try to discount large
areas of single colors, to avoid having the balance driven one way or another by
red buildings, blue skies, or green foliage.

8.2.9 Demosaicing

Demosaicing is the process of generating three equally populated colourbands
with full resolution from the image captured using a CFA technique. For this
purpose, artificial data needs to be generated since all three colourbands are
avaiable in subsampled form, i.e. the green channel has 50% and the red and
blue channels have 25% of pixels populated, respectively. The technique used
to generate these missing data is called interpolation – apart from demosiacing,
interpolation is used in image resizing/scaling, defect concealment / correction
(image impairment), superresolution, and many other techniques. Due to its
importance, we first shed some light on basic principles of interpolation.

Interpolation Classical interpolation is the process to compute an interpo-
lated value g(x) at some (perhaps non-integer) coordinate x as a linear combi-
nation of the samples gk evaluated at integer coordinates k, the weights being
given by the values of the function f(x− k):

g(x) =
∑
k∈Z

gkf(x− k) .

f(x) must vanish for all integer arguments except at the origin, where it must be
1 (i.e. “interpolation property”). The summation is performed over all integer
coordinates, however, in practice the number of known (or used) samples is

126

always finite. A large variety of different “interpolation kernels” f(x) is used,
having different properties with respect to resulting quality of the interpolated
data, execution speed of the computation, memeory requirement etc.

The nearest neighbour kernel is the simplest of all: fNN (x) = 1 for −0.5 ≤ x <
0.5, and fNN (x) = 0 if x < −0.5 and x ≥ 0.5. For any coordinate x where
it is desired to compute the value of the interpolated function g, there is only
one sample gk that contributes. Thus, the main interest of this appraoch is its
simplicity, the price to pay is a very low quality.

Linear interpolation still offers very low complexity but improves quality as
compared to nearest neighbour interpolation considerably: fLIN (x) = 1 − |x|
for |x| < 1 and 0 otherwise (|x| ≥ 1). How does this correspond to our usual
notion of taking the sum and divide by two ? For example, consider two pixel
values (6 and 10) next to each other and we want to compute the interpolated
value right in the middle of them. Following our general formula, we result in:

g(0) = 10fLIN (−0.5) + 6fLIN (0.5) = 5 + 3 = 8 .

This is exactly the result we expect. In two dimensions (as visualised in Fig.
145 left), also called bilinear interpolation, its separable implementation requires
four samples. Here, first columns are interpolated, followed by an interpolation
of the lines.

Figure 145: Bilinear and Bicubic interpolation

Cubic interpolation produces less blurring of edges and other distortion artifacts
than bilinear interpolation, but is more computationally demanding. Polynomi-
als of third degree are used as kernel functions such that more sample points can
be considered. Bicubic interpolation involves fitting a series of cubic polynomi-
als to the pixels contained in a 4× 4 array of pixels surrounding the calculated
address. First, four cubic polynomials are fitted to the control points in the
y-direction (the choice of starting direction is arbitrary). Next, the fractional
part of the calculated pixel’s address in the y-direction is used to fit another cu-
bic polynomial in the x-direction, based on the interpolated pixel values that lie
on the curves. Substituting the fractional part of the calculated pixel’s address
in the x-direction into the resulting cubic polynomial then yields the interpo-
lated pixel’s brightness value. Such bicubic interpolation has found use in many
commercial software packages such as Adobe Photoshop and many more.

The choice of polynomial used in the (bi)cubic interpolation algorithm can have
a significant impact on the accuracy and visual quality of the interpolated image.
In the following, we demonstrate how to derive a cubic interpolation kernel
function fCUB(x) = f(x).

127

If the values of a function and its derivative are known at x = 0 and x = 1,
then the function can be interpolated on the interval [0, 1] using a third degree
polynomial f(x) = ax3 + bx2 + cx + d, f ′(x) = 3ax2 + 2bx + c. The values of
the polynomial and its derivative at x = 0 and x = 1 are given as f(0) = d,
f(1) = a + b + c + d, f ′(0) = c, and f ′(1) = 3a + 2b + c. The four equations
can be rearranged so that they deliver the required polynomials’ coefficients
a = 2f(0)−2f(1)+f ′(0)+f ′(1), b = −3f(0)+3f(1)−2f ′(0)−f ′(1), c = f ′(0),
and d = f(0).

However, in most cases (particularly in image processing), we do not know the
derivative of the underlying (image intensity) function, but we simply want
to interpolate between a list of pixels. Instead of setting the derivative to 0
at each point (which does not lead to smooth curves), we use the slope of a
line between the previous and the next point as the derivative at a point (the
resulting kernel is called “a Catmull-Rom spline”). Suppose we have the samples
g0, g1, g2, and g3, at the positions x = −1, x = 0, x = 1, and x = 2 . Then
we can assign the values of f(0), f(1), f ′(0) and f ′(1) using the formulas below
to interpolate between g1 and g2: f(0) = g1, f(1) = g2, f ′(0) = g2−g0

2 , and

f ′(1) = g3−g1
2 . Setting these values into the above formula for the polynomial

coefficients we result in a = −1/2g0 + 3/2g1 − 3/2g2 + 1/2g3, b = g0 − 5/2g1 +
2g2 − 1/2g3, c = −1/2g0 + 1/2g2, and d = g1, resulting in the corresponding
polynom f(g0, g1, g2, g3, x).

For bicubic interpolation, suppose we have the 16 samples (pixels) gij with i and
j going from 0 to 3 and with gij located at (i−1, j−1). Then we can interpolate
the area [0, 1]2 by first interpolating the four columns and then interpolating
the results in the horizontal direction. The formula for the polynom becomes:

f(x, y) = f(f(g0,0, g0,1, g0,2, g0,3, y), f(g1,0, g1,1, g1,2, g1,3, y), (47)

f(g2,0, g2,1, g2,2, g2,3, y), f(g3,0, g3,1, g3,2, g3,3, y), x) . (48)

Alternatively, the formula can be derived if the function values of f(x, y),
fx(x, y), fy(x, y), and fxy(x, y) at the four corners (0, 0), (1, 0), (0, 1), and (1, 1)
are known. The unknown coefficients aij of the corresponding 2-D polynomial

surface f(x, y) =
∑3
i=0

∑3
j=0 aijx

iyj can be computed by solving a system of 16
linear equations, similar to the procedure above for the one dimensional case.

As an example, we compute an interpolation polynomial (the green curve) for
the four points on the red curve, both shown in Fig. 146. We have given the
four points g0 = 2, g1 = 4, g2 = 2, and g3 = 3, at the positions x = 1, x = 2,
x = 3, and x = 4 (note that the x-positions are different compared to those
used in the derivation).

We compute the resulting polynomials’ coefficients as a = −1/2 ∗ 2 + 3/2 ∗ 4−
3/2∗2+1/2∗3, b = 2−5/2∗4+2∗2−1/2∗3, c = −1/2∗2+1/2∗2, and d = 4,
resulting in the polynom f(x) = 7/2(x− 2)3 − 11/2(x− 2)2 + 4 (x-2 replaces x
due to the shift from [0, 1]).

Bicubic spline interpolation as demonstrated requires the solution of the linear
system described above for each grid cell. A fixed kernel with similar properties
is often used instead (as derived by Keys): fKEY S(x) = (a+2)|x|3−(a+3)|x|2+1

128

Figure 146: Example for cubic interpolation

for 0 ≤ |x| < 1, fKEY S(x) = a|x|3 − 5a|x|2 + 8a|x| − 4a for 1 ≤ |x| < 2, and
fKEY S(x) = 0 for |x| ≥ 2. Often, a fixed choice is a = 0.5.

Many more interploation kernels do exist, like the Lanczos kernel or the Sinc
kernel, or various types of spline interpolation methods.

Interpolating CFA generated Data An important issue for these algo-
rithms is computational cost and easy of hardware implementation. It has to
be noted that many of the techniques described are covered by patents of the
respective camera producers. Often, the actual technique used in a camera is
not publicly known.

Figure 147: Bilinear colorplane interpolation

The first and most obvious approach is to apply interpolation techniques to each
colour plane independently. Nearest neighbour interpolation makes an arbitrary
choice which pixel is selected for identical distance, Fig. 147 shows the scheme
used for the G and R,B colourplanes, respectively. The examples in Fig. 148
illustrate that significant colour artifacts arise when applying this strategy. It
has to be noted that also when applying more advanced interpolation (like
bicubic techniques), those effects cannot be reduced significantly.

The effect displayed in colled “Colour Moire effect (or colour fringes or zipper
effect)” and is caused by misinterpreting luminance detail as colour information.
Caused by the poor interpolation results of individual clourplane interpolation,
sharp luminance transitions cause a sharp transition in the colour planes at
different spatial locations, i.e. the colour planes do not react in a synchronized
manner to sharp edges. An example of this effect and the situation causing the

129

Figure 148: Examples for color plane interpolation: nearest neighbour vs. bi-
linear

effect is shown in Fig. 149.

Figure 149: Color Moire artefact

Fig. 150 illustrates what exactly happens at a sharp luminance transition. As
a consequence, it is imperative to incorporate the inter-colourband correlations
into the demosaicing process. A significant number of corresponding approaches
have been suggested throughout the last 2 decades, the tendency is to increase
complexity resulting in steadily increasing quality in this field.

Figure 150: Principle of color sampling errors

The first approach employs a median filter to colourplane differences. The idea
is clear: since the colourplanes are out of synchronisation, a difference signal
contains isolated maximas in areas where colour fringe occurs (see Fig. 151
for the R-G signal). Therefore, as illustrated in the figure, a median filter is
applied to colour difference signals, the results of which are used with original
measurements to compute all the RGB values in each pixel. This is possible as
we have one value and two differences for each pixel.

Fig. 152 shows an example of a filteres difference signal (R-G signal) and a com-
parison of the colourplane independent bilinear interpolation and the median
filtering approach, where the latter shows clearly reduced colour artefacts.

130

Figure 151: Median filtering approach

Figure 152: Median filtering result

The median filtering approach is a first approach to take into account the strong
spectral correlation between color com- ponents at each pixel. Two main hy-
potheses are proposed in the literature in this context. The first one assumes a
color ratio constancy and the second one is based on color difference constancy
(where median filtering obviously relies on the latter). Interpolation based on
color hue constancy follows the first idea (where hue is understood as the ratio
between chrominance and luminance, i.e. R/G or B/G when the G plane is
identified with luminance as it is often done), which exibits problems in case
the denominator G takes low values. This happens for instance when saturated
red and/or blue components lead to comparatively low values of green, making
the ratios R/G and B/G very sensitive to red and/or blue small variations.

Figure 153: Original image and G plane

Fig. 153 is a natural image example which is highly saturated in red and Fig.
154 shows the images where each pixel value is, respectively, the component ratio
R/G and difference R ¿ G. It can be noticed that these two images actually carry

131

out less high-frequency information than the green component plane.

Figure 154: R/G and R-G planes

A Sobel filter is then applied to these two images, so as to highlight the high-
frequency information location as shown in Fig. 155. In the right-hand parrot
plumage area where red is saturated, the component ratio plane contains more
high-frequency information than the component difference plane, which makes
it more artifact-prone when demosaiced by interpolation. Moreo- ver, high color
ratio values may yield to estimated component levels beyond the data bounds,
which is undesirable for the demosaicing result quality.

Figure 155: Sobel filter output of R/G and R-G planes

Constant hue transition interpolation first interpolates the G plane by some
desired method (by-linear or edge-directed, see below). Using the assumption
that hue is smoothly changing across an objects surface, the hue value is in-
terpolated and the interploation for the chrominance values are derived from
the interpolated hue values. To be more specific, the interpolated R hue (R/G
ratio) and B hue (B/G ratio) are multiplied by the G value to determine the
missing R and B values at a given pixel position.

For example, refering to the Bayer pattern in Fig. 156, the following formulas
are used:

R44 = G44

R33

G33
+ R35

G35
+ R53

G53
+ R55

G55

4

B33 = G33

B22

G22
+ B24

G24
+ B42

G42
+ B44

G44

4

Note that the G values involved in these formulas are the result of the first
interpolation stage. Fig. 156 illustrates how this concept can be used employing
colourband differences instead of hue.

Nonadaptive demosaicing algorithms typically provide satisfactory results in
smooth image regions, while they usually fail in textured regions and edges.

132

Figure 156: Bayer CFA pattern and constant-difference-based interpolation

Edge-directed interpolation is an adaptive approach, where the area around each
pixel is analysed to determine if a preferred interpolation direction exists. In
practice, the interpolation direction is chosen to avoid interpolation across edges,
instead interpolating along any edges in the image. Fig. 157 shows an example
of applying this idea to a single colour band (thus it can also be applied to any
grayscale image and is therefore also a generic adaptive interpolation approach).
In practice, the gradients themselves and their difference should exceed some
threshold. The idea can of course be combined also with bicubic or any other
mode advance dtechnique.

Figure 157: Edge-directed interpolation on a single colour plane.

In Fig. 158, this idea is extended to exploit inter-colourband correlation as
well. Here, the R and B channels in a larger neighbourhood are used instead of
the G channel to determine gradients, second-order derivatives are used. Once
the luminance is determined, chrominance values are are interpolated from the
differences bewteen the colour (R and B) and luminance (G) channels (again,
ratios could be used as well). For example (notation of Fig. 158 is used),

R8 =
(R5−G5) + (R9−G9)

2
+G8 and R4 =

(R3−G3) + (R5−G5)

2
+G4 .

and for the red value in a blue pixel the four differences NW, NE, SW, and
SE are added, divided by four, and the corresponding G interpolation value is
added.

Adaptive colour plane interpolation improves the approach by also using colour
plane information to interpolate the green band, i.e. (notation of Fig. 158 is
used)

133

Figure 158: Edge-directed interpolation involving all colour planes.

G5 =
G2 +G8

2
+

2 ∗R5−R1−R9

2
for δV < δH ,

G5 =
G4 +G6

2
+

2 ∗R5−R3−R7

2
for δV > δH , and

G5 =
G2 +G4 +G6 +G8

4
+

4 ∗R5−R1−R3−R7−R9

4
for δV = δH .

Here, in fact second order colour gradients are used in the interpolation, in the
original scheme, also δV and δH are more complicated. The colour channels
are interpolated using a similar technique. A further refinement is to use more
directions for computing gradient information.

The technique called High Quality Linear Interpolation as used in e.g. Matlab
is very similar but uses different weights in its interploation scheme. 8 different
cases are distinguished: 2 to determine the red and green values on a blue pixel,
2 to determine the blue and green values on a red pixel, and 4 to determine the
red and blue values on a green pixel (2 for a green pixel in a “red row” and 2
in a “blue row”). Fig. 159 schows the corresponding 8 interpolation schemes
(which need to be normalised before application).

Figure 159: 8 interpolation schemes for High Quality Linear Interpolation

Further demosaicing techniques include:

• Pattern Recognition Interpolation: This family of methods aims at iden-
tifying a template-based feature in each pixel neighborhood, in order to

134

interpolate according to the locally encountered feature. The first step in
his procedure is to find the average of the four neighboring green pixels,
and classify the neighbours as either high (h) or low (b) in comparison to
this average (see Fig. 160).

Figure 160: Patterns used to determine the central pixel interpolation

These values are sorted and denoted as G1, . . . , G4, M = G2+G3

2 . The

green pixel Ĝ is then defined as an edge if three neighbor pixels share
the same classification. If not, then the pixel can either be a part of
a corner or a stripe. If two adjacent neighbour pixels have the same
classification, then the pixel is a corner. If two opposite pixels have the
same classification, then the pixel is a stripe. If an edge is detected,
Ĝ = M , for a stripe Ĝ = CLIP (M − (S −M)) where S is the average
green level over the eight neighboring pixels labeled as Q in the figure. For
a corner, Ĝ = CLIP (M − (S′ −M)) where where S′ is the average green
level over the eight neighboring pixels labeled as Q in the figure. CLIP
limits the interpolated value to [G3, G2]. The other colour planes can be
interpolated using any of the techniques described before.

• Homogeneity-directed interpolation: The RGB data is first interpolated
horizontally and vertically, i.e., there are two candidates for each missing
color sample. Both the horizontally and vertically interpolated images
are transformed to the CIELAB space. In the CIELAB space, either the
horizontally or the vertically interpolated pixel values are chosen based on
the local homogeneity. The local homogeneity is measured by the total
number of similar luminance and chrominance values of the pixels that
are within a neighborhood of the pixel in question.

• Vector-based interpolation: In this approach, each pixel is considered as
a vector in the three dimensional (R,G,B) space, and interpolation is de-
signed to minimise the angle or the distance among neighbouring vectors.
After an inital interpolation of missing samples, each pixel is transformed
to spherical coordinates (ρ,Φ, φ):

R = ρ cos(Φ) sin(φ) , R = ρ cos(Φ) cos(φ) , B = ρ sin(Φ) .

135

In the (ρ,Φ, φ) space, a filtering operation like median filtering is applied
to the angles only. This forces the chrominance components to be sim-
ilar. Because ρ is closely related to the luminance component, keeping
it unchanged preserves the luminance discontinuities among neighboring
pixels. After the filtering process, the image is transformed back to the
(R, G, B) space.

8.2.10 Colour Noise Reduction

8.2.11 Colour Correction

8.2.12 Tone Scale and Gamma Correction

8.2.13 Edge Enhancement - Sharpening

8.2.14 Compression

This topic will be covered in-depth in the subsequent lecture “Multimedia Data
Formats”.

136

	Introduction
	Literature on Image Processing
	Overview and Related Terms
	Digital Image Processing

	Low level digital image processing tasks

	Image Acquisition and Representation
	Human Visual System & Optical Principles
	Sensors
	Image Properties
	Color Representation
	Resolution and Quantisation
	Metric properites of digital images
	Histograms

	Image Representation
	Traditional Data Structures
	Matrices
	Chains
	Run length coding
	Topological Data Structures
	Relational Structures

	Hierarchical Data Structures
	Pyramids
	Quadtrees

	Perception

	Image Enhancement
	Spatial Domain Methods
	Contrast Manipulation & Modification
	Changing the Amplitude
	Contrast Modification
	Histogram Modification
	Histogram-Equalisation
	Explicit Histogram Specification

	Image smoothing & Denoising
	Neighbourhood Averaging
	Median Filtering

	Image Sharpening
	Transformation-based Techniques
	Fourier Transform
	Filtering in Frequency domain
	Wavelet Transformation
	Fourier vs. Wavelet
	Further Wavelet Transform variants

	Image Restauration
	Image Distortion
	Distortion determination
	Image Analysis
	Experimental distortion determination
	Distortion determination by modelling

	Distortion Removal
	Wiener Filtering

	Edge Detection
	Techniques using the 1. derivative
	Roberts Operator
	Compass operators

	Techniques using the 2. derivative
	Laplace Operator
	Mexican Hat Operator

	Canny Edge Detector
	Line Finding Alogrithms
	Simple Kernels
	Hough Transformation

	Image Segmentation
	Thresholding
	Thresholding Variations
	Threshold Selection
	Edge-based Techniques
	Thresholding of Edge Images
	Edge Relaxation
	Completing Edge Chains using Graph Search
	Active Contours - Snakes / Level Set Segmentation

	Region-based Techniques
	Region Growing
	Region Merging
	Region Splitting
	Template Matching
	Watershed Segmentation
	Mean Shift Segmentation
	Graph Cut Segmentation

	Morphological Image Processing
	Morphological Image Processing
	Set Theory Nomenclature
	Erosion and Dilation
	Opening and Closing

	Shrinking
	Thinning
	Skeletonization
	Pruning
	Thickening
	Application: Watershed Segmentation

	Image Formation
	Exposure & Autofocus
	Exposure
	Autofocus (AF)

	Colour Imaging Pipeline
	Channel Matching
	Dark Correction
	Defect Concealment
	Smear Correction
	Gain Nonuniformity Correction
	Optics Corrections
	Stochastic Noise Reduction
	Exposure and White Balance Correction
	Demosaicing
	Colour Noise Reduction
	Colour Correction
	Tone Scale and Gamma Correction
	Edge Enhancement - Sharpening
	Compression

