

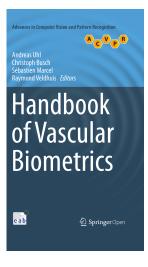
Be Recognised by the Layout of Your Blood Vessels !

Andreas Uhl

Department of Computer Sciences University of Salzburg

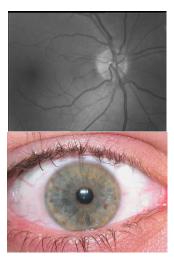
June 18th, 2021

1 Introduction & Motivation


- 2 Security of Vascular Hand Biometrics
- 3 Scanners for Vascular Hand Biometrics
- 4 Towards unconstraint Finger Vein Recognition
- 5 Conclusion

Outline

1 Introduction & Motivation


- 2 Security of Vascular Hand Biometrics
- 3 Scanners for Vascular Hand Biometrics
- 4 Towards unconstraint Finger Vein Recognition
- 5 Conclusion

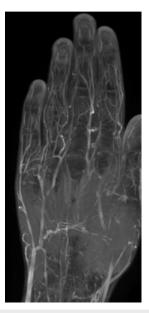
Handbook of Vascular Biometrics

- Human blood vessels as biometric trait
- All vascular biometric traits covered
- Invited and contributed chapters, rigorously reviewed (3 rounds)
- Focus on reproducible research (open datasets, open source code)
 - OPEN ACCESS !!

Eye-based Vascular Biometrics

- Retina and sclera recogniton
- Blood vessels of the human eye as biometric trait
- Intrinsic biometric trait (no degradation to be expected)
- Visible in visible (VIS) light
- Dedicated, custom sensors for retina (fundus) capturing, consumer cameras for sclera vessel imaging
- Alternative to iris, face and periocular recognition

Pros and Cons of Vascular Eye Biometrics


Advantages

Disadvantages

- Captured in VIS domain (as opposed to NIR iris imaging)
- Spoofing and presentation attacks are almost impossible
- Liveness detection "easily" possible (blood flow)

- Retina vessel capturing requires to illuminate the background of the eye which feels like ophthalmological treatment.
- Vessel structure / width in both retina and sclera is influenced by diseases or pathological conditions.
- Sclera recognition is extremely difficult due to the fine vessel network.
- Retina capturing devices originate from ophthalmology and are thus expensive
- Difficult (sclera) or impossible (retina) acquisition from a distance or on the move
- No commercial solutions that could prove the practicality of these two modalities.

Hand-based Vascular Biometrics

- Fingervein, handvein, palmvein, wristvein recognition
- Blood vessels inside the human hand as biometric trait
- Intrinsic biometric trait
- Only visible in near-infrared (NIR) light
- Haemoglobin inside the blood flowing through the vessels absorbs NIR light
- Veins appear as dark lines
- Alternative to fingerprint and palmprint recognition

Advantages

- Insensitive to finger surface conditions (dryness, dirt, lotions) and abrasion (cuts, scars)
- Contactless sensing possible
- More resistant against forgery (i.e. spoofing, presentation attacks) as the vessels are only visible in infrared light
- Liveness detection easily possible due to detectable blood flow (video analysis)

Disadvantages

- Large capturing devices (compared to fingerprint readers) at least for transillumination imaging
- Images having low contrast and quality
- Vein structure may be influenced by temperature, physical activity, as well as by ageing and injuries / diseases
- Current commercial sensors do not allow to access imagery
 - evaluation only black-box

Commercial Hand (Palm) Vein Scanners – Fujitsu

Commercial Finger Vein Scanners

Figure: Hitachi: Transillumination

Figure: Mofira: Side-Transillumination Figure: XPO Tech: Side-Transillumination

Deployments Finger Vein Scanners

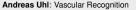

Figure: ATM with finger vein authentication (e.g. Poland).

Figure: Finger vein home banking.

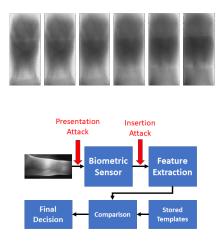
1 Introduction & Motivation

2 Security of Vascular Hand Biometrics

- 3 Scanners for Vascular Hand Biometrics
- 4 Towards unconstraint Finger Vein Recognition
- 5 Conclusion

Spoofing Resistance of Vascular Hand Biometrics

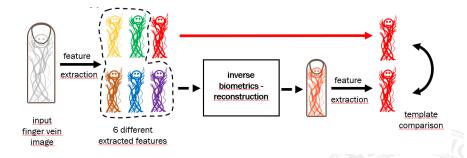
- Face (and visible wavelength iris) imagery is public data (Flickr, SnapChat). From these, more advanced spoofing artefacts like 3D masks can be generated.
- Fingerprint images have been reconstructed from latent fingerprints on a water glass (BM Schäuble by CCC in 2008) and telephoto shots (BM von der Leyen by CCC in 2014). From those, spoofing artefacts like gummi-fingers can be produced.
- In 2015, spoofing against commercial fingervein [1] and palmvein scanners [2] has been demonstrated.
- Several presentation attack detection techniques have been published since [3,4].


^[1] P. Tome, M. Vanoni, S. Marcel. On the vulnerability of finger vein recognition to spoofing. 2014 International Conference of the Biometrics Special Interest Group (BIOSIG'14).

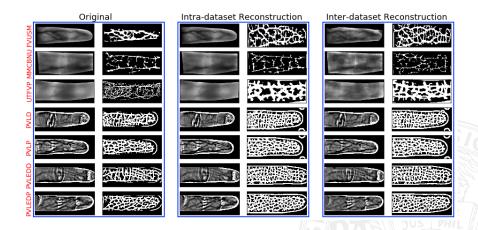
^[2] P. Tome, S. Marcel. On the vulnerability of palm vein recognition to spoofing attacks. 2015 IAPR/IEEE International Conference on Biometrics (ICB'15).

^[3] J. Schuiki, A. Uhl. Vulnerability Assessment and Presentation Attack Detection Using a Set of Distinct Finger Vein Recognition Algorithms. 2021 IEEE/IAPR International Joint Conference on Biometrics (IJCB'21).

^[4] A. P. S. Bhogal, D. Söllinger, P. Trung, J. Hämmerle-Uhl, A. Uhl. Non-reference image quality assessment for fingervein presentation attack detection. 2017 Scandinavian Conference on Image Analysis (SCIA'17).


Morphing Attack against Vascular Biometrics [1]

- Similar to the "Magic Passport" allowing two persons to pass border control due to a morphed portrait in the passport, morphing can be applied to vascular biometrics.
- However, as there is no passport, placing the morphed sample is supposed to happen during enrollment.
- Depending on the point of attack, a digital morph (insertion) or an artefact with morphed sample (presentation) is used.


^[1] Altan A. Aydemir, J. Hämmerle-Uhl, A. Uhl. Feasibility of Morphing-Attacks in Vascular Biometrics. 2021 IEEE/IAPR International Joint Conference on Biometrics (IJCB'21).

Creating Vascular Samples from Binary Templates [1]

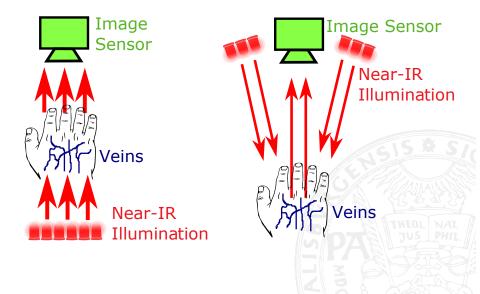
Christof Kauba, Simon Kirchgasser, Vahid Mirjalili, Arun Ross, Andreas Uhl. Inverse Biometrics: Reconstructing Grayscale Finger Vein Images from Binary Features. 2020 IEEE/IAPR International Joint Conference on Biometrics (IJCB'20).

Results of the Inversion Process

Outline

1 Introduction & Motivation

2 Security of Vascular Hand Biometrics


3 Scanners for Vascular Hand Biometrics

- 4 Towards unconstraint Finger Vein Recognition
- 5 Conclusion

- Consisting of a NIR light source (illuminator) and a NIR sensitive camera
- Wavelengths between 730 and 950 nm
- Two types of NIR illumination:
 - Reflected light
 - Transillumination
- Commercial scanners
 - PalmVein (Fujitsu, Sensometrix) all use reflected light
 - FingerVein (Hitachi, Mofiria, XPO Tech/Yannan Tech) all use transillumination
- Publicly available data sets
 - Hand/PalmVein: Use reflected light (except ours [1])
 - FingerVein: Use transillumination

^[1] C. Kauba, A. Uhl. Shedding Light on the Veins - Reflected Light or Transillumination in Hand-Vein Recognition. 2018 International IAPR/IEEE Conference on Biometrics (ICB'18).

Transillumination vs. Reflected Light (1)

Reflected Light

- Light source and camera on the same side of the hand
- Light gets reflected at the hand's surface and tissue
- More sensitive to ambient light and dirt/sun lotion on the skin
- Scanners can be built as small as fingerprint ones
- Lower light intensity reduced power consumption

Transillumination

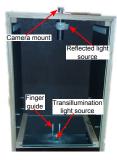
- Light source and camera on opposite sides of the hand
- Light penetrates the skin and tissue of the hand
- Needs a higher light intensity higher power consumption
- Scanner devices are bigger due to opposite positioning
- Less sensitive to ambient light and hand surface conditions

Shedding Light on the Veins [1]

- Differences between the two illumination types
- Establishing two dual-illumination hand-vein data sets
 - VeinPLUS: reflected light and transillumination
 - PROTECTVein: reflected light 850 nm, ref. light 950 nm and transillum.
- Evaluating recognition performance of the single illumination types
- Cross-illumination and cross-spectrum matching

C. Kauba, A. Uhl. Shedding Light on the Veins - Reflected Light or Transillumination in Hand-Vein Recognition. 2018 International IAPR/IEEE Conference on Biometrics (ICB'18).

VeinPLUS


Scanner

- Canon EOS 5D DLSR with IR-blocking filter removed and additional 830 nm IR pass-through filter
- Wooden box to block ambient light
- NIR surveillance lamp consisting of 50 940 nm LEDs for transillumination
- 6 950 nm LEDs mounted on top of the box for reflected light

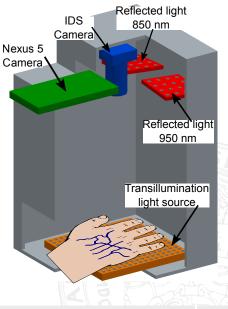
Data Set

- 107 subjects, 1 session, 2 hands per subject, 3 images per hand
- 2 illumination settings → 1213 images in total
- 2784 × 1856 pixels, RGB colour, jpg images
- **ROI** images with 500 \times 500 pixels
- Will not be made publicly available due to legal issues with the consent form

VeinPLUS Scanner and Example Images

PROTECTVein

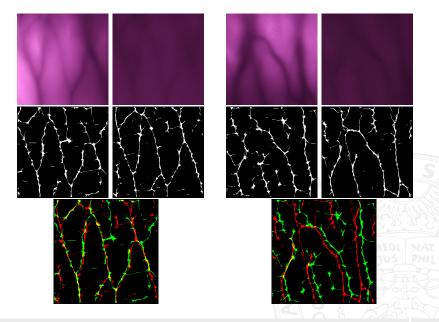
Scanner

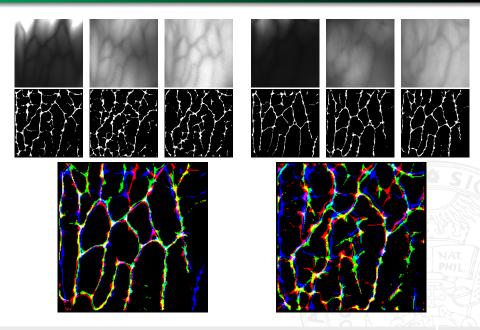

- IDS Imaging UI-1240ML-NIR, industrial NIR enhanced camera
- Modified Nexus 5 smartphone (EigenImaging), IR blocking filter removed
- 16 × 16 LED board (850 nm LEDs) for transillumination
- 4×4 LED boards (850 nm and 950 nm) for reflected light
- Wooden box for stability and to reduce ambient light

Data Set

- 40 subjects, 1 session, 2 hands per subject, 5 images per hand
- **3** illumination settings, 2 cameras \rightarrow 2400 images in total
- IDS:720 × 720 pixels, greyscale, png images
- Nexus 5: 3264 × 2448 pixels, RGB colour, jpg images
- Is already publicly available

PROTECTVein Scanner


PROTECTVein Example Images

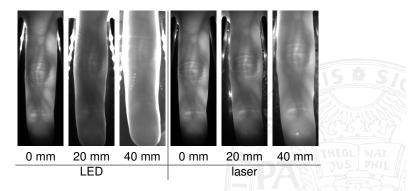

Cross-Illumination / Cross-Spectrum Matching

- Vein patterns look similar for the different illumination settings
- Cross matching performance clearly inferior to single illumination/spectrum ones
 - Visible vein patterns differ in some way
 - Same veins are visible (except for smaller ones)
 - Not located at the exact same positions
- May be introduced due to hand movement for VeinPLUS (can be ruled out for PROTECTVein)
- Displacements are different for different subjects
- Non-linear displacements caused by different refraction and light scattering coefficients of the human tissue
- Depending on the vertical positions of the veins inside the hand
- Cannot be corrected by translation/rotation (done at matching step)
- Cross-illumination matching is not possible straight forward

Reflected Light - Transillum. VeinPLUS

Different Illuminations PROTECTVein (1) and (2)

Outline


1 Introduction & Motivation

- 2 Security of Vascular Hand Biometrics
- 3 Scanners for Vascular Hand Biometrics
- 4 Towards unconstraint Finger Vein Recognition

5 Conclusion

Advantages of Laser Modules over LEDs [1]

- Less bright areas along the finger outlines (scattering reduced)
- Contrast remains high even if the distance between the illuminator and the finger is increased
- Advantages in contactless operation

^[1] B. Prommegger, C. Kauba, A. Uhl. Focussing the Beam - A New Laser Illumination Based Data Set Providing Insights to Finger-Vein Recognition. IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS), 2018.

Multi-Perspective Finger Vein Scanner

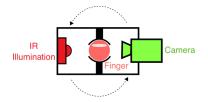
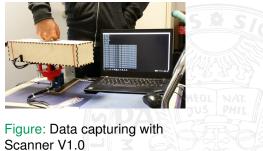
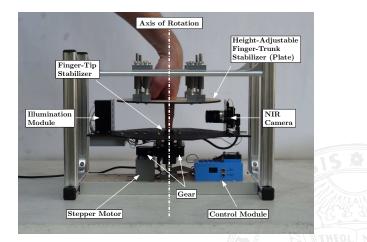



Figure: Basic principle of our rotating finger vein scanner

Figure: Custom build multi-perspective finger-vein scanner



Andreas Uhl: Vascular Recognition

Purpose of Multi-Perspective Vein Imaging

- Improved recognition performance by fusion of several perspectives
- Improved recognition performance by 3D reconstruction of the vessel structure
- Significantly improved spoofing resistance as current spoofing artefacts are an outprint on paper
- Better understanding of what we are actually imaging (veins ? arteries ? at which depth ?)
- Facilitation of advanced spoofing artefacts by 3D-printing of vessel structures

Multiperspective Finger-Vein Biometrics [1]

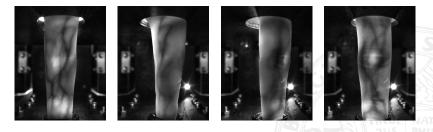


Figure: Multi-perspective finger vein scanner V2.0

^[1] B. Prommegger, C. Kauba, A. Uhl. Multi-Perspective Finger-Vein Biometrics. IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS), 2018.

PLUSVein-Finger Rotation Data Set I

- Up to now only palmar (and one dorsal) data sets
- No evaluation of other perspectives possible
- New finger-vein data set providing images all around the finger (360°-view)
- Acquired using our custom build sensor

0°60°120°180°Figure: Example images of the data set acquired from 0° to 180° in 60° steps

PLUSVein-Finger Rotation Data Set II

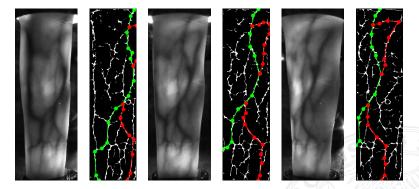


Figure: Examples of finger vein images and extracted MC features acquired at different longitudinal rotation angles. Left: -30°, middle: 0° (palmar view), right: 30°

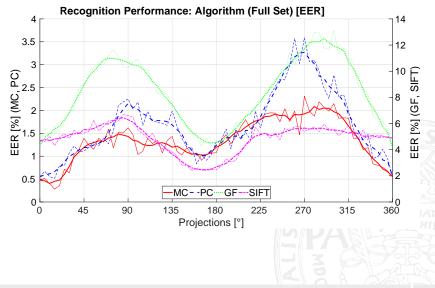
Performance evaluation of different perspectives all around the finger

Step-size 5°

Fusion of selected perspectives

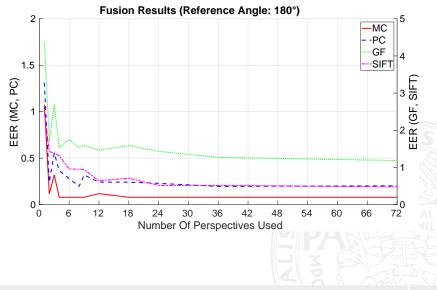
- Multiple perspectives (2-72)
- One against all other

Used recognition schemes


- Vein pattern based methods (binarization)
 - Maximum Curvature (MC)
 - Principal Curvature (PC)
 - Gabor Filter (GF)
- Key-point based methods

SIFT

Used performance indicators


- EER
- FMR100
- FMR1000
- ZeroFMR

Results: Recognition for different Projections

Andreas Uhl: Vascular Recognition

Results: Multi-Perspective Fusion

Longitudinal Finger Rotation

What is longitudinal finger rotation?

- misplacement of the finger during acquisition
- The problem of longitudinal finger rotation:
 - causes a deformation of the vein pattern
 - negatively effects recognition performance

The vision:

make finger vein recognition robust to rotation

The idea [1]:

- enrol multiple perspectives
- compare single perspective against enrolled data

B. Prommegger, A. Uhl. Rotation Invariant Finger Vein Recognition. IEEE 10th International Conference on Biometrics Theory, Applications and Systems (BTAS), 2019.

The Problem of Longitudinal Finger Rotation

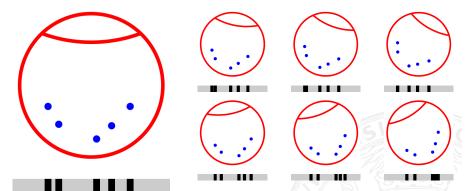


Figure: Longitudinal finger rotation principle: a schematic finger cross section showing five veins (blue dots) rotated from -10° to -30° (top row) and 10° to 30° (bottom row) in 10° steps. The projection of the vein pattern is different according to the rotation angle following a non-linear transformation.

Rotation Detection and Correction [1]

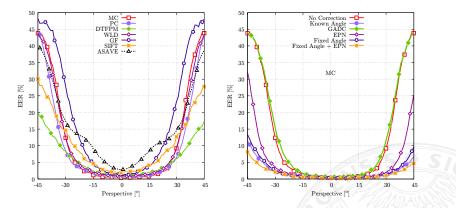
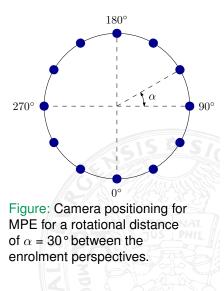


Figure: Trend of the EER across different rotation angles. Left: Performance of different finger vein recognition schemes, right: different rotation compensation approaches for the same scheme (Maximum Curvature)

Andreas Uhl: Vascular Recognition

^[1] B. Prommegger, C. Kauba, M. Linortner, A. Uhl. Longitudinal Finger Rotation - Deformation Detection and Correction. IEEE Transactions on Biometrics, Behavior, and Identity Science 1:2, pp. 123-138, 2019.


Multi Perspective Enrolment (MPE)

ldea

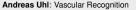
- Enrol subject using multiple perspectives (sophisticated sensor)
- Verification: single perspective (simple sensor) vs all enrolled perspectives
- Max score level fusion
- Invariant to rotation in case enrolment covers complete (rotational) range of interest

Assumptions

- Circular finger form
- Enrolment perspectives are linearly spaced

First Multi Perspective Scanners

University of Twente 3 Perspectives Scanner



HESSO/IDIAP/GlobalID 3 Perspectives Scanner

Outline

1 Introduction & Motivation

- 2 Security of Vascular Hand Biometrics
- 3 Scanners for Vascular Hand Biometrics
- 4 Towards unconstraint Finger Vein Recognition
- 5 Conclusion

Conclusion

Lessons learnt

- Eye-based vascular biometrics: many disadvantages, no commerial products
- Hand-based vascular biometrics: Highly innovative and promising biometric modality with many advantages
- Commercial products available, recognition accuracy mainly based on claims
- Certain drawbacks:
 - Recognition performance in large user groups not well understood (template entropy not yet known)
 - Robustness wrt. environmental and physiological conditions not investigated
 - Spoofing resistence has to be improved
 - Current sensors do not allow to store and process acquired imagery, only templates are obtained

Thank you for your attention!

Questions?