Fully dynamic all-pairs shortest paths with worst-case update-time revisited

Sebastian Krinninger
Max Planck Institute for Informatics
Saarland Informatics Campus

Joint work with Ittai Abraham and Shiri Chechik

Research Overview

	shortest paths	cuts	verification	lower bounds
dynamic				
distributed				
sequential				

Research Overview

Research Overview

Research Overview

	shortest paths	cuts	verification	lower bounds
dynamic	1 '	[FOCS'16]	I	
	[FOCS'13,SODA'14,STOC'14]		i	
	[FOCS'14,ICALP'15a] i		-	[STOC'15]
	[ESA'16,SODA'17]		I	
	[ICALP'13]			
distributed	[ICALP'13]		I	
	[STOC'16,arXiv'16]		!	
			i	
sequential	I		,	
	I	[ICALP'15b]	[ESA'12,GandALF'13]	
	\vdots		! i	

Research Overview

Our world is not static

Our world is not static

Our world is not static

Simple example - Distance from s to v

Simple example - Distance from s to v

Simple example - Distance from s to v

Simple example - Distance from s to v

Dynamic shortest paths data structure: - initialize (G)
$\left.\begin{array}{l}\text { - insert }(v) \\ \text { - } \operatorname{delete}(v)\end{array}\right\} \quad$ update

- $\left.\begin{array}{l}\text { - } \operatorname{dist}(s, t) \\ \text { path }(s, t)\end{array}\right\} \quad$ query

Dynamic model

G undergoing updates:

Here: Small query time $\mathcal{O}(1)$ or $\mathcal{O}(\log n)$

Dynamic model

G undergoing updates:

Here: Small query time $\mathcal{O}(1)$ or $\mathcal{O}(\log n)$
Goal: Minimize update time $T(n, m)$

Dynamic model

G undergoing updates:

Here: Small query time $\mathcal{O}(1)$ or $\mathcal{O}(\log n)$
Goal: Minimize update time $T(n, m)$

- Worst-case: After each update, spend time $\leq T(n, m)$

Dynamic model

G undergoing updates:

Here: Small query time $\mathcal{O}(1)$ or $\mathcal{O}(\log n)$
Goal: Minimize update time $T(n, m)$

- Worst-case: After each update, spend time $\leq T(n, m)$
- Amortized: For a sequence of k updates, spend time $\leq k T(n, m)$

Overview

amortized
$\log \mathcal{O}(1) n$
$[$ Henzinger/King '95]
worst-case
$\log \mathcal{O}^{(1)} n$
[Kapron/King/Mountjoy '13]

Overview

Connectivity

Min. spanning tree
Transitive closure
All-pairs shortest paths

amortized

$\log ^{\mathcal{O}(1)} n$
[Henzinger/King '95]
$\log ^{\mathcal{O}(1)} n$
[Holm/Lichtenberg/Thorup '98]
$\underset{\text { [Demetrescu/Italiano '00] }}{\mathcal{O}\left(n^{2}\right)}$
$\tilde{\mathcal{O}}\left(n^{2}\right)$
[Demetrescu/Italiano '03]
worst-case
$\log { }^{\mathcal{O}(1)} n$
[Kapron/King/Mountjoy '13]
$\mathcal{O}(\sqrt{n})$
[Eppstein/Galil/Ital./Nissenzweig '92]
$\mathcal{O}\left(n^{2}\right)$
[Sankowski '04]
$\tilde{\mathcal{O}}\left(n^{2+2 / 3}\right)$
[Abraham/Chechik/K '17]

Overview

Connectivity
Min. spanning tree
Transitive closure
All-pairs shortest paths
Maximal matching
$(1+\epsilon)$-max. matching
$\log ^{\mathcal{O}(1)} n$
[Henzinger/King '95]
$\log ^{\mathcal{O}(1)} n$
[Holm/Lichtenberg/Thorup '98]
$\mathcal{O}\left(n^{2}\right)$
[Demetrescu/Italiano '00]
$\tilde{\mathcal{O}}\left(n^{2}\right)$
[Demetrescu/Italiano '03]
$\mathcal{O}(1)$
[Solomon '16]
$\mathcal{O}\left(\sqrt{m} / \epsilon^{2}\right)$
worst-case
$\log { }^{\mathcal{O}(1)} n$
[Kapron/King/Mountjoy '13]
$\mathcal{O}(\sqrt{n})$
[Eppstein/Galil/Ital./Nissenzweig '92]
$\mathcal{O}\left(n^{2}\right)$
[Sankowski '04]
$\tilde{\mathcal{O}}\left(n^{2+2 / 3}\right)$
[Abraham/Chechik/K '17]
$\mathcal{O}(\sqrt{m})$
[Neiman/Solomon '13]
$\mathcal{O}\left(\sqrt{m} / \epsilon^{2}\right)$
[Gupta/Peng '13]

Overview

Connectivity
Min. spanning tree
Transitive closure
All-pairs shortest paths
Maximal matching
$(1+\epsilon)$-max. matching
(2k-1)-spanner

amortized

$\log ^{\mathcal{O}(1)} n$
[Henzinger/King '95]
$\log ^{\mathcal{O}(1)} n$
[Holm/Lichtenberg/Thorup '98]
$\mathcal{O}\left(n^{2}\right)$
[Demetrescu/Italiano '00]
$\tilde{\mathcal{O}}\left(n^{2}\right)$
[Demetrescu/Italiano '03]
$\mathcal{O}(1)$
[Solomon '16]
$\mathcal{O}\left(\sqrt{m} / \epsilon^{2}\right)$ [Gupta/Peng '13]
$k \log ^{\mathcal{O}(1)} n$
[Baswana/Sarkar '08]

worst-case

$$
\log ^{\mathcal{O}(1)} n
$$

[Kapron/King/Mountjoy '13]
$\mathcal{O}(\sqrt{n})$
[Eppstein/Galil/Ital./Nissenzweig '92]
$\mathcal{O}\left(n^{2}\right)$
[Sankowski '04]
$\tilde{\mathcal{O}}\left(n^{2+2 / 3}\right)$
[Abraham/Chechik/K '17]
$\mathcal{O}(\sqrt{m})$
[Neiman/Solomon '13]
$\mathcal{O}\left(\sqrt{m} / \epsilon^{2}\right)$
[Gupta/Peng '13]
???

Overview

Connectivity
Min. spanning tree
Transitive closure
All-pairs shortest paths
Maximal matching
($1+\epsilon$)-max. matching
($2 k-1$)-spanner
3-spanner

amortized

$\log ^{\mathcal{O}(1)} n$
[Henzinger/King '95]
$\log { }^{\mathcal{O}(1)} n$
[Holm/Lichtenberg/Thorup '98]
$\underset{\text { [Demetrescu/Italiano '00] }}{\mathcal{O}\left(n^{2}\right)}$
$\tilde{\mathcal{O}}\left(n^{2}\right)$
[Demetrescu/Italiano '03]
$\mathcal{O}(1)$
[Solomon '16]

$$
\underset{\text { [Gupta/Peng '13] }}{\mathcal{O}}\left(\sqrt{m} / \epsilon^{2}\right)
$$

$k \log ^{\mathcal{O}(1)} n$
[Baswana/Sarkar '08]

$$
{\underset{\text { [BaswanaSarkar '08] }}{\log \mathcal{O}(1)} n}^{\text {on }}
$$

worst-case

$\log { }^{\mathcal{O}(1)} n$
[Kapron/King/Mountjoy '13]
$\mathcal{O}(\sqrt{n})$
[Eppstein/Galil/Ital./Nissenzweig '92]

$$
\begin{gathered}
\mathcal{O}\left(n^{2}\right) \\
\text { [Sankowski '04] } \\
\tilde{\mathcal{O}}\left(n^{2+2 / 3}\right) \\
\text { [Abraham/Chechik/K '17] } \\
\mathcal{O}(\sqrt{m}) \\
\text { [Neiman/Solomon '13] } \\
\mathcal{O}\left(\sqrt{m} / \epsilon^{2}\right) \\
\text { [Gupta/Peng '13] } \\
? ? ? \\
\tilde{\mathcal{O}}\left(n^{3} / 4\right) \\
\text { [Bodwin/K'16] }
\end{gathered}
$$

Overview

Connectivity
Min. spanning tree
Transitive closure
All-pairs shortest paths
Maximal matching
($1+\epsilon$)-max. matching
($2 k-1$)-spanner
3-spanner
($1+\epsilon$)-cut sparsifier

amortized

$\log ^{\mathcal{O}(1)} n$
[Henzinger/King '95]
$\log ^{\mathcal{O}(1)} n$
[Holm/Lichtenberg/Thorup '98]
$\mathcal{O}\left(n^{2}\right)$
[Demetrescu/Italiano '00]
$\tilde{\mathcal{O}}\left(n^{2}\right)$
[Demetrescu/Italiano '03]
$\mathcal{O}(1)$
[Solomon '16]

$$
\mathcal{O}\left(\sqrt{m} / \epsilon^{2}\right)
$$

[Gupta/Peng '13]
$k \log { }^{\mathcal{O}(1)} n$
[Baswana/Sarkar '08]

$$
\underset{\text { [Baswanasarkar '08] }}{\log \mathcal{O}(1)} n
$$

[Abr./Durfee/Koutis/K/Peng '16]

worst-case

$\log \mathcal{O}^{(1)} n$
[Kapron/King/Mountjoy '13]
$\mathcal{O}(\sqrt{n})$
[Eppstein/Galil/Ital./Nissenzweig '92]

$$
\mathcal{O}\left(n^{2}\right)
$$

[Sankowski '04]

$$
\tilde{\mathcal{O}}\left(n^{2+2 / 3}\right)
$$

[Abraham/Chechik/K '17]

$$
\mathcal{O}(\sqrt{m})
$$

[Neiman/Solomón '13]

$$
\mathcal{O}\left(\sqrt{m} / \epsilon^{2}\right)
$$

[Gupta/Peng '13]
$\tilde{O}\left(n^{3 / 4}\right)$
[Bodwin/K '16]
$\log ^{\mathcal{O}(1)} n$
[Abr./Durfee/Koutis/K/Peng '16]

Question:

Can worst-case bounds match amortized bounds?

Prior work on dynamic APSP

approx.	update time	type of graphs	reference
exact	$\tilde{\mathcal{O}}(m n)$	weighted directed	[Dijkstra]
exact	$\tilde{\mathcal{O}}\left(n^{2.5} \sqrt{W}\right)$	weighted directed	[King '99]
$1+\epsilon$	$\tilde{\mathcal{O}}\left(n^{2} \log W\right)$	weighted directed	[King '99]
$2+\epsilon$	$\tilde{\mathcal{O}}\left(n^{2}\right)$	weighted directed	[King '99]
exact	$\tilde{\mathcal{O}}\left(n^{2.5} \sqrt{W}\right)$	weighted directed	[Demetrescu/Italiano '01]
exact	$\tilde{\mathcal{O}}\left(n^{2}\right)$	weighted directed	[Demetrescu/Italiano '03]
exact	$\tilde{\mathcal{O}}\left(n^{2.75}\right)\left(^{*}\right)$	weighted directed	[Thorup '05]
$2+\epsilon$	$\tilde{\mathcal{O}}(m \log W)$	weighted undirected	[Bernstein '09]
$2^{\mathcal{O}(k)}$	$\tilde{\mathcal{O}}\left(\sqrt{m} n^{1 / k}\right)$	unweighted undirected	[Abr./Chechik/Talwar '14]

(*) worst case
$\tilde{\mathcal{O}}:$ ignores $\log n$-factors
n : number of nodes
m : number of edges
W: largest edge weight

Our result

Theorem (for this talk)

There is an algorithm for maintaining a distance matrix under insertions and deletions of nodes in unweighted undirected graphs with a worst-case update time of $\tilde{\mathcal{O}}\left(n^{2.75}\right)$.

Our result

Theorem (for this talk)

There is an algorithm for maintaining a distance matrix under insertions and deletions of nodes in unweighted undirected graphs with a worst-case update time of $\tilde{\mathcal{O}}\left(n^{2.75}\right)$.

Toy example! $\left(\mathcal{O}\left(n^{\omega}\right)\right.$ in unweighted graphs)

Our result

Theorem (for this talk)

There is an algorithm for maintaining a distance matrix under insertions and deletions of nodes in unweighted undirected graphs with a worst-case update time of $\tilde{\mathcal{O}}\left(n^{2.75}\right)$.

Toy example! $\left(\mathcal{O}\left(n^{\omega}\right)\right.$ in unweighted graphs)
More sophisticated use of our technique:

- $\tilde{\mathcal{O}}\left(n^{2.67}\right)$ in weighted directed graphs (randomized)
- Improves $\tilde{\mathcal{O}}\left(n^{2.75}\right)$ of [Thorup '05]
- (Hopefully) simpler than [Thorup '05] (which is a deamortization of [Demetrescu/Italiano '03])

Insertions are easy

Inserting a node v :

Insertions are easy

Inserting a node v :

Floyd-Warshall algorithm

- For every node $s: \operatorname{dist}^{\prime}(s, v)=\min _{(u, v)}(\operatorname{dist}(s, u)+w(u, v))$
- For every node $t: \operatorname{dist}^{\prime}(v, t)=\min _{(v, u)}(w(v, u)+\operatorname{dist}(u, t))$
- For every pair $s, t: \operatorname{dist}^{\prime}(s, t)=\min \left(\operatorname{dist}(s, t), \operatorname{dist}^{\prime}(s, v)+\operatorname{dist}^{\prime}(v, t)\right)$
- Time per insertion: $\mathcal{O}\left(n^{2}\right)$

Handling deletions

- Principle approach: deletions-only algorithm

Handling deletions

- Principle approach: deletions-only algorithm
- Preprocessing stage: Prepare data structure for handling a batch of $\leq \Delta$ deletions
- After every update:
- Group updates since preprocessing into insertions and deletions
- Perform $\leq \Delta$ deletions in data structure from preprocessing
- Process $\leq \Delta$ deletions with Floyd Warshall $\mathcal{O}\left(\Delta n^{2}\right)$

Handling deletions

- Principle approach: deletions-only algorithm
- Preprocessing stage: Prepare data structure for handling a batch of $\leq \Delta$ deletions
- After every update:
- Group updates since preprocessing into insertions and deletions
- Perform $\leq \Delta$ deletions in data structure from preprocessing
- Process $\leq \Delta$ deletions with Floyd Warshall $\mathcal{O}\left(\Delta n^{2}\right)$
- Standard trick: preprocessing can be spread out over Δ updates
Δ updates

Handling deletions

- Principle approach: deletions-only algorithm
- Preprocessing stage: Prepare data structure for handling a batch of $\leq \Delta$ deletions
- After every update:
- Group updates since preprocessing into insertions and deletions
- Perform $\leq \Delta$ deletions in data structure from preprocessing
- Process $\leq \Delta$ deletions with Floyd Warshall $\mathcal{O}\left(\Delta n^{2}\right)$
- Standard trick: preprocessing can be spread out over Δ updates
Δ updates

Restricted hop depth

Definition

shortest h-hop path: shortest among all paths with $\leq h$ edges

Restricted hop depth

Definition
 shortest h-hop path: shortest among all paths with $\leq h$ edges

Suppose shortest h-hop path known for all pairs of nodes \Rightarrow Can compute all-pairs shortest paths in time $\mathcal{O}\left(n^{3} \log n / h\right)$:

Restricted hop depth

Definition

shortest h-hop path: shortest among all paths with $\leq h$ edges

Suppose shortest h-hop path known for all pairs of nodes \Rightarrow Can compute all-pairs shortest paths in time $\mathcal{O}\left(n^{3} \log n / h\right)$:

- Hitting set of size $\mathcal{O}(n / h)$ (probabilistic argument)

Restricted hop depth

Definition

shortest h-hop path: shortest among all paths with $\leq h$ edges
Suppose shortest h-hop path known for all pairs of nodes \Rightarrow Can compute all-pairs shortest paths in time $\mathcal{O}\left(n^{3} \log n / h\right)$:

- Hitting set of size $\mathcal{O}(n / h)$ (probabilistic argument)

- Find hitting set C of size $\mathcal{O}(n \log n / h)$ in time $\mathcal{O}\left(n^{2} h\right)$ (greedy)

Restricted hop depth

Definition

shortest h-hop path: shortest among all paths with $\leq h$ edges
Suppose shortest h-hop path known for all pairs of nodes \Rightarrow Can compute all-pairs shortest paths in time $\mathcal{O}\left(n^{3} \log n / h\right)$:

- Hitting set of size $\mathcal{O}(n / h)$ (probabilistic argument)

- Find hitting set C of size $\mathcal{O}(n \log n / h)$ in time $\mathcal{O}\left(n^{2} h\right)$ (greedy)
- Compute shortest paths from nodes in $C: \mathcal{O}\left(n^{3} \log n / h\right)$

Restricted hop depth

Definition

shortest h-hop path: shortest among all paths with $\leq h$ edges
Suppose shortest h-hop path known for all pairs of nodes \Rightarrow Can compute all-pairs shortest paths in time $\mathcal{O}\left(n^{3} \log n / h\right)$:

- Hitting set of size $\mathcal{O}(n / h)$ (probabilistic argument)

- Find hitting set C of size $\mathcal{O}(n \log n / h)$ in time $\mathcal{O}\left(n^{2} h\right)$ (greedy)
- Compute shortest paths from nodes in $C: \mathcal{O}\left(n^{3} \log n / h\right)$
- For all pairs s, t :
$\operatorname{dist}(s, t)=\min \left(\operatorname{dist}^{h}(s, t), \min _{v \in C}(\operatorname{dist}(s, v)+\operatorname{dist}(v, t))\right)$

Summary

Known techniques allow the following restrictions:
(1) Only necessary to maintain shortest h-hop paths up to length (for some parameter h)

Summary

Known techniques allow the following restrictions:
(1) Only necessary to maintain shortest h-hop paths up to length (for some parameter h)
(2) To obtain a fully dynamic algorithm it is sufficient to design a deletions-only algorithm that

- can handle up to Δ deletions of nodes with worst-case guarantees
- after preprocessing the graph

Restart deletions-only algorithm each Δ updates

Repairing a shortest path tree

- Given: shortest path tree from s

Repairing a shortest path tree

- Given: shortest path tree from s
- Node v is deleted
- Shortest path destroyed only for nodes in subtree of v

Repairing a shortest path tree

- Given: shortest path tree from s
- Node v is deleted
- Shortest path destroyed only for nodes in subtree of v
- Run Dijkstra's algorithm to reattach these nodes to the tree
- Charge time $\mathcal{O}(\operatorname{deg}(u)) \leq \mathcal{O}(n)$ to every node u in subtree of v

Multiple shortest path trees

Goal: shortest paths from a set of source nodes S

Multiple shortest path trees

Goal: shortest paths from a set of source nodes S

Deletion of v

Multiple shortest path trees

Goal: shortest paths from a set of source nodes S

Deletion of v
Total work: (number of nodes in subtrees of v) $\times n$

Multiple shortest path trees

Goal: shortest paths from a set of source nodes S

Deletion of v
Total work: (number of nodes in subtrees of v) $\times n$
Goal: limit sizes of subtrees of each node

Preprocessing

Construct shortest path tree up to depth h for all sources one by one:

Count size of subtrees for every node Rule: If number of nodes in subtrees of v exceeds λ :

- v is added to set of heavy nodes H
- v is deleted from graph, i.e., not considered in future trees

Preprocessing

Construct shortest path tree up to depth h for all sources one by one:

Count size of subtrees for every node Rule: If number of nodes in subtrees of v exceeds λ :

- v is added to set of heavy nodes H
- v is deleted from graph, i.e., not considered in future trees

Preprocessing

Construct shortest path tree up to depth h for all sources one by one:

Count size of subtrees for every node Rule: If number of nodes in subtrees of v exceeds λ :

- v is added to set of heavy nodes H
- v is deleted from graph, i.e., not considered in future trees

Preprocessing

Construct shortest path tree up to depth h for all sources one by one:

Count size of subtrees for every node Rule: If number of nodes in subtrees of v exceeds λ :

- v is added to set of heavy nodes H
- v is deleted from graph, i.e., not considered in future trees

Preprocessing

Construct shortest path tree up to depth h for all sources one by one:

Count size of subtrees for every node Rule: If number of nodes in subtrees of v exceeds λ :

- v is added to set of heavy nodes H
- v is deleted from graph, i.e., not considered in future trees

Preprocessing

Construct shortest path tree up to depth h for all sources one by one:

Count size of subtrees for every node Rule: If number of nodes in subtrees of v exceeds λ :

- v is added to set of heavy nodes H
- v is deleted from graph, i.e., not considered in future trees

Observations:

- All shortest paths not using heavy nodes included in trees
- Number of heavy nodes: $|H| \leq \mathcal{O}\left(\frac{|S| n h}{\lambda}\right) \leq \mathcal{O}\left(\frac{n^{2} h}{\lambda}\right)$
- Preprocessing time: $\mathcal{O}\left(|S| n^{2}\right) \leq \mathcal{O}\left(n^{3}\right)$

Computing distances after Δ deletions

(1) For all deleted nodes: Reattach children to tree using Dijkstra Running time: $\mathcal{O}(\Delta \lambda n)$ per deletion

- Subtree size at most λ per node
- Number of deleted nodes at most Δ

Correct for all shortest paths not containing heavy nodes

Computing distances after Δ deletions

(1) For all deleted nodes: Reattach children to tree using Dijkstra Running time: $\mathcal{O}(\Delta \lambda n)$ per deletion

- Subtree size at most λ per node
- Number of deleted nodes at most Δ

Correct for all shortest paths not containing heavy nodes
(2) Special treatment of heavy nodes: shortest paths via heavy nodes Compute $\min _{v \in H}(\operatorname{dist}(s, v)+\operatorname{dist}(v, t))$ for all s and t
Time per deletion: $\mathcal{O}\left(|H| n^{2}\right)=\mathcal{O}\left(\frac{n^{4} h}{\lambda}\right)$

Running time wrapped up

- $\mathcal{O}(\Delta \lambda n)$ Repair shortest path trees
- $\mathcal{O}\left(\frac{n^{4} h}{\lambda}\right)$ Shortest paths via heavy nodes

Running time wrapped up

- $\mathcal{O}(\Delta \lambda n)$ Repair shortest path trees
- $\mathcal{O}\left(\frac{n^{4} h}{\lambda}\right)$ Shortest paths via heavy nodes
- $\mathcal{O}\left(\frac{n^{3}}{\Delta}\right)$ Preprocessing of $\mathcal{O}\left(n^{3}\right)$ spread over Δ updates

Running time wrapped up

- $\mathcal{O}(\Delta \lambda n)$ Repair shortest path trees
- $\mathcal{O}\left(\frac{n^{4} h}{\lambda}\right)$ Shortest paths via heavy nodes
- $\mathcal{O}\left(\frac{n^{3}}{\Delta}\right)$ Preprocessing of $\mathcal{O}\left(n^{3}\right)$ spread over Δ updates
- $\mathcal{O}\left(\Delta n^{2}\right)$ Shortest paths via inserted nodes
- $\tilde{\mathcal{O}}\left(n^{2} h+\frac{n^{3}}{h}\right)$ Shortest paths of length more than h

Running time wrapped up

- $\mathcal{O}(\Delta \lambda n)$ Repair shortest path trees
- $\mathcal{O}\left(\frac{n^{4} h}{\lambda}\right)$ Shortest paths via heavy nodes
- $\mathcal{O}\left(\frac{n^{3}}{\Delta}\right)$ Preprocessing of $\mathcal{O}\left(n^{3}\right)$ spread over Δ updates
- $\mathcal{O}\left(\Delta n^{2}\right)$ Shortest paths via inserted nodes
- $\tilde{\mathcal{O}}\left(n^{2} h+\frac{n^{3}}{h}\right)$ Shortest paths of length more than h

$$
\begin{gathered}
\Delta=n^{0.25}, \lambda=n^{1.5}, h=n^{0.25} \\
\Rightarrow \tilde{\mathcal{O}}\left(n^{2.75}\right)
\end{gathered}
$$

Improvements

Directed graphs:

Two types of shortest path trees: incoming and outgoing

Improvements

Directed graphs:

Two types of shortest path trees: incoming and outgoing
Weighted graphs:
Requires Bellman-Ford in preprocessing: $\mathcal{O}\left(n^{2} h\right)$ per node

Improvements

Directed graphs:

Two types of shortest path trees: incoming and outgoing

Weighted graphs:

Requires Bellman-Ford in preprocessing: $\mathcal{O}\left(n^{2} h\right)$ per node
Increased efficiency:
Multiple instances of algorithm to cover all hop ranges (+randomization) Load balancing trick

Barriers

Combinatorial approach [Thorup '05, Abraham/Chechik/Krinninger '17]

The best we can hope for:

- Preprocessing: $\mathcal{O}\left(n^{3}\right)$
- Spread preprocessing over Δ updates: $\mathcal{O}\left(n^{3} / k\right)$
- Deal with $\leq \Delta$ insertions after each update: $\mathcal{O}\left(n^{2} k\right)$
$\Rightarrow \mathcal{O}\left(n^{2.5}\right)$

Algebraic approach [Sankowski '04/'05]

Here: Intuition in DAGs

Algebraic approach [Sankowski '04/'05]

Here: Intuition in DAGs
Transitive closure:

- Count number of paths from s to t for all pairs
- Reachable iff \#paths >0
- Perform operations for counting modulo random prime
- Update time $\mathcal{O}\left(n^{2}\right)$
- Avoids special treatment of insertions

Algebraic approach [Sankowski '04/'05]

Here: Intuition in DAGs
Transitive closure:

- Count number of paths from s to t for all pairs
- Reachable iff \#paths >0
- Perform operations for counting modulo random prime
- Update time $\mathcal{O}\left(n^{2}\right)$
- Avoids special treatment of insertions

All-pairs shortest paths (distances):

- For every $1 \leq \ell \leq h$, count \#paths of length exactly ℓ
- Additional trick: fast convolution
- Update time: $\tilde{\mathcal{O}}\left(n^{2} h\right)$.
- Standard trick for hitting long paths: $h=\sqrt{n}$
$\Rightarrow \mathcal{O}\left(n^{2.5}\right)$

Open problems

How about the following worst-case bounds?

- Fully dynamic APSP: Meet $n^{2.5}$ barrier
- Fully dynamic APSP: $(1+\epsilon)$-approximation in $\tilde{\mathcal{O}}\left(n^{2} / \epsilon\right)$ time?
- Fully dynamic transitive closure: deterministic $\mathcal{O}\left(n^{2}\right)$ algorithm?

