Computing and Testing Small Connectivity in
Near-Linear Time and Queries via Fast Local Cut
Algorithms

Sebastian Forster
University of Salzburg

Joint work with Danupon Nanongkai, Thatchaphol Saranurak, Liu Yang, and Sorrachai
Yingchareonthawornchai

Workshop: Recent Trends in Theoretical Computer Science

https://www.cs.sbg.ac.at/~forster/
https://creativecommons.org/licenses/by/4.0/

Edge and Vertex Connectivity

Edge connectivity A/vertex connectivity x

Minimum number of edges/vertices to remove in order to make the graph not
strongly connected

Edge and Vertex Connectivity

Edge connectivity A/vertex connectivity x

Minimum number of edges/vertices to remove in order to make the graph not
strongly connected

Edge cut:

Edge and Vertex Connectivity

Edge connectivity A/vertex connectivity x

Minimum number of edges/vertices to remove in order to make the graph not
strongly connected

Edge cut: Vertex cut:

Edge and Vertex Connectivity

Edge connectivity A/vertex connectivity x

Minimum number of edges/vertices to remove in order to make the graph not
strongly connected

Edge cut: Vertex cut:

Motivation:
e Fundamental graph-theoretic notion

@ Applications: Reliability analysis, community detection

State of the Art and Results

Vertex connectivity in directed graphs:

Running time Deterministic Reference
O(n?373 4 pi2-373) no [Cheriyan/Reif '92]
é(mn) no [Henzinger et al. 96]
O(mn + kmn3/*) yes [Gabow "00]
O(mn + k%/*m) yes [Gabow "00]
O(Km4/3) no [Nanongkai et al. *19]
O(Km2/3n) no [Nanongkai et al. *19]
O(k%m) no Our result

O(K32m'?n + k3n) no Our result

State of the Art and Results

Vertex connectivity in directed graphs:

Running time Deterministic Reference
O(n?373 4 pi2-373) no [Cheriyan/Reif '92]

é(mn) no [Henzinger et al. 96]

O(mn + kmn3/*) yes [Gabow "00]

O(mn + k%/*m) yes [Gabow "00]
O(Km4/3) no [Nanongkai et al. *19]
O(Km2/3n) no [Nanongkai et al. *19]

O(k%m) no Our result

O(K32m'?n + k3n) no Our result

Undirected graphs: m — nk [Nagamochi/lbaraki '92] J

State of the Art and Results

Vertex connectivity in directed graphs:

Running time Deterministic Reference
O(n?373 4 pi2-373) no [Cheriyan/Reif '92]

é(mn) no [Henzinger et al. 96]

O(mn + kmn3/*) yes [Gabow "00]

O(mn + k%/*m) yes [Gabow "00]
O(Km4/3) no [Nanongkai et al. *19]
O(Km2/3n) no [Nanongkai et al. *19]

O(k%m) no Our result

O(K32m'?n + k3n) no Our result

Undirected graphs: m — nk [Nagamochi/lbaraki '92]

J

State of the art for edge connectivity in directed graphs: O(Am) [Gabow ’95]J

State of the Art and Results

Vertex connectivity in directed graphs:

Running time Deterministic Reference
O(n?373 4 pi2-373) no [Cheriyan/Reif '92]

é(mn) no [Henzinger et al. 96]
O(mn + kmn®/*) yes [Gabow *00]
O(mn + k%/*m) yes [Gabow "00]

O(Km4/3) no [Nanongkai et al. *19]

é(Km2/3n) no [Nanongkai et al. *19]
O(k%m) no Our result
O(K32m'?n + k3n) no Our result

Undirected graphs: m — nk [Nagamochi/lbaraki '92] J

State of the art for edge connectivity in directed graphs: O(Am) [Gabow ’95]J

Improvements also for finding k-edge connected subgraphs [Chechik et al. ’17]J

3/10

Property Testing Results

Algorithm needs to distinguish between graphs that are k-connected and
graphs that are e-far from being k-connected (cannot be made k-connected

by changing an e-fraction of the edges). Want to minimize the number of
edge queries to the graph.

Property Testing Results

Algorithm needs to distinguish between graphs that are k-connected and
graphs that are e-far from being k-connected (cannot be made k-connected
by changing an e-fraction of the edges). Want to minimize the number of
edge queries to the graph.

Graphs of bounded degree d:

Problem State of the art Our result
undirected k-edge conn. (5(- lk: 2) [Goldreich/Ron 02] o) (%)
e kd"k
~ k ~
directed k-edge conn.) (g—d) [Yoshida/Ito *10]) (%)
k ~
undirected k-vertex conn. (gd) d | [Yoshida/Ito 12] 0 (%)
directed k-vertex conn. 6] ((—5) d) Orenstein/Ron *11] 0 (%)

Property Testing Results

Algorithm needs to distinguish between graphs that are k-connected and
graphs that are e-far from being k-connected (cannot be made k-connected
by changing an e-fraction of the edges). Want to minimize the number of
edge queries to the graph.

Graphs of bounded degree d:

Problem State of the art Our result
undirected k-edge conn. 0 2k3 > | [Goldreich/Ron ’02] Ok
SRR €

~ k ~
directed k-edge conn. (0] (g—k) d | [Yoshida/Ito ’10] O (%)

~ k ~
undirected k-vertex conn. (0] (gd) d | [Yoshida/Ito 12] 0 (%)
directed k-vertex conn. 6] ((—5)) Orenstein/Ron *11] 0 (%)

Local Cut Problem

Idea: Detect smaller side of partition in time proportional to its volume (=
number of interior + outgoing edges)

Local Cut Problem

Idea: Detect smaller side of partition in time proportional to its volume (=
number of interior + outgoing edges)

A k-out component U C V has at most k edges going from U to V' \ U.

)

Local Cut Problem

Idea: Detect smaller side of partition in time proportional to its volume (=
number of interior + outgoing edges)

A k-out component U C V has at most k edges going from U to V' \ U.

Lemma
There is a local procedure that, given a seed vertex s, a target cut size k and a

target volume A runs in time O(k*A), and returns as follows:

@ Ifs is contained in an £-out component of volume < A for € < k, then it
returns an €-out component of volume < 3kA with probability at least %
@ Otherwise, it might return a k-out-component or L

Local Cut Problem

Idea: Detect smaller side of partition in time proportional to its volume (=
number of interior + outgoing edges)

A k-out component U C V has at most k edges going from U to V' \ U.

Lemma
There is a local procedure that, given a seed vertex s, a target cut size k and a

target volume A runs in time O(k*A), and returns as follows:

@ Ifs is contained in an £-out component of volume < A for € < k, then it
returns an €-out component of volume < 3kA with probability at least %
@ Otherwise, it might return a k-out-component or L

Core problem! Plugging in almost immediately implies our results!

Local Cut Problem

Idea: Detect smaller side of partition in time proportional to its volume (=
number of interior + outgoing edges)

A k-out component U C V has at most k edges going from U to V' \ U.)

Lemma

There is a local procedure that, given a seed vertex s, a target cut size k and a
target volume A runs in time O(k*A), and returns as follows:
@ Ifs is contained in an £-out component of volume < A for € < k, then it
returns an €-out component of volume < 3kA with probability at least %
@ Otherwise, it might return a k-out-component or L

Core problem! Plugging in almost immediately implies our results!
Prior work:

@ “Local” version of Karger’s algorithm [Goldreich/Ron 02]

e Exponential time [Orenstein/Ron 11] [Chechik et al. *17]

@ Local flow techniques [Nanongkai/Saranurak/Yingchareonthawornchai *19]
5/ 10

Randomization of Augmenting-Path ldea [Chechik et al. *17]

Seed vertex s, target cut size < k, target volume < A

6/10

Randomization of Augmenting-Path ldea [Chechik et al. *17]

Seed vertex s, target cut size < k, target volume < A
Algorithm:
@ Repeat k + 1 times:

> Perform depth-first-search from s processing up to 2kA many edges
> If DFS processes less than 2kA edges, return set of visited vertices

> Sample one of the edges processed in the DFS uniformly at random
> Let t be tail of sampled edge

> Reverse edges on path from s to t in DFS tree

@ Return L

Randomization of Augmenting-Path ldea [Chechik et al. *17]

Seed vertex s, target cut size < k, target volume < A
Algorithm:
@ Repeat k + 1 times:

> Perform depth-first-search from s processing up to 2kA many edges
> If DFS processes less than 2kA edges, return set of visited vertices

> Sample one of the edges processed in the DFS uniformly at random
> Let t be tail of sampled edge (ignoring reversal of edge)

> Reverse edges on path from s to t in DFS tree

@ Return L

Randomization of Augmenting-Path ldea [Chechik et al. *17]

Seed vertex s, target cut size < k, target volume < A
Algorithm:
@ Repeat k + 1 times:

> Perform depth-first-search from s processing up to 2kA many edges
> If DFS processes less than 2kA edges, return set of visited vertices

> Sample one of the edges processed in the DFS uniformly at random
> Let t be tail of sampled edge (ignoring reversal of edge)

> Reverse edges on path from s to t in DFS tree

@ Return L

Randomization of Augmenting-Path ldea [Chechik et al. *17]

Seed vertex s, target cut size < k, target volume < A
Algorithm:

@ Repeat k + 1 times:

> Perform depth-first-search from s processing up to 2kA many edges
> If DFS processes less than 2kA edges, return set of visited vertices

> Sample one of the edges processed in the DFS uniformly at random
> Let t be tail of sampled edge (ignoring reversal of edge)

> Reverse edges on path from s to t in DFS tree

@ Return L

Randomization of Augmenting-Path ldea [Chechik et al. *17]

Seed vertex s, target cut size < k, target volume < A
Algorithm:
@ Repeat k + 1 times:

> Perform depth-first-search from s processing up to 2kA many edges
> If DFS processes less than 2kA edges, return set of visited vertices

> Sample one of the edges processed in the DFS uniformly at random
> Let t be tail of sampled edge (ignoring reversal of edge)

> Reverse edges on path from s to t in DFS tree

@ Return L

Randomization of Augmenting-Path ldea [Chechik et al. *17]

Seed vertex s, target cut size < k, target volume < A
Algorithm:
@ Repeat k + 1 times:

> Perform depth-first-search from s processing up to 2kA many edges
> If DFS processes less than 2kA edges, return set of visited vertices

> Sample one of the edges processed in the DFS uniformly at random
> Let t be tail of sampled edge (ignoring reversal of edge)

> Reverse edges on path from s to t in DFS tree

@ Return L

Randomization of Augmenting-Path ldea [Chechik et al. *17]

Seed vertex s, target cut size < k, target volume < A
Algorithm:

@ Repeat k + 1 times:

> Perform depth-first-search from s processing up to 2kA many edges
> If DFS processes less than 2kA edges, return set of visited vertices

> Sample one of the edges processed in the DFS uniformly at random
> Let t be tail of sampled edge (ignoring reversal of edge)

> Reverse edges on path from s to t in DFS tree

@ Return L

Randomization of Augmenting-Path ldea [Chechik et al. *17]

Seed vertex s, target cut size < k, target volume < A
Algorithm:

@ Repeat k + 1 times:

> Perform depth-first-search from s processing up to 2kA many edges
> If DFS processes less than 2kA edges, return set of visited vertices

> Sample one of the edges processed in the DFS uniformly at random
> Let t be tail of sampled edge (ignoring reversal of edge)

> Reverse edges on path from s to t in DFS tree

@ Return L

Randomization of Augmenting-Path ldea [Chechik et al. *17]

Seed vertex s, target cut size < k, target volume < A
Algorithm:

@ Repeat k + 1 times:

> Perform depth-first-search from s processing up to 2kA many edges
> If DFS processes less than 2kA edges, return set of visited vertices

> Sample one of the edges processed in the DFS uniformly at random
> Let t be tail of sampled edge (ignoring reversal of edge)

> Reverse edges on path from s to t in DFS tree

@ Return L

Randomization of Augmenting-Path ldea [Chechik et al. *17]

Seed vertex s, target cut size < k, target volume < A
Algorithm:

@ Repeat k + 1 times:

> Perform depth-first-search from s processing up to 2kA many edges
> If DFS processes less than 2kA edges, return set of visited vertices

> Sample one of the edges processed in the DFS uniformly at random
> Let t be tail of sampled edge (ignoring reversal of edge)

> Reverse edges on path from s to t in DFS tree

@ Return L

Randomization of Augmenting-Path ldea [Chechik et al. *17]

Seed vertex s, target cut size < k, target volume < A
Algorithm:

@ Repeat k + 1 times:

> Perform depth-first-search from s processing up to 2kA many edges
> If DFS processes less than 2kA edges, return set of visited vertices

> Sample one of the edges processed in the DFS uniformly at random
> Let t be tail of sampled edge (ignoring reversal of edge)

> Reverse edges on path from s to t in DFS tree

@ Return L

Randomization of Augmenting-Path ldea [Chechik et al. *17]

Seed vertex s, target cut size < k, target volume < A
Algorithm:

@ Repeat k + 1 times:

> Perform depth-first-search from s processing up to 2kA many edges
> If DFS processes less than 2kA edges, return set of visited vertices

> Sample one of the edges processed in the DFS uniformly at random
> Let t be tail of sampled edge (ignoring reversal of edge)

> Reverse edges on path from s to t in DFS tree

@ Return L

Analysis |

Claim 1 [Chechik et al. *17]
Let U C V contain s, let t € V, and reverse the edges on a path from s to t.
e Ift ¢ U, then the number of edges leaving U is reduced by one.

@ Otherwise, the number of edges leaving U stays the same.

Analysis |

Claim 1 [Chechik et al. *17]
Let U C V contain s, let t € V, and reverse the edges on a path from s to t.

e Ift ¢ U, then the number of edges leaving U is reduced by one.

@ Otherwise, the number of edges leaving U stays the same.

Case 1:t ¢ U Case2:teU__
e \\\ - \\\
- -
// A /’ AN
/ N3 y \
/ A / \
\ y \
:/ ! | :
@ } v @ l
\ S / A N I
\ / \\ /
\
\ // 2 N € /

Analysis |

Claim 1 [Chechik et al. *17]
Let U C V contain s, let t € V, and reverse the edges on a path from s to t.
e Ift ¢ U, then the number of edges leaving U is reduced by one.

@ Otherwise, the number of edges leaving U stays the same.

Case 1:t ¢ U __ Case2:teU__

Odd number of crossings Even number of crossings

Analysis |

Claim 1 [Chechik et al. *17]
Let U C V contain s, let t € V, and reverse the edges on a path from s to t.
e Ift ¢ U, then the number of edges leaving U is reduced by one.

@ Otherwise, the number of edges leaving U stays the same.

Case 1:t ¢ U __ Case2:teU__

= ~

Odd number of crossings Even number of crossings

Analysis Il

Claim 2

If the procedure returns a set of vertices U in iteration £ + 1, then U is an
{-out-component with vol(U) < 2kA + € < 3kA.

10

Analysis Il
Claim 2

If the procedure returns a set of vertices U in iteration € + 1, then U is an
{-out-component with vol(U) < 2kA + € < 3kA.

Idea: For component found by DFS, number of out-edges reduces by at most
one in each iteration

8/10

Analysis Il
Claim 2

If the procedure returns a set of vertices U in iteration € + 1, then U is an
{-out-component with vol(U) < 2kA + € < 3kA.

Idea: For component found by DFS, number of out-edges reduces by at most
one in each iteration

Claim 3

If there is an £-out-component C of volume < A containing s for £ < k, then
the procedure returns an £-out-component with probability > %

8

Analysis Il
Claim 2

If the procedure returns a set of vertices U in iteration € + 1, then U is an
{-out-component with vol(U) < 2kA + € < 3kA.

Idea: For component found by DFS, number of out-edges reduces by at most
one in each iteration

Claim 3

If there is an £-out-component C of volume < A containing s for £ < k, then
the procedure returns an £-out-component with probability > %

Proof

o Algorithm succeeds if in first k iterations always tail of sampled edge
outside of component C (known to exist)

8/10

Analysis II
Claim 2

If the procedure returns a set of vertices U in iteration € + 1, then U is an
{-out-component with vol(U) < 2kA + € < 3kA.

Idea: For component found by DFS, number of out-edges reduces by at most
one in each iteration

Claim 3

If there is an £-out-component C of volume < A containing s for £ < k, then
the procedure returns an £-out-component with probability > %

Proof

o Algorithm succeeds if in first k iterations always tail of sampled edge
outside of component C (known to exist)
@ vol(C) < A and DFS processes = 2kA many edges

8/10

Analysis II
Claim 2

If the procedure returns a set of vertices U in iteration € + 1, then U is an
{-out-component with vol(U) < 2kA + € < 3kA.

Idea: For component found by DFS, number of out-edges reduces by at most
one in each iteration

Claim 3

If there is an £-out-component C of volume < A containing s for £ < k, then
the procedure returns an £-out-component with probability > %

Proof
o Algorithm succeeds if in first k iterations always tail of sampled edge
outside of component C (known to exist)
@ vol(C) < A and DFS processes = 2kA many edges
o Tail of sampled edge will lie inside of C with probability < #

8/10

Analysis II
Claim 2

If the procedure returns a set of vertices U in iteration € + 1, then U is an
{-out-component with vol(U) < 2kA + € < 3kA.

Idea: For component found by DFS, number of out-edges reduces by at most
one in each iteration

Claim 3

If there is an £-out-component C of volume < A containing s for £ < k, then
the procedure returns an £-out-component with probability > %

Proof
o Algorithm succeeds if in first k iterations always tail of sampled edge
outside of component C (known to exist)
@ vol(C) < A and DFS processes = 2kA many edges
o Tail of sampled edge will lie inside of C with probability < #
@ By Union Bound: algorithms fails with probability < %

8/10

Conclusion

Extensions:

@ Extension to vertex connectivity
Standard reduction (directed!) with some minor adjustments

Conclusion

Extensions:
@ Extension to vertex connectivity
Standard reduction (directed!) with some minor adjustments

@ Appproximation version
Sampling only outside of component in a fraction of cases

Conclusion

Extensions:

@ Extension to vertex connectivity
Standard reduction (directed!) with some minor adjustments

@ Appproximation version
Sampling only outside of component in a fraction of cases

@ Can save a factor of k in query complexity
(Useful for property testing)

Conclusion

Extensions:

@ Extension to vertex connectivity
Standard reduction (directed!) with some minor adjustments

@ Appproximation version
Sampling only outside of component in a fraction of cases

@ Can save a factor of k in query complexity
(Useful for property testing)

Summary:
e Significant progress for fundamental graph problems

Conclusion

Extensions:

@ Extension to vertex connectivity
Standard reduction (directed!) with some minor adjustments

@ Appproximation version
Sampling only outside of component in a fraction of cases

@ Can save a factor of k in query complexity
(Useful for property testing)

Summary:
e Significant progress for fundamental graph problems

@ Local procedure was pivotal to better time/query complexities

Conclusion

Extensions:

@ Extension to vertex connectivity
Standard reduction (directed!) with some minor adjustments

@ Appproximation version
Sampling only outside of component in a fraction of cases

@ Can save a factor of k in query complexity
(Useful for property testing)

Summary:
e Significant progress for fundamental graph problems

@ Local procedure was pivotal to better time/query complexities
Exponential improvement: from O(2°®) A) [Chechik et al. *17] to O(k*A) at
the cost of randomization

Thank you!

111111

