Computing and Testing Small Connectivity in Near-Linear Time and Queries via Fast Local Cut Algorithms

Sebastian Forster
University of Salzburg
Joint work with Danupon Nanongkai, Thatchaphol Saranurak, Liu Yang, and Sorrachai Yingchareonthawornchai

Workshop: Recent Trends in Theoretical Computer Science

Edge and Vertex Connectivity

Edge connectivity $\lambda /$ vertex connectivity κ
Minimum number of edges/vertices to remove in order to make the graph not strongly connected

Edge and Vertex Connectivity

Edge connectivity $\lambda /$ vertex connectivity κ

Minimum number of edges/vertices to remove in order to make the graph not strongly connected

Edge cut:

Edge and Vertex Connectivity

Edge connectivity $\lambda /$ vertex connectivity κ

Minimum number of edges/vertices to remove in order to make the graph not strongly connected

Edge cut:

Vertex cut:

Edge and Vertex Connectivity

Edge connectivity $\lambda /$ vertex connectivity κ

Minimum number of edges/vertices to remove in order to make the graph not strongly connected

Edge cut:

Vertex cut:

Motivation:

- Fundamental graph-theoretic notion
- Applications: Reliability analysis, community detection

State of the Art and Results

Vertex connectivity in directed graphs:

Running time	Deterministic	Reference
$\tilde{O}\left(n^{2.373}+n \kappa^{2.373}\right)$	no	[Cheriyan/Reif '92]
$\tilde{O}(m n)$	no	[Henzinger et al. '96]
$O\left(m n+\kappa m n^{3 / 4}\right)$	yes	[Gabow '00]
$O\left(m n+\kappa^{5 / 2} m\right)$	yes	[Gabow '00]
$\tilde{O}\left(\kappa m^{4 / 3}\right)$	no	[Nanongkai et al. '19]
$\tilde{O}\left(\kappa m^{2 / 3} n\right)$	no	[Nanongkai et al. '19]
$\tilde{O}\left(\kappa^{2} m\right)$	no	Our result
$\tilde{O}\left(\kappa^{3 / 2} m^{1 / 2} n+\kappa^{3} n\right)$	no	Our result

State of the Art and Results

Vertex connectivity in directed graphs:

Running time	Deterministic	Reference
$\tilde{O}\left(n^{2.373}+n \kappa^{2.373}\right)$	no	[Cheriyan/Reif '92]
$\tilde{O}(m n)$	no	[Henzinger et al. '96]
$O\left(m n+\kappa m n^{3 / 4}\right)$	yes	[Gabow '00]
$O\left(m n+\kappa^{5 / 2} m\right)$	yes	[Gabow '00]
$\tilde{O}\left(\kappa m^{4 / 3}\right)$	no	[Nanongkai et al. '19]
$\tilde{O}\left(\kappa m^{2 / 3} n\right)$	no	[Nanongkai et al. '19]
$\tilde{O}\left(\kappa^{2} m\right)$	no	Our result
$\tilde{O}\left(\kappa^{3 / 2} m^{1 / 2} n+\kappa^{3} n\right)$	no	Our result

Undirected graphs: $m \rightarrow n \kappa$ [Nagamochi/Ibaraki '92]

State of the Art and Results

Vertex connectivity in directed graphs:

Running time	Deterministic	Reference
$\tilde{O}\left(n^{2.373}+n \kappa^{2.373}\right)$	no	[Cheriyan/Reif '92]
$\tilde{O}(m n)$	no	[Henzinger et al. '96]
$O\left(m n+\kappa m n^{3 / 4}\right)$	yes	[Gabow '00]
$O\left(m n+\kappa^{5 / 2} m\right)$	yes	[Gabow '00]
$\tilde{O}\left(\kappa m^{4 / 3}\right)$	no	[Nanongkai et al. '19]
$\tilde{O}\left(\kappa m^{2 / 3} n\right)$	no	[Nanongkai et al. '19]
$\tilde{O}\left(\kappa^{2} m\right)$	no	Our result
$\tilde{O}\left(\kappa^{3 / 2} m^{1 / 2} n+\kappa^{3} n\right)$	no	Our result

Undirected graphs: $m \rightarrow n \kappa$ [Nagamochi/Ibaraki '92]

State of the art for edge connectivity in directed graphs: $\tilde{O}(\lambda m)$ [Gabow '95]

State of the Art and Results

Vertex connectivity in directed graphs:

Running time	Deterministic	Reference
$\tilde{O}\left(n^{2.373}+n \kappa^{2.373}\right)$	no	[Cheriyan/Reif '92]
$\tilde{O}(m n)$	no	[Henzinger et al. '96]
$O\left(m n+\kappa m n^{3 / 4}\right)$	yes	[Gabow '00]
$O\left(m n+\kappa^{5 / 2} m\right)$	yes	[Gabow '00]
$\tilde{O}\left(\kappa m^{4 / 3}\right)$	no	[Nanongkai et al. '19]
$\tilde{O}\left(\kappa m^{2 / 3} n\right)$	no	[Nanongkai et al. '19]
$\tilde{O}\left(\kappa^{2} m\right)$	no	Our result
$\tilde{O}\left(\kappa^{3 / 2} m^{1 / 2} n+\kappa^{3} n\right)$	no	Our result

Undirected graphs: $m \rightarrow n \kappa$ [Nagamochi/Ibaraki '92]

State of the art for edge connectivity in directed graphs: $\tilde{O}(\lambda m)$ [Gabow '95]
Improvements also for finding k-edge connected subgraphs [Chechik et al. '17]

Property Testing Results

Algorithm needs to distinguish between graphs that are k-connected and graphs that are ϵ-far from being k-connected (cannot be made k-connected by changing an ϵ-fraction of the edges). Want to minimize the number of edge queries to the graph.

Property Testing Results

Algorithm needs to distinguish between graphs that are k-connected and graphs that are ϵ-far from being k-connected (cannot be made k-connected by changing an ϵ-fraction of the edges). Want to minimize the number of edge queries to the graph.

Graphs of bounded degree d :

Problem

undirected k-edge conn.
directed k-edge conn.
undirected k-vertex conn.
Our result
$\tilde{O}\left(\frac{k}{\epsilon}\right)$
$\tilde{O}\left(\frac{k}{\epsilon}\right)$
$\tilde{O}\left(\frac{k}{\epsilon}\right)$
directed k-vertex conn.
$\tilde{O}\left(\frac{k^{3}}{\epsilon^{3-\frac{2}{k}} d^{2-\frac{2}{k}}}\right)$ [Goldreich/Ron '02]
State of the art $\tilde{O}\left(\left(\frac{c k}{\epsilon d}\right)^{k} d\right)$ [Yoshida/Ito '10] $\tilde{O}\left(\left(\frac{c k}{\epsilon d}\right)^{k} d\right)$ [Yoshida/Ito '12]

$$
\tilde{O}\left(\left(\frac{c k}{\epsilon d}\right)^{k} d\right) \text { [Orenstein/Ron '11] }
$$

Property Testing Results

Algorithm needs to distinguish between graphs that are k-connected and graphs that are ϵ-far from being k-connected (cannot be made k-connected by changing an ϵ-fraction of the edges). Want to minimize the number of edge queries to the graph.

Graphs of bounded degree d :

Problem

undirected k-edge conn.
directed k-edge conn.
undirected k-vertex conn.
directed k-vertex conn.

$$
\tilde{O}\left(\frac{k^{3}}{\epsilon^{3-\frac{2}{k}} d^{2-\frac{2}{k}}}\right) \text { [Goldreich/Ron '02] }
$$

Our result
$\tilde{O}\left(\frac{k}{\epsilon}\right)$
$\tilde{O}\left(\frac{k}{\epsilon}\right)$
$\tilde{O}\left(\frac{k}{\epsilon}\right)$
State of the art $\tilde{O}\left(\left(\frac{c k}{\epsilon d}\right)^{k} d\right)$ [Yoshida/Ito '10] $\tilde{O}\left(\left(\frac{c k}{\epsilon d}\right)^{k} d\right)$ [Yoshida/Ito '12] $\tilde{O}\left(\left(\frac{c k}{\epsilon d}\right)^{k} d\right)$ [Orenstein/Ron '11]
$\tilde{O}\left(\frac{k}{\epsilon}\right)$

Similar improvements for graphs of unbounded degree (w.r.t. avg. degree)

Local Cut Problem

Idea: Detect smaller side of partition in time proportional to its volume (= number of interior + outgoing edges)

Local Cut Problem

Idea: Detect smaller side of partition in time proportional to its volume (= number of interior + outgoing edges)

A k-out component $U \subseteq V$ has at most k edges going from U to $V \backslash U$.

Local Cut Problem

Idea: Detect smaller side of partition in time proportional to its volume (= number of interior + outgoing edges)

A k-out component $U \subseteq V$ has at most k edges going from U to $V \backslash U$.

Lemma

There is a local procedure that, given a seed vertex s, a target cut size k and a target volume Δ runs in time $O\left(k^{2} \Delta\right)$, and returns as follows:
(1) If s is contained in an ℓ-out component of volume $\leq \Delta$ for $\ell \leq k$, then it returns an ℓ-out component of volume $\leq 3 k \Delta$ with probability at least $\frac{1}{2}$
(2) Otherwise, it might return a k-out-component or \perp

Local Cut Problem

Idea: Detect smaller side of partition in time proportional to its volume (= number of interior + outgoing edges)

A k-out component $U \subseteq V$ has at most k edges going from U to $V \backslash U$.

Lemma

There is a local procedure that, given a seed vertex s, a target cut size k and a target volume Δ runs in time $O\left(k^{2} \Delta\right)$, and returns as follows:
(1) If s is contained in an ℓ-out component of volume $\leq \Delta$ for $\ell \leq k$, then it returns an ℓ-out component of volume $\leq 3 k \Delta$ with probability at least $\frac{1}{2}$
(2) Otherwise, it might return a k-out-component or \perp

Core problem! Plugging in almost immediately implies our results!

Local Cut Problem

Idea: Detect smaller side of partition in time proportional to its volume (= number of interior + outgoing edges)

A k-out component $U \subseteq V$ has at most k edges going from U to $V \backslash U$.

Lemma

There is a local procedure that, given a seed vertex s, a target cut size k and a target volume Δ runs in time $O\left(k^{2} \Delta\right)$, and returns as follows:
(1) If s is contained in an ℓ-out component of volume $\leq \Delta$ for $\ell \leq k$, then it returns an ℓ-out component of volume $\leq 3 k \Delta$ with probability at least $\frac{1}{2}$
(2) Otherwise, it might return a k-out-component or \perp

Core problem! Plugging in almost immediately implies our results!

Prior work:

- "Local" version of Karger's algorithm [Goldreich/Ron '02]
- Exponential time [Orenstein/Ron '11] [Chechik et al. '17]
- Local flow techniques [Nanongkai/Saranurak/Yingchareonthawornchai '19]

Randomization of Augmenting-Path Idea [Chechik et al. '17]

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$

Randomization of Augmenting-Path Idea [Chechik et al. '17]

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$

Algorithm:

- Repeat $k+1$ times:
- Perform depth-first-search from s processing up to $2 k \Delta$ many edges
- If DFS processes less than $2 k \Delta$ edges, return set of visited vertices
- Sample one of the edges processed in the DFS uniformly at random
- Let t be tail of sampled edge
- Reverse edges on path from s to t in DFS tree
- Return \perp

Randomization of Augmenting-Path Idea [Chechik et al. '17]

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$

Algorithm:

- Repeat $k+1$ times:
- Perform depth-first-search from s processing up to $2 k \Delta$ many edges
- If DFS processes less than $2 k \Delta$ edges, return set of visited vertices
- Sample one of the edges processed in the DFS uniformly at random
- Let t be tail of sampled edge (ignoring reversal of edge)
- Reverse edges on path from s to t in DFS tree
- Return \perp

Randomization of Augmenting-Path Idea [Chechik et al. '17]

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$

Algorithm:

- Repeat $k+1$ times:
- Perform depth-first-search from s processing up to $2 k \Delta$ many edges
- If DFS processes less than $2 k \Delta$ edges, return set of visited vertices
- Sample one of the edges processed in the DFS uniformly at random
- Let t be tail of sampled edge (ignoring reversal of edge)
- Reverse edges on path from s to t in DFS tree
- Return \perp

Randomization of Augmenting-Path Idea [Chechik et al. '17]

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$

Algorithm:

- Repeat $k+1$ times:
- Perform depth-first-search from s processing up to $2 k \Delta$ many edges
- If DFS processes less than $2 k \Delta$ edges, return set of visited vertices
- Sample one of the edges processed in the DFS uniformly at random
- Let t be tail of sampled edge (ignoring reversal of edge)
- Reverse edges on path from s to t in DFS tree
- Return \perp

Randomization of Augmenting-Path Idea [Chechik et al. '17]

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$

Algorithm:

- Repeat $k+1$ times:
- Perform depth-first-search from s processing up to $2 k \Delta$ many edges
- If DFS processes less than $2 k \Delta$ edges, return set of visited vertices
- Sample one of the edges processed in the DFS uniformly at random
- Let t be tail of sampled edge (ignoring reversal of edge)
- Reverse edges on path from s to t in DFS tree
- Return \perp

Randomization of Augmenting-Path Idea [Chechik et al. '17]

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$

Algorithm:

- Repeat $k+1$ times:
- Perform depth-first-search from s processing up to $2 k \Delta$ many edges
- If DFS processes less than $2 k \Delta$ edges, return set of visited vertices
- Sample one of the edges processed in the DFS uniformly at random
- Let t be tail of sampled edge (ignoring reversal of edge)
- Reverse edges on path from s to t in DFS tree
- Return \perp

Randomization of Augmenting-Path Idea [Chechik et al. '17]

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$

Algorithm:

- Repeat $k+1$ times:
- Perform depth-first-search from s processing up to $2 k \Delta$ many edges
- If DFS processes less than $2 k \Delta$ edges, return set of visited vertices
- Sample one of the edges processed in the DFS uniformly at random
- Let t be tail of sampled edge (ignoring reversal of edge)
- Reverse edges on path from s to t in DFS tree
- Return \perp

Randomization of Augmenting-Path Idea [Chechik et al. '17]

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$

Algorithm:

- Repeat $k+1$ times:
- Perform depth-first-search from s processing up to $2 k \Delta$ many edges
- If DFS processes less than $2 k \Delta$ edges, return set of visited vertices
- Sample one of the edges processed in the DFS uniformly at random
- Let t be tail of sampled edge (ignoring reversal of edge)
- Reverse edges on path from s to t in DFS tree
- Return \perp

Randomization of Augmenting-Path Idea [Chechik et al. '17]

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$

Algorithm:

- Repeat $k+1$ times:
- Perform depth-first-search from s processing up to $2 k \Delta$ many edges
- If DFS processes less than $2 k \Delta$ edges, return set of visited vertices
- Sample one of the edges processed in the DFS uniformly at random
- Let t be tail of sampled edge (ignoring reversal of edge)
- Reverse edges on path from s to t in DFS tree
- Return \perp

Randomization of Augmenting-Path Idea [Chechik et al. '17]

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$

Algorithm:

- Repeat $k+1$ times:
- Perform depth-first-search from s processing up to $2 k \Delta$ many edges
- If DFS processes less than $2 k \Delta$ edges, return set of visited vertices
- Sample one of the edges processed in the DFS uniformly at random
- Let t be tail of sampled edge (ignoring reversal of edge)
- Reverse edges on path from s to t in DFS tree
- Return \perp

Randomization of Augmenting-Path Idea [Chechik et al. '17]

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$

Algorithm:

- Repeat $k+1$ times:
- Perform depth-first-search from s processing up to $2 k \Delta$ many edges
- If DFS processes less than $2 k \Delta$ edges, return set of visited vertices
- Sample one of the edges processed in the DFS uniformly at random
- Let t be tail of sampled edge (ignoring reversal of edge)
- Reverse edges on path from s to t in DFS tree
- Return \perp

Randomization of Augmenting-Path Idea [Chechik et al. '17]

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$

Algorithm:

- Repeat $k+1$ times:
- Perform depth-first-search from s processing up to $2 k \Delta$ many edges
- If DFS processes less than $2 k \Delta$ edges, return set of visited vertices
- Sample one of the edges processed in the DFS uniformly at random
- Let t be tail of sampled edge (ignoring reversal of edge)
- Reverse edges on path from s to t in DFS tree
- Return \perp

Analysis I

Claim 1 [Chechik et al. '17]

Let $U \subseteq V$ contain s, let $t \in V$, and reverse the edges on a path from s to t.

- If $t \notin U$, then the number of edges leaving U is reduced by one.
- Otherwise, the number of edges leaving U stays the same.

Analysis I

Claim 1 [Chechik et al. '17]

Let $U \subseteq V$ contain s, let $t \in V$, and reverse the edges on a path from s to t.

- If $t \notin U$, then the number of edges leaving U is reduced by one.
- Otherwise, the number of edges leaving U stays the same.

Analysis I

Claim 1 [Chechik et al. '17]

Let $U \subseteq V$ contain s, let $t \in V$, and reverse the edges on a path from s to t.

- If $t \notin U$, then the number of edges leaving U is reduced by one.
- Otherwise, the number of edges leaving U stays the same.

Odd number of crossings

Even number of crossings

Analysis I

Claim 1 [Chechik et al. '17]

Let $U \subseteq V$ contain s, let $t \in V$, and reverse the edges on a path from s to t.

- If $t \notin U$, then the number of edges leaving U is reduced by one.
- Otherwise, the number of edges leaving U stays the same.

Odd number of crossings

Even number of crossings

Analysis II

Claim 2
If the procedure returns a set of vertices U in iteration $\ell+1$, then U is an ℓ-out-component with $\operatorname{vol}(U) \leq 2 k \Delta+\ell \leq 3 k \Delta$.

Analysis II

Claim 2

If the procedure returns a set of vertices U in iteration $\ell+1$, then U is an ℓ-out-component with $\operatorname{vol}(U) \leq 2 k \Delta+\ell \leq 3 k \Delta$.

Idea: For component found by DFS, number of out-edges reduces by at most one in each iteration

Analysis II

Claim 2

If the procedure returns a set of vertices U in iteration $\ell+1$, then U is an ℓ-out-component with $\operatorname{vol}(U) \leq 2 k \Delta+\ell \leq 3 k \Delta$.

Idea: For component found by DFS, number of out-edges reduces by at most one in each iteration

Claim 3

If there is an ℓ-out-component C of volume $\leq \Delta$ containing s for $\ell \leq k$, then the procedure returns an ℓ-out-component with probability $\geq \frac{1}{2}$.

Analysis II

Claim 2

If the procedure returns a set of vertices U in iteration $\ell+1$, then U is an ℓ-out-component with $\operatorname{vol}(U) \leq 2 k \Delta+\ell \leq 3 k \Delta$.

Idea: For component found by DFS, number of out-edges reduces by at most one in each iteration

Claim 3

If there is an ℓ-out-component C of volume $\leq \Delta$ containing s for $\ell \leq k$, then the procedure returns an ℓ-out-component with probability $\geq \frac{1}{2}$.

Proof

- Algorithm succeeds if in first k iterations always tail of sampled edge outside of component C (known to exist)

Analysis II

Claim 2

If the procedure returns a set of vertices U in iteration $\ell+1$, then U is an ℓ-out-component with $\operatorname{vol}(U) \leq 2 k \Delta+\ell \leq 3 k \Delta$.

Idea: For component found by DFS, number of out-edges reduces by at most one in each iteration

Claim 3

If there is an ℓ-out-component C of volume $\leq \Delta$ containing s for $\ell \leq k$, then the procedure returns an ℓ-out-component with probability $\geq \frac{1}{2}$.

Proof

- Algorithm succeeds if in first k iterations always tail of sampled edge outside of component C (known to exist)
- $\operatorname{vol}(C) \leq \Delta$ and DFS processes $=2 k \Delta$ many edges

Analysis II

Claim 2

If the procedure returns a set of vertices U in iteration $\ell+1$, then U is an ℓ-out-component with $\operatorname{vol}(U) \leq 2 k \Delta+\ell \leq 3 k \Delta$.

Idea: For component found by DFS, number of out-edges reduces by at most one in each iteration

Claim 3

If there is an ℓ-out-component C of volume $\leq \Delta$ containing s for $\ell \leq k$, then the procedure returns an ℓ-out-component with probability $\geq \frac{1}{2}$.

Proof

- Algorithm succeeds if in first k iterations always tail of sampled edge outside of component C (known to exist)
- $\operatorname{vol}(C) \leq \Delta$ and DFS processes $=2 k \Delta$ many edges
- Tail of sampled edge will lie inside of C with probability $\leq \frac{1}{2 k}$

Analysis II

Claim 2

If the procedure returns a set of vertices U in iteration $\ell+1$, then U is an ℓ-out-component with $\operatorname{vol}(U) \leq 2 k \Delta+\ell \leq 3 k \Delta$.

Idea: For component found by DFS, number of out-edges reduces by at most one in each iteration

Claim 3

If there is an ℓ-out-component C of volume $\leq \Delta$ containing s for $\ell \leq k$, then the procedure returns an ℓ-out-component with probability $\geq \frac{1}{2}$.

Proof

- Algorithm succeeds if in first k iterations always tail of sampled edge outside of component C (known to exist)
- $\operatorname{vol}(C) \leq \Delta$ and DFS processes $=2 k \Delta$ many edges
- Tail of sampled edge will lie inside of C with probability $\leq \frac{1}{2 k}$
- By Union Bound: algorithms fails with probability $\leq \frac{1}{2}$

Conclusion

Extensions:

(1) Extension to vertex connectivity

Standard reduction (directed!) with some minor adjustments

Conclusion

Extensions:

(1) Extension to vertex connectivity

Standard reduction (directed!) with some minor adjustments
(2) Appproximation version

Sampling only outside of component in a fraction of cases

Conclusion

Extensions:

(1) Extension to vertex connectivity

Standard reduction (directed!) with some minor adjustments
(2) Appproximation version

Sampling only outside of component in a fraction of cases
(3) Can save a factor of k in query complexity (Useful for property testing)

Conclusion

Extensions:

(1) Extension to vertex connectivity

Standard reduction (directed!) with some minor adjustments
(2) Appproximation version

Sampling only outside of component in a fraction of cases
(3) Can save a factor of k in query complexity (Useful for property testing)

Summary:

- Significant progress for fundamental graph problems

Conclusion

Extensions:

(1) Extension to vertex connectivity

Standard reduction (directed!) with some minor adjustments
(2) Appproximation version

Sampling only outside of component in a fraction of cases
(3) Can save a factor of k in query complexity (Useful for property testing)

Summary:

- Significant progress for fundamental graph problems
- Local procedure was pivotal to better time/query complexities

Conclusion

Extensions:

(1) Extension to vertex connectivity

Standard reduction (directed!) with some minor adjustments
(2) Appproximation version

Sampling only outside of component in a fraction of cases
(3) Can save a factor of k in query complexity (Useful for property testing)

Summary:

- Significant progress for fundamental graph problems
- Local procedure was pivotal to better time/query complexities Exponential improvement: from $O\left(2^{O(k)} \Delta\right)$ [Chechik et al. '17] to $O\left(k^{2} \Delta\right)$ at the cost of randomization

Thank you!

