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Motivation:
e Fundamental graph-theoretic notion

@ Applications: Reliability analysis, community detection
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Running time Deterministic Reference
O(n?373 4 pi2-373) no [Cheriyan/Reif '92]

é(mn) no [Henzinger et al. 96]
O(mn + kmn®/*) yes [Gabow *00]
O(mn + k%/*m) yes [Gabow "00]

O(Km4/3) no [Nanongkai et al. *19]

é(Km2/3n) no [Nanongkai et al. *19]
O(k%m) no Our result
O(K32m'?n + k3n) no Our result

Undirected graphs: m — nk [Nagamochi/lbaraki '92] J

State of the art for edge connectivity in directed graphs: O(Am) [Gabow ’95]J

Improvements also for finding k-edge connected subgraphs [Chechik et al. ’17]J
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Idea: Detect smaller side of partition in time proportional to its volume (=
number of interior + outgoing edges)

A k-out component U C V has at most k edges going from U to V' \ U. )

Lemma

There is a local procedure that, given a seed vertex s, a target cut size k and a
target volume A runs in time O(k*A), and returns as follows:
@ Ifs is contained in an £-out component of volume < A for € < k, then it
returns an €-out component of volume < 3kA with probability at least %
@ Otherwise, it might return a k-out-component or L

Core problem! Plugging in almost immediately implies our results!
Prior work:

@ “Local” version of Karger’s algorithm [Goldreich/Ron 02]

e Exponential time [Orenstein/Ron 11] [Chechik et al. *17]

@ Local flow techniques [Nanongkai/Saranurak/Yingchareonthawornchai *19]
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Claim 1 [Chechik et al. *17]
Let U C V contain s, let t € V, and reverse the edges on a path from s to t.
e Ift ¢ U, then the number of edges leaving U is reduced by one.

@ Otherwise, the number of edges leaving U stays the same.
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Claim 2

If the procedure returns a set of vertices U in iteration € + 1, then U is an
{-out-component with vol(U) < 2kA + € < 3kA.

Idea: For component found by DFS, number of out-edges reduces by at most
one in each iteration

Claim 3

If there is an £-out-component C of volume < A containing s for £ < k, then
the procedure returns an £-out-component with probability > %

Proof
o Algorithm succeeds if in first k iterations always tail of sampled edge
outside of component C (known to exist)
@ vol(C) < A and DFS processes = 2kA many edges
o Tail of sampled edge will lie inside of C with probability < #
@ By Union Bound: algorithms fails with probability < %
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Conclusion

Extensions:

@ Extension to vertex connectivity
Standard reduction (directed!) with some minor adjustments

@ Appproximation version
Sampling only outside of component in a fraction of cases

@ Can save a factor of k in query complexity
(Useful for property testing)

Summary:
e Significant progress for fundamental graph problems

@ Local procedure was pivotal to better time/query complexities
Exponential improvement: from O(2°®) A) [Chechik et al. *17] to O(k*A) at
the cost of randomization



Thank you!
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