Computing and Testing Small Connectivity in Near-Linear Time and Queries via Fast Local Cut Algorithms

> Sebastian Forster University of Salzburg

Joint work with Danupon Nanongkai, Thatchaphol Saranurak, Liu Yang, and Sorrachai Yingchareonthawornchai

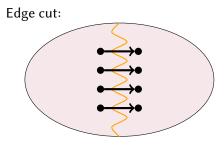
Workshop: Recent Trends in Theoretical Computer Science

Edge connectivity λ /vertex connectivity κ

Minimum number of edges/vertices to remove in order to make the graph not strongly connected

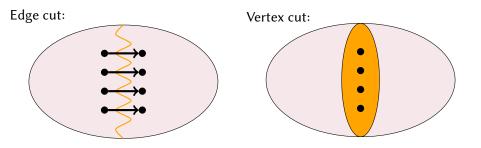
Edge connectivity λ /vertex connectivity κ

Minimum number of edges/vertices to remove in order to make the graph not strongly connected



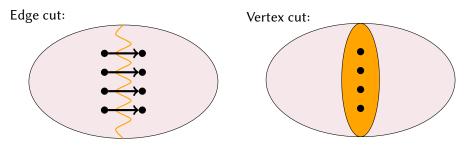
Edge connectivity λ /vertex connectivity κ

Minimum number of edges/vertices to remove in order to make the graph not strongly connected



Edge connectivity λ /vertex connectivity κ

Minimum number of edges/vertices to remove in order to make the graph not strongly connected



Motivation:

- Fundamental graph-theoretic notion
- Applications: Reliability analysis, community detection

Vertex connectivity in directed graphs:

Running time	Deterministic	Reference
$\tilde{O}(n^{2.373} + n\kappa^{2.373})$	no	[Cheriyan/Reif '92]
$\tilde{O}(mn)$	no	[Henzinger et al. '96]
$O(mn + \kappa mn^{3/4})$	yes	[Gabow '00]
$O(mn + \kappa^{5/2}m)$	yes	[Gabow '00]
$ ilde{O}(\kappa m^{4/3})$	no	[Nanongkai et al. '19]
$\tilde{O}(\kappa m^{2/3}n)$	no	[Nanongkai et al. '19]
$ ilde{O}(\kappa^2 m)$	no	Our result
$\tilde{O}(\kappa^{3/2}m^{1/2}n+\kappa^3n)$	no	Our result

Vertex connectivity in directed graphs:

Running time	Deterministic	Reference
$\tilde{O}(n^{2.373} + n\kappa^{2.373})$	no	[Cheriyan/Reif '92]
$\tilde{O}(mn)$	no	[Henzinger et al. '96]
$O(mn + \kappa mn^{3/4})$	yes	[Gabow '00]
$O(mn + \kappa^{5/2}m)$	yes	[Gabow '00]
$\tilde{O}(\kappa m^{4/3})$	no	[Nanongkai et al. '19]
$\tilde{O}(\kappa m^{2/3}n)$	no	[Nanongkai et al. '19]
$ ilde{O}(\kappa^2 m)$	no	Our result
$\tilde{O}(\kappa^{3/2}m^{1/2}n + \kappa^3 n)$	no	Our result

Undirected graphs: $m \rightarrow n\kappa$ [Nagamochi/Ibaraki '92]

Vertex connectivity in directed graphs:

Running time	Deterministic	Reference
$\tilde{O}(n^{2.373} + n\kappa^{2.373})$	no	[Cheriyan/Reif '92]
$\tilde{O}(mn)$	no	[Henzinger et al. '96]
$O(mn + \kappa mn^{3/4})$	yes	[Gabow '00]
$O(mn + \kappa^{5/2}m)$	yes	[Gabow '00]
$\tilde{O}(\kappa m^{4/3})$	no	[Nanongkai et al. '19]
$\tilde{O}(\kappa m^{2/3}n)$	no	[Nanongkai et al. '19]
$ ilde{O}(\kappa^2 m)$	no	Our result
$\tilde{O}(\kappa^{3/2}m^{1/2}n + \kappa^3 n)$	no	Our result

Undirected graphs: $m \rightarrow n\kappa$ [Nagamochi/Ibaraki '92]

State of the art for **edge connectivity** in directed graphs: $\tilde{O}(\lambda m)$ [Gabow '95]

Vertex connectivity in directed graphs:

Running time	Deterministic	Reference
$\tilde{O}(n^{2.373} + n\kappa^{2.373})$	no	[Cheriyan/Reif '92]
$\tilde{O}(mn)$	no	[Henzinger et al. '96]
$O(mn + \kappa mn^{3/4})$	yes	[Gabow '00]
$O(mn + \kappa^{5/2}m)$	yes	[Gabow '00]
$ ilde{O}(\kappa m^{4/3})$	no	[Nanongkai et al. '19]
$\tilde{O}(\kappa m^{2/3}n)$	no	[Nanongkai et al. '19]
$ ilde{O}(\kappa^2 m)$	no	Our result
$\tilde{O}(\kappa^{3/2}m^{1/2}n + \kappa^3 n)$	no	Our result

Undirected graphs: $m \rightarrow n\kappa$ [Nagamochi/Ibaraki '92]

State of the art for **edge connectivity** in directed graphs: $\tilde{O}(\lambda m)$ [Gabow '95]

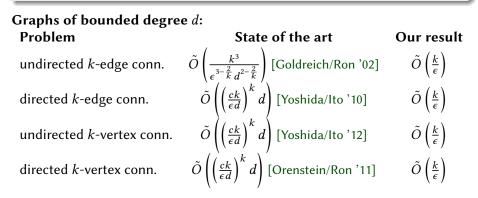
Improvements also for finding *k*-edge connected subgraphs [Chechik et al. '17]

Property Testing Results

Algorithm needs to distinguish between graphs that are *k*-connected and graphs that are ϵ -far from being *k*-connected (cannot be made *k*-connected by changing an ϵ -fraction of the edges). Want to minimize the number of **edge queries** to the graph.

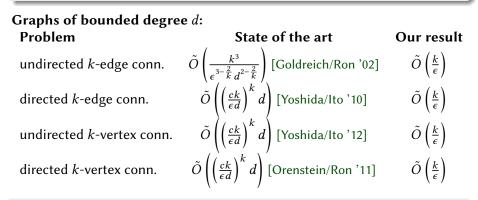
Property Testing Results

Algorithm needs to distinguish between graphs that are k-connected and graphs that are ϵ -far from being k-connected (cannot be made k-connected by changing an ϵ -fraction of the edges). Want to minimize the number of **edge queries** to the graph.



Property Testing Results

Algorithm needs to distinguish between graphs that are k-connected and graphs that are ϵ -far from being k-connected (cannot be made k-connected by changing an ϵ -fraction of the edges). Want to minimize the number of **edge queries** to the graph.



Similar improvements for graphs of unbounded degree (w.r.t. avg. degree)

Idea: Detect smaller side of partition in time proportional to its volume (= number of interior + outgoing edges)

Idea: Detect smaller side of partition in time proportional to its volume (= number of interior + outgoing edges)

A *k*-out component $U \subseteq V$ has at most *k* edges going from *U* to $V \setminus U$.

Idea: Detect smaller side of partition in time proportional to its volume (= number of interior + outgoing edges)

A *k*-out component $U \subseteq V$ has at most *k* edges going from *U* to $V \setminus U$.

Lemma

There is a local procedure that, given a seed vertex s, a target cut size k and a target volume Δ runs in time $O(k^2 \Delta)$, and returns as follows:

- If s is contained in an ℓ -out component of volume $\leq \Delta$ for $\ell \leq k$, then it returns an ℓ -out component of volume $\leq 3k\Delta$ with probability at least $\frac{1}{2}$
- **2** Otherwise, it might return a k-out-component or \perp

Idea: Detect smaller side of partition in time proportional to its volume (= number of interior + outgoing edges)

A *k*-out component $U \subseteq V$ has at most *k* edges going from *U* to $V \setminus U$.

Lemma

There is a local procedure that, given a seed vertex s, a target cut size k and a target volume Δ runs in time $O(k^2 \Delta)$, and returns as follows:

- If s is contained in an ℓ -out component of volume $\leq \Delta$ for $\ell \leq k$, then it returns an ℓ -out component of volume $\leq 3k\Delta$ with probability at least $\frac{1}{2}$
- **2** Otherwise, it might return a k-out-component or \perp

Core problem! Plugging in almost immediately implies our results!

Idea: Detect smaller side of partition in time proportional to its volume (= number of interior + outgoing edges)

A *k*-out component $U \subseteq V$ has at most *k* edges going from *U* to $V \setminus U$.

Lemma

There is a local procedure that, given a seed vertex s, a target cut size k and a target volume Δ runs in time $O(k^2\Delta)$, and returns as follows:

- If s is contained in an ℓ -out component of volume $\leq \Delta$ for $\ell \leq k$, then it returns an ℓ -out component of volume $\leq 3k\Delta$ with probability at least $\frac{1}{2}$
- ② Otherwise, it might return a k-out-component or ⊥

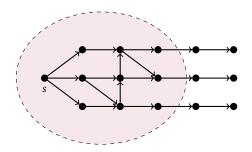
Core problem! Plugging in almost immediately implies our results! Prior work:

- "Local" version of Karger's algorithm [Goldreich/Ron '02]
- Exponential time [Orenstein/Ron '11] [Chechik et al. '17]
- Local flow techniques [Nanongkai/Saranurak/Yingchareonthawornchai '19]

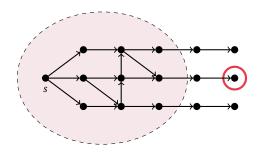
- Repeat *k* + 1 times:
 - Perform depth-first-search from s processing up to $2k\Delta$ many edges
 - If DFS processes less than $2k\Delta$ edges, return set of visited vertices
 - Sample one of the edges processed in the DFS uniformly at random
 - Let t be tail of sampled edge
 - Reverse edges on path from s to t in DFS tree
- Return ⊥

- Repeat *k* + 1 times:
 - Perform depth-first-search from s processing up to $2k\Delta$ many edges
 - If DFS processes less than $2k\Delta$ edges, return set of visited vertices
 - Sample one of the edges processed in the DFS uniformly at random
 - Let t be tail of sampled edge (ignoring reversal of edge)
 - Reverse edges on path from s to t in DFS tree
- Return ⊥

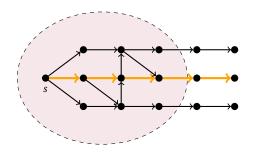
- Repeat k + 1 times:
 - Perform depth-first-search from s processing up to $2k\Delta$ many edges
 - If DFS processes less than $2k\Delta$ edges, return set of visited vertices
 - Sample one of the edges processed in the DFS uniformly at random
 - Let t be tail of sampled edge (ignoring reversal of edge)
 - Reverse edges on path from s to t in DFS tree
- Return ⊥



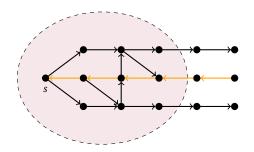
- Repeat k + 1 times:
 - Perform depth-first-search from s processing up to $2k\Delta$ many edges
 - If DFS processes less than $2k\Delta$ edges, return set of visited vertices
 - Sample one of the edges processed in the DFS uniformly at random
 - Let t be tail of sampled edge (ignoring reversal of edge)
 - Reverse edges on path from s to t in DFS tree
- Return ⊥



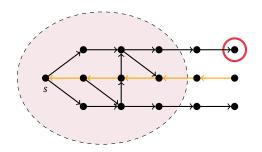
- Repeat k + 1 times:
 - Perform depth-first-search from s processing up to $2k\Delta$ many edges
 - If DFS processes less than $2k\Delta$ edges, return set of visited vertices
 - Sample one of the edges processed in the DFS uniformly at random
 - Let t be tail of sampled edge (ignoring reversal of edge)
 - Reverse edges on path from s to t in DFS tree
- Return ⊥



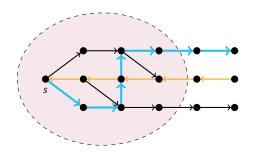
- Repeat k + 1 times:
 - Perform depth-first-search from s processing up to $2k\Delta$ many edges
 - If DFS processes less than $2k\Delta$ edges, return set of visited vertices
 - Sample one of the edges processed in the DFS uniformly at random
 - Let t be tail of sampled edge (ignoring reversal of edge)
 - Reverse edges on path from s to t in DFS tree
- Return ⊥



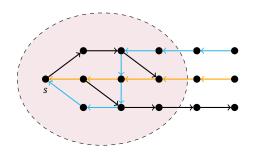
- Repeat k + 1 times:
 - Perform depth-first-search from s processing up to $2k\Delta$ many edges
 - If DFS processes less than $2k\Delta$ edges, return set of visited vertices
 - Sample one of the edges processed in the DFS uniformly at random
 - Let t be tail of sampled edge (ignoring reversal of edge)
 - Reverse edges on path from s to t in DFS tree
- Return ⊥



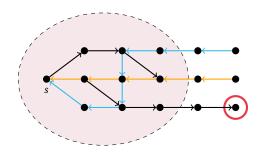
- Repeat k + 1 times:
 - Perform depth-first-search from *s* processing up to $2k\Delta$ many edges
 - If DFS processes less than $2k\Delta$ edges, return set of visited vertices
 - Sample one of the edges processed in the DFS uniformly at random
 - Let t be tail of sampled edge (ignoring reversal of edge)
 - Reverse edges on path from s to t in DFS tree
- Return ⊥



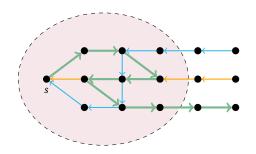
- Repeat k + 1 times:
 - Perform depth-first-search from *s* processing up to $2k\Delta$ many edges
 - If DFS processes less than $2k\Delta$ edges, return set of visited vertices
 - Sample one of the edges processed in the DFS uniformly at random
 - Let t be tail of sampled edge (ignoring reversal of edge)
 - Reverse edges on path from s to t in DFS tree
- Return ⊥



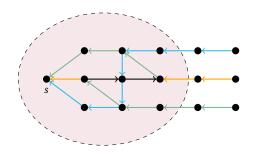
- Repeat k + 1 times:
 - Perform depth-first-search from *s* processing up to $2k\Delta$ many edges
 - If DFS processes less than $2k\Delta$ edges, return set of visited vertices
 - Sample one of the edges processed in the DFS uniformly at random
 - Let t be tail of sampled edge (ignoring reversal of edge)
 - Reverse edges on path from s to t in DFS tree
- Return ⊥



- Repeat k + 1 times:
 - Perform depth-first-search from *s* processing up to $2k\Delta$ many edges
 - If DFS processes less than $2k\Delta$ edges, return set of visited vertices
 - Sample one of the edges processed in the DFS uniformly at random
 - Let t be tail of sampled edge (ignoring reversal of edge)
 - Reverse edges on path from s to t in DFS tree
- Return ⊥



- Repeat k + 1 times:
 - Perform depth-first-search from *s* processing up to $2k\Delta$ many edges
 - If DFS processes less than $2k\Delta$ edges, return set of visited vertices
 - Sample one of the edges processed in the DFS uniformly at random
 - Let t be tail of sampled edge (ignoring reversal of edge)
 - Reverse edges on path from s to t in DFS tree
- Return ⊥



Claim 1 [Chechik et al. '17]

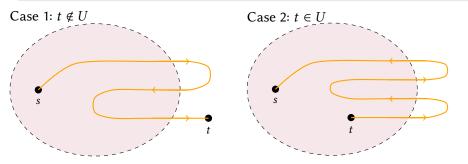
Let $U \subseteq V$ contain *s*, let $t \in V$, and reverse the edges on a path from *s* to *t*.

- If $t \notin U$, then the number of edges leaving U is reduced by one.
- Otherwise, the number of edges leaving *U* stays the same.

Claim 1 [Chechik et al. '17]

Let $U \subseteq V$ contain *s*, let $t \in V$, and reverse the edges on a path from *s* to *t*.

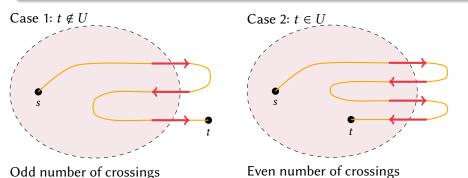
- If $t \notin U$, then the number of edges leaving U is reduced by one.
- Otherwise, the number of edges leaving U stays the same.



Claim 1 [Chechik et al. '17]

Let $U \subseteq V$ contain *s*, let $t \in V$, and reverse the edges on a path from *s* to *t*.

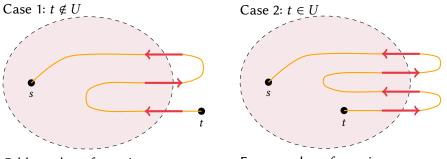
- If $t \notin U$, then the number of edges leaving U is reduced by one.
- Otherwise, the number of edges leaving *U* stays the same.



Claim 1 [Chechik et al. '17]

Let $U \subseteq V$ contain *s*, let $t \in V$, and reverse the edges on a path from *s* to *t*.

- If $t \notin U$, then the number of edges leaving U is reduced by one.
- Otherwise, the number of edges leaving *U* stays the same.



Odd number of crossings

Even number of crossings

Claim 2

If the procedure returns a set of vertices U in iteration $\ell + 1$, then U is an ℓ -out-component with $vol(U) \le 2k\Delta + \ell \le 3k\Delta$.

Claim 2

If the procedure returns a set of vertices U in iteration $\ell + 1$, then U is an ℓ -out-component with $vol(U) \le 2k\Delta + \ell \le 3k\Delta$.

Idea: For component found by DFS, number of out-edges reduces by at most one in each iteration

Claim 2

If the procedure returns a set of vertices U in iteration $\ell + 1$, then U is an ℓ -out-component with $vol(U) \le 2k\Delta + \ell \le 3k\Delta$.

Idea: For component found by DFS, number of out-edges reduces by at most one in each iteration

Claim 3

If there is an ℓ -out-component *C* of volume $\leq \Delta$ containing *s* for $\ell \leq k$, then the procedure returns an ℓ -out-component with probability $\geq \frac{1}{2}$.

Claim 2

If the procedure returns a set of vertices U in iteration $\ell + 1$, then U is an ℓ -out-component with $vol(U) \le 2k\Delta + \ell \le 3k\Delta$.

Idea: For component found by DFS, number of out-edges reduces by at most one in each iteration

Claim 3

If there is an ℓ -out-component *C* of volume $\leq \Delta$ containing *s* for $\ell \leq k$, then the procedure returns an ℓ -out-component with probability $\geq \frac{1}{2}$.

Proof

• Algorithm succeeds if in first k iterations always tail of sampled edge outside of component C (known to exist)

Claim 2

If the procedure returns a set of vertices U in iteration $\ell + 1$, then U is an ℓ -out-component with $vol(U) \le 2k\Delta + \ell \le 3k\Delta$.

Idea: For component found by DFS, number of out-edges reduces by at most one in each iteration

Claim 3

If there is an ℓ -out-component *C* of volume $\leq \Delta$ containing *s* for $\ell \leq k$, then the procedure returns an ℓ -out-component with probability $\geq \frac{1}{2}$.

Proof

- Algorithm succeeds if in first k iterations always tail of sampled edge outside of component C (known to exist)
- $vol(C) \le \Delta$ and DFS processes = $2k\Delta$ many edges

Claim 2

If the procedure returns a set of vertices U in iteration $\ell + 1$, then U is an ℓ -out-component with $vol(U) \le 2k\Delta + \ell \le 3k\Delta$.

Idea: For component found by DFS, number of out-edges reduces by at most one in each iteration

Claim 3

If there is an ℓ -out-component *C* of volume $\leq \Delta$ containing *s* for $\ell \leq k$, then the procedure returns an ℓ -out-component with probability $\geq \frac{1}{2}$.

Proof

- Algorithm succeeds if in first k iterations always tail of sampled edge outside of component C (known to exist)
- $vol(C) \leq \Delta$ and DFS processes = $2k\Delta$ many edges
- Tail of sampled edge will lie inside of C with probability $\leq \frac{1}{2k}$

Claim 2

If the procedure returns a set of vertices U in iteration $\ell + 1$, then U is an ℓ -out-component with $vol(U) \le 2k\Delta + \ell \le 3k\Delta$.

Idea: For component found by DFS, number of out-edges reduces by at most one in each iteration

Claim 3

If there is an ℓ -out-component *C* of volume $\leq \Delta$ containing *s* for $\ell \leq k$, then the procedure returns an ℓ -out-component with probability $\geq \frac{1}{2}$.

Proof

- Algorithm succeeds if in first k iterations always tail of sampled edge outside of component C (known to exist)
- $vol(C) \leq \Delta$ and DFS processes = $2k\Delta$ many edges
- Tail of sampled edge will lie inside of C with probability $\leq \frac{1}{2k}$
- By Union Bound: algorithms fails with probability $\leq \frac{1}{2}$

Extensions:

 Extension to vertex connectivity Standard reduction (directed!) with some minor adjustments

Extensions:

- Extension to vertex connectivity Standard reduction (directed!) with some minor adjustments
- Appproximation version
 Sampling only outside of component in a fraction of cases

Extensions:

- Extension to vertex connectivity Standard reduction (directed!) with some minor adjustments
- Appproximation version
 Sampling only outside of component in a fraction of cases
- Can save a factor of k in query complexity (Useful for property testing)

Extensions:

- Extension to vertex connectivity Standard reduction (directed!) with some minor adjustments
- Appproximation version
 Sampling only outside of component in a fraction of cases
- Can save a factor of k in query complexity (Useful for property testing)

Summary:

• Significant progress for fundamental graph problems

Extensions:

- Extension to vertex connectivity Standard reduction (directed!) with some minor adjustments
- Appproximation version
 Sampling only outside of component in a fraction of cases
- Can save a factor of k in query complexity (Useful for property testing)

Summary:

- Significant progress for fundamental graph problems
- Local procedure was pivotal to better time/query complexities

Extensions:

- Extension to vertex connectivity Standard reduction (directed!) with some minor adjustments
- Appproximation version
 Sampling only outside of component in a fraction of cases
- Can save a factor of k in query complexity (Useful for property testing)

Summary:

- Significant progress for fundamental graph problems
- Local procedure was pivotal to better time/query complexities *Exponential improvement:* from $O(2^{O(k)}\Delta)$ [Chechik et al. '17] to $O(k^2\Delta)$ at the cost of randomization

Thank you!