
Computing and Testing Small Connectivity in
Near-Linear Time and �eries via Fast Local Cut

Algorithms

Sebastian Forster
University of Salzburg

Joint work with Danupon Nanongkai, Thatchaphol Saranurak, Liu Yang, and Sorrachai
Yingchareonthawornchai

Workshop: Recent Trends in Theoretical Computer Science

1 / 10

https://www.cs.sbg.ac.at/~forster/
https://creativecommons.org/licenses/by/4.0/


Edge and Vertex Connectivity

Edge connectivity λ/vertex connectivity κ

Minimum number of edges/vertices to remove in order to make the graph not
strongly connected

Edge cut: Vertex cut:

Motivation:
Fundamental graph-theoretic notion

Applications: Reliability analysis, community detection

2 / 10



Edge and Vertex Connectivity

Edge connectivity λ/vertex connectivity κ

Minimum number of edges/vertices to remove in order to make the graph not
strongly connected

Edge cut:

Vertex cut:

Motivation:
Fundamental graph-theoretic notion

Applications: Reliability analysis, community detection

2 / 10



Edge and Vertex Connectivity

Edge connectivity λ/vertex connectivity κ

Minimum number of edges/vertices to remove in order to make the graph not
strongly connected

Edge cut: Vertex cut:

Motivation:
Fundamental graph-theoretic notion

Applications: Reliability analysis, community detection

2 / 10



Edge and Vertex Connectivity

Edge connectivity λ/vertex connectivity κ

Minimum number of edges/vertices to remove in order to make the graph not
strongly connected

Edge cut: Vertex cut:

Motivation:
Fundamental graph-theoretic notion

Applications: Reliability analysis, community detection

2 / 10



State of the Art and Results
Vertex connectivity in directed graphs:

Running time Deterministic Reference
Õ(n2.373 + nκ2.373) no [Cheriyan/Reif ’92]

Õ(mn) no [Henzinger et al. ’96]
O(mn + κmn3/4) yes [Gabow ’00]
O(mn + κ5/2m) yes [Gabow ’00]

Õ(κm4/3) no [Nanongkai et al. ’19]
Õ(κm2/3n) no [Nanongkai et al. ’19]

Õ(κ2m) no Our result
Õ(κ3/2m1/2n + κ3n) no Our result

Undirected graphs:m → nκ [Nagamochi/Ibaraki ’92]

State of the art for edge connectivity in directed graphs: Õ(λm) [Gabow ’95]

Improvements also for finding k-edge connected subgraphs [Chechik et al. ’17]

3 / 10



State of the Art and Results
Vertex connectivity in directed graphs:

Running time Deterministic Reference
Õ(n2.373 + nκ2.373) no [Cheriyan/Reif ’92]

Õ(mn) no [Henzinger et al. ’96]
O(mn + κmn3/4) yes [Gabow ’00]
O(mn + κ5/2m) yes [Gabow ’00]

Õ(κm4/3) no [Nanongkai et al. ’19]
Õ(κm2/3n) no [Nanongkai et al. ’19]

Õ(κ2m) no Our result
Õ(κ3/2m1/2n + κ3n) no Our result

Undirected graphs:m → nκ [Nagamochi/Ibaraki ’92]

State of the art for edge connectivity in directed graphs: Õ(λm) [Gabow ’95]

Improvements also for finding k-edge connected subgraphs [Chechik et al. ’17]

3 / 10



State of the Art and Results
Vertex connectivity in directed graphs:

Running time Deterministic Reference
Õ(n2.373 + nκ2.373) no [Cheriyan/Reif ’92]

Õ(mn) no [Henzinger et al. ’96]
O(mn + κmn3/4) yes [Gabow ’00]
O(mn + κ5/2m) yes [Gabow ’00]

Õ(κm4/3) no [Nanongkai et al. ’19]
Õ(κm2/3n) no [Nanongkai et al. ’19]

Õ(κ2m) no Our result
Õ(κ3/2m1/2n + κ3n) no Our result

Undirected graphs:m → nκ [Nagamochi/Ibaraki ’92]

State of the art for edge connectivity in directed graphs: Õ(λm) [Gabow ’95]

Improvements also for finding k-edge connected subgraphs [Chechik et al. ’17]

3 / 10



State of the Art and Results
Vertex connectivity in directed graphs:

Running time Deterministic Reference
Õ(n2.373 + nκ2.373) no [Cheriyan/Reif ’92]

Õ(mn) no [Henzinger et al. ’96]
O(mn + κmn3/4) yes [Gabow ’00]
O(mn + κ5/2m) yes [Gabow ’00]

Õ(κm4/3) no [Nanongkai et al. ’19]
Õ(κm2/3n) no [Nanongkai et al. ’19]

Õ(κ2m) no Our result
Õ(κ3/2m1/2n + κ3n) no Our result

Undirected graphs:m → nκ [Nagamochi/Ibaraki ’92]

State of the art for edge connectivity in directed graphs: Õ(λm) [Gabow ’95]

Improvements also for finding k-edge connected subgraphs [Chechik et al. ’17]

3 / 10



Property Testing Results

Algorithm needs to distinguish between graphs that are k-connected and
graphs that are ϵ-far from being k-connected (cannot be made k-connected
by changing an ϵ-fraction of the edges). Want to minimize the number of
edge queries to the graph.

Graphs of bounded degree d:
Problem State of the art Our result

undirected k-edge conn. Õ

(
k3

ϵ 3−
2
k d2− 2

k

)
[Goldreich/Ron ’02] Õ

(
k
ϵ

)
directed k-edge conn. Õ

((
ck
ϵd

)k
d

)
[Yoshida/Ito ’10] Õ

(
k
ϵ

)
undirected k-vertex conn. Õ

((
ck
ϵd

)k
d

)
[Yoshida/Ito ’12] Õ

(
k
ϵ

)
directed k-vertex conn. Õ

((
ck
ϵd

)k
d

)
[Orenstein/Ron ’11] Õ

(
k
ϵ

)
Similar improvements for graphs of unbounded degree (w.r.t. avg. degree)

4 / 10



Property Testing Results

Algorithm needs to distinguish between graphs that are k-connected and
graphs that are ϵ-far from being k-connected (cannot be made k-connected
by changing an ϵ-fraction of the edges). Want to minimize the number of
edge queries to the graph.

Graphs of bounded degree d:
Problem State of the art Our result

undirected k-edge conn. Õ

(
k3

ϵ 3−
2
k d2− 2

k

)
[Goldreich/Ron ’02] Õ

(
k
ϵ

)
directed k-edge conn. Õ

((
ck
ϵd

)k
d

)
[Yoshida/Ito ’10] Õ

(
k
ϵ

)
undirected k-vertex conn. Õ

((
ck
ϵd

)k
d

)
[Yoshida/Ito ’12] Õ

(
k
ϵ

)
directed k-vertex conn. Õ

((
ck
ϵd

)k
d

)
[Orenstein/Ron ’11] Õ

(
k
ϵ

)

Similar improvements for graphs of unbounded degree (w.r.t. avg. degree)

4 / 10



Property Testing Results

Algorithm needs to distinguish between graphs that are k-connected and
graphs that are ϵ-far from being k-connected (cannot be made k-connected
by changing an ϵ-fraction of the edges). Want to minimize the number of
edge queries to the graph.

Graphs of bounded degree d:
Problem State of the art Our result

undirected k-edge conn. Õ

(
k3

ϵ 3−
2
k d2− 2

k

)
[Goldreich/Ron ’02] Õ

(
k
ϵ

)
directed k-edge conn. Õ

((
ck
ϵd

)k
d

)
[Yoshida/Ito ’10] Õ

(
k
ϵ

)
undirected k-vertex conn. Õ

((
ck
ϵd

)k
d

)
[Yoshida/Ito ’12] Õ

(
k
ϵ

)
directed k-vertex conn. Õ

((
ck
ϵd

)k
d

)
[Orenstein/Ron ’11] Õ

(
k
ϵ

)
Similar improvements for graphs of unbounded degree (w.r.t. avg. degree)

4 / 10



Local Cut Problem

Idea: Detect smaller side of partition in time proportional to its volume (=
number of interior + outgoing edges)

A k-out componentU ⊆ V has at most k edges going from U to V \U .

Lemma
There is a local procedure that, given a seed vertex s , a target cut size k and a
target volume ∆ runs in time O(k2∆), and returns as follows:

1 If s is contained in an `-out component of volume ≤ ∆ for ` ≤ k , then it
returns an `-out component of volume ≤ 3k∆ with probability at least 1

2
2 Otherwise, it might return a k-out-component or ⊥

Core problem! Plugging in almost immediately implies our results!
Prior work:

“Local” version of Karger’s algorithm [Goldreich/Ron ’02]
Exponential time [Orenstein/Ron ’11] [Chechik et al. ’17]
Local flow techniques [Nanongkai/Saranurak/Yingchareonthawornchai ’19]

5 / 10



Local Cut Problem

Idea: Detect smaller side of partition in time proportional to its volume (=
number of interior + outgoing edges)

A k-out componentU ⊆ V has at most k edges going from U to V \U .

Lemma
There is a local procedure that, given a seed vertex s , a target cut size k and a
target volume ∆ runs in time O(k2∆), and returns as follows:

1 If s is contained in an `-out component of volume ≤ ∆ for ` ≤ k , then it
returns an `-out component of volume ≤ 3k∆ with probability at least 1

2
2 Otherwise, it might return a k-out-component or ⊥

Core problem! Plugging in almost immediately implies our results!
Prior work:

“Local” version of Karger’s algorithm [Goldreich/Ron ’02]
Exponential time [Orenstein/Ron ’11] [Chechik et al. ’17]
Local flow techniques [Nanongkai/Saranurak/Yingchareonthawornchai ’19]

5 / 10



Local Cut Problem

Idea: Detect smaller side of partition in time proportional to its volume (=
number of interior + outgoing edges)

A k-out componentU ⊆ V has at most k edges going from U to V \U .

Lemma
There is a local procedure that, given a seed vertex s , a target cut size k and a
target volume ∆ runs in time O(k2∆), and returns as follows:

1 If s is contained in an `-out component of volume ≤ ∆ for ` ≤ k , then it
returns an `-out component of volume ≤ 3k∆ with probability at least 1

2
2 Otherwise, it might return a k-out-component or ⊥

Core problem! Plugging in almost immediately implies our results!
Prior work:

“Local” version of Karger’s algorithm [Goldreich/Ron ’02]
Exponential time [Orenstein/Ron ’11] [Chechik et al. ’17]
Local flow techniques [Nanongkai/Saranurak/Yingchareonthawornchai ’19]

5 / 10



Local Cut Problem

Idea: Detect smaller side of partition in time proportional to its volume (=
number of interior + outgoing edges)

A k-out componentU ⊆ V has at most k edges going from U to V \U .

Lemma
There is a local procedure that, given a seed vertex s , a target cut size k and a
target volume ∆ runs in time O(k2∆), and returns as follows:

1 If s is contained in an `-out component of volume ≤ ∆ for ` ≤ k , then it
returns an `-out component of volume ≤ 3k∆ with probability at least 1

2
2 Otherwise, it might return a k-out-component or ⊥

Core problem! Plugging in almost immediately implies our results!

Prior work:
“Local” version of Karger’s algorithm [Goldreich/Ron ’02]
Exponential time [Orenstein/Ron ’11] [Chechik et al. ’17]
Local flow techniques [Nanongkai/Saranurak/Yingchareonthawornchai ’19]

5 / 10



Local Cut Problem

Idea: Detect smaller side of partition in time proportional to its volume (=
number of interior + outgoing edges)

A k-out componentU ⊆ V has at most k edges going from U to V \U .

Lemma
There is a local procedure that, given a seed vertex s , a target cut size k and a
target volume ∆ runs in time O(k2∆), and returns as follows:

1 If s is contained in an `-out component of volume ≤ ∆ for ` ≤ k , then it
returns an `-out component of volume ≤ 3k∆ with probability at least 1

2
2 Otherwise, it might return a k-out-component or ⊥

Core problem! Plugging in almost immediately implies our results!
Prior work:

“Local” version of Karger’s algorithm [Goldreich/Ron ’02]
Exponential time [Orenstein/Ron ’11] [Chechik et al. ’17]
Local flow techniques [Nanongkai/Saranurak/Yingchareonthawornchai ’19]

5 / 10



Randomization of Augmenting-Path Idea [Chechik et al. ’17]

Seed vertex s , target cut size ≤ k , target volume ≤ ∆

Algorithm:
Repeat k + 1 times:
I Perform depth-first-search from s processing up to 2k∆ many edges
I If DFS processes less than 2k∆ edges, return set of visited vertices
I Sample one of the edges processed in the DFS uniformly at random
I Let t be tail of sampled edge

(ignoring reversal of edge)

I Reverse edges on path from s to t in DFS tree

Return ⊥

s

6 / 10



Randomization of Augmenting-Path Idea [Chechik et al. ’17]

Seed vertex s , target cut size ≤ k , target volume ≤ ∆
Algorithm:

Repeat k + 1 times:
I Perform depth-first-search from s processing up to 2k∆ many edges
I If DFS processes less than 2k∆ edges, return set of visited vertices
I Sample one of the edges processed in the DFS uniformly at random
I Let t be tail of sampled edge

(ignoring reversal of edge)

I Reverse edges on path from s to t in DFS tree

Return ⊥

s

6 / 10



Randomization of Augmenting-Path Idea [Chechik et al. ’17]

Seed vertex s , target cut size ≤ k , target volume ≤ ∆
Algorithm:

Repeat k + 1 times:
I Perform depth-first-search from s processing up to 2k∆ many edges
I If DFS processes less than 2k∆ edges, return set of visited vertices
I Sample one of the edges processed in the DFS uniformly at random
I Let t be tail of sampled edge (ignoring reversal of edge)
I Reverse edges on path from s to t in DFS tree

Return ⊥

s

6 / 10



Randomization of Augmenting-Path Idea [Chechik et al. ’17]

Seed vertex s , target cut size ≤ k , target volume ≤ ∆
Algorithm:

Repeat k + 1 times:
I Perform depth-first-search from s processing up to 2k∆ many edges
I If DFS processes less than 2k∆ edges, return set of visited vertices
I Sample one of the edges processed in the DFS uniformly at random
I Let t be tail of sampled edge (ignoring reversal of edge)
I Reverse edges on path from s to t in DFS tree

Return ⊥

s

6 / 10



Randomization of Augmenting-Path Idea [Chechik et al. ’17]

Seed vertex s , target cut size ≤ k , target volume ≤ ∆
Algorithm:

Repeat k + 1 times:
I Perform depth-first-search from s processing up to 2k∆ many edges
I If DFS processes less than 2k∆ edges, return set of visited vertices
I Sample one of the edges processed in the DFS uniformly at random
I Let t be tail of sampled edge (ignoring reversal of edge)
I Reverse edges on path from s to t in DFS tree

Return ⊥

s

6 / 10



Randomization of Augmenting-Path Idea [Chechik et al. ’17]

Seed vertex s , target cut size ≤ k , target volume ≤ ∆
Algorithm:

Repeat k + 1 times:
I Perform depth-first-search from s processing up to 2k∆ many edges
I If DFS processes less than 2k∆ edges, return set of visited vertices
I Sample one of the edges processed in the DFS uniformly at random
I Let t be tail of sampled edge (ignoring reversal of edge)
I Reverse edges on path from s to t in DFS tree

Return ⊥

s

6 / 10



Randomization of Augmenting-Path Idea [Chechik et al. ’17]

Seed vertex s , target cut size ≤ k , target volume ≤ ∆
Algorithm:

Repeat k + 1 times:
I Perform depth-first-search from s processing up to 2k∆ many edges
I If DFS processes less than 2k∆ edges, return set of visited vertices
I Sample one of the edges processed in the DFS uniformly at random
I Let t be tail of sampled edge (ignoring reversal of edge)
I Reverse edges on path from s to t in DFS tree

Return ⊥

s

6 / 10



Randomization of Augmenting-Path Idea [Chechik et al. ’17]

Seed vertex s , target cut size ≤ k , target volume ≤ ∆
Algorithm:

Repeat k + 1 times:
I Perform depth-first-search from s processing up to 2k∆ many edges
I If DFS processes less than 2k∆ edges, return set of visited vertices
I Sample one of the edges processed in the DFS uniformly at random
I Let t be tail of sampled edge (ignoring reversal of edge)
I Reverse edges on path from s to t in DFS tree

Return ⊥

s

6 / 10



Randomization of Augmenting-Path Idea [Chechik et al. ’17]

Seed vertex s , target cut size ≤ k , target volume ≤ ∆
Algorithm:

Repeat k + 1 times:
I Perform depth-first-search from s processing up to 2k∆ many edges
I If DFS processes less than 2k∆ edges, return set of visited vertices
I Sample one of the edges processed in the DFS uniformly at random
I Let t be tail of sampled edge (ignoring reversal of edge)
I Reverse edges on path from s to t in DFS tree

Return ⊥

s

6 / 10



Randomization of Augmenting-Path Idea [Chechik et al. ’17]

Seed vertex s , target cut size ≤ k , target volume ≤ ∆
Algorithm:

Repeat k + 1 times:
I Perform depth-first-search from s processing up to 2k∆ many edges
I If DFS processes less than 2k∆ edges, return set of visited vertices
I Sample one of the edges processed in the DFS uniformly at random
I Let t be tail of sampled edge (ignoring reversal of edge)
I Reverse edges on path from s to t in DFS tree

Return ⊥

s

6 / 10



Randomization of Augmenting-Path Idea [Chechik et al. ’17]

Seed vertex s , target cut size ≤ k , target volume ≤ ∆
Algorithm:

Repeat k + 1 times:
I Perform depth-first-search from s processing up to 2k∆ many edges
I If DFS processes less than 2k∆ edges, return set of visited vertices
I Sample one of the edges processed in the DFS uniformly at random
I Let t be tail of sampled edge (ignoring reversal of edge)
I Reverse edges on path from s to t in DFS tree

Return ⊥

s

6 / 10



Randomization of Augmenting-Path Idea [Chechik et al. ’17]

Seed vertex s , target cut size ≤ k , target volume ≤ ∆
Algorithm:

Repeat k + 1 times:
I Perform depth-first-search from s processing up to 2k∆ many edges
I If DFS processes less than 2k∆ edges, return set of visited vertices
I Sample one of the edges processed in the DFS uniformly at random
I Let t be tail of sampled edge (ignoring reversal of edge)
I Reverse edges on path from s to t in DFS tree

Return ⊥

s

6 / 10



Randomization of Augmenting-Path Idea [Chechik et al. ’17]

Seed vertex s , target cut size ≤ k , target volume ≤ ∆
Algorithm:

Repeat k + 1 times:
I Perform depth-first-search from s processing up to 2k∆ many edges
I If DFS processes less than 2k∆ edges, return set of visited vertices
I Sample one of the edges processed in the DFS uniformly at random
I Let t be tail of sampled edge (ignoring reversal of edge)
I Reverse edges on path from s to t in DFS tree

Return ⊥

s

6 / 10



Analysis I

Claim 1 [Chechik et al. ’17]

Let U ⊆ V contain s , let t ∈ V , and reverse the edges on a path from s to t .

If t < U , then the number of edges leaving U is reduced by one.

Otherwise, the number of edges leaving U stays the same.

Case 1: t < U

s

t

Odd number of crossings

Case 2: t ∈ U

s

t

Even number of crossings

7 / 10



Analysis I

Claim 1 [Chechik et al. ’17]

Let U ⊆ V contain s , let t ∈ V , and reverse the edges on a path from s to t .

If t < U , then the number of edges leaving U is reduced by one.

Otherwise, the number of edges leaving U stays the same.

Case 1: t < U

s

t

Odd number of crossings

Case 2: t ∈ U

s

t

Even number of crossings

7 / 10



Analysis I

Claim 1 [Chechik et al. ’17]

Let U ⊆ V contain s , let t ∈ V , and reverse the edges on a path from s to t .

If t < U , then the number of edges leaving U is reduced by one.

Otherwise, the number of edges leaving U stays the same.

Case 1: t < U

s

t

Odd number of crossings

Case 2: t ∈ U

s

t

Even number of crossings

7 / 10



Analysis I

Claim 1 [Chechik et al. ’17]

Let U ⊆ V contain s , let t ∈ V , and reverse the edges on a path from s to t .

If t < U , then the number of edges leaving U is reduced by one.

Otherwise, the number of edges leaving U stays the same.

Case 1: t < U

s

t

Odd number of crossings

Case 2: t ∈ U

s

t

Even number of crossings

7 / 10



Analysis II
Claim 2
If the procedure returns a set of vertices U in iteration ` + 1, then U is an
`-out-component with vol(U ) ≤ 2k∆ + ` ≤ 3k∆.

Idea: For component found by DFS, number of out-edges reduces by at most
one in each iteration

Claim 3
If there is an `-out-component C of volume ≤ ∆ containing s for ` ≤ k , then
the procedure returns an `-out-component with probability ≥ 1

2 .

Proof
Algorithm succeeds if in first k iterations always tail of sampled edge
outside of component C (known to exist)
vol(C) ≤ ∆ and DFS processes = 2k∆ many edges
Tail of sampled edge will lie inside of C with probability ≤ 1

2k
By Union Bound: algorithms fails with probability ≤ 1

2

8 / 10



Analysis II
Claim 2
If the procedure returns a set of vertices U in iteration ` + 1, then U is an
`-out-component with vol(U ) ≤ 2k∆ + ` ≤ 3k∆.

Idea: For component found by DFS, number of out-edges reduces by at most
one in each iteration

Claim 3
If there is an `-out-component C of volume ≤ ∆ containing s for ` ≤ k , then
the procedure returns an `-out-component with probability ≥ 1

2 .

Proof
Algorithm succeeds if in first k iterations always tail of sampled edge
outside of component C (known to exist)
vol(C) ≤ ∆ and DFS processes = 2k∆ many edges
Tail of sampled edge will lie inside of C with probability ≤ 1

2k
By Union Bound: algorithms fails with probability ≤ 1

2

8 / 10



Analysis II
Claim 2
If the procedure returns a set of vertices U in iteration ` + 1, then U is an
`-out-component with vol(U ) ≤ 2k∆ + ` ≤ 3k∆.

Idea: For component found by DFS, number of out-edges reduces by at most
one in each iteration

Claim 3
If there is an `-out-component C of volume ≤ ∆ containing s for ` ≤ k , then
the procedure returns an `-out-component with probability ≥ 1

2 .

Proof
Algorithm succeeds if in first k iterations always tail of sampled edge
outside of component C (known to exist)
vol(C) ≤ ∆ and DFS processes = 2k∆ many edges
Tail of sampled edge will lie inside of C with probability ≤ 1

2k
By Union Bound: algorithms fails with probability ≤ 1

2

8 / 10



Analysis II
Claim 2
If the procedure returns a set of vertices U in iteration ` + 1, then U is an
`-out-component with vol(U ) ≤ 2k∆ + ` ≤ 3k∆.

Idea: For component found by DFS, number of out-edges reduces by at most
one in each iteration

Claim 3
If there is an `-out-component C of volume ≤ ∆ containing s for ` ≤ k , then
the procedure returns an `-out-component with probability ≥ 1

2 .

Proof
Algorithm succeeds if in first k iterations always tail of sampled edge
outside of component C (known to exist)

vol(C) ≤ ∆ and DFS processes = 2k∆ many edges
Tail of sampled edge will lie inside of C with probability ≤ 1

2k
By Union Bound: algorithms fails with probability ≤ 1

2

8 / 10



Analysis II
Claim 2
If the procedure returns a set of vertices U in iteration ` + 1, then U is an
`-out-component with vol(U ) ≤ 2k∆ + ` ≤ 3k∆.

Idea: For component found by DFS, number of out-edges reduces by at most
one in each iteration

Claim 3
If there is an `-out-component C of volume ≤ ∆ containing s for ` ≤ k , then
the procedure returns an `-out-component with probability ≥ 1

2 .

Proof
Algorithm succeeds if in first k iterations always tail of sampled edge
outside of component C (known to exist)
vol(C) ≤ ∆ and DFS processes = 2k∆ many edges

Tail of sampled edge will lie inside of C with probability ≤ 1
2k

By Union Bound: algorithms fails with probability ≤ 1
2

8 / 10



Analysis II
Claim 2
If the procedure returns a set of vertices U in iteration ` + 1, then U is an
`-out-component with vol(U ) ≤ 2k∆ + ` ≤ 3k∆.

Idea: For component found by DFS, number of out-edges reduces by at most
one in each iteration

Claim 3
If there is an `-out-component C of volume ≤ ∆ containing s for ` ≤ k , then
the procedure returns an `-out-component with probability ≥ 1

2 .

Proof
Algorithm succeeds if in first k iterations always tail of sampled edge
outside of component C (known to exist)
vol(C) ≤ ∆ and DFS processes = 2k∆ many edges
Tail of sampled edge will lie inside of C with probability ≤ 1

2k

By Union Bound: algorithms fails with probability ≤ 1
2

8 / 10



Analysis II
Claim 2
If the procedure returns a set of vertices U in iteration ` + 1, then U is an
`-out-component with vol(U ) ≤ 2k∆ + ` ≤ 3k∆.

Idea: For component found by DFS, number of out-edges reduces by at most
one in each iteration

Claim 3
If there is an `-out-component C of volume ≤ ∆ containing s for ` ≤ k , then
the procedure returns an `-out-component with probability ≥ 1

2 .

Proof
Algorithm succeeds if in first k iterations always tail of sampled edge
outside of component C (known to exist)
vol(C) ≤ ∆ and DFS processes = 2k∆ many edges
Tail of sampled edge will lie inside of C with probability ≤ 1

2k
By Union Bound: algorithms fails with probability ≤ 1

2
8 / 10



Conclusion

Extensions:
1 Extension to vertex connectivity

Standard reduction (directed!) with some minor adjustments

2 Appproximation version
Sampling only outside of component in a fraction of cases

3 Can save a factor of k in query complexity
(Useful for property testing)

Summary:
Significant progress for fundamental graph problems

Local procedure was pivotal to be�er time/query complexities
Exponential improvement: from O(2O (k )∆) [Chechik et al. ’17] to O(k2∆) at
the cost of randomization

9 / 10



Conclusion

Extensions:
1 Extension to vertex connectivity

Standard reduction (directed!) with some minor adjustments
2 Appproximation version

Sampling only outside of component in a fraction of cases

3 Can save a factor of k in query complexity
(Useful for property testing)

Summary:
Significant progress for fundamental graph problems

Local procedure was pivotal to be�er time/query complexities
Exponential improvement: from O(2O (k )∆) [Chechik et al. ’17] to O(k2∆) at
the cost of randomization

9 / 10



Conclusion

Extensions:
1 Extension to vertex connectivity

Standard reduction (directed!) with some minor adjustments
2 Appproximation version

Sampling only outside of component in a fraction of cases
3 Can save a factor of k in query complexity

(Useful for property testing)

Summary:
Significant progress for fundamental graph problems

Local procedure was pivotal to be�er time/query complexities
Exponential improvement: from O(2O (k )∆) [Chechik et al. ’17] to O(k2∆) at
the cost of randomization

9 / 10



Conclusion

Extensions:
1 Extension to vertex connectivity

Standard reduction (directed!) with some minor adjustments
2 Appproximation version

Sampling only outside of component in a fraction of cases
3 Can save a factor of k in query complexity

(Useful for property testing)

Summary:
Significant progress for fundamental graph problems

Local procedure was pivotal to be�er time/query complexities
Exponential improvement: from O(2O (k )∆) [Chechik et al. ’17] to O(k2∆) at
the cost of randomization

9 / 10



Conclusion

Extensions:
1 Extension to vertex connectivity

Standard reduction (directed!) with some minor adjustments
2 Appproximation version

Sampling only outside of component in a fraction of cases
3 Can save a factor of k in query complexity

(Useful for property testing)

Summary:
Significant progress for fundamental graph problems

Local procedure was pivotal to be�er time/query complexities

Exponential improvement: from O(2O (k )∆) [Chechik et al. ’17] to O(k2∆) at
the cost of randomization

9 / 10



Conclusion

Extensions:
1 Extension to vertex connectivity

Standard reduction (directed!) with some minor adjustments
2 Appproximation version

Sampling only outside of component in a fraction of cases
3 Can save a factor of k in query complexity

(Useful for property testing)

Summary:
Significant progress for fundamental graph problems

Local procedure was pivotal to be�er time/query complexities
Exponential improvement: from O(2O (k )∆) [Chechik et al. ’17] to O(k2∆) at
the cost of randomization

9 / 10



Thank you!

10 / 10


