# Towards Optimal Dynamic Graph Sparsification 

Sebastian Krinninger<br>Department of Computer Sciences<br>University of Salzburg

08.11.2017

## A Definition

A graph $G=(V, E)$ consists of

- a set of $n$ nodes $V$ and
- a set of $m$ edges

$$
E \subseteq\{\{u, v\} \mid u, v \in V\} .
$$

Graphs model binary relationships between entities

## A Definition

A graph $G=(V, E)$ consists of

- a set of $n$ nodes $V$ and
- a set of $m$ edges

$$
E \subseteq\{\{u, v\} \mid u, v \in V\} .
$$



Graphs model binary relationships between entities

## Graphs are Everywhere



## Graphs are Everywhere



## Graphs are Everywhere



## Graphs are Everywhere



## Research Area 1

Distributed and Parallel Algorithms





## Shortest Path Algorithms

Single-Source Shortest Paths in distributed CONGEST model

- Improved exact algorithm
- Close-to-optimal approximation algorithm


Ruben
Becker


Monika
Henzinger


## Shortest Path Algorithms

Single-Source Shortest Paths in distributed CONGEST model

- Improved exact algorithm
- Close-to-optimal approximation algorithm


Ruben Becker





Danupon Nanongkai

SSSP in parallel RAM model:

- Better parallelization in presence of negative edge weights
- Improves a sequential problem: minimum cost-to-time ratio cycle



## Research Area 2

## Hardness of Polynomial-Time Problems

## Complexity Theory for a Big-Data World

Conventional wisdom in complexity theory (70s-90s?):

## Complexity Theory for a Big-Data World

Conventional wisdom in complexity theory (70s-90s?):

- "P = tractable"
- "NP = intractable"


## Complexity Theory for a Big-Data World

Conventional wisdom in complexity theory (70s-90s?):

- "P = tractable"
- "NP = intractable"
- Modulo average-case complexity, smoothed analysis, etc.


## Complexity Theory for a Big-Data World

Conventional wisdom in complexity theory (70s-90s?):

- "P = tractable"
- "NP = intractable"
- Modulo average-case complexity, smoothed analysis, etc.


## Reality:

- Quadratic time might be intractable
- Most desirable: (Nearly) linear time algorithms


## Complexity Theory for a Big-Data World

Conventional wisdom in complexity theory (70s-90s?):

- "P = tractable"
- "NP = intractable"
- Modulo average-case complexity, smoothed analysis, etc.


## Reality:

- Quadratic time might be intractable
- Most desirable: (Nearly) linear time algorithms


## Prototypical Question

Can we rule out the existence of truly subquadratic time algorithms for certain problems?

## Complexity Theory for a Big-Data World

Conventional wisdom in complexity theory (70s-90s?):

- "P = tractable"
- "NP = intractable"
- Modulo average-case complexity, smoothed analysis, etc.


## Reality:

- Quadratic time might be intractable
- Most desirable: (Nearly) linear time algorithms


## Prototypical Question

Can we rule out the existence of truly subquadratic time algorithms for certain problems?

Yes!

## Complexity Theory for a Big-Data World

Conventional wisdom in complexity theory (70s-90s?):

- "P = tractable"
- "NP = intractable"
- Modulo average-case complexity, smoothed analysis, etc.


## Reality:

- Quadratic time might be intractable
- Most desirable: (Nearly) linear time algorithms


## Prototypical Question

Can we rule out the existence of truly subquadratic time algorithms for certain problems?

Yes! ... under plausible hardness assumptions

## Conditional Lower Bounds

Fine-grained complexity of diameter approximation

- No subquadratic algorithm under Strong Exponential Time Hypothesis [Roditty/V. Williams '13]
- Not even subquadratic $\frac{3}{2}$-approximation
- Goal: more detailed hardness analysis



## Conditional Lower Bounds

Fine-grained complexity of diameter approximation

- No subquadratic algorithm under Strong Exponential Time Hypothesis [Roditty/V. Williams '13]
- Not even subquadratic $\frac{3}{2}$-approximation
- Goal: more detailed hardness analysis


Conditional lower bounds for dynamic problems

- Formulation of new hardness conjecture
- Explains certain barriers in dynamic algorithms


Monika Henzinger


Danupon Nanongkai


Thatchaphol Saranurak

Research Area 3

## Dynamic Algorithms

## Our World is not Static



Goal: Fast recomputation of solution after update in the graph

## Research on Dynamic Algorithms

Fastest dynamic shortest path algorithm in a variety of settings (7+ papers)


## Research on Dynamic Algorithms

Fastest dynamic shortest path algorithm in a variety of settings (7+ papers)


Ittai
Abraham


Shiri Chechik


Monika Henzinger


Danupon Nanongkai

Dynamic connectivity and dominators in directed graphs


Loukas
Georgiadis


Giuseppe Italiano


Thomas Dueholm Hansen


## Sparsification

## Sparsification

Idea: Approximate dense objects by sparse objects

## Sparsification

Idea: Approximate dense objects by sparse objects


Masonry arch

## Sparsification

Idea: Approximate dense objects by sparse objects


Masonry arch

## Sparsification in Graphs

Goal: Reduce to much smaller set of edges

## Sparsification in Graphs

Goal: Reduce to much smaller set of edges


## Sparsification in Graphs

Goal: Reduce to much smaller set of edges


## Sparsification in Graphs

Goal: Reduce to much smaller set of edges


Running Time: $T(n, m) \Rightarrow T\left(n, m^{\prime}\right)$

## Sparsification in Graphs

Goal: Reduce to much smaller set of edges


Running Time: $T(n, m) \Rightarrow T\left(n, m^{\prime}\right)$
At cost of approximation

## Example 1: Distance Sparsifier

## Definition

A spanner of stretch $\alpha$ of $G=(V, E)$ is a subgraph $H=\left(V, E^{\prime}\right)$ such that

$$
\operatorname{dist}_{G}(u, v) \leq \operatorname{dist}_{H}(u, v) \leq \alpha \cdot \operatorname{dist}_{G}(u, v)
$$

for all pairs of nodes $u, v \in V$.

## Example 1: Distance Sparsifier

## Definition

A spanner of stretch $\alpha$ of $G=(V, E)$ is a subgraph $H=\left(V, E^{\prime}\right)$ such that

$$
\operatorname{dist}_{G}(u, v) \leq \operatorname{dist}_{H}(u, v) \leq \alpha \cdot \operatorname{dist}_{G}(u, v)
$$

for all pairs of nodes $u, v \in V$.


## Example 1: Distance Sparsifier

## Definition

A spanner of stretch $\alpha$ of $G=(V, E)$ is a subgraph $H=\left(V, E^{\prime}\right)$ such that

$$
\operatorname{dist}_{G}(u, v) \leq \operatorname{dist}_{H}(u, v) \leq \alpha \cdot \operatorname{dist}_{G}(u, v)
$$

for all pairs of nodes $u, v \in V$.


## Example 1: Distance Sparsifier

## Definition

A spanner of stretch $\alpha$ of $G=(V, E)$ is a subgraph $H=\left(V, E^{\prime}\right)$ such that

$$
\operatorname{dist}_{G}(u, v) \leq \operatorname{dist}_{H}(u, v) \leq \alpha \cdot \operatorname{dist}_{G}(u, v)
$$

for all pairs of nodes $u, v \in V$.


Fact: Every graph has spanners with stretch $(2 k-1)$ of size $n^{1+1 / k}(k \geq 2)$ In particular: stretch $\log n$ and size $O(n)$

## Dynamic Problem

Input graph $G$


## Dynamic Problem

Input graph $G$
Sparsifier H


## Dynamic Problem

Input graph $G$


## Sparsifier H


adversary inserts and deletes edges

## Dynamic Problem

Input graph $G$

## Sparsifier H


adversary inserts and deletes edges

algorithm adds and removes edges

## Dynamic Problem

Input graph $G$

## Sparsifier H


adversary inserts and deletes edges
algorithm adds and removes edges

State of the art update time:

- Amortized time: $O\left(k^{2} \log ^{2} n\right)$, stretch $2 k-1$

Total time $O\left(t \cdot k^{2} \log ^{2} n\right)$ for $t$ updates [Baswana et al. 2012]

## Dynamic Problem

Input graph $G$

## Sparsifier H


adversary inserts and deletes edges

algorithm adds and removes edges

State of the art update time:

- Amortized time: $O\left(k^{2} \log ^{2} n\right)$, stretch $2 k-1$

Total time $O\left(t \cdot k^{2} \log ^{2} n\right)$ for $t$ updates [Baswana et al. 2012]

- Worst-case time: $O\left(n^{3 / 4}\right)$ for stretch 3 [Bodwin/K 2016]


Greg Bodwin

## Example 2: Spectral Sparsification

View graph $G$ as Laplacian matrix $L_{G}$

$$
\left(\begin{array}{cccccccccc}
2 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
-1 & 3 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & -1 & -1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 3 & -1 & -1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & -1 & 4 & -1 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 & -1 & 4 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 3 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 2 & 0 \\
0 & 0 & -1 & 0 & 0 & -1 & 0 & -1 & 0 & 3
\end{array}\right)
$$

## Example 2: Spectral Sparsification

View graph $G$ as Laplacian matrix $L_{G}$


$$
\begin{gathered}
\rightarrow \\
\rightarrow\left(\begin{array}{cccccccccc}
2 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
-1 & 3 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & -1 & -1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 3 & -1 & -1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & -1 & 4 & -1 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 & -1 & 4 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 3 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 2 & 0 \\
0 & 0 & -1 & 0 & 0 & -1 & 0 & -1 & 0 & 3
\end{array}\right) \\
L_{G}[i, i]=\operatorname{degree}\left(v_{i}\right)
\end{gathered}
$$

## Example 2: Spectral Sparsification

View graph $G$ as Laplacian matrix $L_{G}$


$$
\begin{gathered}
\left(\begin{array}{cccccccccc}
2 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
-1 & 3 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & -1 & -1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 3 & -1 & -1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & -1 & 4 & -1 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 & -1 & 4 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 3 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 2 & 0 \\
0 & 0 & -1 & 0 & 0 & -1 & 0 & -1 & 0 & 3
\end{array}\right) \\
L_{G}[i, i]=\operatorname{degree}\left(v_{i}\right) \\
L_{G}[i, j]= \begin{cases}-1 & \text { if edge }\left(v_{i}, v_{j}\right) \text { exists } \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

## Definition

A $(1 \pm \varepsilon)$-spectral sparsifier of $G$ is a weighted subgraph $H$ such that

$$
(1-\varepsilon) x^{T} L_{G} x \leq x^{\top} L_{H} x \leq(1+\varepsilon) x^{\top} L_{G} x
$$

for all vectors $x \in \mathbb{R}^{n}$.

## Example 2: Spectral Sparsification

View graph $G$ as Laplacian matrix $L_{G}$


$$
\begin{gathered}
\longrightarrow\left(\begin{array}{cccccccccc}
2 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
-1 & 3 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & -1 & -1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 3 & -1 & -1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & -1 & 4 & -1 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 & -1 & 4 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 3 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 2 & 0 \\
0 & 0 & -1 & 0 & 0 & -1 & 0 & -1 & 0 & 3
\end{array}\right) \\
L_{G}[i, i]=\operatorname{degree}\left(v_{i}\right)
\end{gathered}
$$

## Definition

A $(1 \pm \varepsilon)$-spectral sparsifier of $G$ is a weighted subgraph $H$ such that

$$
(1-\varepsilon) x^{T} L_{G} x \leq x^{\top} L_{H} x \leq(1+\varepsilon) x^{\top} L_{G} x
$$

for all vectors $x \in \mathbb{R}^{n}$.
Under Löwner ordering: $(1-\varepsilon) L_{G} \leq L_{H} \leq(1+\varepsilon) L_{G}$

## Motivation I: Cut Sparsification

Consider set of nodes $S \subseteq V$ and vector $x \in \mathbb{R}^{n}$ such that

$$
\begin{aligned}
& x_{i}=1 \text { if } i \text {-th node in } S \\
& x_{i}=0 \text { otherwise }
\end{aligned}
$$

## Motivation I: Cut Sparsification

Consider set of nodes $S \subseteq V$ and vector $x \in \mathbb{R}^{n}$ such that

$$
\begin{aligned}
& x_{i}=1 \text { if } i \text {-th node in } S \\
& x_{i}=0 \text { otherwise }
\end{aligned}
$$

$x$ encodes cut in graph induced by $S$


## Motivation I: Cut Sparsification

Consider set of nodes $S \subseteq V$ and vector $x \in \mathbb{R}^{n}$ such that

$$
\begin{aligned}
& x_{i}=1 \text { if } i \text {-th node in } S \\
& x_{i}=0 \text { otherwise }
\end{aligned}
$$

$x$ encodes cut in graph induced by $S$
$x^{T} L_{G} x$ corresponds to size of cut $(S, V \backslash S)$ in $G$


## Motivation I: Cut Sparsification

Consider set of nodes $S \subseteq V$ and vector $x \in \mathbb{R}^{n}$ such that

$$
\begin{aligned}
& x_{i}=1 \text { if } i \text {-th node in } S \\
& x_{i}=0 \text { otherwise }
\end{aligned}
$$

$x$ encodes cut in graph induced by $S$ $x^{T} L_{G} x$ corresponds to size of cut $(S, V \backslash S)$ in $G$

$\Rightarrow$ Spectral sparsifier is also a cut sparsifier [Benczúr/Karger '00]

## Motivation II: Solving SDD Systems

System of linear equations with $n$ unknowns:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
& \vdots \\
& a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
\end{aligned}
$$

## Motivation II: Solving SDD Systems

System of linear equations with $n$ unknowns:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
\end{gathered}
$$

Short: $A x=b$, where $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}$ and unknown $x \in \mathbb{R}^{n}$

## Motivation II: Solving SDD Systems

System of linear equations with $n$ unknowns:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
\end{gathered}
$$

Short: $A x=b$, where $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}$ and unknown $x \in \mathbb{R}^{n}$
If $A$ is symmetric diagonally dominant (SDD):

- Can reduce to $L_{G} x=b$ with Laplacian matrix $L_{G}$ of some graph $G$


## Motivation II: Solving SDD Systems

System of linear equations with $n$ unknowns:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
\end{gathered}
$$

Short: $A x=b$, where $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}$ and unknown $x \in \mathbb{R}^{n}$
If $A$ is symmetric diagonally dominant (SDD):

- Can reduce to $L_{G} x=b$ with Laplacian matrix $L_{G}$ of some graph $G$
- Amounts to computing electrical flow in resistor network $G$ Dual formulation: $\max _{x \in \mathbb{R}^{n}}\left(2 x^{T} b-x^{T} L_{G} x\right)$


## Motivation II: Solving SDD Systems

System of linear equations with $n$ unknowns:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
\end{gathered}
$$

Short: $A x=b$, where $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}$ and unknown $x \in \mathbb{R}^{n}$
If $A$ is symmetric diagonally dominant (SDD):

- Can reduce to $L_{G} x=b$ with Laplacian matrix $L_{G}$ of some graph $G$
- Amounts to computing electrical flow in resistor network $G$ Dual formulation: $\max _{x \in \mathbb{R}^{n}}\left(2 x^{T} b-x^{T} L_{G} x\right)$
- Nearly-linear time solvers in static setting [Spielman/Teng '04, ...]


## Motivation II: Solving SDD Systems

System of linear equations with $n$ unknowns:

$$
\begin{array}{r}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
\end{array}
$$

Short: $A x=b$, where $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}$ and unknown $x \in \mathbb{R}^{n}$
If $A$ is symmetric diagonally dominant (SDD):

- Can reduce to $L_{G} x=b$ with Laplacian matrix $L_{G}$ of some graph $G$
- Amounts to computing electrical flow in resistor network $G$ Dual formulation: $\max _{x \in \mathbb{R}^{n}}\left(2 x^{\top} b-x^{\top} L_{G} x\right)$
- Nearly-linear time solvers in static setting [Spielman/Teng '04, ...]


## Dynamic Solver?

Changing one row in $A \rightarrow$ changing $\leq 2 n$ edges of $G$


## $t$-Bundle Spanners



Idea: Pack graph with $t$ edge-disjoint spanners of stretch $\log n$

## $t$-Bundle Spanners



Idea: Pack graph with $t$ edge-disjoint spanners of stretch $\log n$

- Compute spanner $S_{1}$ of $G$


## $t$-Bundle Spanners



Idea: Pack graph with $t$ edge-disjoint spanners of stretch $\log n$

- Compute spanner $S_{1}$ of $G$
- Compute spanner $S_{2}$ of $G \backslash S_{1}$


## $t$-Bundle Spanners



Idea: Pack graph with $t$ edge-disjoint spanners of stretch $\log n$

- Compute spanner $S_{1}$ of $G$
- Compute spanner $S_{2}$ of $G \backslash S_{1}$
- Compute spanner $S_{3}$ of $G \backslash\left(S_{1} \cup S_{2}\right)$


## $t$-Bundle Spanners



Idea: Pack graph with $t$ edge-disjoint spanners of stretch $\log n$

- Compute spanner $S_{1}$ of $G$
- Compute spanner $S_{2}$ of $G \backslash S_{1}$
- Compute spanner $S_{3}$ of $G \backslash\left(S_{1} \cup S_{2}\right)$
- Compute spanner $S_{t}$ of $G \backslash\left(S_{1} \cup S_{2} \cup \cdots \cup S_{t-1}\right)$
$B:=S_{1} \cup S_{2} \cup \cdots \cup S_{t-1}$ is a $t$-bundle spanner


## 1-Step Spectral Sparsification

(1) Compute $t$-bundle spanner $B$ with $t=\frac{24 \log ^{2} n}{\varepsilon^{2}}$
(2) Set $H=B$
(3) For each edge $e \in G \backslash B$ : with probability $\frac{1}{4}$, add $e$ to $H$ and set $w_{H}(e)=4 w_{G}(e)$

## 1-Step Spectral Sparsification

(0) Compute $t$-bundle spanner $B$ with $t=\frac{24 \log ^{2} n}{\varepsilon^{2}}$
(2) Set $H=B$
(3) For each edge $e \in G \backslash B$ : with probability $\frac{1}{4}$, add $e$ to $H$ and set $w_{H}(e)=4 w_{G}(e)$

## Lemma

$H$ is $a(1 \pm \varepsilon)$-spectral sparsifier of expected size $O\left(n \varepsilon^{-2} \log ^{2} n\right)+m / 4$.

## 1-Step Spectral Sparsification

(1) Compute $t$-bundle spanner $B$ with $t=\frac{24 \log ^{2} n}{\varepsilon^{2}}$
(2) Set $H=B$
(3) For each edge $e \in G \backslash B$ : with probability $\frac{1}{4}$, add $e$ to $H$ and set $w_{H}(e)=4 w_{G}(e)$

## Lemma

$H$ is $a(1 \pm \varepsilon)$-spectral sparsifier of expected size $O\left(n \varepsilon^{-2} \log ^{2} n\right)+m / 4$.

## Intuition:

- Edges in $G \backslash B$ have small "importance" in $G$ :


## 1-Step Spectral Sparsification

(1) Compute $t$-bundle spanner $B$ with $t=\frac{24 \log ^{2} n}{\varepsilon^{2}}$
(2) Set $H=B$
(3) For each edge $e \in G \backslash B$ : with probability $\frac{1}{4}$, add $e$ to $H$ and set $w_{H}(e)=4 w_{G}(e)$

## Lemma

$H$ is $a(1 \pm \varepsilon)$-spectral sparsifier of expected size $O\left(n \varepsilon^{-2} \log ^{2} n\right)+m / 4$.

## Intuition:

- Edges in $G \backslash B$ have small "importance" in $G$ : many alternative paths of small length in $B$ between endpoints of edge


## 1-Step Spectral Sparsification

(1) Compute $t$-bundle spanner $B$ with $t=\frac{24 \log ^{2} n}{\varepsilon^{2}}$
(2) Set $H=B$
(3) For each edge $e \in G \backslash B$ : with probability $\frac{1}{4}$, add $e$ to $H$ and set $w_{H}(e)=4 w_{G}(e)$

## Lemma

$H$ is $a(1 \pm \varepsilon)$-spectral sparsifier of expected size $O\left(n \varepsilon^{-2} \log ^{2} n\right)+m / 4$.

## Intuition:

- Edges in $G \backslash B$ have small "importance" in $G$ : many alternative paths of small length in $B$ between endpoints of edge
- Formally: $B$ certifies small effective resistance of edges in $G \backslash B$


## 1-Step Spectral Sparsification

(1) Compute $t$-bundle spanner $B$ with $t=\frac{24 \log ^{2} n}{\varepsilon^{2}}$
(2) Set $H=B$
(3) For each edge $e \in G \backslash B$ : with probability $\frac{1}{4}$, add $e$ to $H$ and set $w_{H}(e)=4 w_{G}(e)$

## Lemma

$H$ is $a(1 \pm \varepsilon)$-spectral sparsifier of expected size $O\left(n \varepsilon^{-2} \log ^{2} n\right)+m / 4$.

## Intuition:

- Edges in $G \backslash B$ have small "importance" in $G$ : many alternative paths of small length in $B$ between endpoints of edge
- Formally: $B$ certifies small effective resistance of edges in $G \backslash B$
- Sparsification by effective-resistance sampling [Spielman/Srivastava '08]


## 1-Step Spectral Sparsification

(1) Compute $t$-bundle spanner $B$ with $t=\frac{24 \log ^{2} n}{\varepsilon^{2}}$
(2) Set $H=B$
(3) For each edge $e \in G \backslash B$ : with probability $\frac{1}{4}$, add $e$ to $H$ and set $w_{H}(e)=4 w_{G}(e)$

## Lemma

$H$ is $a(1 \pm \varepsilon)$-spectral sparsifier of expected size $O\left(n \varepsilon^{-2} \log ^{2} n\right)+m / 4$.

## Intuition:

- Edges in $G \backslash B$ have small "importance" in $G$ : many alternative paths of small length in $B$ between endpoints of edge
- Formally: $B$ certifies small effective resistance of edges in $G \backslash B$
- Sparsification by effective-resistance sampling [Spielman/Srivastava '08]
- Technical tool: concentration bounds for random matrices


## Spectral Sparsification Algorithm [Koutis '14]

Repeat 1-step sparsification on remaining graph until size is small enough


## Spectral Sparsification Algorithm [Koutis '14]

Repeat 1-step sparsification on remaining graph until size is small enough


## Spectral Sparsification Algorithm [Koutis '14]

Repeat 1-step sparsification on remaining graph until size is small enough


## Spectral Sparsification Algorithm [Koutis '14]

Repeat 1-step sparsification on remaining graph until size is small enough


## Spectral Sparsification Algorithm [Koutis '14]

Repeat 1-step sparsification on remaining graph until size is small enough


## Spectral Sparsification Algorithm [Koutis '14]

Repeat 1-step sparsification on remaining graph until size is small enough


## Spectral Sparsification Algorithm [Koutis '14]

Repeat 1-step sparsification on remaining graph until size is small enough


## Spectral Sparsification Algorithm [Koutis '14]

Repeat 1-step sparsification on remaining graph until size is small enough


After $k=\Theta(\log n)$ iterations:

- Size of sparsifier: $O\left(k n \varepsilon^{-2} \log ^{2} n+m / 4^{k}\right)=O\left(n \varepsilon^{-2} \log ^{3} n\right)$


## Spectral Sparsification Algorithm [Koutis '14]

Repeat 1-step sparsification on remaining graph until size is small enough


After $k=\Theta(\log n)$ iterations:

- Size of sparsifier: $O\left(k n \varepsilon^{-2} \log ^{2} n+m / 4^{k}\right)=O\left(n \varepsilon^{-2} \log ^{3} n\right)$
- Multiplicative error: $(1 \pm \varepsilon)^{\log n}$

Run with increased precision $\varepsilon^{\prime}=\varepsilon /(2 \log n)$ to ensure $(1 \pm \varepsilon)$-error

## Spectral Sparsification Algorithm [Koutis '14]

Repeat 1-step sparsification on remaining graph until size is small enough


After $k=\Theta(\log n)$ iterations:

- Size of sparsifier: $O\left(k n \varepsilon^{-2} \log ^{2} n+m / 4^{k}\right)=O\left(n \varepsilon^{-2} \log ^{3} n\right)$
- Multiplicative error: $(1 \pm \varepsilon)^{\log n}$

Run with increased precision $\varepsilon^{\prime}=\varepsilon /(2 \log n)$ to ensure $(1 \pm \varepsilon)$-error
Good parallelization due to parallel spanner algorithm [Baswana/Sen '03]

## Towards a Dynamic Algorithm

## Straightforward approach:

- Use dynamic spanner algorithm
- Sampling is simple anyway


## Towards a Dynamic Algorithm

## Straightforward approach:

- Use dynamic spanner algorithm
- Sampling is simple anyway

Problem: Changes might propagate exponentially!

## Towards a Dynamic Algorithm

## Straightforward approach:

- Use dynamic spanner algorithm
- Sampling is simple anyway

Problem: Changes might propagate exponentially!
One update in $G$ might result in $(\log n)^{t}$ changes to the $t$-bundle spanner


## Towards a Dynamic Algorithm

## Straightforward approach:

- Use dynamic spanner algorithm
- Sampling is simple anyway

Problem: Changes might propagate exponentially!
One update in $G$ might result in $(\log n)^{t}$ changes to the $t$-bundle spanner


Solution: Refined algorithm design

## Our Algorithm



Ittai Abraham


David Durfee


Ioannis Koutis


Richard Peng

## Our Algorithm



Ittai Abraham


David Durfee


Ioannis Koutis


Richard Peng

## Careful orchestration:

- Restrict to edge deletions only, amortize over sequence of deletions Reduction to turn deletions-only sparsifier into fully dynamic sparsifier


## Our Algorithm



Ittai Abraham


David Durfee


Ioannis Koutis


Richard Peng

## Careful orchestration:

- Restrict to edge deletions only, amortize over sequence of deletions Reduction to turn deletions-only sparsifier into fully dynamic sparsifier
- Monotonicity property: Every edge added to the spanner $S$ by the algorithm stays in $S$ until deleted from input graph $G$
- If $G$ only sees edge deletions, then also $G \backslash S$ only sees edge deletions


## Our Algorithm



Ittai Abraham


David Durfee


Ioannis Koutis


Richard Peng

## Careful orchestration:

- Restrict to edge deletions only, amortize over sequence of deletions Reduction to turn deletions-only sparsifier into fully dynamic sparsifier
- Monotonicity property: Every edge added to the spanner $S$ by the algorithm stays in $S$ until deleted from input graph $G$
- If $G$ only sees edge deletions, then also $G \backslash S$ only sees edge deletions
- Challenge: Modify Baswana et al. spanner to ensure monotonicity


## Our Algorithm



Ittai Abraham


David Durfee


Ioannis Koutis


Richard Peng

## Careful orchestration:

- Restrict to edge deletions only, amortize over sequence of deletions Reduction to turn deletions-only sparsifier into fully dynamic sparsifier
- Monotonicity property: Every edge added to the spanner $S$ by the algorithm stays in $S$ until deleted from input graph $G$
- If $G$ only sees edge deletions, then also $G \backslash S$ only sees edge deletions
- Challenge: Modify Baswana et al. spanner to ensure monotonicity


## Theorem (Abraham et al. '16)

There is a dynamic algorithm for maintaining a spectral sparsifier of size $n \cdot$ poly $\left(\log n, \varepsilon^{-1}\right)$ with amortized update time poly $\left(\log n, \varepsilon^{-1}\right)$ per edge insertion/deletion.

## Conclusion

Sparsification is a

- mathematically clean framework


## Conclusion

Sparsification is a

- mathematically clean framework
- powerful tool in modern algorithm design


## Conclusion

Sparsification is a

- mathematically clean framework
- powerful tool in modern algorithm design

My goal:

- Tighten connection between dynamic graph algorithms and combinatorial/continuous optimization
- Rebuild "sparsification infrastructure" in the dynamic world


## Conclusion

Sparsification is a

- mathematically clean framework
- powerful tool in modern algorithm design

My goal:

- Tighten connection between dynamic graph algorithms and combinatorial/continuous optimization
- Rebuild "sparsification infrastructure" in the dynamic world


## Thank you!

## Conclusion

Sparsification is a

- mathematically clean framework
- powerful tool in modern algorithm design

My goal:

- Tighten connection between dynamic graph algorithms and combinatorial/continuous optimization
- Rebuild "sparsification infrastructure" in the dynamic world


## Thank you!

## Questions?

