
Towards Optimal Dynamic Graph Sparsification

Sebastian Krinninger

Department of Computer Sciences
University of Salzburg

08.11.2017

1 / 27



A Definition

A graph G = (V , E) consists of

a set of n nodes V and

a set of m edges
E ⊆ {{u, v} | u, v ∈ V }.

Graphs model binary relationships between entities

2 / 27



A Definition

A graph G = (V , E) consists of

a set of n nodes V and

a set of m edges
E ⊆ {{u, v} | u, v ∈ V }.

Graphs model binary relationships between entities

2 / 27



Graphs are Everywhere

Botzaris

PRÉ
SAINT-GERVAIS

Bolivar

Buttes
Chaumont

Danube

Pelleport

Saint-Fargeau

Cour
Saint-Émilion

Bibliothèque
François-Mitterrand

OLYMPIADES

Guy
Môquet

Porte de
Saint-Ouen

Garibaldi

Mairie de
Saint-Ouen

Saint-Denis
Porte de Paris

Basilique de
Saint-Denis

SAINT-DENIS
UNIVERSITÉ

Brochant
Porte de

Clichy

Mairie de
Clichy

Gabriel Péri

Les Agnettes

LES COURTILLES

Liège

Varenne

Saint-
François-

Xavier

Gaîté

Pernety

Plaisance

Porte de
Vanves

Malakoff
Plateau de Vanves

Malakoff — Rue Étienne Dolet

CHÂTILLON
MONTROUGE

Marx
Dormoy

PORTE DE
LA CHAPELLE

Jules
Joffrin

Lamarck
Caulaincourt

Abbesses

Saint-
Georges

Notre-Dame-
de-Lorette

Trinité
d'Estienne
d'Orves

Assemblée
Nationale

Rue du Bac

Solférino

Rennes

Notre-Dame-
des-Champs

Falguière

Volontaires

Vaugirard

Convention

Porte de
Versailles

Corentin
Celton

MAIRIE
D'ISSY

Rambuteau

Goncourt

Pyrénées

Jourdain

Télégraphe

MAIRIE DES
LILAS

Boulogne
Jean Jaurès

Javel
André

Citroën

BOULOGNE
PONT DE

SAINT-CLOUD
Chardon-
Lagache

Mirabeau

Porte
d'Auteuil Église

d'Auteuil

Charles
Michels

Avenue
Émile Zola

Ségur

Vaneau

Mabillon

Cluny
La Sorbonne

Maubert
Mutualité

Cardinal
Lemoine

Exelmans

Porte de
Saint-Cloud

Marcel Sembat

Billancourt

PONT DE SÈVRES

Jasmin

Ranelagh

La Muette

Rue de
la Pompe

Iéna

Alma
Marceau

Saint-Philippe
du Roule

Saint-
Ambroise

Voltaire

Charonne

Rue des
Boulets

Buzenval

Maraîchers

Porte de
Montreuil

Robespierre

Croix de
Chavaux

MAIRIE DE
MONTREUIL

Commerce

Félix
Faure

Boucicaut

Lourmel

BALARD

École
Militaire

La Tour-
Maubourg

Filles du
Calvaire

Saint-
Sébastien

Froissart

Chemin
Vert

Faidherbe
Chaligny

Ledru-Rollin

Montgallet

Michel
Bizot

Porte
Dorée

Porte de
Charenton

Liberté

Charenton
Écoles

École vétérinaire
de Maisons-Alfort

Maisons-Alfort
Stade

Maisons-Alfort
Les Juilliottes

Créteil
L'Échat

Créteil
Université

Créteil
Préfecture

POINTE DU LAC

Riquet

Crimée

Corentin
Cariou

Porte de
la Villette

Aubervilliers
Pantin

Quatre Chemins

Fort
d'Aubervilliers

LA COURNEUVE
8 MAI 1945

Château
Landon

Poissonnière
Cadet

Le Peletier

Pont
Neuf

Pont
Marie

Sully
Morland

Place
Monge

Censier
Daubenton

Les Gobelins

Tolbiac

Maison
Blanche

Le Kremlin-
Bicêtre

Villejuif
Léo Lagrange

Villejuif
Paul Vaillant-Couturier

VILLEJUIF
LOUIS ARAGON

Porte
d'Italie

Porte de
Choisy

Porte
d'Ivry

Pierre et
Marie Curie

MAIRIE D'IVRY

Kléber

Boissière

Passy

Bir-Hakeim
Dupleix

Cambronne

Sèvres
Lecourbe

Edgar
Quinet

Saint-
Jacques

Glacière

Corvisart

Nationale

Chevaleret

Quai de
la Gare

Dugommier

Bel-Air

Picpus

Campo-
Formio

Saint-
Marcel

Quai de
la Rapée

Bréguet
Sabin

Richard
Lenoir

Jacques
Bonsergent

Laumière

Ourcq

Porte de
Pantin

Hoche

Église de
Pantin

Bobigny
Pantin
Raymond Queneau

BOBIGNY
PABLO PICASSO

PORTE DE
CLIGNANCOURT

Simplon

Château
Rouge

Château
d'Eau

Étienne
Marcel

Les Halles

Cité

Saint-
Michel

Saint-Germain-
des-Prés

Saint-
Sulpice

Saint-
Placide

Vavin

Mouton
Duvernet

Alésia

PORTE
D'ORLÉANS

Malesherbes

Wagram

Pereire

Porte de
Champerret

Louise
Michel

Anatole
France

PONT DE
LEVALLOIS

BÉCON

Europe Quatre
Septembre

Bourse Sentier

Temple

Parmentier

Rue Saint-
Maur

Porte de
Bagnolet

GALLIENI

Victor
Hugo

PORTE
DAUPHINE

Ternes

Courcelles

Monceau

Rome

Blanche Anvers

Colonel
Fabien

Ménilmontant

Couronnes

Philippe
Auguste

Alexandre
Dumas

Avron

La Chapelle

Argentine

Porte
Maillot

Les Sablons

Pont de
Neuilly

Esplanade de
la Défense

LA DÉFENSE

George V

Tuileries
Louvre
Rivoli

Saint-Paul

Porte de
Vincennes

Saint-
Mandé

Bérault
CHÂTEAU DE
VINCENNES

Place des
Fêtes

Louis
Blanc

PORTE
DES LILAS

GAMBETTA

Pyramides

Bercy

Gare de
Lyon

Duroc

Miromesnil

Invalides

Place de
Clichy

Champs-Élysées
Clemenceau

Sèvres
Babylone

Pasteur

Marcadet
Poissonniers

Pigalle

Arts et
Métiers

Belleville

Hôtel de
Ville

Michel-Ange
Molitor

Michel-Ange
Auteuil

Jussieu GARE
D'AUSTERLITZ

Odéon

Richelieu
Drouot

Grands
Boulevards

Bonne
Nouvelle

Chaussée
d'Antin

La Fayette

Trocadéro

Oberkampf

Havre
Caumartin

Franklin D.
Roosevelt

Daumesnil

Reuilly
Diderot

Palais
Royal
Musée du
Louvre

Raspail

Denfert-
Rochereau

Gare du
Nord

Réaumur
Sébastopol

Barbès
Rochechouart

Villiers
Père

Lachaise

JAURÈS

Madeleine

Concorde

La Motte-Picquet
Grenelle

Strasbourg
Saint-Denis

Opéra

Bastille

PLACE
D'ITALIE

Gare de
l'Est

Stalingrad

CHARLES
DE GAULLE

ÉTOILE

Montparnasse
Bienvenüe

NATION

SAINT-
LAZARE

CHÂTELET

République

La Fourche

13

13

3

1
2

10

9

8

12
13

4

7

7
8

14

1

9

3

11

7b

5

7

124

6

3 / 27



Graphs are Everywhere

3 / 27



Graphs are Everywhere

3 / 27



Graphs are Everywhere

3 / 27



Research Area 1

Distributed and Parallel Algorithms

4 / 27



5 / 27



5 / 27



5 / 27



Shortest Path Algorithms
Single-Source Shortest Paths in distributed CONGEST model

Improved exact algorithm

Close-to-optimal approximation algorithm

Ruben
Becker

Monika
Henzinger

Andreas
Karrenbauer

Christoph
Lenzen

Danupon
Nanongkai

SSSP in parallel RAM model:

Be�er parallelization in presence of
negative edge weights

Improves a sequential problem:
minimum cost-to-time ratio cycle Karl

Bringmann
Thomas Dueholm

Hansen

6 / 27



Shortest Path Algorithms
Single-Source Shortest Paths in distributed CONGEST model

Improved exact algorithm

Close-to-optimal approximation algorithm

Ruben
Becker

Monika
Henzinger

Andreas
Karrenbauer

Christoph
Lenzen

Danupon
Nanongkai

SSSP in parallel RAM model:

Be�er parallelization in presence of
negative edge weights

Improves a sequential problem:
minimum cost-to-time ratio cycle Karl

Bringmann
Thomas Dueholm

Hansen

6 / 27



Research Area 2

Hardness of Polynomial-Time Problems

7 / 27



Complexity Theory for a Big-Data World

Conventional wisdom in complexity theory (70s-90s?):

“P = tractable”

“NP = intractable”

Modulo average-case complexity, smoothed analysis, etc.

Reality:
�adratic time might be intractable

Most desirable: (Nearly) linear time algorithms

Prototypical �estion
Can we rule out the existence of truly subquadratic time algorithms for
certain problems?

Yes! . . . under plausible hardness assumptions

8 / 27



Complexity Theory for a Big-Data World

Conventional wisdom in complexity theory (70s-90s?):

“P = tractable”

“NP = intractable”

Modulo average-case complexity, smoothed analysis, etc.

Reality:
�adratic time might be intractable

Most desirable: (Nearly) linear time algorithms

Prototypical �estion
Can we rule out the existence of truly subquadratic time algorithms for
certain problems?

Yes! . . . under plausible hardness assumptions

8 / 27



Complexity Theory for a Big-Data World

Conventional wisdom in complexity theory (70s-90s?):

“P = tractable”

“NP = intractable”

Modulo average-case complexity, smoothed analysis, etc.

Reality:
�adratic time might be intractable

Most desirable: (Nearly) linear time algorithms

Prototypical �estion
Can we rule out the existence of truly subquadratic time algorithms for
certain problems?

Yes! . . . under plausible hardness assumptions

8 / 27



Complexity Theory for a Big-Data World

Conventional wisdom in complexity theory (70s-90s?):

“P = tractable”

“NP = intractable”

Modulo average-case complexity, smoothed analysis, etc.

Reality:
�adratic time might be intractable

Most desirable: (Nearly) linear time algorithms

Prototypical �estion
Can we rule out the existence of truly subquadratic time algorithms for
certain problems?

Yes! . . . under plausible hardness assumptions

8 / 27



Complexity Theory for a Big-Data World

Conventional wisdom in complexity theory (70s-90s?):

“P = tractable”

“NP = intractable”

Modulo average-case complexity, smoothed analysis, etc.

Reality:
�adratic time might be intractable

Most desirable: (Nearly) linear time algorithms

Prototypical �estion
Can we rule out the existence of truly subquadratic time algorithms for
certain problems?

Yes! . . . under plausible hardness assumptions

8 / 27



Complexity Theory for a Big-Data World

Conventional wisdom in complexity theory (70s-90s?):

“P = tractable”

“NP = intractable”

Modulo average-case complexity, smoothed analysis, etc.

Reality:
�adratic time might be intractable

Most desirable: (Nearly) linear time algorithms

Prototypical �estion
Can we rule out the existence of truly subquadratic time algorithms for
certain problems?

Yes!

. . . under plausible hardness assumptions

8 / 27



Complexity Theory for a Big-Data World

Conventional wisdom in complexity theory (70s-90s?):

“P = tractable”

“NP = intractable”

Modulo average-case complexity, smoothed analysis, etc.

Reality:
�adratic time might be intractable

Most desirable: (Nearly) linear time algorithms

Prototypical �estion
Can we rule out the existence of truly subquadratic time algorithms for
certain problems?

Yes! . . . under plausible hardness assumptions

8 / 27



Conditional Lower Bounds

Fine-grained complexity of diameter approximation
No subquadratic algorithm under Strong Exponential
Time Hypothesis [Rodi�y/V. Williams ’13]

Not even subquadratic 3
2 -approximation

Goal: more detailed hardness analysis Karl
Bringmann

Conditional lower bounds for dynamic problems
Formulation of new hardness conjecture

Explains certain barriers in dynamic algorithms

Monika Henzinger Danupon Nanongkai Thatchaphol Saranurak

9 / 27



Conditional Lower Bounds

Fine-grained complexity of diameter approximation
No subquadratic algorithm under Strong Exponential
Time Hypothesis [Rodi�y/V. Williams ’13]

Not even subquadratic 3
2 -approximation

Goal: more detailed hardness analysis Karl
Bringmann

Conditional lower bounds for dynamic problems
Formulation of new hardness conjecture

Explains certain barriers in dynamic algorithms

Monika Henzinger Danupon Nanongkai Thatchaphol Saranurak

9 / 27



Research Area 3

Dynamic Algorithms

10 / 27



Our World is not Static

Goal: Fast recomputation of solution a�er update in the graph

11 / 27



Our World is not Static

Goal: Fast recomputation of solution a�er update in the graph

11 / 27



Our World is not Static

Goal: Fast recomputation of solution a�er update in the graph

11 / 27



Our World is not Static

Goal: Fast recomputation of solution a�er update in the graph

11 / 27



Research on Dynamic Algorithms

Fastest dynamic shortest path algorithm in a variety of se�ings (7+ papers)

I�ai
Abraham

Shiri
Chechik

Monika
Henzinger

Danupon
Nanongkai

Dynamic connectivity and dominators in directed graphs

Loukas
Georgiadis

Giuseppe
Italiano

Thomas Dueholm
Hansen

Nikos
Parotsidis

12 / 27



Research on Dynamic Algorithms

Fastest dynamic shortest path algorithm in a variety of se�ings (7+ papers)

I�ai
Abraham

Shiri
Chechik

Monika
Henzinger

Danupon
Nanongkai

Dynamic connectivity and dominators in directed graphs

Loukas
Georgiadis

Giuseppe
Italiano

Thomas Dueholm
Hansen

Nikos
Parotsidis

12 / 27



Sparsification

13 / 27



Sparsification

Idea: Approximate dense objects by sparse objects

Masonry arch

⇒

Truss arch

14 / 27



Sparsification

Idea: Approximate dense objects by sparse objects

Masonry arch

⇒

Truss arch

14 / 27



Sparsification

Idea: Approximate dense objects by sparse objects

Masonry arch

⇒

Truss arch

14 / 27



Sparsification in Graphs
Goal: Reduce to much smaller set of edges

Dense graph

m = Ω(n2)

⇒

Sparse graph

m′ � n2

Running Time: T (n,m) ⇒ T (n,m′)

At cost of approximation

15 / 27



Sparsification in Graphs
Goal: Reduce to much smaller set of edges

Dense graph

m = Ω(n2)

⇒

Sparse graph

m′ � n2

Running Time: T (n,m) ⇒ T (n,m′)

At cost of approximation

15 / 27



Sparsification in Graphs
Goal: Reduce to much smaller set of edges

Dense graph

m = Ω(n2)

⇒

Sparse graph

m′ � n2

Running Time: T (n,m) ⇒ T (n,m′)

At cost of approximation

15 / 27



Sparsification in Graphs
Goal: Reduce to much smaller set of edges

Dense graph

m = Ω(n2)

⇒

Sparse graph

m′ � n2

Running Time: T (n,m) ⇒ T (n,m′)

At cost of approximation

15 / 27



Sparsification in Graphs
Goal: Reduce to much smaller set of edges

Dense graph

m = Ω(n2)

⇒

Sparse graph

m′ � n2

Running Time: T (n,m) ⇒ T (n,m′)

At cost of approximation

15 / 27



Example 1: Distance Sparsifier
Definition
A spanner of stretch α of G = (V , E) is a subgraph H = (V , E ′) such that

distG(u, v) ≤ distH(u, v) ≤ α · distG(u, v)
for all pairs of nodes u, v ∈ V .

Fact: Every graph has spanners with stretch (2k − 1) of size n1+1/k (k ≥ 2)

In particular: stretch log n and size O(n)

16 / 27



Example 1: Distance Sparsifier
Definition
A spanner of stretch α of G = (V , E) is a subgraph H = (V , E ′) such that

distG(u, v) ≤ distH(u, v) ≤ α · distG(u, v)
for all pairs of nodes u, v ∈ V .

Fact: Every graph has spanners with stretch (2k − 1) of size n1+1/k (k ≥ 2)

In particular: stretch log n and size O(n)

16 / 27



Example 1: Distance Sparsifier
Definition
A spanner of stretch α of G = (V , E) is a subgraph H = (V , E ′) such that

distG(u, v) ≤ distH(u, v) ≤ α · distG(u, v)
for all pairs of nodes u, v ∈ V .

Fact: Every graph has spanners with stretch (2k − 1) of size n1+1/k (k ≥ 2)

In particular: stretch log n and size O(n)

16 / 27



Example 1: Distance Sparsifier
Definition
A spanner of stretch α of G = (V , E) is a subgraph H = (V , E ′) such that

distG(u, v) ≤ distH(u, v) ≤ α · distG(u, v)
for all pairs of nodes u, v ∈ V .

Fact: Every graph has spanners with stretch (2k − 1) of size n1+1/k (k ≥ 2)

In particular: stretch log n and size O(n)
16 / 27



Dynamic Problem
Input graph G

adversary inserts and
deletes edges

Dynamic
algorithm

Sparsifier H

algorithm adds and
removes edges

State of the art update time:
Amortized time: O(k2 log2 n), stretch 2k − 1
Total time O(t · k2 log2 n) for t updates [Baswana et al. 2012]

Worst-case time: O(n3/4) for stretch 3 [Bodwin/K 2016] Greg Bodwin

17 / 27



Dynamic Problem
Input graph G

adversary inserts and
deletes edges

Dynamic
algorithm

Sparsifier H

algorithm adds and
removes edges

State of the art update time:
Amortized time: O(k2 log2 n), stretch 2k − 1
Total time O(t · k2 log2 n) for t updates [Baswana et al. 2012]

Worst-case time: O(n3/4) for stretch 3 [Bodwin/K 2016] Greg Bodwin

17 / 27



Dynamic Problem
Input graph G

adversary inserts and
deletes edges

Dynamic
algorithm

Sparsifier H

algorithm adds and
removes edges

State of the art update time:
Amortized time: O(k2 log2 n), stretch 2k − 1
Total time O(t · k2 log2 n) for t updates [Baswana et al. 2012]

Worst-case time: O(n3/4) for stretch 3 [Bodwin/K 2016] Greg Bodwin

17 / 27



Dynamic Problem
Input graph G

adversary inserts and
deletes edges

Dynamic
algorithm

Sparsifier H

algorithm adds and
removes edges

State of the art update time:
Amortized time: O(k2 log2 n), stretch 2k − 1
Total time O(t · k2 log2 n) for t updates [Baswana et al. 2012]

Worst-case time: O(n3/4) for stretch 3 [Bodwin/K 2016] Greg Bodwin

17 / 27



Dynamic Problem
Input graph G

adversary inserts and
deletes edges

Dynamic
algorithm

Sparsifier H

algorithm adds and
removes edges

State of the art update time:
Amortized time: O(k2 log2 n), stretch 2k − 1
Total time O(t · k2 log2 n) for t updates [Baswana et al. 2012]

Worst-case time: O(n3/4) for stretch 3 [Bodwin/K 2016] Greg Bodwin

17 / 27



Dynamic Problem
Input graph G

adversary inserts and
deletes edges

Dynamic
algorithm

Sparsifier H

algorithm adds and
removes edges

State of the art update time:
Amortized time: O(k2 log2 n), stretch 2k − 1
Total time O(t · k2 log2 n) for t updates [Baswana et al. 2012]

Worst-case time: O(n3/4) for stretch 3 [Bodwin/K 2016] Greg Bodwin
17 / 27



Example 2: Spectral Sparsification
View graph G as Laplacian matrix LG

→

©«

2 −1 0 0 0 −1 0 0 0 0
−1 3 0 −1 −1 0 0 0 0 0
0 0 2 −1 0 0 0 0 0 −1
0 −1 −1 2 0 0 0 0 0 0
0 −1 0 0 3 −1 −1 0 0 0
−1 0 0 0 −1 4 −1 0 0 −1
0 0 0 0 −1 −1 4 −1 −1 0
0 0 0 0 0 0 −1 3 −1 −1
0 0 0 0 0 0 −1 −1 2 0
0 0 −1 0 0 −1 0 −1 0 3

ª®®®®®®®®®®®®®®®®¬

LG[i, i] = degree(vi)

LG[i, j] =

{
−1 if edge (vi, vj) exists
0 otherwise

Definition
A (1 ± ε)-spectral sparsifier of G is a weighted subgraph H such that

(1 − ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx
for all vectors x ∈ Rn.

Under Löwner ordering: (1 − ε)LG � LH � (1 + ε)LG

18 / 27



Example 2: Spectral Sparsification
View graph G as Laplacian matrix LG

→

©«

2 −1 0 0 0 −1 0 0 0 0
−1 3 0 −1 −1 0 0 0 0 0
0 0 2 −1 0 0 0 0 0 −1
0 −1 −1 2 0 0 0 0 0 0
0 −1 0 0 3 −1 −1 0 0 0
−1 0 0 0 −1 4 −1 0 0 −1
0 0 0 0 −1 −1 4 −1 −1 0
0 0 0 0 0 0 −1 3 −1 −1
0 0 0 0 0 0 −1 −1 2 0
0 0 −1 0 0 −1 0 −1 0 3

ª®®®®®®®®®®®®®®®®¬
LG[i, i] = degree(vi)

LG[i, j] =

{
−1 if edge (vi, vj) exists
0 otherwise

Definition
A (1 ± ε)-spectral sparsifier of G is a weighted subgraph H such that

(1 − ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx
for all vectors x ∈ Rn.

Under Löwner ordering: (1 − ε)LG � LH � (1 + ε)LG

18 / 27



Example 2: Spectral Sparsification
View graph G as Laplacian matrix LG

→

©«

2 −1 0 0 0 −1 0 0 0 0
−1 3 0 −1 −1 0 0 0 0 0
0 0 2 −1 0 0 0 0 0 −1
0 −1 −1 2 0 0 0 0 0 0
0 −1 0 0 3 −1 −1 0 0 0
−1 0 0 0 −1 4 −1 0 0 −1
0 0 0 0 −1 −1 4 −1 −1 0
0 0 0 0 0 0 −1 3 −1 −1
0 0 0 0 0 0 −1 −1 2 0
0 0 −1 0 0 −1 0 −1 0 3

ª®®®®®®®®®®®®®®®®¬
LG[i, i] = degree(vi)

LG[i, j] =

{
−1 if edge (vi, vj) exists
0 otherwise

Definition
A (1 ± ε)-spectral sparsifier of G is a weighted subgraph H such that

(1 − ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx
for all vectors x ∈ Rn.

Under Löwner ordering: (1 − ε)LG � LH � (1 + ε)LG

18 / 27



Example 2: Spectral Sparsification
View graph G as Laplacian matrix LG

→

©«

2 −1 0 0 0 −1 0 0 0 0
−1 3 0 −1 −1 0 0 0 0 0
0 0 2 −1 0 0 0 0 0 −1
0 −1 −1 2 0 0 0 0 0 0
0 −1 0 0 3 −1 −1 0 0 0
−1 0 0 0 −1 4 −1 0 0 −1
0 0 0 0 −1 −1 4 −1 −1 0
0 0 0 0 0 0 −1 3 −1 −1
0 0 0 0 0 0 −1 −1 2 0
0 0 −1 0 0 −1 0 −1 0 3

ª®®®®®®®®®®®®®®®®¬
LG[i, i] = degree(vi)

LG[i, j] =

{
−1 if edge (vi, vj) exists
0 otherwise

Definition
A (1 ± ε)-spectral sparsifier of G is a weighted subgraph H such that

(1 − ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx
for all vectors x ∈ Rn.

Under Löwner ordering: (1 − ε)LG � LH � (1 + ε)LG
18 / 27



Motivation I: Cut Sparsification
Consider set of nodes S ⊆ V and vector x ∈ Rn such that

xi = 1 if i-th node in S

xi = 0 otherwise

x encodes cut in graph induced by S
xTLGx corresponds to size of cut (S,V \ S) in G

⇒ Spectral sparsifier is also a cut sparsifier [Benczúr/Karger ’00]

19 / 27



Motivation I: Cut Sparsification
Consider set of nodes S ⊆ V and vector x ∈ Rn such that

xi = 1 if i-th node in S

xi = 0 otherwise

x encodes cut in graph induced by S

xTLGx corresponds to size of cut (S,V \ S) in G

⇒ Spectral sparsifier is also a cut sparsifier [Benczúr/Karger ’00]

19 / 27



Motivation I: Cut Sparsification
Consider set of nodes S ⊆ V and vector x ∈ Rn such that

xi = 1 if i-th node in S

xi = 0 otherwise

x encodes cut in graph induced by S
xTLGx corresponds to size of cut (S,V \ S) in G

⇒ Spectral sparsifier is also a cut sparsifier [Benczúr/Karger ’00]

19 / 27



Motivation I: Cut Sparsification
Consider set of nodes S ⊆ V and vector x ∈ Rn such that

xi = 1 if i-th node in S

xi = 0 otherwise

x encodes cut in graph induced by S
xTLGx corresponds to size of cut (S,V \ S) in G

⇒ Spectral sparsifier is also a cut sparsifier [Benczúr/Karger ’00]
19 / 27



Motivation II: Solving SDD Systems
System of linear equations with n unknowns:

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...

an1x1 + an2x2 + · · · + annxn = bn

Short: Ax = b, where A ∈ Rn×n, b ∈ Rn and unknown x ∈ Rn

If A is symmetric diagonally dominant (SDD):
Can reduce to LGx = b with Laplacian matrix LG of some graph G
Amounts to computing electrical flow in resistor network G
Dual formulation: max

x∈Rn
(2xTb − xTLGx)

Nearly-linear time solvers in static se�ing [Spielman/Teng ’04, . . . ]

Dynamic Solver?
Changing one row in A→ changing ≤ 2n edges of G

20 / 27



Motivation II: Solving SDD Systems
System of linear equations with n unknowns:

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...

an1x1 + an2x2 + · · · + annxn = bn

Short: Ax = b, where A ∈ Rn×n, b ∈ Rn and unknown x ∈ Rn

If A is symmetric diagonally dominant (SDD):
Can reduce to LGx = b with Laplacian matrix LG of some graph G
Amounts to computing electrical flow in resistor network G
Dual formulation: max

x∈Rn
(2xTb − xTLGx)

Nearly-linear time solvers in static se�ing [Spielman/Teng ’04, . . . ]

Dynamic Solver?
Changing one row in A→ changing ≤ 2n edges of G

20 / 27



Motivation II: Solving SDD Systems
System of linear equations with n unknowns:

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...

an1x1 + an2x2 + · · · + annxn = bn

Short: Ax = b, where A ∈ Rn×n, b ∈ Rn and unknown x ∈ Rn

If A is symmetric diagonally dominant (SDD):
Can reduce to LGx = b with Laplacian matrix LG of some graph G

Amounts to computing electrical flow in resistor network G
Dual formulation: max

x∈Rn
(2xTb − xTLGx)

Nearly-linear time solvers in static se�ing [Spielman/Teng ’04, . . . ]

Dynamic Solver?
Changing one row in A→ changing ≤ 2n edges of G

20 / 27



Motivation II: Solving SDD Systems
System of linear equations with n unknowns:

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...

an1x1 + an2x2 + · · · + annxn = bn

Short: Ax = b, where A ∈ Rn×n, b ∈ Rn and unknown x ∈ Rn

If A is symmetric diagonally dominant (SDD):
Can reduce to LGx = b with Laplacian matrix LG of some graph G
Amounts to computing electrical flow in resistor network G
Dual formulation: max

x∈Rn
(2xTb − xTLGx)

Nearly-linear time solvers in static se�ing [Spielman/Teng ’04, . . . ]

Dynamic Solver?
Changing one row in A→ changing ≤ 2n edges of G

20 / 27



Motivation II: Solving SDD Systems
System of linear equations with n unknowns:

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...

an1x1 + an2x2 + · · · + annxn = bn

Short: Ax = b, where A ∈ Rn×n, b ∈ Rn and unknown x ∈ Rn

If A is symmetric diagonally dominant (SDD):
Can reduce to LGx = b with Laplacian matrix LG of some graph G
Amounts to computing electrical flow in resistor network G
Dual formulation: max

x∈Rn
(2xTb − xTLGx)

Nearly-linear time solvers in static se�ing [Spielman/Teng ’04, . . . ]

Dynamic Solver?
Changing one row in A→ changing ≤ 2n edges of G

20 / 27



Motivation II: Solving SDD Systems
System of linear equations with n unknowns:

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...

an1x1 + an2x2 + · · · + annxn = bn

Short: Ax = b, where A ∈ Rn×n, b ∈ Rn and unknown x ∈ Rn

If A is symmetric diagonally dominant (SDD):
Can reduce to LGx = b with Laplacian matrix LG of some graph G
Amounts to computing electrical flow in resistor network G
Dual formulation: max

x∈Rn
(2xTb − xTLGx)

Nearly-linear time solvers in static se�ing [Spielman/Teng ’04, . . . ]

Dynamic Solver?
Changing one row in A→ changing ≤ 2n edges of G

20 / 27





t-Bundle Spanners

· · · StS3S2S1

Idea: Pack graph with t edge-disjoint spanners of stretch log n

Compute spanner S1 of G
Compute spanner S2 of G \ S1

Compute spanner S3 of G \ (S1 ∪ S2)
...

Compute spanner St of G \ (S1 ∪ S2 ∪ · · · ∪ St−1)

B := S1 ∪ S2 ∪ · · · ∪ St−1 is a t-bundle spanner

22 / 27



t-Bundle Spanners

· · · StS3S2

S1

Idea: Pack graph with t edge-disjoint spanners of stretch log n

Compute spanner S1 of G

Compute spanner S2 of G \ S1

Compute spanner S3 of G \ (S1 ∪ S2)
...

Compute spanner St of G \ (S1 ∪ S2 ∪ · · · ∪ St−1)

B := S1 ∪ S2 ∪ · · · ∪ St−1 is a t-bundle spanner

22 / 27



t-Bundle Spanners

· · · StS3

S2S1

Idea: Pack graph with t edge-disjoint spanners of stretch log n

Compute spanner S1 of G
Compute spanner S2 of G \ S1

Compute spanner S3 of G \ (S1 ∪ S2)
...

Compute spanner St of G \ (S1 ∪ S2 ∪ · · · ∪ St−1)

B := S1 ∪ S2 ∪ · · · ∪ St−1 is a t-bundle spanner

22 / 27



t-Bundle Spanners

· · · St

S3S2S1

Idea: Pack graph with t edge-disjoint spanners of stretch log n

Compute spanner S1 of G
Compute spanner S2 of G \ S1

Compute spanner S3 of G \ (S1 ∪ S2)

...

Compute spanner St of G \ (S1 ∪ S2 ∪ · · · ∪ St−1)

B := S1 ∪ S2 ∪ · · · ∪ St−1 is a t-bundle spanner

22 / 27



t-Bundle Spanners

· · · StS3S2S1

Idea: Pack graph with t edge-disjoint spanners of stretch log n

Compute spanner S1 of G
Compute spanner S2 of G \ S1

Compute spanner S3 of G \ (S1 ∪ S2)
...

Compute spanner St of G \ (S1 ∪ S2 ∪ · · · ∪ St−1)

B := S1 ∪ S2 ∪ · · · ∪ St−1 is a t-bundle spanner
22 / 27



1-Step Spectral Sparsification

1 Compute t-bundle spanner B with t = 24 log2 n
ε2

2 Set H = B
3 For each edge e ∈ G \ B: with probability 1

4 , add e to H and set
wH(e) = 4wG(e)

Lemma

H is a (1 ± ε)-spectral sparsifier of expected size O(nε−2 log2 n) +m/4.

Intuition:
Edges in G \ B have small “importance” in G:
many alternative paths of small length in B between endpoints of edge

Formally: B certifies small e�ective resistance of edges in G \ B

Sparsification by e�ective-resistance sampling [Spielman/Srivastava ’08]

Technical tool: concentration bounds for random matrices

23 / 27



1-Step Spectral Sparsification

1 Compute t-bundle spanner B with t = 24 log2 n
ε2

2 Set H = B
3 For each edge e ∈ G \ B: with probability 1

4 , add e to H and set
wH(e) = 4wG(e)

Lemma

H is a (1 ± ε)-spectral sparsifier of expected size O(nε−2 log2 n) +m/4.

Intuition:
Edges in G \ B have small “importance” in G:
many alternative paths of small length in B between endpoints of edge

Formally: B certifies small e�ective resistance of edges in G \ B

Sparsification by e�ective-resistance sampling [Spielman/Srivastava ’08]

Technical tool: concentration bounds for random matrices

23 / 27



1-Step Spectral Sparsification

1 Compute t-bundle spanner B with t = 24 log2 n
ε2

2 Set H = B
3 For each edge e ∈ G \ B: with probability 1

4 , add e to H and set
wH(e) = 4wG(e)

Lemma

H is a (1 ± ε)-spectral sparsifier of expected size O(nε−2 log2 n) +m/4.

Intuition:
Edges in G \ B have small “importance” in G:

many alternative paths of small length in B between endpoints of edge

Formally: B certifies small e�ective resistance of edges in G \ B

Sparsification by e�ective-resistance sampling [Spielman/Srivastava ’08]

Technical tool: concentration bounds for random matrices

23 / 27



1-Step Spectral Sparsification

1 Compute t-bundle spanner B with t = 24 log2 n
ε2

2 Set H = B
3 For each edge e ∈ G \ B: with probability 1

4 , add e to H and set
wH(e) = 4wG(e)

Lemma

H is a (1 ± ε)-spectral sparsifier of expected size O(nε−2 log2 n) +m/4.

Intuition:
Edges in G \ B have small “importance” in G:
many alternative paths of small length in B between endpoints of edge

Formally: B certifies small e�ective resistance of edges in G \ B

Sparsification by e�ective-resistance sampling [Spielman/Srivastava ’08]

Technical tool: concentration bounds for random matrices

23 / 27



1-Step Spectral Sparsification

1 Compute t-bundle spanner B with t = 24 log2 n
ε2

2 Set H = B
3 For each edge e ∈ G \ B: with probability 1

4 , add e to H and set
wH(e) = 4wG(e)

Lemma

H is a (1 ± ε)-spectral sparsifier of expected size O(nε−2 log2 n) +m/4.

Intuition:
Edges in G \ B have small “importance” in G:
many alternative paths of small length in B between endpoints of edge

Formally: B certifies small e�ective resistance of edges in G \ B

Sparsification by e�ective-resistance sampling [Spielman/Srivastava ’08]

Technical tool: concentration bounds for random matrices

23 / 27



1-Step Spectral Sparsification

1 Compute t-bundle spanner B with t = 24 log2 n
ε2

2 Set H = B
3 For each edge e ∈ G \ B: with probability 1

4 , add e to H and set
wH(e) = 4wG(e)

Lemma

H is a (1 ± ε)-spectral sparsifier of expected size O(nε−2 log2 n) +m/4.

Intuition:
Edges in G \ B have small “importance” in G:
many alternative paths of small length in B between endpoints of edge

Formally: B certifies small e�ective resistance of edges in G \ B

Sparsification by e�ective-resistance sampling [Spielman/Srivastava ’08]

Technical tool: concentration bounds for random matrices

23 / 27



1-Step Spectral Sparsification

1 Compute t-bundle spanner B with t = 24 log2 n
ε2

2 Set H = B
3 For each edge e ∈ G \ B: with probability 1

4 , add e to H and set
wH(e) = 4wG(e)

Lemma

H is a (1 ± ε)-spectral sparsifier of expected size O(nε−2 log2 n) +m/4.

Intuition:
Edges in G \ B have small “importance” in G:
many alternative paths of small length in B between endpoints of edge

Formally: B certifies small e�ective resistance of edges in G \ B

Sparsification by e�ective-resistance sampling [Spielman/Srivastava ’08]

Technical tool: concentration bounds for random matrices

23 / 27



Spectral Sparsification Algorithm [Koutis ’14]

Repeat 1-step sparsification on remaining graph until size is small enough

H1H2H3· · ·B3B2B1

A�er k = Θ(log n) iterations:

Size of sparsifier: O(knε−2 log2 n +m/4k) = O(nε−2 log3 n)

Multiplicative error: (1 ± ε)log n

Run with increased precision ε ′ = ε/(2 log n) to ensure (1 ± ε)-error

Good parallelization due to parallel spanner algorithm [Baswana/Sen ’03]

24 / 27



Spectral Sparsification Algorithm [Koutis ’14]

Repeat 1-step sparsification on remaining graph until size is small enough

H1H2H3· · ·B3B2

B1

A�er k = Θ(log n) iterations:

Size of sparsifier: O(knε−2 log2 n +m/4k) = O(nε−2 log3 n)

Multiplicative error: (1 ± ε)log n

Run with increased precision ε ′ = ε/(2 log n) to ensure (1 ± ε)-error

Good parallelization due to parallel spanner algorithm [Baswana/Sen ’03]

24 / 27



Spectral Sparsification Algorithm [Koutis ’14]

Repeat 1-step sparsification on remaining graph until size is small enough

H1

H2H3· · ·B3B2

B1

A�er k = Θ(log n) iterations:

Size of sparsifier: O(knε−2 log2 n +m/4k) = O(nε−2 log3 n)

Multiplicative error: (1 ± ε)log n

Run with increased precision ε ′ = ε/(2 log n) to ensure (1 ± ε)-error

Good parallelization due to parallel spanner algorithm [Baswana/Sen ’03]

24 / 27



Spectral Sparsification Algorithm [Koutis ’14]

Repeat 1-step sparsification on remaining graph until size is small enough

H1

H2H3· · ·B3

B2B1

A�er k = Θ(log n) iterations:

Size of sparsifier: O(knε−2 log2 n +m/4k) = O(nε−2 log3 n)

Multiplicative error: (1 ± ε)log n

Run with increased precision ε ′ = ε/(2 log n) to ensure (1 ± ε)-error

Good parallelization due to parallel spanner algorithm [Baswana/Sen ’03]

24 / 27



Spectral Sparsification Algorithm [Koutis ’14]

Repeat 1-step sparsification on remaining graph until size is small enough

H1H2

H3· · ·B3

B2B1

A�er k = Θ(log n) iterations:

Size of sparsifier: O(knε−2 log2 n +m/4k) = O(nε−2 log3 n)

Multiplicative error: (1 ± ε)log n

Run with increased precision ε ′ = ε/(2 log n) to ensure (1 ± ε)-error

Good parallelization due to parallel spanner algorithm [Baswana/Sen ’03]

24 / 27



Spectral Sparsification Algorithm [Koutis ’14]

Repeat 1-step sparsification on remaining graph until size is small enough

H1H2

H3· · ·

B3B2B1

A�er k = Θ(log n) iterations:

Size of sparsifier: O(knε−2 log2 n +m/4k) = O(nε−2 log3 n)

Multiplicative error: (1 ± ε)log n

Run with increased precision ε ′ = ε/(2 log n) to ensure (1 ± ε)-error

Good parallelization due to parallel spanner algorithm [Baswana/Sen ’03]

24 / 27



Spectral Sparsification Algorithm [Koutis ’14]

Repeat 1-step sparsification on remaining graph until size is small enough

H1H2H3

· · ·

B3B2B1

A�er k = Θ(log n) iterations:

Size of sparsifier: O(knε−2 log2 n +m/4k) = O(nε−2 log3 n)

Multiplicative error: (1 ± ε)log n

Run with increased precision ε ′ = ε/(2 log n) to ensure (1 ± ε)-error

Good parallelization due to parallel spanner algorithm [Baswana/Sen ’03]

24 / 27



Spectral Sparsification Algorithm [Koutis ’14]

Repeat 1-step sparsification on remaining graph until size is small enough

H1H2H3· · ·B3B2B1

A�er k = Θ(log n) iterations:

Size of sparsifier: O(knε−2 log2 n +m/4k) = O(nε−2 log3 n)

Multiplicative error: (1 ± ε)log n

Run with increased precision ε ′ = ε/(2 log n) to ensure (1 ± ε)-error

Good parallelization due to parallel spanner algorithm [Baswana/Sen ’03]

24 / 27



Spectral Sparsification Algorithm [Koutis ’14]

Repeat 1-step sparsification on remaining graph until size is small enough

H1H2H3· · ·B3B2B1

A�er k = Θ(log n) iterations:

Size of sparsifier: O(knε−2 log2 n +m/4k) = O(nε−2 log3 n)

Multiplicative error: (1 ± ε)log n

Run with increased precision ε ′ = ε/(2 log n) to ensure (1 ± ε)-error

Good parallelization due to parallel spanner algorithm [Baswana/Sen ’03]

24 / 27



Spectral Sparsification Algorithm [Koutis ’14]

Repeat 1-step sparsification on remaining graph until size is small enough

H1H2H3· · ·B3B2B1

A�er k = Θ(log n) iterations:

Size of sparsifier: O(knε−2 log2 n +m/4k) = O(nε−2 log3 n)

Multiplicative error: (1 ± ε)log n

Run with increased precision ε ′ = ε/(2 log n) to ensure (1 ± ε)-error

Good parallelization due to parallel spanner algorithm [Baswana/Sen ’03]
24 / 27



Towards a Dynamic Algorithm
Straightforward approach:

Use dynamic spanner algorithm

Sampling is simple anyway

Problem: Changes might propagate exponentially!
One update in G might result in (log n)t changes to the t-bundle spanner

...

Solution: Refined algorithm design

25 / 27



Towards a Dynamic Algorithm
Straightforward approach:

Use dynamic spanner algorithm

Sampling is simple anyway

Problem: Changes might propagate exponentially!

One update in G might result in (log n)t changes to the t-bundle spanner

...

Solution: Refined algorithm design

25 / 27



Towards a Dynamic Algorithm
Straightforward approach:

Use dynamic spanner algorithm

Sampling is simple anyway

Problem: Changes might propagate exponentially!
One update in G might result in (log n)t changes to the t-bundle spanner

...

Solution: Refined algorithm design

25 / 27



Towards a Dynamic Algorithm
Straightforward approach:

Use dynamic spanner algorithm

Sampling is simple anyway

Problem: Changes might propagate exponentially!
One update in G might result in (log n)t changes to the t-bundle spanner

...

Solution: Refined algorithm design
25 / 27



Our Algorithm

I�ai Abraham David Durfee Ioannis Koutis Richard Peng

Careful orchestration:
Restrict to edge deletions only, amortize over sequence of deletions
Reduction to turn deletions-only sparsifier into fully dynamic sparsifier
Monotonicity property: Every edge added to the spanner S by the
algorithm stays in S until deleted from input graph G
If G only sees edge deletions, then also G \ S only sees edge deletions
Challenge: Modify Baswana et al. spanner to ensure monotonicity

Theorem (Abraham et al. ’16)
There is a dynamic algorithm for maintaining a spectral sparsifier of size
n · poly(log n, ε−1) with amortized update time poly(log n, ε−1) per edge
insertion/deletion.

26 / 27



Our Algorithm

I�ai Abraham David Durfee Ioannis Koutis Richard Peng

Careful orchestration:
Restrict to edge deletions only, amortize over sequence of deletions
Reduction to turn deletions-only sparsifier into fully dynamic sparsifier

Monotonicity property: Every edge added to the spanner S by the
algorithm stays in S until deleted from input graph G
If G only sees edge deletions, then also G \ S only sees edge deletions
Challenge: Modify Baswana et al. spanner to ensure monotonicity

Theorem (Abraham et al. ’16)
There is a dynamic algorithm for maintaining a spectral sparsifier of size
n · poly(log n, ε−1) with amortized update time poly(log n, ε−1) per edge
insertion/deletion.

26 / 27



Our Algorithm

I�ai Abraham David Durfee Ioannis Koutis Richard Peng

Careful orchestration:
Restrict to edge deletions only, amortize over sequence of deletions
Reduction to turn deletions-only sparsifier into fully dynamic sparsifier
Monotonicity property: Every edge added to the spanner S by the
algorithm stays in S until deleted from input graph G
If G only sees edge deletions, then also G \ S only sees edge deletions

Challenge: Modify Baswana et al. spanner to ensure monotonicity

Theorem (Abraham et al. ’16)
There is a dynamic algorithm for maintaining a spectral sparsifier of size
n · poly(log n, ε−1) with amortized update time poly(log n, ε−1) per edge
insertion/deletion.

26 / 27



Our Algorithm

I�ai Abraham David Durfee Ioannis Koutis Richard Peng

Careful orchestration:
Restrict to edge deletions only, amortize over sequence of deletions
Reduction to turn deletions-only sparsifier into fully dynamic sparsifier
Monotonicity property: Every edge added to the spanner S by the
algorithm stays in S until deleted from input graph G
If G only sees edge deletions, then also G \ S only sees edge deletions
Challenge: Modify Baswana et al. spanner to ensure monotonicity

Theorem (Abraham et al. ’16)
There is a dynamic algorithm for maintaining a spectral sparsifier of size
n · poly(log n, ε−1) with amortized update time poly(log n, ε−1) per edge
insertion/deletion.

26 / 27



Our Algorithm

I�ai Abraham David Durfee Ioannis Koutis Richard Peng

Careful orchestration:
Restrict to edge deletions only, amortize over sequence of deletions
Reduction to turn deletions-only sparsifier into fully dynamic sparsifier
Monotonicity property: Every edge added to the spanner S by the
algorithm stays in S until deleted from input graph G
If G only sees edge deletions, then also G \ S only sees edge deletions
Challenge: Modify Baswana et al. spanner to ensure monotonicity

Theorem (Abraham et al. ’16)
There is a dynamic algorithm for maintaining a spectral sparsifier of size
n · poly(log n, ε−1) with amortized update time poly(log n, ε−1) per edge
insertion/deletion.

26 / 27



Conclusion

Sparsification is a

mathematically clean framework

powerful tool in modern algorithm design

My goal:
Tighten connection between dynamic graph algorithms and
combinatorial/continuous optimization

Rebuild “sparsification infrastructure” in the dynamic world

Thank you!

�estions?

27 / 27



Conclusion

Sparsification is a

mathematically clean framework

powerful tool in modern algorithm design

My goal:
Tighten connection between dynamic graph algorithms and
combinatorial/continuous optimization

Rebuild “sparsification infrastructure” in the dynamic world

Thank you!

�estions?

27 / 27



Conclusion

Sparsification is a

mathematically clean framework

powerful tool in modern algorithm design

My goal:
Tighten connection between dynamic graph algorithms and
combinatorial/continuous optimization

Rebuild “sparsification infrastructure” in the dynamic world

Thank you!

�estions?

27 / 27



Conclusion

Sparsification is a

mathematically clean framework

powerful tool in modern algorithm design

My goal:
Tighten connection between dynamic graph algorithms and
combinatorial/continuous optimization

Rebuild “sparsification infrastructure” in the dynamic world

Thank you!

�estions?

27 / 27



Conclusion

Sparsification is a

mathematically clean framework

powerful tool in modern algorithm design

My goal:
Tighten connection between dynamic graph algorithms and
combinatorial/continuous optimization

Rebuild “sparsification infrastructure” in the dynamic world

Thank you!

�estions?

27 / 27


