Towards Optimal Dynamic Graph Sparsification

Sebastian Krinninger

Department of Computer Sciences
University of Salzburg

08.11.2017

A Definition

A graph G = (V, E) consists of
@ aset of nnodes V and

@ a set of medges
EC {{uv}|uveV}

Graphs model binary relationships between entities

A Definition

A graph G = (V, E) consists of
@ aset of nnodes V and

@ aset of medges
EC {{uv}|uveV}

Graphs model binary relationships between entities

Graphs are Everywhere

Graphs are Everywhere

3/27

Graphs are Everywhere

Graphs are Everywhere

Research Area 1

Distributed and Parallel Algorithms

/27

Shortest Path Algorithms
Single-Source Shortest Paths in distributed CONGEST model

@ Improved exact algorithm

o Close-to-optimal approximation algorithm

Ruben Monika Andreas Christoph Danupon
Becker Henzinger Karrenbauer Lenzen Nanongkai

6/27

Shortest Path Algorithms
Single-Source Shortest Paths in distributed CONGEST model

@ Improved exact algorithm

o Close-to-optimal approximation algorithm

Ruben Monika Andreas Christoph
Becker Henzinger Karrenbauer Lenzen Nanongkai

SSSP in parallel RAM model:

@ Better parallelization in presence of
negative edge weights

@ Improves a sequential problem:

minimum cost-to-time ratio cycle Karl Thomas Dueholm
Bringmann Hansen

6

27

Research Area 2

Hardness of Polynomial-Time Problems

Complexity Theory for a Big-Data World

Conventional wisdom in complexity theory (70s-90s?):

Complexity Theory for a Big-Data World

Conventional wisdom in complexity theory (70s-90s?):
o “P = tractable”

@ “NP = intractable”

Complexity Theory for a Big-Data World

Conventional wisdom in complexity theory (70s-90s?):
e “P = tractable”
@ “NP = intractable”

@ Modulo average-case complexity, smoothed analysis, etc.

8/27

Complexity Theory for a Big-Data World

Conventional wisdom in complexity theory (70s-90s?):
e “P = tractable”
@ “NP = intractable”

@ Modulo average-case complexity, smoothed analysis, etc.

Reality:
@ Quadratic time might be intractable

@ Most desirable: (Nearly) linear time algorithms

8/27

Complexity Theory for a Big-Data World

Conventional wisdom in complexity theory (70s-90s?):
e “P = tractable”

@ “NP = intractable”

@ Modulo average-case complexity, smoothed analysis, etc.

Reality:
@ Quadratic time might be intractable

@ Most desirable: (Nearly) linear time algorithms

Prototypical Question

Can we rule out the existence of truly subquadratic time algorithms for
certain problems?

8/27

Complexity Theory for a Big-Data World

Conventional wisdom in complexity theory (70s-90s?):
e “P = tractable”

@ “NP = intractable”

@ Modulo average-case complexity, smoothed analysis, etc.

Reality:
@ Quadratic time might be intractable

@ Most desirable: (Nearly) linear time algorithms

Prototypical Question

Can we rule out the existence of truly subquadratic time algorithms for
certain problems?

Yes!

8/27

Complexity Theory for a Big-Data World

Conventional wisdom in complexity theory (70s-90s?):
e “P = tractable”

@ “NP = intractable”

@ Modulo average-case complexity, smoothed analysis, etc.

Reality:
@ Quadratic time might be intractable

@ Most desirable: (Nearly) linear time algorithms

Prototypical Question

Can we rule out the existence of truly subquadratic time algorithms for
certain problems?

Yes! ...under plausible hardness assumptions

8/27

Conditional Lower Bounds

Fine-grained complexity of diameter approximation

@ No subquadratic algorithm under Strong Exponential
Time Hypothesis [Roditty/V. Williams *13]

@ Not even subquadratic %-approximation

@ Goal: more detailed hardness analysis

Karl
Bringmann

Conditional Lower Bounds

Fine-grained complexity of diameter approximation

@ No subquadratic algorithm under Strong Exponential
Time Hypothesis [Roditty/V. Williams *13]

@ Not even subquadratic %-approximation

@ Goal: more detailed hardness analysis Karl
Bringmann

Conditional lower bounds for dynamic problems
e Formulation of new hardness conjecture

e Explains certain barriers in dynamic algorithms

Monika Henzinger Danupon Nanongkai Thatchaphol Saranurak

Research Area 3

Dynamic Algorithms

Our World is not Static

11/27

Our World is not Static

AT
QRERRRRXRR

11/27

Our World is not Static

AT
QRERRRRXRR

11/27

Our World is not Static

Goal: Fast recomputation of solution after update in the graph

11/27

Research on Dynamic Algorithms

Fastest dynamic shortest path algorithm in a variety of settings

(7+ papers)

Ittai Shiri Monika Danupon
Abraham Chechik Henzinger Nanongkai

12/27

Research on Dynamic Algorithms

Fastest dynamic shortest path algorithm in a variety of settings

(7+ papers)

Ittai Shiri Monika Danupon
Abraham Chechik Henzinger Nanongkai

Loukas Thomas Dueholm
Georgiadis Italiano Hansen Parotsidis

12/27

Sparsification

Sparsification

Idea: Approximate dense objects by sparse objects

Sparsification

Idea: Approximate dense objects by sparse objects

s

Masonry arch

14/27

Sparsification

Idea: Approximate dense objects by sparse objects

Truss arch
Masonry arch

14/27

Sparsification in Graphs

Goal: Reduce to much smaller set of edges

Goal: Reduce to much smaller set of edges

Sparsification in Graphs

NS
AL NS

= IRSZ RS
AT TR/
= HREERA
SN X X
- VOI
I
v &
[72] N
c /ﬂ
m WP X
e\

15/27

Sparsification in Graphs
Goal: Reduce to much smaller set of edges

Dense graph Sparse graph
NN

ST
e

OO TSI

N wﬁk

Ning! N

_-\" y {‘!\‘/

m = Q(n%) m < n’

Sparsification in Graphs
Goal: Reduce to much smaller set of edges

Dense graph

N
SIS
RN

NN
jSas el
2wl P /

Sparse graph

m < n?

Running Time: T(n,m) = T(n,m")

Sparsification in Graphs

Goal: Reduce to much smaller set of edges

Dense graph Sparse graph

—
N N
%
AT LX)

>3

N
N
™

¥
A
/1
."

|
X

7
..'!‘l;
{ ¥
>

/\

(A

[7>

I\
A
<
[>
\/
5
Y
3

[7
2

57
oS
(D>
17
—~\—

—<\\ N
\\%"’0\\\1

m = Q(n%) m < n?

Running Time: T(n,m) = T(n,m") 1 '
At cost of approximation

Example 1: Distance Sparsifier
Definition
A spanner of stretch « of G = (V, E) is a subgraph H = (V, E’) such that

distg(u, v) < disty(u, v) < a - distg(u, v)
for all pairs of nodes u, v € V.

Example 1: Distance Sparsifier
Definition
A spanner of stretch « of G = (V, E) is a subgraph H = (V, E’) such that

distg(u, v) < disty(u, v) < a - distg(u, v)
for all pairs of nodes u, v € V.

Example 1: Distance Sparsifier
Definition
A spanner of stretch « of G = (V, E) is a subgraph H = (V, E’) such that

distg(u, v) < disty(u, v) < a - distg(u, v)
for all pairs of nodes u,v € V.

Example 1: Distance Sparsifier
Definition
A spanner of stretch « of G = (V, E) is a subgraph H = (V, E’) such that

distg(u, v) < disty(u, v) < a - distg(u, v)
for all pairs of nodes u, v € V.

Fact: Every graph has spanners with stretch (2k — 1) of size "k (k > 2)

In particular: stretch log n and size O(n)

16/27

Dynamic Problem
Input graph G

=
VA
B

PATS

V

NN
4‘\\\;\7

oy

Dynamic Problem
Input graph G

Dynamic
algorithm

Sparsifier H

Dynamic Problem
Input graph G

s
R
L
Yiwae
Ry
S
adversary inserts and
deletes edges

Dynamic
algorithm

Sparsifier H

Dynamic Problem
Input graph G

‘v'

Sparsifier H

r Dynamic

algorithm

adversary inserts and
deletes edges

algorithm adds and
removes edges

Dynamic Problem

Input graph G Sparsifier H

Dynamic
algorithm

adversary inserts and

algorithm adds and
deletes edges

removes edges
State of the art update time:

o Amortized time: O(k? log? n), stretch 2k — 1
Total time O(t - k? log? n) for t updates [Baswana et al. 2012]

Dynamic Problem
Input graph G

Sparsifier H

Dynamic
algorithm

adversary inserts and

algorithm adds and
deletes edges

removes edges
State of the art update time:

o Amortized time: O(k? log? n), stretch 2k — 1
Total time O(t - k? log? n) for t updates [Baswana et al. 2012]

o Worst-case time: O(n**) for stretch 3 [Bodwin/K 2016] Greg Bodwin

Example 2: Spectral Sparsification

View graph G as Laplacian matrix L¢

S

c oo o

N o

o oo oo

-1

cooc oo oN

o oo o

18/27

Example 2: Spectral Sparsification

View graph G as Laplacian matrix L¢

2 =10 0 0 -1 0 0 0 0
-1 3 0 -1 -1 0 0 0 0 0
00 2 -1 0 0 0 0 0 -1
0 -1 -1 2 0 0 0 0 0 0
0 -1 0 0 3 -1 -1 0 0 0
-1 0 0 0 -1 4 -1 0 0 -1
00 0 0 -1 -1 4 -1 -1 0
00 0 0 0 0 -1 3 -1 -1
—> 00 0 0 0 0 -1 -1 2 0
00 -1 0 0 -1 0 -1 0 3

Lgli, i] = degree(v;)
o -1 if edge (v;, vj) exists
ijl =

0 otherwise

18/27

Example 2: Spectral Sparsification

View graph G as Laplacian matrix L¢

0
-1 3 0 -1 -1 0 0
0 0 2 -1 0 0 0
0 -1 -1 2 0 0 0
0 -1 0 0 3 -1 -1
-1 0 0 0 -1 4 -1
00 0 0 -1 -1 4
00 0 0 0 0 -1
—> 00 0 0 0 0 -1
0 0 -1 0 0 -1 0

Lgli, i] = degree(v;)
o -1 if edge (v;, vj) exists
ijl =

©c oo o oo

-1 -

3
=1
=1

0 otherwise

Definition

A (1 £ ¢)-spectral sparsifier of G is a weighted subgraph H such that

(1—e)xTLox < x"Lyx < (1+&)x" Lgx
for all vectors x € R".

Example 2: Spectral Sparsification

View graph G as Laplacian matrix L¢

0
-1 3 0 -1 -1 0 0
0 0 2 -1 0 0 0
0 -1 -1 2 0 0 0
0 -1 0 0 3 -1 -1
-1 0 0 0 -1 4 -1
00 0 0 -1 -1 4
00 0 0 0 0 -1
—> 00 0 0 0 0 -1
0 0 -1 0 0 -1 0

Lgli, i] = degree(v;)
o -1 if edge (v;, vj) exists
ijl =

©c oo o oo

-1 -

3
=1
=1

0 otherwise

Definition

A (1 £ ¢)-spectral sparsifier of G is a weighted subgraph H such that

(1—e)xTLox < x"Lyx < (1+&)x" Lgx
for all vectors x € R".

Under Lowner ordering: (1 —¢)Lg < Ly < (1+¢)L¢g

Motivation I: Cut Sparsification
Consider set of nodes S C V and vector x € R"” such that

x; = 1if i-th node in S

x; = 0 otherwise

Motivation I: Cut Sparsification
Consider set of nodes S C V and vector x € R” such that

x; = 1if i-th node in S
x; = 0 otherwise

x encodes cut in graph induced by S

Motivation I: Cut Sparsification
Consider set of nodes S C V and vector x € R"” such that

x; = 1if i-th node in S
x; = 0 otherwise

x encodes cut in graph induced by S
x"Lgx corresponds to size of cut (S, V\ S)in G

Motivation I: Cut Sparsification
Consider set of nodes S C V and vector x € R"” such that

x; = 1if i-th node in S
x; = 0 otherwise

x encodes cut in graph induced by S
x"Lgx corresponds to size of cut (S, V\ S)in G

= Spectral sparsifier is also a cut sparsifier [Benczir/Karger "00]

Motivation II: Solving SDD Systems

System of linear equations with n unknowns:

anxy +apxy + -+ aipxny = b]

a1 X1+ axpxy + -+ dypnXp = b2

amX) + ampXxy + -+ appXp = bn

20/27

Motivation II: Solving SDD Systems

System of linear equations with n unknowns:

anxy +apxy + -+ aipxny = b]

a1 X1+ axpxy + -+ dypnXp = b2

amX) + ampXxy + -+ appXp = bn

Short: Ax = b, where A € R™" b € R" and unknown x € R"

20/27

Motivation II: Solving SDD Systems

System of linear equations with n unknowns:

anxy +apxy + -+ aipxny = b1

a1 X1+ axpxy + -+ dypnXp = b2

amX1 + ampXxy + -+ appXp = bn

Short: Ax = b, where A € R™" b € R" and unknown x € R"

If Ais symmetric diagonally dominant (SDD):
@ Can reduce to Lgx = b with Laplacian matrix Lg of some graph G

Motivation II: Solving SDD Systems

System of linear equations with n unknowns:

anxy +apxy + -+ aipxny = b1

a1 X1+ axpxy + -+ dypnXp = b2

amX1 + ampXxy + -+ appXp = bn

Short: Ax = b, where A € R™" b € R" and unknown x € R"

If Ais symmetric diagonally dominant (SDD):

@ Can reduce to Lgx = b with Laplacian matrix Lg of some graph G
@ Amounts to computing electrical flow in resistor network G
Dual formulation: m%x(Zbe - xTLgx)
x€R"

20/27

Motivation II: Solving SDD Systems

System of linear equations with n unknowns:

anxy +apxy + -+ aipxny = b1

a1 X1+ axpxy + -+ dypnXp = b2

amX1 + ampXxy + -+ appXp = bn

Short: Ax = b, where A € R™" b € R" and unknown x € R"

If Ais symmetric diagonally dominant (SDD):
@ Can reduce to Lgx = b with Laplacian matrix Lg of some graph G

@ Amounts to computing electrical flow in resistor network G
Dual formulation: m%x(Zbe - xTLgx)
x€R"

o Nearly-linear time solvers in static setting [Spielman/Teng *04, ...]

20/27

Motivation II: Solving SDD Systems

System of linear equations with n unknowns:

anxy +apxy + -+ aipxny = b1

a1 X1+ axpxy + -+ dypnXp = b2

amX1 + ampXxy + -+ appXp = bn

Short: Ax = b, where A € R™" b € R" and unknown x € R"

If Ais symmetric diagonally dominant (SDD):
@ Can reduce to Lgx = b with Laplacian matrix Lg of some graph G
@ Amounts to computing electrical flow in resistor network G
Dual formulation: rXT;?Rﬁ(Zbe - xTLgx)

o Nearly-linear time solvers in static setting [Spielman/Teng *04, ...]

Dynamic Solver? J

Changing one row in A — changing < 2n edges of G

t-Bundle Spanners

Idea: Pack graph with t edge-disjoint spanners of stretch log n

t-Bundle Spanners

Idea: Pack graph with t edge-disjoint spanners of stretch log n

e Compute spanner S; of G

22/27

t-Bundle Spanners

Idea: Pack graph with t edge-disjoint spanners of stretch log n

e Compute spanner S; of G
e Compute spanner S, of G\ §;

22/27

t-Bundle Spanners

Idea: Pack graph with t edge-disjoint spanners of stretch log n
e Compute spanner S; of G
e Compute spanner S, of G\ §;
e Compute spanner S3 of G\ (5;U S)

t-Bundle Spanners

Idea: Pack graph with t edge-disjoint spanners of stretch log n

e Compute spanner S; of G
e Compute spanner S, of G\ §;
e Compute spanner S3 of G\ (5;U S)

e Compute spanner S; of G\ (51U S U---US;1)
B:=S5USU---US;qisa t-bundle spanner

1-Step Spectral Sparsification

@ Compute t-bundle spanner B with t = 24'?—52"
Q SetH=8B
@ For each edge e € G\ B: with probability %, add e to H and set

wi(e) = 4wg(e)

1-Step Spectral Sparsification

24log? n
22

@ Compute t-bundle spanner B with t =

Q SetH=8B

@ For each edge e € G\ B: with probability %, add e to H and set
wh(e) = 4wg(e)

Lemma
H is a (1 + ¢)-spectral sparsifier of expected size O(ne™*log?® n) + m/4.

23/27

1-Step Spectral Sparsification

24log? n
22

@ Compute t-bundle spanner B with t =

Q SetH=8B

@ For each edge e € G\ B: with probability %, add e to H and set
wh(e) = 4wg(e)

Lemma
H is a (1 + ¢)-spectral sparsifier of expected size O(ne™*log?® n) + m/4.

Intuition:
e Edgesin G\ B have small “importance” in G:

1-Step Spectral Sparsification

24log? n
22

@ Compute t-bundle spanner B with t =

Q SetH=8B

@ For each edge e € G\ B: with probability %, add e to H and set
wh(e) = 4wg(e)

Lemma
H is a (1 + ¢)-spectral sparsifier of expected size O(ne™*log?® n) + m/4.

Intuition:

e Edgesin G\ B have small “importance” in G:
many alternative paths of small length in B between endpoints of edge

1-Step Spectral Sparsification

24log? n
22

@ Compute t-bundle spanner B with t =

Q SetH=8B

@ For each edge e € G\ B: with probability %, add e to H and set
wh(e) = 4wg(e)

Lemma
H is a (1 + ¢)-spectral sparsifier of expected size O(ne™*log?® n) + m/4.

Intuition:

e Edgesin G\ B have small “importance” in G:
many alternative paths of small length in B between endpoints of edge

o Formally: B certifies small effective resistance of edges in G\ B

1-Step Spectral Sparsification

24log? n
22

@ Compute t-bundle spanner B with t =

Q SetH=8B

@ For each edge e € G\ B: with probability %, add e to H and set
wh(e) = 4wg(e)

Lemma
H is a (1 + ¢)-spectral sparsifier of expected size O(ne™*log?® n) + m/4.

Intuition:

e Edgesin G\ B have small “importance” in G:
many alternative paths of small length in B between endpoints of edge

o Formally: B certifies small effective resistance of edges in G\ B

e Sparsification by effective-resistance sampling [Spielman/Srivastava "08]

1-Step Spectral Sparsification

2
@ Compute t-bundle spanner B with t = 24';’#’

Q SetH=8B
@ For each edge e € G\ B: with probability %, add e to H and set
wh(e) = 4wg(e)

Lemma
H is a (1 + ¢)-spectral sparsifier of expected size O(ne™*log?® n) + m/4.

Intuition:

e Edgesin G\ B have small “importance” in G:
many alternative paths of small length in B between endpoints of edge

o Formally: B certifies small effective resistance of edges in G\ B
e Sparsification by effective-resistance sampling [Spielman/Srivastava "08]

@ Technical tool: concentration bounds for random matrices

Spectral Sparsification Algorithm [Koutis *14]

Repeat 1-step sparsification on remaining graph until size is small enough

Spectral Sparsification Algorithm [Koutis *14]

Repeat 1-step sparsification on remaining graph until size is small enough

24/27

Spectral Sparsification Algorithm [Koutis *14]

Repeat 1-step sparsification on remaining graph until size is small enough

24/27

Spectral Sparsification Algorithm [Koutis *14]

Repeat 1-step sparsification on remaining graph until size is small enough

24/27

Spectral Sparsification Algorithm [Koutis *14]

Repeat 1-step sparsification on remaining graph until size is small enough

24/27

Spectral Sparsification Algorithm [Koutis *14]

Repeat 1-step sparsification on remaining graph until size is small enough

24/27

Spectral Sparsification Algorithm [Koutis *14]

Repeat 1-step sparsification on remaining graph until size is small enough

24/27

Spectral Sparsification Algorithm [Koutis *14]

Repeat 1-step sparsification on remaining graph until size is small enough

After k = O(log n) iterations:
o Size of sparsifier: O(kne 2 log? n + m/4%) = O(ne™2 log® n)

24/27

Spectral Sparsification Algorithm [Koutis *14]

Repeat 1-step sparsification on remaining graph until size is small enough

After k = O(log n) iterations:
o Size of sparsifier: O(kne 2 log? n + m/4%) = O(ne™2 log® n)
o Multiplicative error: (1 + £)/°8"
Run with increased precision ¢’ = ¢/(2log n) to ensure (1 + ¢)-error

24/27

Spectral Sparsification Algorithm [Koutis *14]

Repeat 1-step sparsification on remaining graph until size is small enough

After k = O(log n) iterations:
o Size of sparsifier: O(kne 2 log? n + m/4%) = O(ne™2 log® n)
o Multiplicative error: (1 + £)/°8"

Run with increased precision ¢’ = ¢/(2 log n) to ensure (1 + ¢)-error
p g

Good parallelization due to parallel spanner algorithm [Baswana/Sen *03]

24/27

Towards a Dynamic Algorithm
Straightforward approach:
@ Use dynamic spanner algorithm

e Sampling is simple anyway

Towards a Dynamic Algorithm
Straightforward approach:
@ Use dynamic spanner algorithm

e Sampling is simple anyway

Problem: Changes might propagate exponentially!

Towards a Dynamic Algorithm
Straightforward approach:

@ Use dynamic spanner algorithm

e Sampling is simple anyway

Problem: Changes might propagate exponentially!
One update in G might result in (log n)' changes to the t-bundle spanner

Towards a Dynamic Algorithm
Straightforward approach:

@ Use dynamic spanner algorithm

e Sampling is simple anyway

Problem: Changes might propagate exponentially!
One update in G might result in (log n)' changes to the t-bundle spanner

Solution: Refined algorithm design

Our Algorithm

Ittai Abraham David Durfee loannis Koutis Richard Peng

26/27

Our Algorithm

Ittai Abraham David Durfee loannis Koutis Richard Peng

Careful orchestration:
@ Restrict to edge deletions only, amortize over sequence of deletions
Reduction to turn deletions-only sparsifier into fully dynamic sparsifier

26/27

Our Algorithm

Ittai Abraham David Durfee loannis Koutis Richard Peng

Careful orchestration:
@ Restrict to edge deletions only, amortize over sequence of deletions
Reduction to turn deletions-only sparsifier into fully dynamic sparsifier
@ Monotonicity property: Every edge added to the spanner S by the
algorithm stays in S until deleted from input graph G
o If G only sees edge deletions, then also G\ S only sees edge deletions

Our Algorithm

Ittai Abraham David Durfee loannis Koutis Richard Peng

Careful orchestration:
@ Restrict to edge deletions only, amortize over sequence of deletions
Reduction to turn deletions-only sparsifier into fully dynamic sparsifier
@ Monotonicity property: Every edge added to the spanner S by the
algorithm stays in S until deleted from input graph G
o If G only sees edge deletions, then also G\ S only sees edge deletions
@ Challenge: Modify Baswana et al. spanner to ensure monotonicity

Our Algorithm

NEw
L - R

p!‘Ii' < h‘!{-

L-”;

Ittai Abraham David Durfee loannis Koutis Richard Peng

Careful orchestration:
@ Restrict to edge deletions only, amortize over sequence of deletions
Reduction to turn deletions-only sparsifier into fully dynamic sparsifier
@ Monotonicity property: Every edge added to the spanner S by the
algorithm stays in S until deleted from input graph G

o If G only sees edge deletions, then also G\ S only sees edge deletions
@ Challenge: Modify Baswana et al. spanner to ensure monotonicity

Theorem (Abraham et al. ’16)

There is a dynamic algorithm for maintaining a spectral sparsifier of size
n- poly(log n, e") with amortized update time poly(log n,e™") per edge
insertion/deletion.

26/27

Conclusion

Sparsification is a

e mathematically clean framework

Conclusion

Sparsification is a
e mathematically clean framework

e powerful tool in modern algorithm design

Conclusion

Sparsification is a
e mathematically clean framework

e powerful tool in modern algorithm design

My goal:
@ Tighten connection between dynamic graph algorithms and
combinatorial/continuous optimization

@ Rebuild “sparsification infrastructure” in the dynamic world

Conclusion

Sparsification is a
e mathematically clean framework

e powerful tool in modern algorithm design

My goal:
@ Tighten connection between dynamic graph algorithms and
combinatorial/continuous optimization

@ Rebuild “sparsification infrastructure” in the dynamic world

Thank you!

Conclusion

Sparsification is a
e mathematically clean framework

e powerful tool in modern algorithm design

My goal:
@ Tighten connection between dynamic graph algorithms and
combinatorial/continuous optimization

@ Rebuild “sparsification infrastructure” in the dynamic world

Thank you!

Questions?

