Towards Optimal Dynamic Graph Sparsification

Sebastian Krinninger

Department of Computer Sciences University of Salzburg

08.11.2017

A Definition

- A graph G = (V, E) consists of
 - a set of *n* nodes *V* and
 - a set of m edges $E \subseteq \{\{u, v\} \mid u, v \in V\}.$

Graphs model binary relationships between entities

A Definition

A graph G = (V, E) consists of

- a set of *n* nodes *V* and
- a set of m edges $E \subseteq \{\{u, v\} \mid u, v \in V\}.$

Graphs model binary relationships between entities

Research Area 1

Distributed and Parallel Algorithms

Shortest Path Algorithms

Single-Source Shortest Paths in distributed CONGEST model

- Improved exact algorithm
- Close-to-optimal approximation algorithm

Ruben Becker

Monika Henzinger

Andreas Karrenbauer

Christoph Lenzen

Danupon Nanongkai

Shortest Path Algorithms

Single-Source Shortest Paths in distributed CONGEST model

- Improved exact algorithm
- Close-to-optimal approximation algorithm

Ruben Becker

Monika Henzinger

Andreas Karrenbauer

Christoph Lenzen

Danupon Nanongkai

SSSP in parallel RAM model:

- Better parallelization in presence of negative edge weights
- Improves a sequential problem: minimum cost-to-time ratio cycle

Karl Bringmann

Thomas Dueholm Hansen

Research Area 2

Hardness of Polynomial-Time Problems

Conventional wisdom in complexity theory (70s-90s?):

Conventional wisdom in complexity theory (70s-90s?):

- "P = tractable"
- "NP = intractable"

Conventional wisdom in complexity theory (70s-90s?):

- "P = tractable"
- "NP = intractable"
- Modulo average-case complexity, smoothed analysis, etc.

Conventional wisdom in complexity theory (70s-90s?):

- "P = tractable"
- "NP = intractable"
- Modulo average-case complexity, smoothed analysis, etc.

Reality:

- Quadratic time might be intractable
- Most desirable: (Nearly) linear time algorithms

Conventional wisdom in complexity theory (70s-90s?):

- "P = tractable"
- "NP = intractable"
- Modulo average-case complexity, smoothed analysis, etc.

Reality:

- Quadratic time might be intractable
- Most desirable: (Nearly) linear time algorithms

Prototypical Question

Can we rule out the existence of truly subquadratic time algorithms for certain problems?

Conventional wisdom in complexity theory (70s-90s?):

- "P = tractable"
- "NP = intractable"
- Modulo average-case complexity, smoothed analysis, etc.

Reality:

- Quadratic time might be intractable
- Most desirable: (Nearly) linear time algorithms

Prototypical Question

Can we rule out the existence of truly subquadratic time algorithms for certain problems?

Conventional wisdom in complexity theory (70s-90s?):

- "P = tractable"
- "NP = intractable"
- Modulo average-case complexity, smoothed analysis, etc.

Reality:

- Quadratic time might be intractable
- Most desirable: (Nearly) linear time algorithms

Prototypical Question

Can we rule out the existence of truly subquadratic time algorithms for certain problems?

Yes! ... under plausible hardness assumptions

Conditional Lower Bounds

Fine-grained complexity of diameter approximation

- No subquadratic algorithm under Strong Exponential Time Hypothesis [Roditty/V. Williams '13]
- Not even subquadratic $\frac{3}{2}$ -approximation
- Goal: more detailed hardness analysis

Karl Bringmann

Conditional Lower Bounds

Fine-grained complexity of diameter approximation

- No subquadratic algorithm under Strong Exponential Time Hypothesis [Roditty/V. Williams '13]
- Not even subquadratic $\frac{3}{2}$ -approximation
- Goal: more detailed hardness analysis

Karl Bringmann

Conditional lower bounds for dynamic problems

- Formulation of new hardness conjecture
- Explains certain barriers in dynamic algorithms

Monika Henzinger

Danupon Nanongkai

Thatchaphol Saranurak

Research Area 3

Dynamic Algorithms

Goal: Fast recomputation of solution after update in the graph

Research on Dynamic Algorithms

Fastest dynamic **shortest path** algorithm in a variety of settings (7+ papers)

lttai Abraham

Shiri Chechik

Monika Henzinger

Danupon Nanongkai

Research on Dynamic Algorithms

Fastest dynamic **shortest path** algorithm in a variety of settings (7+ papers)

lttai Abraham

Shiri Chechik

Monika Henzinger

Danupon Nanongkai

Dynamic connectivity and dominators in directed graphs

Loukas Georgiadis

Giuseppe Italiano

Thomas Dueholm Hansen

Nikos Parotsidis

Idea: Approximate dense objects by sparse objects

Idea: Approximate dense objects by sparse objects

Masonry arch

Idea: Approximate dense objects by sparse objects

Truss arch

Masonry arch

Sparsification in Graphs

Goal: Reduce to much smaller set of edges

Sparsification in Graphs

Goal: Reduce to much smaller set of edges

Sparsification in Graphs

Goal: Reduce to much smaller set of edges

Sparsification in Graphs

Goal: Reduce to much smaller set of edges

Running Time: $T(n, m) \Rightarrow T(n, m')$

Sparsification in Graphs

Goal: Reduce to much smaller set of edges

Running Time: $T(n, m) \Rightarrow T(n, m')$

At cost of approximation

Definition

A **spanner** of **stretch** α of G = (V, E) is a subgraph H = (V, E') such that

 $dist_G(u, v) \leq dist_H(u, v) \leq \alpha \cdot dist_G(u, v)$

Definition

A **spanner** of **stretch** α of G = (V, E) is a subgraph H = (V, E') such that

$$dist_G(u, v) \leq dist_H(u, v) \leq \alpha \cdot dist_G(u, v)$$

Definition

A **spanner** of **stretch** α of G = (V, E) is a subgraph H = (V, E') such that

$$dist_G(u, v) \leq dist_H(u, v) \leq \alpha \cdot dist_G(u, v)$$

Definition

A **spanner** of **stretch** α of G = (V, E) is a subgraph H = (V, E') such that

$$dist_G(u, v) \leq dist_H(u, v) \leq \alpha \cdot dist_G(u, v)$$

Fact: Every graph has spanners with stretch (2k - 1) of size $n^{1+1/k}$ $(k \ge 2)$ In particular: stretch log *n* and size O(n)

Input graph G

Input graph G

Sparsifier H

Input graph G

Sparsifier H

adversary inserts and deletes edges

Input graph G

adversary inserts and deletes edges

algorithm adds and removes edges

Input graph G

adversary inserts and deletes edges

algorithm adds and removes edges

State of the art update time:

• Amortized time: $O(k^2 \log^2 n)$, stretch 2k - 1Total time $O(t \cdot k^2 \log^2 n)$ for t updates [Baswana et al. 2012]

Input graph G

adversary inserts and deletes edges

algorithm adds and removes edges

State of the art update time:

- Amortized time: O(k² log² n), stretch 2k − 1 Total time O(t · k² log² n) for t updates [Baswana et al. 2012]
- Worst-case time: $O(n^{3/4})$ for stretch 3 [Bodwin/K 2016]

Greg Bodwin

View graph G as Laplacian matrix L_G

(2	-1	0	0	0	-1	0	0	0	0)
-1	3	0	-1	-1	0	0	0	0	0
0	0	2	-1	0	0	0	0	0	-1
0	-1	-1	2	0	0	0	0	0	0
0	-1	0	0	3	-1	-1	0	0	0
-1	0	0	0	-1	4		0	0	-1
0	0	0	0	-1	-1	4		-1	0
0	0	0	0	0	0	-1	3	-1	-1
0	0	0	0	0	0	-1	-1	2	0
0	0	-1	0	0	-1	0	-1	0	3

View graph G as Laplacian matrix L_G

$$L_G[i, j] = \begin{cases} 2 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ -1 & 3 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 3 & -1 & -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & -1 & 4 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 & -1 & 4 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 2 & 0 \\ 0 & 0 & -1 & 0 & 0 & -1 & 0 & -1 & 0 & 3 \\ \end{bmatrix}$$

View graph G as Laplacian matrix L_G

Definition

A $(1 \pm \varepsilon)$ -spectral sparsifier of *G* is a weighted subgraph *H* such that $(1 - \varepsilon)x^T L_G x \le x^T L_H x \le (1 + \varepsilon)x^T L_G x$

for all vectors $x \in \mathbb{R}^n$.

View graph G as Laplacian matrix L_G

Definition

A $(1 \pm \varepsilon)$ -spectral sparsifier of G is a weighted subgraph H such that $(1 - \varepsilon)x^T L_G x \le x^T L_H x \le (1 + \varepsilon)x^T L_G x$

for all vectors $x \in \mathbb{R}^n$.

Under Löwner ordering: $(1 - \varepsilon)L_G \leq L_H \leq (1 + \varepsilon)L_G$

Consider set of nodes $S \subseteq V$ and vector $x \in \mathbb{R}^n$ such that

 $x_i = 1$ if *i*-th node in *S*

 $x_i = 0$ otherwise

Consider set of nodes $S \subseteq V$ and vector $x \in \mathbb{R}^n$ such that

 $x_i = 1$ if *i*-th node in *S*

 $x_i = 0$ otherwise

x encodes **cut** in graph induced by *S*

Consider set of nodes $S \subseteq V$ and vector $x \in \mathbb{R}^n$ such that

 $x_i = 1$ if *i*-th node in *S*

 $x_i = 0$ otherwise

x encodes **cut** in graph induced by *S* $x^T L_G x$ corresponds to size of cut $(S, V \setminus S)$ in *G*

Consider set of nodes $S \subseteq V$ and vector $x \in \mathbb{R}^n$ such that

 $x_i = 1$ if *i*-th node in *S*

 $x_i = 0$ otherwise

x encodes **cut** in graph induced by *S* $x^T L_G x$ corresponds to size of cut $(S, V \setminus S)$ in *G*

 \Rightarrow Spectral sparsifier is also a cut sparsifier [Benczúr/Karger '00]

System of linear equations with *n* unknowns:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

System of linear equations with *n* unknowns:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

Short: Ax = b, where $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$ and unknown $x \in \mathbb{R}^n$

System of linear equations with *n* unknowns:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

Short: Ax = b, where $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$ and unknown $x \in \mathbb{R}^n$

If A is symmetric diagonally dominant (SDD):

• Can reduce to $L_G x = b$ with Laplacian matrix L_G of some graph G

System of linear equations with *n* unknowns:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

Short: Ax = b, where $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$ and unknown $x \in \mathbb{R}^n$

If A is symmetric diagonally dominant (SDD):

- Can reduce to $L_G x = b$ with Laplacian matrix L_G of some graph G
- Amounts to computing **electrical flow** in resistor network *G* Dual formulation: $\max_{x \in \mathbb{R}^n} (2x^T b - x^T L_G x)$

System of linear equations with *n* unknowns:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

Short: Ax = b, where $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$ and unknown $x \in \mathbb{R}^n$

If A is symmetric diagonally dominant (SDD):

- Can reduce to $L_G x = b$ with Laplacian matrix L_G of some graph G
- Amounts to computing **electrical flow** in resistor network *G* Dual formulation: $\max_{x \in \mathbb{R}^n} (2x^T b - x^T L_G x)$
- Nearly-linear time solvers in static setting [Spielman/Teng '04, ...]

System of linear equations with *n* unknowns:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

Short: Ax = b, where $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$ and unknown $x \in \mathbb{R}^n$

If A is symmetric diagonally dominant (SDD):

- Can reduce to $L_G x = b$ with Laplacian matrix L_G of some graph G
- Amounts to computing **electrical flow** in resistor network *G* Dual formulation: $\max_{x \in \mathbb{R}^n} (2x^T b - x^T L_G x)$
- Nearly-linear time solvers in static setting [Spielman/Teng '04, ...]

Dynamic Solver?

Changing one row in $A \rightarrow$ changing $\leq 2n$ edges of G

Idea: Pack graph with t edge-disjoint spanners of stretch log n

Idea: Pack graph with t edge-disjoint spanners of stretch log n

• Compute spanner S_1 of G

Idea: Pack graph with t edge-disjoint spanners of stretch log n

- Compute spanner S_1 of G
- Compute spanner S_2 of $G \setminus S_1$

Idea: Pack graph with t edge-disjoint spanners of stretch log n

- Compute spanner S_1 of G
- Compute spanner S_2 of $G \setminus S_1$
- Compute spanner S_3 of $G \setminus (S_1 \cup S_2)$

Idea: Pack graph with t edge-disjoint spanners of stretch log n

- Compute spanner S_1 of G
- Compute spanner S_2 of $G \setminus S_1$
- Compute spanner S_3 of $G \setminus (S_1 \cup S_2)$

• Compute spanner S_t of $G \setminus (S_1 \cup S_2 \cup \cdots \cup S_{t-1})$

 $B := S_1 \cup S_2 \cup \cdots \cup S_{t-1}$ is a *t*-bundle spanner

1-Step Spectral Sparsification

- Compute *t*-bundle spanner *B* with $t = \frac{24 \log^2 n}{\epsilon^2}$
- Set H = B
- For each edge $e \in G \setminus B$: with probability $\frac{1}{4}$, add *e* to *H* and set $w_H(e) = 4w_G(e)$

1-Step Spectral Sparsification

- Compute *t*-bundle spanner *B* with $t = \frac{24 \log^2 n}{\epsilon^2}$
- Set H = B
- So For each edge $e \in G \setminus B$: with probability $\frac{1}{4}$, add e to H and set $w_H(e) = 4w_G(e)$

Lemma

H is a $(1 \pm \varepsilon)$ -spectral sparsifier of expected size $O(n\varepsilon^{-2}\log^2 n) + m/4$.

1-Step Spectral Sparsification

- Compute *t*-bundle spanner *B* with $t = \frac{24 \log^2 n}{\epsilon^2}$
- Set H = B
- So For each edge $e \in G \setminus B$: with probability $\frac{1}{4}$, add e to H and set $w_H(e) = 4w_G(e)$

Lemma

H is a $(1 \pm \varepsilon)$ -spectral sparsifier of expected size $O(n\varepsilon^{-2}\log^2 n) + m/4$.

Intuition:

• Edges in $G \setminus B$ have small "importance" in G:

- Compute *t*-bundle spanner *B* with $t = \frac{24 \log^2 n}{\epsilon^2}$
- Set H = B
- For each edge $e \in G \setminus B$: with probability $\frac{1}{4}$, add e to H and set $w_H(e) = 4w_G(e)$

Lemma

H is a $(1 \pm \varepsilon)$ -spectral sparsifier of expected size $O(n\varepsilon^{-2}\log^2 n) + m/4$.

Intuition:

• Edges in *G* \ *B* have small "importance" in *G*: many alternative paths of small length in *B* between endpoints of edge

- Compute *t*-bundle spanner *B* with $t = \frac{24 \log^2 n}{\epsilon^2}$
- 2 Set H = B
- For each edge $e \in G \setminus B$: with probability $\frac{1}{4}$, add e to H and set $w_H(e) = 4w_G(e)$

Lemma

H is a $(1 \pm \varepsilon)$ -spectral sparsifier of expected size $O(n\varepsilon^{-2}\log^2 n) + m/4$.

Intuition:

- Edges in *G* \ *B* have small "importance" in *G*: many alternative paths of small length in *B* between endpoints of edge
- Formally: *B* certifies small **effective resistance** of edges in *G* \ *B*

- Compute *t*-bundle spanner *B* with $t = \frac{24 \log^2 n}{\epsilon^2}$
- 2 Set H = B
- For each edge $e \in G \setminus B$: with probability $\frac{1}{4}$, add e to H and set $w_H(e) = 4w_G(e)$

Lemma

H is a $(1 \pm \varepsilon)$ -spectral sparsifier of expected size $O(n\varepsilon^{-2}\log^2 n) + m/4$.

Intuition:

- Edges in *G* \ *B* have small "importance" in *G*: many alternative paths of small length in *B* between endpoints of edge
- Formally: *B* certifies small **effective resistance** of edges in $G \setminus B$
- Sparsification by effective-resistance sampling [Spielman/Srivastava '08]

- Compute *t*-bundle spanner *B* with $t = \frac{24 \log^2 n}{\epsilon^2}$
- Set H = B
- So For each edge $e \in G \setminus B$: with probability $\frac{1}{4}$, add e to H and set $w_H(e) = 4w_G(e)$

Lemma

H is a $(1 \pm \varepsilon)$ -spectral sparsifier of expected size $O(n\varepsilon^{-2}\log^2 n) + m/4$.

Intuition:

- Edges in *G* \ *B* have small "importance" in *G*: many alternative paths of small length in *B* between endpoints of edge
- Formally: *B* certifies small **effective resistance** of edges in *G* \ *B*
- Sparsification by effective-resistance sampling [Spielman/Srivastava '08]
- Technical tool: concentration bounds for random matrices

Repeat 1-step sparsification on remaining graph until size is small enough

After $k = \Theta(\log n)$ iterations:

• Size of sparsifier: $O(kn\varepsilon^{-2}\log^2 n + m/4^k) = O(n\varepsilon^{-2}\log^3 n)$

Repeat 1-step sparsification on remaining graph until size is small enough

After $k = \Theta(\log n)$ iterations:

- Size of sparsifier: $O(kn\varepsilon^{-2}\log^2 n + m/4^k) = O(n\varepsilon^{-2}\log^3 n)$
- Multiplicative error: $(1 \pm \varepsilon)^{\log n}$ Run with increased precision $\varepsilon' = \varepsilon/(2 \log n)$ to ensure $(1 \pm \varepsilon)$ -error

Repeat 1-step sparsification on remaining graph until size is small enough

After $k = \Theta(\log n)$ iterations:

- Size of sparsifier: $O(kn\varepsilon^{-2}\log^2 n + m/4^k) = O(n\varepsilon^{-2}\log^3 n)$
- Multiplicative error: $(1 \pm \varepsilon)^{\log n}$ Run with increased precision $\varepsilon' = \varepsilon/(2 \log n)$ to ensure $(1 \pm \varepsilon)$ -error

Good parallelization due to parallel spanner algorithm [Baswana/Sen '03]

- Use dynamic spanner algorithm
- Sampling is simple anyway

- Use dynamic spanner algorithm
- Sampling is simple anyway

Problem: Changes might propagate exponentially!

- Use dynamic spanner algorithm
- Sampling is simple anyway

Problem: Changes might propagate exponentially!

One update in G might result in $(\log n)^t$ changes to the *t*-bundle spanner

- Use dynamic spanner algorithm
- Sampling is simple anyway

Problem: Changes might propagate exponentially!

One update in G might result in $(\log n)^t$ changes to the *t*-bundle spanner

Solution: Refined algorithm design

Ittai Abraham

David Durfee

Ioannis Koutis

Richard Peng

Ioannis Koutis

Richard Peng

Ittai Abraham

Careful orchestration:

David Durfee

• Restrict to edge deletions only, amortize over sequence of deletions Reduction to turn deletions-only sparsifier into fully dynamic sparsifier

Ittai Abraham

David Durfee

Ioannis Koutis

Richard Peng

Careful orchestration:

- Restrict to edge deletions only, amortize over sequence of deletions Reduction to turn deletions-only sparsifier into fully dynamic sparsifier
- Monotonicity property: Every edge added to the spanner *S* by the algorithm stays in *S* until deleted from input graph *G*
- If G only sees edge deletions, then also $G \setminus S$ only sees edge deletions

Richard Peng

Ittai Abraham

Careful orchestration:

David Durfee

loanr

- Restrict to edge deletions only, amortize over sequence of deletions Reduction to turn deletions-only sparsifier into fully dynamic sparsifier
- Monotonicity property: Every edge added to the spanner *S* by the algorithm stays in *S* until deleted from input graph *G*
- If G only sees edge deletions, then also $G \setminus S$ only sees edge deletions
- Challenge: Modify Baswana et al. spanner to ensure monotonicity

Ittai Abraham

David Durfee

Ioannis Koutis

Richard Peng

Careful orchestration:

- Restrict to edge deletions only, amortize over sequence of deletions Reduction to turn deletions-only sparsifier into fully dynamic sparsifier
- Monotonicity property: Every edge added to the spanner *S* by the algorithm stays in *S* until deleted from input graph *G*
- If G only sees edge deletions, then also $G \setminus S$ only sees edge deletions
- Challenge: Modify Baswana et al. spanner to ensure monotonicity

Theorem (Abraham et al. '16)

There is a dynamic algorithm for maintaining a spectral sparsifier of size $n \cdot poly(\log n, \varepsilon^{-1})$ with amortized update time $poly(\log n, \varepsilon^{-1})$ per edge insertion/deletion.

Sparsification is a

• mathematically clean framework

Sparsification is a

- mathematically clean framework
- powerful tool in modern algorithm design

Sparsification is a

- mathematically clean framework
- powerful tool in modern algorithm design

My goal:

- Tighten connection between dynamic graph algorithms and combinatorial/continuous optimization
- Rebuild "sparsification infrastructure" in the dynamic world

Sparsification is a

- mathematically clean framework
- powerful tool in modern algorithm design

My goal:

- Tighten connection between dynamic graph algorithms and combinatorial/continuous optimization
- Rebuild "sparsification infrastructure" in the dynamic world

Thank you!

Sparsification is a

- mathematically clean framework
- powerful tool in modern algorithm design

My goal:

- Tighten connection between dynamic graph algorithms and combinatorial/continuous optimization
- Rebuild "sparsification infrastructure" in the dynamic world

Thank you!

Questions?