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A Definition

A graph G = (V , E) consists of

a set of n nodes V and

a set of m edges
E ⊆ {{u, v} | u, v ∈ V }.

Graphs model binary relationships between entities
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Graphs are Everywhere
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Research Area 1

Distributed and Parallel Algorithms

4 / 27



5 / 27



5 / 27



5 / 27



Shortest Path Algorithms
Single-Source Shortest Paths in distributed CONGEST model

Improved exact algorithm

Close-to-optimal approximation algorithm

Ruben
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Karrenbauer

Christoph
Lenzen

Danupon
Nanongkai

SSSP in parallel RAM model:

Be�er parallelization in presence of
negative edge weights

Improves a sequential problem:
minimum cost-to-time ratio cycle Karl

Bringmann
Thomas Dueholm

Hansen
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Research Area 2

Hardness of Polynomial-Time Problems
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Complexity Theory for a Big-Data World

Conventional wisdom in complexity theory (70s-90s?):

“P = tractable”

“NP = intractable”

Modulo average-case complexity, smoothed analysis, etc.

Reality:
�adratic time might be intractable

Most desirable: (Nearly) linear time algorithms

Prototypical �estion
Can we rule out the existence of truly subquadratic time algorithms for
certain problems?

Yes! . . . under plausible hardness assumptions
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Conditional Lower Bounds

Fine-grained complexity of diameter approximation
No subquadratic algorithm under Strong Exponential
Time Hypothesis [Rodi�y/V. Williams ’13]

Not even subquadratic 3
2 -approximation

Goal: more detailed hardness analysis Karl
Bringmann

Conditional lower bounds for dynamic problems
Formulation of new hardness conjecture

Explains certain barriers in dynamic algorithms

Monika Henzinger Danupon Nanongkai Thatchaphol Saranurak
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Research Area 3

Dynamic Algorithms
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Our World is not Static

Goal: Fast recomputation of solution a�er update in the graph
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Research on Dynamic Algorithms

Fastest dynamic shortest path algorithm in a variety of se�ings (7+ papers)

I�ai
Abraham

Shiri
Chechik

Monika
Henzinger

Danupon
Nanongkai

Dynamic connectivity and dominators in directed graphs

Loukas
Georgiadis

Giuseppe
Italiano

Thomas Dueholm
Hansen

Nikos
Parotsidis
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Sparsification
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Sparsification

Idea: Approximate dense objects by sparse objects

Masonry arch

⇒

Truss arch
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Sparsification in Graphs
Goal: Reduce to much smaller set of edges

Dense graph

m = Ω(n2)

⇒

Sparse graph

m′ � n2

Running Time: T (n,m) ⇒ T (n,m′)

At cost of approximation
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Example 1: Distance Sparsifier
Definition
A spanner of stretch α of G = (V , E) is a subgraph H = (V , E ′) such that

distG(u, v) ≤ distH(u, v) ≤ α · distG(u, v)
for all pairs of nodes u, v ∈ V .

Fact: Every graph has spanners with stretch (2k − 1) of size n1+1/k (k ≥ 2)

In particular: stretch log n and size O(n)
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Dynamic Problem
Input graph G

adversary inserts and
deletes edges

Dynamic
algorithm

Sparsifier H

algorithm adds and
removes edges

State of the art update time:
Amortized time: O(k2 log2 n), stretch 2k − 1
Total time O(t · k2 log2 n) for t updates [Baswana et al. 2012]

Worst-case time: O(n3/4) for stretch 3 [Bodwin/K 2016] Greg Bodwin
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Example 2: Spectral Sparsification
View graph G as Laplacian matrix LG

→

©­­­­­­­­­­­­­­­­«

2 −1 0 0 0 −1 0 0 0 0
−1 3 0 −1 −1 0 0 0 0 0
0 0 2 −1 0 0 0 0 0 −1
0 −1 −1 2 0 0 0 0 0 0
0 −1 0 0 3 −1 −1 0 0 0
−1 0 0 0 −1 4 −1 0 0 −1
0 0 0 0 −1 −1 4 −1 −1 0
0 0 0 0 0 0 −1 3 −1 −1
0 0 0 0 0 0 −1 −1 2 0
0 0 −1 0 0 −1 0 −1 0 3

ª®®®®®®®®®®®®®®®®¬

LG[i, i] = degree(vi)

LG[i, j] =

{
−1 if edge (vi, vj) exists
0 otherwise

Definition
A (1 ± ε)-spectral sparsifier of G is a weighted subgraph H such that

(1 − ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx
for all vectors x ∈ Rn.

Under Löwner ordering: (1 − ε)LG � LH � (1 + ε)LG

18 / 27
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Motivation I: Cut Sparsification
Consider set of nodes S ⊆ V and vector x ∈ Rn such that

xi = 1 if i-th node in S

xi = 0 otherwise

x encodes cut in graph induced by S
xTLGx corresponds to size of cut (S,V \ S) in G

⇒ Spectral sparsifier is also a cut sparsifier [Benczúr/Karger ’00]
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Motivation II: Solving SDD Systems
System of linear equations with n unknowns:

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...

an1x1 + an2x2 + · · · + annxn = bn

Short: Ax = b, where A ∈ Rn×n, b ∈ Rn and unknown x ∈ Rn

If A is symmetric diagonally dominant (SDD):
Can reduce to LGx = b with Laplacian matrix LG of some graph G
Amounts to computing electrical flow in resistor network G
Dual formulation: max

x∈Rn
(2xTb − xTLGx)

Nearly-linear time solvers in static se�ing [Spielman/Teng ’04, . . . ]

Dynamic Solver?
Changing one row in A→ changing ≤ 2n edges of G
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t-Bundle Spanners

· · · StS3S2S1

Idea: Pack graph with t edge-disjoint spanners of stretch log n

Compute spanner S1 of G
Compute spanner S2 of G \ S1

Compute spanner S3 of G \ (S1 ∪ S2)
...

Compute spanner St of G \ (S1 ∪ S2 ∪ · · · ∪ St−1)

B := S1 ∪ S2 ∪ · · · ∪ St−1 is a t-bundle spanner
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1-Step Spectral Sparsification

1 Compute t-bundle spanner B with t = 24 log2 n
ε2

2 Set H = B
3 For each edge e ∈ G \ B: with probability 1

4 , add e to H and set
wH(e) = 4wG(e)

Lemma

H is a (1 ± ε)-spectral sparsifier of expected size O(nε−2 log2 n) +m/4.

Intuition:
Edges in G \ B have small “importance” in G:
many alternative paths of small length in B between endpoints of edge

Formally: B certifies small e�ective resistance of edges in G \ B

Sparsification by e�ective-resistance sampling [Spielman/Srivastava ’08]

Technical tool: concentration bounds for random matrices
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Spectral Sparsification Algorithm [Koutis ’14]

Repeat 1-step sparsification on remaining graph until size is small enough

H1H2H3· · ·B3B2B1

A�er k = Θ(log n) iterations:

Size of sparsifier: O(knε−2 log2 n +m/4k) = O(nε−2 log3 n)

Multiplicative error: (1 ± ε)log n

Run with increased precision ε ′ = ε/(2 log n) to ensure (1 ± ε)-error

Good parallelization due to parallel spanner algorithm [Baswana/Sen ’03]
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Towards a Dynamic Algorithm
Straightforward approach:

Use dynamic spanner algorithm

Sampling is simple anyway

Problem: Changes might propagate exponentially!
One update in G might result in (log n)t changes to the t-bundle spanner

...

Solution: Refined algorithm design
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Our Algorithm

I�ai Abraham David Durfee Ioannis Koutis Richard Peng

Careful orchestration:
Restrict to edge deletions only, amortize over sequence of deletions
Reduction to turn deletions-only sparsifier into fully dynamic sparsifier
Monotonicity property: Every edge added to the spanner S by the
algorithm stays in S until deleted from input graph G
If G only sees edge deletions, then also G \ S only sees edge deletions
Challenge: Modify Baswana et al. spanner to ensure monotonicity

Theorem (Abraham et al. ’16)
There is a dynamic algorithm for maintaining a spectral sparsifier of size
n · poly(log n, ε−1) with amortized update time poly(log n, ε−1) per edge
insertion/deletion.
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Conclusion

Sparsification is a

mathematically clean framework

powerful tool in modern algorithm design

My goal:
Tighten connection between dynamic graph algorithms and
combinatorial/continuous optimization

Rebuild “sparsification infrastructure” in the dynamic world

Thank you!

�estions?
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