A Deterministic Almost-Tight Distributed Algorithm for Approximating Single-Source Shortest Paths

Monika Henzinger1 Sebastian Krinninger2 Danupon Nanongkai3

1University of Vienna
2Max Planck Institute for Informatics
3KTH Royal Institute of Technology

STOC 2016
Introduction

The problem:
- Single-source shortest paths
- Undirected graphs
- Positive edge weights $\in \{1, \ldots, poly(n)\}$
- Goal: $(1 + \epsilon)$- or $(1 + o(1))$-approximation ($\epsilon = 1/polylog n$)

Distributed setting:
- Network modeled as undirected graph
- Processors can communicate with neighbors
- CONGEST model: synchronous rounds, message size $O(\log n)$
- Running time = number of rounds
 - Goal: every node knows distance to source
Introduction

The problem:
- Single-source shortest paths
- Undirected graphs
- Positive edge weights $\in \{1, \ldots, poly(n)\}$
- Goal: $(1 + \epsilon)$- or $(1 + o(1))$-approximation ($\epsilon = 1/polylog n$)

Distributed setting:
- Network modeled as undirected graph
- Processors can communicate with neighbors
- CONGEST model: synchronous rounds, message size $O(\log n)$
- Running time = number of rounds
- Goal: every node knows distance to source
Overview

Upper bounds:

exact \(O(n) \) det. \[\text{[Bellman-Ford]}\]

Our approach:
1. Compute overlay network
2. Derandomization of "hitting paths" argument at cost of approximation
3. Compute hop set and approximate SSSP on overlay network
 - Deterministic hop set using greedy hitting set heuristic

Lower bound: \(\Omega(n^{1/2}/\log n + \text{Diam}) \) for any reasonable approximation \[\text{[Das Sarma et al. '11]}\]
Overview

Upper bounds:

<table>
<thead>
<tr>
<th>Type</th>
<th>Exact Bound</th>
<th>Approximate Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$O(n)$</td>
<td>$O(n^{1/2+\epsilon} + Diam)$</td>
</tr>
<tr>
<td></td>
<td>$O(\epsilon^{-1} \log \epsilon^{-1})$</td>
<td>$O(n^{1/2+\epsilon} + Diam)$</td>
</tr>
<tr>
<td>det.</td>
<td>[Bellman-Ford]</td>
<td></td>
</tr>
<tr>
<td>rand.</td>
<td>[Lenzen, Patt-Shamir ’13]</td>
<td></td>
</tr>
<tr>
<td>Our result</td>
<td></td>
<td>$\Omega\left(n^{1/2}/\log n + Diam\right)$</td>
</tr>
</tbody>
</table>
Overview

Upper bounds:

<table>
<thead>
<tr>
<th>Exact</th>
<th>O(n)</th>
<th>Deterministic</th>
<th>[Bellman-Ford]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(\epsilon^{-1} \log \epsilon^{-1})$</td>
<td>$O(n^{1/2+\epsilon} + Diam)$</td>
<td>Random</td>
<td>[Lenzen, Patt-Shamir '13]</td>
</tr>
<tr>
<td>$1 + \epsilon$</td>
<td>$O(n^{1/2} Diam^{1/4} + Diam)$</td>
<td>Random</td>
<td>[Nanongkai '14]</td>
</tr>
</tbody>
</table>
Overview

Upper bounds:

- exact
 - $O(n)$
 - $O(\epsilon^{-1} \log \epsilon^{-1})$
 - $1 + \epsilon$
 - $1 + o(1)$

- $O(n^{1/2+\epsilon} + Diam)$
- $O(n^{1/2} Diam^{1/4} + Diam)$
- $O(n^{1/2+o(1)} + Diam^{1+o(1)})$

det. [Bellman-Ford]
rand. [Lenzen, Patt-Shamir ’13]
rand. [Nanongkai ’14]

Our approach:
1. Compute overlay network
2. Derandomization of “hitting paths” argument at cost of approximation
3. Compute hop set and approximate SSSP on overlay network
Overview

Upper bounds:

<table>
<thead>
<tr>
<th>Exact</th>
<th>$O(n)$</th>
<th>Deterministic</th>
<th>[Bellman-Ford]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(\epsilon^{-1} \log \epsilon^{-1})$</td>
<td>$O(n^{1/2+\epsilon} + Diam)$</td>
<td>Random</td>
<td>[Lenzen, Patt-Shamir ’13]</td>
</tr>
<tr>
<td>$1+\epsilon$</td>
<td>$O(n^{1/2}Diam^{1/4} + Diam)$</td>
<td>Random</td>
<td>[Nanongkai ’14]</td>
</tr>
<tr>
<td>$1+o(1)$</td>
<td>$O(n^{1/2+o(1)} + Diam^{1+o(1)})$</td>
<td>Deterministic</td>
<td>[Our result]</td>
</tr>
</tbody>
</table>

Lower bound: $\Omega(n^{1/2}/\log n + Diam)$ for any reasonable approximation
[Das Sarma et al. ’11]
Overview

Upper bounds:

<table>
<thead>
<tr>
<th>Type</th>
<th>Formulation</th>
<th>Deterministic</th>
<th>Randomized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact</td>
<td>$O(n)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$O(\varepsilon^{-1} \log \varepsilon^{-1})$</td>
<td>$O(n^{1/2+\varepsilon} + \text{Diam})$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1 + \varepsilon$</td>
<td>$O(n^{1/2} \text{Diam}^{1/4} + \text{Diam})$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1 + o(1)$</td>
<td>$O(n^{1/2+o(1)} + \text{Diam}^{1+o(1)})$</td>
<td>Deterministic</td>
<td></td>
</tr>
</tbody>
</table>

[Our result]

[Lenzen, Patt-Shamir ’13]

[Our result]

Lower bound: $\Omega(n^{1/2}/\log n + \text{Diam})$ for any reasonable approximation

[Das Sarma et al. ’11]

Our approach:

1. Compute overlay network
2. Compute hop set and approximate SSSP on overlay network
Overview

Upper bounds:

- **Exact:** $O(n)$
- $O(\varepsilon^{-1} \log \varepsilon^{-1})$: $O(n^{1/2+\varepsilon} + Diam)$
- $1 + \varepsilon$: $O(n^{1/2} Diam^{1/4} + Diam)$
- $1 + o(1)$: $O(n^{1/2+o(1)} + Diam^{1+o(1)})$

Deterministic
- [Bellman-Ford]

Randomized
- [Lenzen, Patt-Shamir ’13]
- [Nanongkai ’14]
- [Our result]

Lower bound: $\Omega(n^{1/2}/\log n + Diam)$ for any reasonable approximation
- [Das Sarma et al. ’11]

Our approach:

1. Compute overlay network
 Derandomization of “hitting paths” argument at cost of approximation
2. Compute hop set and approximate SSSP on overlay network
 Deterministic hop set using greedy hitting set heuristic
Summary of Results

Theorem (CONGEST)

There is a deterministic distributed algorithm that, on any weighted undirected network, computes $(1 + o(1))$-approximate shortest paths between a given source node s and every other node in $O(n^{1/2+o(1)} + D^{1+o(1)})$ rounds.
Summary of Results

Theorem (CONGEST)

There is a deterministic distributed algorithm that, on any weighted undirected network, computes $(1 + o(1))$-approximate shortest paths between a given source node s and every other node in $O(n^{1/2+o(1)} + D^{1+o(1)})$ rounds.

Theorem (Congested Clique)

There is a deterministic distributed algorithm that, on any weighted congested clique, computes $(1 + o(1))$-approximate shortest paths between a given source node s and every other node in $O(n^{o(1)})$ rounds.
Summary of Results

Theorem (CONGEST)

There is a deterministic distributed algorithm that, on any weighted undirected network, computes \((1 + o(1))\)-approximate shortest paths between a given source node \(s\) and every other node in \(O(n^{1/2+o(1)} + D^{1+o(1)})\) rounds.

Theorem (Congested Clique)

There is a deterministic distributed algorithm that, on any weighted congested clique, computes \((1 + o(1))\)-approximate shortest paths between a given source node \(s\) and every other node in \(O(n^{o(1)})\) rounds.

Theorem (Streaming)

There is a deterministic streaming algorithm that, given any weighted undirected graph, computes \((1 + o(1))\)-approximate shortest shortest paths between a given source node \(s\) and every other node in \(O(n^{o(1) \log W})\) passes with \(O(n^{1+o(1) \log W})\) space.
Computing Overlay Network
Sample

\[N = O(\sqrt{n \log n}) \] centers (+ source(s))

\[\Rightarrow \]

Every shortest path with \(\geq \sqrt{n} \) edges contains center whp

For every node: compute approx. shortest paths to centers within \(\sqrt{n} \) edges in \(O(\sqrt{n}/\log n) \) rounds (source detection [Lenzen/Peleg '13])

Sufficient to solve SSSP on overlay network using hop set
Sample $N = O(\sqrt{n \log n})$ centers (+ source s)
$
\Rightarrow$ Every shortest path with $\geq \sqrt{n}$ edges contains center whp
Sample $N = O(\sqrt{n \log n})$ centers (+ source s)

⇒ Every shortest path with $\geq \sqrt{n}$ edges contains center whp

For every node: compute approx. shortest paths to centers within \sqrt{n} edges in $O(\sqrt{n} \epsilon^{-1})$ rounds (source detection [Lenzen/Peleg ’13])
Sample $N = O(\sqrt{n \log n})$ centers (+ source s)
\Rightarrow Every shortest path with $\geq \sqrt{n}$ edges contains center whp

For every node: compute approx. shortest paths to centers within \sqrt{n} edges in $O(\sqrt{n e^{-1}})$ rounds (source detection [Lenzen/Peleg ’13])

Sufficient to solve SSSP on overlay network using hop set
Derandomization

Property from randomization

$O(\sqrt{n \log n})$ centers that hit every shortest path with $\geq \sqrt{n}$ edges
Derandomization

Property from randomization

\(O(\sqrt{n \log n}) \) centers that hit every shortest path with \(\geq \sqrt{n} \) edges

Deterministic relaxation

\(O(\sqrt{n\epsilon^{-1} \log n}) \) centers that \textbf{almost} hit every path with \(\geq \sqrt{n} \) edges
Ruling sets for deterministic centers

First: Explanation for unweighted graphs
Ruling sets for deterministic centers

First: Explanation for unweighted graphs

Definition

\((\alpha, \beta)\)-ruling set \(R\) of \(U\) is a set of rulers such that

- Every pair of rulers in \(R\) is at distance \(\geq \alpha\) from each other
- Every node in \(U\) has a ruler in \(R\) at distance \(\leq \beta\)
Ruling sets for deterministic centers

First: Explanation for unweighted graphs

Definition

(α, β)-**ruling set** R of U is a set of **rulers** such that

- Every pair of rulers in R is at distance $\geq \alpha$ from each other
- Every node in U has a ruler in R at distance $\leq \beta$

Lemma ([Goldberg et al. ’88])

A $(c, c \log n)$-ruling set can be computed in $O(c \log n)$ rounds.
Ruling sets for deterministic centers

First: Explanation for unweighted graphs

Definition

\((\alpha, \beta)\)-ruling set \(R\) of \(U\) is a set of rulers such that

- Every pair of rulers in \(R\) is at distance \(\geq \alpha\) from each other
- Every node in \(U\) has a ruler in \(R\) at distance \(\leq \beta\)

Lemma ([Goldberg et al. '88])

A \((c, c \log n)\)-ruling set can be computed in \(O(c \log n)\) rounds.

Our setting:

- \(U = \) all nodes \(v\) with \(|\text{Ball}(v, \sqrt{n})| \geq \sqrt{n}\)
- \(c = \epsilon \sqrt{n}\)
Ruling sets for deterministic centers

First: Explanation for unweighted graphs

Definition

\((\alpha, \beta)\)-**ruling set** \(R\) of \(U\) is a set of **rulers** such that

- Every pair of rulers in \(R\) is at distance \(\geq \alpha\) from each other
- Every node in \(U\) has a ruler in \(R\) at distance \(\leq \beta\)

Lemma ([Goldberg et al. ’88])

A \((c, c \log n)\)-ruling set can be computed in \(O(c \log n)\) rounds.

Our setting:

- \(U = \) all nodes \(v\) with \(|\text{Ball}(v, \sqrt{n})| \geq \sqrt{n}\)
- \(c = \epsilon \sqrt{n}\)
- Any shortest \(u - v\) path with \(\geq \sqrt{n}\) edges: ruler in distance \(\leq \epsilon \text{dist}(u, v)\)
Ruling sets for deterministic centers

First: Explanation for unweighted graphs

Definition

\((\alpha, \beta)\)-ruling set \(R\) of \(U\) is a set of rulers such that

- Every pair of rulers in \(R\) is at distance \(\geq \alpha\) from each other
- Every node in \(U\) has a ruler in \(R\) at distance \(\leq \beta\)

Lemma ([Goldberg et al. ’88])

A \((c, c \log n)\)-ruling set can be computed in \(O(c \log n)\) rounds.

Our setting:

- \(U = \) all nodes \(v\) with \(|Ball(v, \sqrt{n})| \geq \sqrt{n}\)
- \(c = \epsilon \sqrt{n}\)
- Any shortest \(u - v\) path with \(\geq \sqrt{n}\) edges: ruler in distance \(\leq \epsilon \text{dist}(u, v)\)
- Uniquely assign \(\epsilon \sqrt{n}/2\) nodes to every ruler \(\Rightarrow |T| \leq 2 \sqrt{n}/\epsilon\)
Ruling sets for deterministic centers

First: Explanation for unweighted graphs

Definition

(\(\alpha, \beta\))-ruling set \(R\) of \(U\) is a set of rulers such that
- Every pair of rulers in \(R\) is at distance \(\geq \alpha\) from each other
- Every node in \(U\) has a ruler in \(R\) at distance \(\leq \beta\)

Lemma ([Goldberg et al. ’88])

A \((c, c \log n)\)-ruling set can be computed in \(O(c \log n)\) rounds.

Our setting:
- \(U = \) all nodes \(v\) with \(|Ball(v, \sqrt{n})| \geq \sqrt{n}\)
- \(c = \epsilon \sqrt{n}\)
- Any shortest \(u - v\) path with \(\geq \sqrt{n}\) edges: ruler in distance \(\leq \epsilon dist(u, v)\)
- Uniquely assign \(\epsilon \sqrt{n}/2\) nodes to every ruler \(\Rightarrow |T| \leq 2 \sqrt{n}/\epsilon\)

Crucial: “weight = #edges” in unweighted graphs
Goal: Make graph locally “look unweighted” s.t. weight \approx #hops
Weighted graphs

Goal: Make graph locally “look unweighted” s.t. weight \approx #hops

Well-known weight rounding [Bernstein ’09/13, Madry ’10, …]

G_i: round up edge weights to next multiple of $\epsilon 2^i / \sqrt{n}$ ($\forall i = 1$ to $\log(nW)$)

$(1 + \epsilon)$-approximation of shortest paths with \sqrt{n} edges and weight $2^i \ldots 2^{i+1}$

Intuition: “weight \leq #edges”
Weighted graphs

Goal: Make graph locally “look unweighted” s.t. weight ≈ #hops

Well-known weight rounding [Bernstein ’09/13, Madry ’10, …]

G_i: round up edge weights to next multiple of $\epsilon 2^i / \sqrt{n}$ ($\forall i = 1$ to $\log (nW)$)

$(1 + \epsilon)$-approximation of shortest paths with \sqrt{n} edges and weight $2^i \ldots 2^{i+1}$

Intuition: “weight ≤ #edges”

Not enough: we also want “#edges ≤ weight”
Weighted graphs

Goal: Make graph locally “look unweighted” s.t. weight \(\approx \) #hops

Well-known weight rounding [Bernstein ’09/13, Madry ’10, …]

\[G_i: \] round up edge weights to next multiple of \(\epsilon 2^i / \sqrt{n} \) (\(\forall i = 1 \) to \(\log (nW) \))

(1 + \(\epsilon \))-approximation of shortest paths with \(\sqrt{n} \) edges and weight \(2^i \ldots 2^{i+1} \)

Intuition: “weight \(\leq \) #edges”

Not enough: we also want “#edges \(\leq \) weight”

Type \(t(v) \) of node \(v \): minimum \(i \) such that \(|Ball_{G_i}(v, (2 + \epsilon) \sqrt{n})| \geq \epsilon \sqrt{n} \)

Intuition: type gives scale s.t. local neighborhood "looks unweighted"
Weighted graphs

Goal: Make graph locally “look unweighted” s.t. weight \(\approx \#\text{hops}\)

Well-known weight rounding [Bernstein ’09/13, Madry ’10, …]

\(G_i: \) round up edge weights to next multiple of \(\epsilon 2^i / \sqrt{n} \) (\(\forall i = 1 \text{ to } \log (nW)\))

(1 + \(\epsilon\))-approximation of shortest paths with \(\sqrt{n}\) edges and weight \(2^i \ldots 2^{i+1}\)

Intuition: “weight \(\leq \#\text{edges}”

Not enough: we also want “\#edges \(\leq \) weight”

Type \(t(v)\) of node \(v\): minimum \(i\) such that \(|\text{Ball}_{G_i}(v, (2 + \epsilon) \sqrt{n})| \geq \epsilon \sqrt{n}\)

Intuition: type gives scale s.t. local neighborhood "looks unweighted"

Lemma

Every path \(\pi\) with \(\sqrt{n}\) edges contains a node \(v\) such that \(2^{t(v)} \leq 2\epsilon w(\pi)\).
Weighted graphs

Goal: Make graph locally “look unweighted” s.t. weight $\approx \#\text{hops}$

Well-known weight rounding [Bernstein ’09/13, Madry ’10, …]

G_i: round up edge weights to next multiple of $\epsilon 2^i / \sqrt{n}$ ($\forall i = 1$ to $\log (nW)$)

$(1 + \epsilon)$-approximation of shortest paths with \sqrt{n} edges and weight $2^i \ldots 2^{i+1}$

Intuition: “weight $\leq \#\text{edges}”

Not enough: we also want “$\#\text{edges} \leq \text{weight}”

Type $t(v)$ of node v: minimum i such that $|\text{Ball}_{G_i}(v, (2 + \epsilon) \sqrt{n})| \geq \epsilon \sqrt{n}$

Intuition: type gives scale s.t. local neighborhood "looks unweighted"

Lemma

Every path π with \sqrt{n} edges contains a node v such that $2^{t(v)} \leq 2\epsilon w(\pi)$.

\Rightarrow Determine centers by computing ruling set for all type classes
Computing Hop Set on Overlay Network
Hop Sets

Definition

An \((h, \epsilon)\)-hop set is a set of weighted edges \(F\) such that, for all pairs of nodes \(u\) and \(v\), in the ‘shortcut graph’ \(G \cup F\) there is a path from \(u\) to \(v\) with at most \(h\) edges of weight at most \((1 + \epsilon)\text{dist}(u, v)\).
Hop Sets

Definition
An \((h, \epsilon)\)-hop set is a set of weighted edges \(F\) such that, for all pairs of nodes \(u\) and \(v\), in the ‘shortcut graph’ \(G \cup F\) there is a path from \(u\) to \(v\) with at most \(h\) edges of weight at most \((1 + \epsilon)\) \(\text{dist}(u, v)\).
Hop Sets

Definition
An (h, ϵ)-hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the ‘shortcut graph’ $G \cup F$ there is a path from u to v with at most h edges of weight at most $(1 + \epsilon) \text{dist}(u, v)$.

Application: SSSP up to small #edges can be done fast in overlay network
Hop Sets

Definition

An \((h, \epsilon)\)-hop set is a set of weighted edges \(F\) such that, for all pairs of nodes \(u\) and \(v\), in the ‘shortcut graph’ \(G \cup F\) there is a path from \(u\) to \(v\) with at most \(h\) edges of weight at most \((1 + \epsilon)\text{dist}(u,v)\).

Application: SSSP up to small \#edges can be done fast in overlay network

A: \((\log^{O(1)} n, \epsilon)\)-hop set of size \(n^{1+o(1)}\) [Cohen ’94]

B: \((n^{o(1)}, \epsilon)\)-hop set of size \(n^{1+o(1)}\) [Bernstein ’09]

C: \((n^\alpha, \epsilon)\)-hop set of size \(O(n)\) [Miller et al. ’15]
Hop Sets

Definition
An \((h, \varepsilon)\)-hop set is a set of weighted edges \(F\) such that, for all pairs of nodes \(u\) and \(v\), in the ‘shortcut graph’ \(G \cup F\) there is a path from \(u\) to \(v\) with at most \(h\) edges of weight at most \((1 + \varepsilon)\text{dist}(u, v)\).

Application: SSSP up to small \#edges can be done fast in overlay network

A: \((\log^{O(1)} n, \varepsilon)\)-hop set of size \(n^{1+o(1)}\) [Cohen ’94]

B: \((n^{o(1)}, \varepsilon)\)-hop set of size \(n^{1+o(1)}\) [Bernstein ’09]

C: \((n^\alpha, \varepsilon)\)-hop set of size \(O(n)\) [Miller et al. ’15]

Our contribution: Fast computation of B on overlay network
Hop Set Based on Clusters [Thorup/Zwick ’01]

\[V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset \] where node of \(A_i \) goes to \(A_{i+1} \) with probability \(1/n^{1/k} \)

\(\nu \) has priority \(i \) iff \(\nu \in A_i \setminus A_{i+1} \)
Hop Set Based on Clusters [Thorup/Zwick ’01]

\[V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset \] where node of \(A_i \) goes to \(A_{i+1} \) with probability \(1/n^{1/k} \)

\(v \) has **priority** \(i \) iff \(v \in A_i \setminus A_{i+1} \)

For every node \(u \) of priority \(i \):

\[
\text{Cluster}(v) = \{ u \in V \mid \text{dist}(u, v) < \text{dist}(u, A_{i+1}) \}
\]
Hop Set Based on Clusters [Thorup/Zwick ’01]

\[V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset \] where node of \(A_i \) goes to \(A_{i+1} \) with probability \(1/n^{1/k} \)

\(v \) has **priority** \(i \) iff \(v \in A_i \setminus A_{i+1} \)

For every node \(u \) of priority \(i \):

\[\text{Cluster}(v) = \{ u \in V \mid \text{dist}(u, v) < \text{dist}(u, A_{i+1}) \} \]
Hop Set Based on Clusters [Thorup/Zwick ’01]

\[V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset \] where node of \(A_i \) goes to \(A_{i+1} \) with probability \(1/n^{1/k} \)

\(v \) has priority \(i \) iff \(v \in A_i \setminus A_{i+1} \)

For every node \(u \) of priority \(i \):

\[\text{Cluster}(v) = \{ u \in V \mid \text{dist}(u, v) < \text{dist}(u, A_{i+1}) \} \]
Hop Set Based on Clusters [Thorup/Zwick ’01]

\[V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset \] where node of
\[A_i \text{ goes to } A_{i+1} \text{ with probability } \frac{1}{n^{1/k}} \]

\(v \) has priority \(i \) iff \(v \in A_i \setminus A_{i+1} \)

For every node \(u \) of priority \(i \):
\[\text{Cluster}(v) = \{ u \in V \mid \text{dist}(u,v) < \text{dist}(u,A_{i+1}) \} \]

Hop set:
\[(u,v) \in F \text{ iff } u \in \text{Cluster}(v) \]
\[w(u,v) = \text{dist}_G(u,v) \]
Hop Set Based on Clusters \[\text{[Thorup/Zwick '01]}\]

\[V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset\] where node of \(A_i\) goes to \(A_{i+1}\) with probability \(1/n^{1/k}\)

\(v\) has priority \(i\) iff \(v \in A_i \setminus A_{i+1}\)

For every node \(u\) of priority \(i\):

\[\text{Cluster}(v) = \{u \in V \mid \text{dist}(u, v) < \text{dist}(u, A_{i+1})\}\]

Hop set:

- \((u, v) \in F\) iff \(u \in \text{Cluster}(v)\)
- \(w(u, v) = \text{dist}_G(u, v)\)
- Guarantee: \(((4/\epsilon)^k, \epsilon)\)-hop set \[\text{[Bernstein '09, Thorup/Zwick '06]}\]
- Expected size: \(O(kn^{1+1/k})\) \[\text{[Thorup/Zwick '01]}\]
Hop Set Based on Clusters [Thorup/Zwick ’01]

\[V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset \] where node of \(A_i \) goes to \(A_{i+1} \) with probability \(1/n^{1/k} \)

\(v \) has priority \(i \) iff \(v \in A_i \setminus A_{i+1} \)

For every node \(u \) of priority \(i \):

\[\text{Cluster}(v) = \{ u \in V \mid \text{dist}(u, v) < \text{dist}(u, A_{i+1}) \} \]

Hop set:
- \((u, v) \in F\) iff \(u \in \text{Cluster}(v)\)
- \(w(u, v) = \text{dist}_G(u, v) \)
- Guarantee: \((4/\epsilon)^k, \epsilon\)-hop set [Bernstein ’09, Thorup/Zwick ’06]
- Expected size: \(O(kn^{1+1/k}) \) [Thorup/Zwick ’01]
- With \(k = \sqrt{\log n}/\sqrt{\log 4/\epsilon} \): \((n^{o(1)}, \epsilon)\)-hop set of size \(n^{1+o(1)} \)
Hop Set Based on Clusters [Thorup/Zwick ’01]

\[V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset \]

where node of \(A_i \) goes to \(A_{i+1} \) with probability \(1/n^{1/k} \)

\(v \) has **priority** \(i \) iff \(v \in A_i \setminus A_{i+1} \)

For every node \(u \) of priority \(i \):

\[\text{Cluster}(v) = \{ u \in V \mid \text{dist}(u, v) < \text{dist}(u, A_{i+1}) \} \]

Hop set:

- \((u, v) \in F \) iff \(u \in \text{Cluster}(v) \)
- \(w(u, v) = \text{dist}_G(u, v) \)
- **Guarantee:** \(((4/\epsilon)^k, \epsilon) \)-hop set [Bernstein ’09, Thorup/Zwick ’06]
- **Expected size:** \(O(kn^{1+1/k}) \) [Thorup/Zwick ’01]
- With \(k = \sqrt{\log n / \sqrt{\log 4/\epsilon}} \): \((n^{o(1)}, \epsilon) \)-hop set of size \(n^{1+o(1)} \)
- **Derandomization:** choose \(A_{i+1} \) from \(A_i \) by greedy hitting set heuristic

 (*Sequential, but affordable in overlay network*)
Chicken-Egg Problem?

1. Goal: Faster SSSP via hop set
2. Compute hop set by computing clusters
3. Computing clusters at least as hard as SSSP

⇒ Back at problem we wanted to solve initially?
Chicken-Egg Problem?

1. Goal: Faster SSSP via hop set
2. Compute hop set by computing clusters
3. Computing clusters at least as hard as SSSP

⇒ Back at problem we wanted to solve initially?

No! Iterative computation starting with
- SSSP up to small #hops is cheap in overlay network
- Clusters up to small #hops provide sufficient shortcutting to make progress in each iteration
Computing \((n^{o(1)}, \epsilon)\)-hop set

Iterative computation
In each iteration number of hops is reduced by a factor of \(n^{1/k}\)
Computing $(n^{o(1)}, \epsilon)$-hop set

Iterative computation
In each iteration number of hops is reduced by a factor of $n^{1/k}$

Algorithm:

```
for $i = 1$ to $k$ do
    $H_i = G \cup \bigcup_{1 \leq j \leq i-1} F_j$
    Compute clusters with $k$ priorities in $H_i$ up to $n^{2/k}$ hops
    $F_i = \{(u, v) \mid u \in Cluster(v)\}$
end
return $F = \bigcup_{1 \leq i \leq k} F_i$
```
Computing \((n^{o(1)}, \varepsilon)\)-hop set

Iterative computation
In each iteration number of hops is reduced by a factor of \(n^{1/k}\)

Algorithm:

\[
\text{for } i = 1 \text{ to } k \text{ do}
\]

\[
H_i = G \cup \bigcup_{1 \leq j \leq i-1} F_j
\]

Compute clusters with \(k\) priorities in \(H_i\) up to \(n^{2/k}\) hops

\[
F_i = \{ (u, v) \mid u \in \text{Cluster}(v) \}
\]

end

return \(F = \bigcup_{1 \leq i \leq k} F_i\)

Error amplification: \((1 + \varepsilon')^k \leq (1 + \varepsilon)\) for \(\varepsilon' = 1/(2\varepsilon \log n)\)
Computing \((n^{o(1)}, \epsilon)-hop\) set

Iterative computation
In each iteration number of hops is reduced by a factor of \(n^{1/k}\)

Algorithm:

```plaintext
for i = 1 to k do
    \[ H_i = G \cup \bigcup_{1 \leq j \leq i-1} F_j \]
    Compute clusters with \(k\) priorities in \(H_i\) up to \(n^{2/k}\) hops
    \[ F_i = \{(u, v) \mid u \in \text{Cluster}(v)\} \]
end

return \(F = \bigcup_{1 \leq i \leq k} F_i\)
```

Error amplification: \((1 + \epsilon')^k \leq (1 + \epsilon)\) for \(\epsilon' = 1/(2\epsilon \log n)\)

Omitted detail: weighted graphs, use rounding technique
Computing Hop Set on Overlay Network

Shortest paths from source s \textbf{up to distance d}:
Computing Hop Set on Overlay Network

Shortest paths from source s up to distance d:
Computing Hop Set on Overlay Network

Shortest paths from source s up to distance d:

Broadcast level
Computing Hop Set on Overlay Network

Shortest paths from source \(s \) up to distance \(d \):

Broadcast level

\(d \) iterations, each \(O(Diam + N_\ell) \) rounds where \(N_\ell = \#\text{nodes at level } \ell \)

Running time: \(O(d \cdot Diam + \sum_{\ell \leq d} N_\ell) = O(d \cdot Diam + N) \)

\(N \approx \sqrt{n} \)
Computing Hop Set on Overlay Network

Shortest paths from source s up to distance d:

d iterations, each $O(Diam + N_\ell)$ rounds where $N_\ell = \#\text{nodes at level } \ell$
Running time: $O(d \cdot Diam + \sum_{\ell \leq d} N_\ell) = O(d \cdot Diam + N)$

Computing clusters: $\widetilde{O}(n^{1/k} \cdot Diam + \sum_v |\text{Cluster}(v)|) = \widetilde{O}(n^{1/k} \cdot Diam + N^{1+1/k})$
Computing Hop Set on Overlay Network

Shortest paths from source s up to distance d:

d iterations, each $O(Diam + N_\ell)$ rounds where $N_\ell = \#\text{nodes at level } \ell$
Running time: $O(d \cdot Diam + \sum_{\ell \leq d} N_\ell) = O(d \cdot Diam + N)$

Computing clusters: $\widetilde{O}(n^{1/k} \cdot Diam + \sum_v |\text{Cluster}(v)|) = \widetilde{O}(n^{1/k} \cdot Diam + N^{1+1/k})$

\Rightarrow Hop Set and approximate SSSP: $O(n^{1/2+o(1)} + Diam^{1+o(1)})$ ($N \approx \sqrt{n}$)
Conclusion

Main contributions:

- Almost tight algorithm
- Deterministic overlay network and deterministic hop set

Open problems:

- $n \rightarrow \log O(1)$
- Be_ter hop set?
- Improve dependence on $O(n)$ rounds optimal for exact SSSP?
Conclusion

Main contributions:
- Almost tight algorithm
- Deterministic overlay network and deterministic hop set

Open problems:
- $n^{o(1)} \rightarrow \log^{O(1)} n$
 Better hop set?
- Improve dependence on ϵ
- $O(n)$ rounds optimal for exact SSSP?
Example: \((n^{1/2+o(1)}, \epsilon)\)-hop set

Case 1: \(\text{dist}(u_0, v) \leq n^{1/2+1/k} / \epsilon\)
Example: \((n^{1/2+o(1)}, \varepsilon)\)-hop set

Case 2: \(\text{dist}(u_0, v) > n^{1/2+1/k}/\varepsilon\)
Example: \((n^{1/2+o(1)}, \epsilon)\)-hop set

Case 2: \(\text{dist}(u_0, v) > n^{1/2+1/k} / \epsilon\)

\[r_0 = n^{1/2} \]
Example: \((n^{1/2+o(1)}, \epsilon)\)-hop set

Case 2: \(\text{dist}(u_0, v) > n^{1/2+1/k}/\epsilon\)

\[r_0 = n^{1/2} \]

For every node \(u\) of priority \(i\) and every node \(v\), either \((u, v) \in H\), or \(\exists u'\) of priority \(i + 1\) s. t. \(\text{dist}(u, u') \leq \text{dist}(u, v)\).
Example: \((n^{1/2+o(1)}, \epsilon)-\text{hop set}\)

Case 2: \(\text{dist}(u_0, v) > n^{1/2+1/k}/\epsilon\)

\[
\begin{align*}
 r_0 &= n^{1/2} \\
 r_{i+1} &= \left(1 + \frac{2}{\epsilon}\right) \sum_{0 \leq j \leq i} r_j
\end{align*}
\]

For every node \(u\) of priority \(i\) and every node \(v\), either \((u, v) \in H\), or \(\exists u'\) of priority \(i + 1\) s. t. \(\text{dist}(u, u') \leq \text{dist}(u, v)\).
Example: \((n^{1/2+o(1)}, \varepsilon)-hop\) set

Case 2: \(\text{dist}(u_0, v) > n^{1/2+1/k}/\varepsilon\)

\[r_0 = n^{1/2} \]
\[r_{i+1} = \left(1 + \frac{2}{\varepsilon}\right) \sum_{0 \leq j \leq i} r_j \]

For every node \(u\) of priority \(i\) and every node \(v\), either \((u, v) \in H\), or \(\exists u'\) of priority \(i + 1\) s. t. \(\text{dist}(u, u') \leq \text{dist}(u, v)\).
Example: \((n^{1/2+o(1)}, \varepsilon)\)-hop set

Case 2: \(\text{dist}(u_0, v) > n^{1/2+1/k}/\varepsilon\)

\[
\begin{align*}
 r_0 &= n^{1/2} \\
 r_{i+1} &= \left(1 + \frac{2}{\varepsilon}\right) \sum_{0 \leq j \leq i} r_j
\end{align*}
\]

For every node \(u\) of priority \(i\) and every node \(v\), either \((u, v) \in H\), or \(\exists u'\) of priority \(i + 1\) s. t. \(\text{dist}(u, u') \leq \text{dist}(u, v)\).
Example: \((n^{1/2 + o(1)}, \epsilon)-\text{hop set}\)

Case 2: \(\text{dist}(u_0, v) > n^{1/2 + 1/k}/\epsilon\)

For every node \(u\) of priority \(i\) and every node \(v\), either \((u, v) \in H\), or \(\exists u'\) of priority \(i + 1\) s. t. \(\text{dist}(u, u') \leq \text{dist}(u, v)\).

\[
\begin{align*}
 r_0 &= n^{1/2} \\
 r_{i+1} &= \left(1 + \frac{2}{\epsilon}\right) \sum_{0 \leq j \leq i} r_j \\
 &\leq n^{1/2} n^{1/k} \\
 k &= \sqrt{\log n}/ \sqrt{\log 4/\epsilon}
\end{align*}
\]

\[
\text{Weight} \leq (1 + \epsilon) \text{dist}(u_0, v)
\]
Example: \((n^{1/2+o(1)}, \varepsilon)-\text{hop set}\)

Case 2: \(\text{dist}(u_0, v) > n^{1/2+1/k}/\varepsilon\)

\[
\begin{align*}
 r_0 &= n^{1/2} \\
 r_{i+1} &= \left(1 + \frac{2}{\varepsilon}\right) \sum_{0 \leq j \leq i} r_j \\
 &\leq n^{1/2} n^{1/k} \\
 k &= \sqrt{\log n/ \sqrt{\log 4/\varepsilon}}
\end{align*}
\]

For every node \(u\) of priority \(i\) and every node \(v\), either \((u, v) \in H\), or \(\exists u'\) of priority \(i + 1\) s. t. \(\text{dist}(u, u') \leq \text{dist}(u, v)\).

\[
\begin{align*}
 \text{Weight} &\leq (1 + \varepsilon)\text{dist}(u_0, v) \\
 \#\text{Edges} &\leq \frac{k \cdot \text{dist}(u, v)}{n^{1/2}} \leq \frac{k \cdot n}{n^{1/2}} = kn^{1/2}
\end{align*}
\]