A Deterministic Almost-Tight Distributed Algorithm for Approximating Single-Source Shortest Paths

Monika Henzinger¹

Sebastian Krinninger²

Danupon Nanongkai³

¹University of Vienna

²Max Planck Institute for Informatics

³KTH Royal Institute of Technology

STOC 2016

Introduction

The problem:

- Single-source shortest paths
- Undirected graphs
- Positive edge weights $\in \{1, \dots, poly(n)\}$
- Goal: $(1 + \epsilon)$ or (1 + o(1))-approximation ($\epsilon = 1/polylogn$)

Introduction

The problem:

- Single-source shortest paths
- Undirected graphs
- Positive edge weights $\in \{1, \ldots, poly(n)\}$
- Goal: $(1 + \epsilon)$ or (1 + o(1))-approximation ($\epsilon = 1$ /polylogn)

Distributed setting:

- Network modeled as undirected graph
- Processors can communicate with neighbors
- **CONGEST** model: synchronous rounds, message size $O(\log n)$
- Running time = number of rounds
- Goal: every node knows distance to source

Upper bounds: exact C

O(n)

det. [Bellman-Ford]

Upper bounds:

 $\begin{array}{ll} \mathrm{exact} & O(n) \\ O(\epsilon^{-1}\log\epsilon^{-1}) & O(n^{1/2+\epsilon}+Diam) \end{array}$

det.	[Bellman-Ford]
rand.	[Lenzen, Patt-Shamir '13]

Upper bounds:

 $\begin{array}{ll} \operatorname{exact} & O(n) \\ O(\epsilon^{-1}\log\epsilon^{-1}) & O(n^{1/2+\epsilon} + Diam) \\ 1+\epsilon & O(n^{1/2}Diam^{1/4} + Diam) \end{array}$

det.	[Bellman-Ford]
rand.	[Lenzen, Patt-Shamir '13]
rand.	[Nanongkai '14]

Upper bounds:

exactO(n)det.[Bellman-Ford] $O(\epsilon^{-1}\log\epsilon^{-1})$ $O(n^{1/2+\epsilon} + Diam)$ rand.[Lenzen, Patt-Shamir '13] $1 + \epsilon$ $O(n^{1/2}Diam^{1/4} + Diam)$ rand.[Nanongkai '14]1 + o(1) $O(n^{1/2+o(1)} + Diam^{1+o(1)})$ det.[Our result]

Upper bounds:

exact
$$O(n)$$
det.[Bellman-Ford] $O(\epsilon^{-1}\log\epsilon^{-1})$ $O(n^{1/2+\epsilon} + Diam)$ rand.[Lenzen, Patt-Shamir '13] $1 + \epsilon$ $O(n^{1/2}Diam^{1/4} + Diam)$ rand.[Nanongkai '14] $1 + o(1)$ $O(n^{1/2+o(1)} + Diam^{1+o(1)})$ det.[Our result]

Lower bound: $\Omega(n^{1/2}/\log n + Diam)$ for any reasonable approximation [Das Sarma et al. '11]

Upper bounds:

exact
$$O(n)$$
det.[Bellman-Ford] $O(\epsilon^{-1}\log\epsilon^{-1})$ $O(n^{1/2+\epsilon} + Diam)$ rand.[Lenzen, Patt-Shamir '13] $1 + \epsilon$ $O(n^{1/2}Diam^{1/4} + Diam)$ rand.[Nanongkai '14] $1 + o(1)$ $O(n^{1/2+o(1)} + Diam^{1+o(1)})$ det.[Our result]

Lower bound: $\Omega(n^{1/2}/\log n + Diam)$ for any reasonable approximation [Das Sarma et al. '11]

Our approach:

Compute overlay network

Output is a compute set and approximate SSSP on overlay network

Upper bounds:

exact
$$O(n)$$
det.[Bellman-Ford] $O(\epsilon^{-1}\log\epsilon^{-1})$ $O(n^{1/2+\epsilon} + Diam)$ rand.[Lenzen, Patt-Shamir '13] $1 + \epsilon$ $O(n^{1/2}Diam^{1/4} + Diam)$ rand.[Nanongkai '14] $1 + o(1)$ $O(n^{1/2+o(1)} + Diam^{1+o(1)})$ det.[Our result]

Lower bound: $\Omega(n^{1/2} / \log n + Diam)$ for any reasonable approximation [Das Sarma et al. '11]

Our approach:

- Compute overlay network
 Derandomization of "hitting paths" argument at cost of approximation
- Compute hop set and approximate SSSP on overlay network Deterministic hop set using greedy hitting set heuristic

Summary of Results

Theorem (CONGEST)

There is a deterministic distributed algorithm that, on any weighted undirected network, computes (1 + o(1))-approximate shortest paths between a given source node s and every other node in $O(n^{1/2+o(1)} + D^{1+o(1)})$ rounds.

Summary of Results

Theorem (CONGEST)

There is a deterministic distributed algorithm that, on any weighted undirected network, computes (1 + o(1))-approximate shortest paths between a given source node s and every other node in $O(n^{1/2+o(1)} + D^{1+o(1)})$ rounds.

Theorem (Congested Clique)

There is a deterministic distributed algorithm that, on any weighted congested clique, computes (1 + o(1))-approximate shortest paths between a given source node s and every other node in $O(n^{o(1)})$ rounds.

Summary of Results

Theorem (CONGEST)

There is a deterministic distributed algorithm that, on any weighted undirected network, computes (1 + o(1))-approximate shortest paths between a given source node s and every other node in $O(n^{1/2+o(1)} + D^{1+o(1)})$ rounds.

Theorem (Congested Clique)

There is a deterministic distributed algorithm that, on any weighted congested clique, computes (1 + o(1))-approximate shortest paths between a given source node s and every other node in $O(n^{o(1)})$ rounds.

Theorem (Streaming)

There is a deterministic streaming algorithm that, given any weighted undirected graph, computes (1 + o(1))-approximate shortest paths between a given source node s and every other node in $O(n^{o(1)} \log W)$ passes with $O(n^{1+o(1)} \log W)$ space.

Computing Overlay Network

■ Sample $N = O(\sqrt{n} \log n)$ centers (+ source s) ⇒ Every shortest path with $\geq \sqrt{n}$ edges contains center whp

- Sample $N = O(\sqrt{n} \log n)$ centers (+ source s) \Rightarrow Every shortest path with $\geq \sqrt{n}$ edges contains center whp
- Solution For every node: compute approx. shortest paths to centers within \sqrt{n} edges in $O(\sqrt{n}\epsilon^{-1})$ rounds (source detection [Lenzen/Peleg '13])

- Sample $N = O(\sqrt{n} \log n)$ centers (+ source s) \Rightarrow Every shortest path with $\geq \sqrt{n}$ edges contains center whp
- **②** For every node: compute approx. shortest paths to centers within \sqrt{n} edges in $O(\sqrt{n}\epsilon^{-1})$ rounds (source detection [Lenzen/Peleg '13])
- Sufficient to solve SSSP on overlay network using hop set

Derandomization

Property from randomization

 $O(\sqrt{n}\log n)$ centers that hit every shortest path with $\geq \sqrt{n}$ edges

Derandomization

Property from randomization

 $O(\sqrt{n}\log n)$ centers that hit every shortest path with $\geq \sqrt{n}$ edges

Deterministic relaxation

 $O(\sqrt{n}\epsilon^{-1}\log n)$ centers that **almost** hit every path with $\geq \sqrt{n}$ edges

First: Explanation for unweighted graphs

First: Explanation for unweighted graphs

Definition

 (α,β) -ruling set *R* of *U* is a set of rulers such that

- Every pair of rulers in *R* is at distance $\geq \alpha$ from each other
- Every node in U has a ruler in R at distance $\leq \beta$

First: Explanation for unweighted graphs

Definition

 (α, β) -ruling set *R* of *U* is a set of rulers such that

- Every pair of rulers in *R* is at distance $\geq \alpha$ from each other
- Every node in U has a ruler in R at distance $\leq \beta$

Lemma ([Goldberg et al. '88])

A (c, c log n)-ruling set can be computed in $O(c \log n)$ rounds.

First: Explanation for unweighted graphs

Definition

 (α,β) -ruling set *R* of *U* is a set of rulers such that

- Every pair of rulers in *R* is at distance $\geq \alpha$ from each other
- Every node in U has a ruler in R at distance $\leq \beta$

Lemma ([Goldberg et al. '88])

A (c, c log n)-ruling set can be computed in $O(c \log n)$ rounds.

Our setting:

- $U = \text{all nodes } v \text{ with } |Ball(v, \sqrt{n})| \ge \sqrt{n}$
- $c = \epsilon \sqrt{n}$

First: Explanation for unweighted graphs

Definition

 (α,β) -ruling set *R* of *U* is a set of rulers such that

- Every pair of rulers in *R* is at distance $\geq \alpha$ from each other
- Every node in U has a ruler in R at distance $\leq \beta$

Lemma ([Goldberg et al. '88])

A (c, c log n)-ruling set can be computed in $O(c \log n)$ rounds.

Our setting:

- $U = \text{all nodes } v \text{ with } |Ball(v, \sqrt{n})| \ge \sqrt{n}$
- $c = \epsilon \sqrt{n}$
- Any shortest u v path with $\geq \sqrt{n}$ edges: ruler in distance $\leq \epsilon dist(u, v)$

First: Explanation for unweighted graphs

Definition

 (α,β) -ruling set *R* of *U* is a set of rulers such that

- Every pair of rulers in *R* is at distance $\geq \alpha$ from each other
- Every node in U has a ruler in R at distance $\leq \beta$

Lemma ([Goldberg et al. '88])

A $(c, c \log n)$ -ruling set can be computed in $O(c \log n)$ rounds.

Our setting:

- $U = \text{all nodes } v \text{ with } |Ball(v, \sqrt{n})| \ge \sqrt{n}$
- $c = \epsilon \sqrt{n}$
- Any shortest u v path with $\geq \sqrt{n}$ edges: ruler in distance $\leq \epsilon dist(u, v)$
- Uniquely assign $\epsilon \sqrt{n}/2$ nodes to every ruler $\Rightarrow |T| \le 2\sqrt{n}/\epsilon$

First: Explanation for unweighted graphs

Definition

 (α,β) -ruling set *R* of *U* is a set of rulers such that

- Every pair of rulers in *R* is at distance $\geq \alpha$ from each other
- Every node in U has a ruler in R at distance $\leq \beta$

Lemma ([Goldberg et al. '88])

A (c, c log n)-ruling set can be computed in $O(c \log n)$ rounds.

Our setting:

- $U = \text{all nodes } v \text{ with } |Ball(v, \sqrt{n})| \ge \sqrt{n}$
- $c = \epsilon \sqrt{n}$
- Any shortest u v path with $\geq \sqrt{n}$ edges: ruler in distance $\leq \epsilon dist(u, v)$
- Uniquely assign $\epsilon \sqrt{n}/2$ nodes to every ruler $\Rightarrow |T| \le 2\sqrt{n}/\epsilon$

Crucial: "weight = #edges" in unweighted graphs

Goal: Make graph locally "look unweighted" s.t. weight \approx #hops

Goal: Make graph locally "look unweighted" s.t. weight \approx #hops

Well-known weight rounding [Bernstein '09/13, Madry '10, ...]

 G_i : round up edge weights to next multiple of $\epsilon 2^i / \sqrt{n}$ ($\forall i = 1 \text{ to } \log (nW)$) (1+ ϵ)-approximation of shortest paths with \sqrt{n} edges and weight $2^i \dots 2^{i+1}$ **Intuition:** "weight $\leq \text{#edges}$ "

Goal: Make graph locally "look unweighted" s.t. weight \approx #hops

Well-known weight rounding [Bernstein '09/13, Madry '10, ...]

 G_i : round up edge weights to next multiple of $\epsilon 2^i / \sqrt{n}$ ($\forall i = 1 \text{ to log } (nW)$) (1+ ϵ)-approximation of shortest paths with \sqrt{n} edges and weight $2^i \dots 2^{i+1}$ **Intuition:** "weight $\leq \text{#edges}$ "

Not enough: we also want "#edges \leq weight"

Goal: Make graph locally "look unweighted" s.t. weight \approx #hops

Well-known weight rounding [Bernstein '09/13, Madry '10, ...]

 G_i : round up edge weights to next multiple of $\epsilon 2^i / \sqrt{n}$ ($\forall i = 1 \text{ to } \log(nW)$) (1+ ϵ)-approximation of shortest paths with \sqrt{n} edges and weight $2^i \dots 2^{i+1}$ **Intuition:** "weight $\leq \text{#edges}$ "

Not enough: we also want "#edges \leq weight"

Type t(v) of node v: minimum i such that $|Ball_{G_i}(v, (2 + \epsilon)\sqrt{n})| \ge \epsilon \sqrt{n}$

Intuition: type gives scale s.t. local neighborhood "looks unweighted"

Goal: Make graph locally "look unweighted" s.t. weight \approx #hops

Well-known weight rounding [Bernstein '09/13, Madry '10, ...]

 G_i : round up edge weights to next multiple of $\epsilon 2^i / \sqrt{n}$ ($\forall i = 1 \text{ to } \log (nW)$) (1+ ϵ)-approximation of shortest paths with \sqrt{n} edges and weight $2^i \dots 2^{i+1}$ **Intuition:** "weight $\leq \text{#edges}$ "

Not enough: we also want "#edges \leq weight"

Type t(v) of node v: minimum i such that $|Ball_{G_i}(v, (2 + \epsilon)\sqrt{n})| \ge \epsilon \sqrt{n}$

Intuition: type gives scale s.t. local neighborhood "looks unweighted"

Lemma

Every path π with \sqrt{n} edges contains a node v such that $2^{t(v)} \leq 2\epsilon w(\pi)$.

Goal: Make graph locally "look unweighted" s.t. weight \approx #hops

Well-known weight rounding [Bernstein '09/13, Madry '10, ...]

 G_i : round up edge weights to next multiple of $\epsilon 2^i / \sqrt{n}$ ($\forall i = 1 \text{ to log } (nW)$) (1 + ϵ)-approximation of shortest paths with \sqrt{n} edges and weight $2^i \dots 2^{i+1}$ **Intuition:** "weight $\leq \text{#edges}$ "

Not enough: we also want "#edges \leq weight"

Type t(v) of node v: minimum i such that $|Ball_{G_i}(v, (2 + \epsilon)\sqrt{n})| \ge \epsilon \sqrt{n}$

Intuition: type gives scale s.t. local neighborhood "looks unweighted"

Lemma

Every path π with \sqrt{n} edges contains a node v such that $2^{t(v)} \leq 2\epsilon w(\pi)$.

 \Rightarrow Determine centers by computing ruling set for all type classes

Computing Hop Set on Overlay Network

Hop Sets

Definition

An (h, ϵ) -hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with **at most h edges** of weight at most $(1 + \epsilon)dist(u, v)$.

Hop Sets

Definition

An (h, ϵ) -hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with **at most h edges** of weight at most $(1 + \epsilon)dist(u, v)$.

Hop Sets

Definition

An (h, ϵ) -hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with **at most h edges** of weight at most $(1 + \epsilon)dist(u, v)$.

Application: SSSP up to small #edges can be done fast in overlay network

Hop Sets

Definition

An (h, ϵ) -hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with **at most h edges** of weight at most $(1 + \epsilon)dist(u, v)$.

Application: SSSP up to small #edges can be done fast in overlay network A: $(\log^{O(1)} n, \epsilon)$ -hop set of size $n^{1+o(1)}$ [Cohen '94] B: $(n^{o(1)}, \epsilon)$ -hop set of size $n^{1+o(1)}$ [Bernstein '09] C: (n^{α}, ϵ) -hop set of size O(n) [Miller et al. '15]

Hop Sets

Definition

An (h, ϵ) -hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with **at most h edges** of weight at most $(1 + \epsilon)dist(u, v)$.

Application: SSSP up to small #edges can be done fast in overlay network **A**: $(\log^{O(1)} n, \epsilon)$ -hop set of size $n^{1+o(1)}$ [Cohen '94] **B**: $(n^{o(1)}, \epsilon)$ -hop set of size $n^{1+o(1)}$ [Bernstein '09] **C**: (n^{α}, ϵ) -hop set of size O(n) [Miller et al. '15] **Our contribution:** Fast computation of **B** on overlay network

 $V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset$ where node of A_i goes to A_{i+1} with probability $1/n^{1/k}$

v has **priority** *i* iff $v \in A_i \setminus A_{i+1}$

 $V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset$ where node of A_i goes to A_{i+1} with probability $1/n^{1/k}$ *v* has **priority** *i* iff $v \in A_i \setminus A_{i+1}$

For every node *u* of priority *i*:

 $Cluster(v) = \{u \in V \mid dist(u, v) < dist(u, A_{i+1})\}$

 $V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset$ where node of A_i goes to A_{i+1} with probability $1/n^{1/k}$ *v* has **priority** *i* iff $v \in A_i \setminus A_{i+1}$

For every node *u* of priority *i*:

 $Cluster(v) = \{u \in V \mid dist(u, v) < dist(u, A_{i+1})\}$

 $V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset$ where node of A_i goes to A_{i+1} with probability $1/n^{1/k}$ *v* has **priority** *i* iff $v \in A_i \setminus A_{i+1}$

For every node *u* of priority *i*:

 $Cluster(v) = \{u \in V \mid dist(u, v) < dist(u, A_{i+1})\}$

 $V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset$ where node of A_i goes to A_{i+1} with probability $1/n^{1/k}$ *v* has **priority** *i* iff $v \in A_i \setminus A_{i+1}$

For every node *u* of priority *i*:

 $Cluster(v) = \{u \in V \mid dist(u, v) < dist(u, A_{i+1})\}$

- $(u, v) \in F$ iff $u \in Cluster(v)$
- $w(u, v) = dist_G(u, v)$

 $V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset$ where node of A_i goes to A_{i+1} with probability $1/n^{1/k}$ *v* has **priority** *i* iff $v \in A_i \setminus A_{i+1}$

For every node *u* of priority *i*:

 $Cluster(v) = \{u \in V \mid dist(u, v) < dist(u, A_{i+1})\}$

pr. i + 1

- $(u, v) \in F$ iff $u \in Cluster(v)$
- $w(u, v) = dist_G(u, v)$
- Guarantee: $((4/\epsilon)^k, \epsilon)$ -hop set [Bernstein '09, Thorup/Zwick '06]
- Expected size: $O(kn^{1+1/k})$ [Thorup/Zwick '01]

 $V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset$ where node of A_i goes to A_{i+1} with probability $1/n^{1/k}$ *v* has **priority** *i* iff $v \in A_i \setminus A_{i+1}$

For every node *u* of priority *i*:

 $Cluster(v) = \{u \in V \mid dist(u, v) < dist(u, A_{i+1})\}$

pr. i + 1

- $(u, v) \in F$ iff $u \in Cluster(v)$
- $w(u, v) = dist_G(u, v)$
- Guarantee: $((4/\epsilon)^k, \epsilon)$ -hop set [Bernstein '09, Thorup/Zwick '06]
- Expected size: $O(kn^{1+1/k})$ [Thorup/Zwick '01]
- With $k = \sqrt{\log n} / \sqrt{\log 4/\epsilon}$: $(n^{o(1)}, \epsilon)$ -hop set of size $n^{1+o(1)}$

 $V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset$ where node of A_i goes to A_{i+1} with probability $1/n^{1/k}$ *v* has **priority** *i* iff $v \in A_i \setminus A_{i+1}$

For every node *u* of priority *i*:

 $Cluster(v) = \{u \in V \mid dist(u, v) < dist(u, A_{i+1})\}$

- $(u, v) \in F$ iff $u \in Cluster(v)$
- $w(u, v) = dist_G(u, v)$
- Guarantee: $((4/\epsilon)^k, \epsilon)$ -hop set [Bernstein '09, Thorup/Zwick '06]
- Expected size: $O(kn^{1+1/k})$ [Thorup/Zwick '01]
- With $k = \sqrt{\log n} / \sqrt{\log 4/\epsilon}$: $(n^{o(1)}, \epsilon)$ -hop set of size $n^{1+o(1)}$
- **Derandomization:** choose A_{i+1} from A_i by greedy hitting set heuristic *(Sequential, but affordable in overlay network)*

Chicken-Egg Problem?

- Goal: Faster SSSP via hop set
- Compute hop set by computing clusters
- Computing clusters at least as hard as SSSP
- ⇒ Back at problem we wanted to solve initially?

Chicken-Egg Problem?

- Goal: Faster SSSP via hop set
- Compute hop set by computing clusters
- Computing clusters at least as hard as SSSP
- ⇒ Back at problem we wanted to solve initially?

No! Iterative computation starting with

- SSSP up to small #hops is cheap in overlay network
- Clusters up to small #hops provide sufficient shortcutting to make progress in each iteration

Iterative computation

In each iteration number of hops is reduced by a factor of $n^{1/k}$

Iterative computation

In each iteration number of hops is reduced by a factor of $n^{1/k}$

Algorithm:

for i = 1 to k do $\begin{array}{c}
H_i = G \cup \bigcup_{1 \le j \le i-1} F_j \\
\text{Compute clusters with } k \text{ priorities in } H_i \text{ up to } n^{2/k} \text{ hops} \\
F_i = \{(u, v) \mid u \in Cluster(v)\}
\end{array}$ end

return
$$F = \bigcup_{1 \le i \le k} F_i$$

Iterative computation

In each iteration number of hops is reduced by a factor of $n^{1/k}$

Algorithm:

for i = 1 to k do $\begin{array}{c}
H_i = G \cup \bigcup_{1 \le j \le i-1} F_j \\
\text{Compute clusters with } k \text{ priorities in } H_i \text{ up to } n^{2/k} \text{ hops} \\
F_i = \{(u, v) \mid u \in Cluster(v)\} \\
\text{end}
\end{array}$

$$\mathbf{return} \ F = \bigcup_{1 \le i \le k} F_i$$

Error amplification: $(1 + \epsilon')^k \le (1 + \epsilon)$ for $\epsilon' = 1/(2\epsilon \log n)$

Iterative computation

In each iteration number of hops is reduced by a factor of $n^{1/k}$

Algorithm:

for i = 1 to k do $\begin{vmatrix}
H_i = G \cup \bigcup_{1 \le j \le i-1} F_j \\
\text{Compute clusters with } k \text{ priorities in } H_i \text{ up to } n^{2/k} \text{ hops} \\
F_i = \{(u, v) \mid u \in Cluster(v)\}
\end{cases}$ end

$$\mathbf{return}\ F = \bigcup_{1 \le i \le k} F_i$$

Error amplification: $(1 + \epsilon')^k \le (1 + \epsilon)$ for $\epsilon' = 1/(2\epsilon \log n)$

Omitted detail: weighted graphs, use rounding technique

Shortest paths from source *s* **up to distance** *d*:

Shortest paths from source *s* **up to distance** *d*:

Shortest paths from source *s* **up to distance** *d*:

Shortest paths from source *s* up to distance *d*:

d iterations, each $O(Diam + N_{\ell})$ rounds where $N_{\ell} = \#$ nodes at level ℓ Running time: $O(d \cdot Diam + \sum_{l \le d} N_{\ell}) = O(d \cdot Diam + N)$

Shortest paths from source *s* up to distance *d*:

d iterations, each $O(Diam + N_{\ell})$ rounds where $N_{\ell} = \#$ nodes at level ℓ Running time: $O(d \cdot Diam + \sum_{l \le d} N_{\ell}) = O(d \cdot Diam + N)$

Computing clusters: $\widetilde{O}(n^{1/k} \cdot Diam + \sum_{v} |Cluster(v)|) = \widetilde{O}(n^{1/k} \cdot Diam + N^{1+1/k})$

Shortest paths from source *s* up to distance *d*:

d iterations, each $O(Diam + N_{\ell})$ rounds where $N_{\ell} = \#$ nodes at level ℓ Running time: $O(d \cdot Diam + \sum_{l \le d} N_{\ell}) = O(d \cdot Diam + N)$

Computing clusters: $\widetilde{O}(n^{1/k} \cdot Diam + \sum_{v} |Cluster(v)|) = \widetilde{O}(n^{1/k} \cdot Diam + N^{1+1/k})$

⇒ Hop Set and approximate SSSP: $O(n^{1/2+o(1)} + Diam^{1+o(1)})$ ($N \approx \sqrt{n}$))

Conclusion

Main contributions:

- Almost tight algorithm
- Deterministic overlay network and deterministic hop set

Conclusion

Main contributions:

- Almost tight algorithm
- Deterministic overlay network and deterministic hop set

Open problems:

- $n^{o(1)} \rightarrow \log^{O(1)} n$ Better hop set?
- Improve dependence on ϵ
- O(n) rounds optimal for exact SSSP?

Example: $(n^{1/2+o(1)}, \epsilon)$ -hop set Case 1: $dist(u_0, v) \le n^{1/2+1/k}/\epsilon$

Example: $(n^{1/2+o(1)}, \epsilon)$ -hop set Case 2: $dist(u_0, v) > n^{1/2+1/k}/\epsilon$

Example: $(n^{1/2+o(1)}, \epsilon)$ -hop set Case 2: $dist(u_0, v) > n^{1/2+1/k}/\epsilon$

 $r_0 = n^{1/2}$

Weight $\leq (1 + \epsilon) dist(u_0, v)$

Weight
$$\leq (1 + \epsilon) dist(u_0, v)$$

#Edges $\leq \frac{k \cdot dist(u, v)}{n^{1/2}} \leq \frac{k \cdot n}{n^{1/2}} = kn^{1/2}$