Fully dynamic all-pairs shortest paths with worst-case update-time revisited

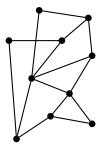
Ittai Abraham¹ Shiri Chechik² Sebastian Krinninger³

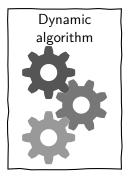
¹Hebrew University of Jerusalem

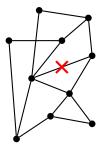
²Tel-Aviv University

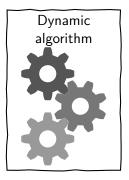
³Max Planck Institute for Informatics Saarland Informatics Campus *since Jan:* University of Vienna

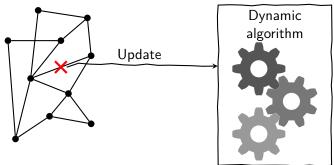
SODA 2017

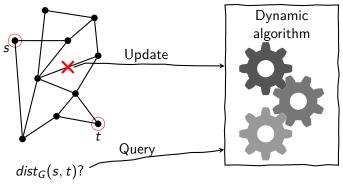






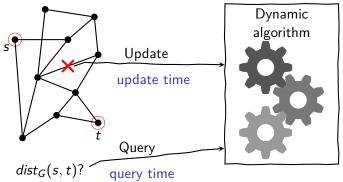






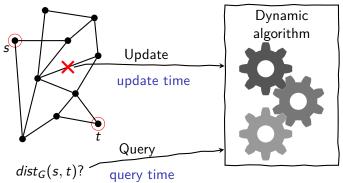


G undergoing updates:



Here: Small query time $\mathcal{O}(1)$ or $\mathcal{O}(\log n)$

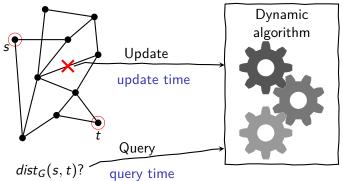
G undergoing updates:



Here: Small query time $\mathcal{O}(1)$ or $\mathcal{O}(\log n)$

Goal: Minimize update time T(n)

G undergoing updates:

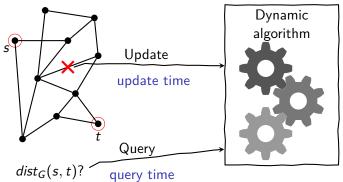


Here: Small query time $\mathcal{O}(1)$ or $\mathcal{O}(\log n)$

Goal: Minimize update time T(n)

• Worst-case: After each update, spend time $\leq T(n)$

G undergoing updates:



Here: Small query time $\mathcal{O}(1)$ or $\mathcal{O}(\log n)$

Goal: Minimize update time T(n)

- Worst-case: After each update, spend time $\leq T(n)$
- Amortized: For a sequence of k updates, spend time $\leq kT(n)$

Question: Can worst-case bounds match amortized bounds?

Prior work on dynamic APSP

approx.	update time	type of graphs	reference
exact	$ ilde{\mathcal{O}}(mn)$	weighted directed	[Dijkstra]
exact	$\tilde{\mathcal{O}}(n^{2.5}\sqrt{W})$	weighted directed	[King '99]
$1 + \epsilon$	$\tilde{\mathcal{O}}(n^2 \log W)$	weighted directed	[King '99]
$2 + \epsilon$	$\tilde{\mathcal{O}}(n^2)$	weighted directed	[King '99]
exact	$\tilde{\mathcal{O}}(n^{2.5}\sqrt{W})$	weighted directed	[Demetrescu/Italiano '01]
exact	$\tilde{\mathcal{O}}(n^2)$	weighted directed	[Demetrescu/Italiano '03]
exact	$\tilde{\mathcal{O}}(n^{2.75})$ (*)	weighted directed	[Thorup '05]
$2 + \epsilon$	$ ilde{\mathcal{O}}(m \log W)$	weighted undirected	[Bernstein '09]
$2^{\mathcal{O}(k)}$	$ ilde{\mathcal{O}}(\sqrt{m}n^{1/k})$	unweighted undirected	[Abr./Chechik/Talwar '14]

(*) worst case

Õ: ignores log *n*-factors *n*: number of nodes *m*: number of edges *W*: largest edge weight

Our result

Theorem (for this talk)

There is an algorithm for maintaining a distance matrix under insertions and deletions of nodes in unweighted undirected graphs with a worst-case update time of $\tilde{O}(n^{2.75})$.

Our result

Theorem (for this talk)

There is an algorithm for maintaining a distance matrix under insertions and deletions of nodes in unweighted undirected graphs with a worst-case update time of $\tilde{O}(n^{2.75})$.

Toy example! ($\mathcal{O}(n^{\omega})$ in unweighted graphs)

Our result

Theorem (for this talk)

There is an algorithm for maintaining a distance matrix under insertions and deletions of nodes in unweighted undirected graphs with a worst-case update time of $\tilde{O}(n^{2.75})$.

Toy example! ($\mathcal{O}(n^{\omega})$ in unweighted graphs)

More sophisticated use of our technique:

- $\tilde{\mathcal{O}}(n^{2.67})$ in weighted directed graphs (randomized)
- Improves $ilde{\mathcal{O}}(n^{2.75})$ of [Thorup '05]
- (Arguably) simpler than [Thorup '05] (which is a deamortization of [Demetrescu/Italiano '03])

Preprocessing phase:

• Preprocess a graph G in time P(n)

Deletion phase:

- A (single) set D of $\leq \Delta$ nodes is deleted from the graph
- Compute APSP in $G \setminus D$ in time D(n)

Preprocessing phase:

• Preprocess a graph G in time P(n)

Deletion phase:

- A (single) set D of $\leq \Delta$ nodes is deleted from the graph
- Compute APSP in $G \setminus D$ in time D(n)

Lemma (Thorup '05)

If there is a batch deletion APSP algorithm supporting up to Δ deletions with proprocessing time P(n) and batch deletion time D(n), then there is a fully dynamic APSP algorithm with worst-case update time $\tilde{O}(P(n)/\Delta + D(n) + \Delta n^2)$.

Preprocessing phase:

• Preprocess a graph G in time P(n)

Deletion phase:

- A (single) set D of $\leq \Delta$ nodes is deleted from the graph
- Compute APSP in $G \setminus D$ in time D(n)

Lemma (Thorup '05)

If there is a batch deletion APSP algorithm supporting up to Δ deletions with proprocessing time P(n) and batch deletion time D(n), then there is a fully dynamic APSP algorithm with worst-case update time $\tilde{O}(P(n)/\Delta + D(n) + \Delta n^2)$.

 \bullet Restart batch deletion algorithm periodically, spread out preprocessing time over Δ updates

Preprocessing phase:

• Preprocess a graph G in time P(n)

Deletion phase:

- A (single) set D of $\leq \Delta$ nodes is deleted from the graph
- Compute APSP in $G \setminus D$ in time D(n)

Lemma (Thorup '05)

If there is a batch deletion APSP algorithm supporting up to Δ deletions with proprocessing time P(n) and batch deletion time D(n), then there is a fully dynamic APSP algorithm with worst-case update time $\tilde{O}(P(n)/\Delta + D(n) + \Delta n^2)$.

- \bullet Restart batch deletion algorithm periodically, spread out preprocessing time over Δ updates
- Insertions are easy: $\mathcal{O}(\Delta n^2)$ (Floyd-Warshall)

Preprocessing phase:

• Preprocess a graph G in time P(n)

Deletion phase:

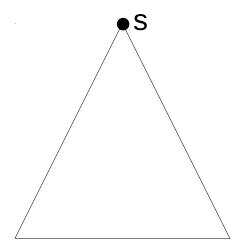
- A (single) set D of $\leq \Delta$ nodes is deleted from the graph
- Compute APSP in $G \setminus D$ in time D(n)
- Suffices to compute shortest paths consisting of $\leq h$ nodes

Lemma (Thorup '05)

If there is a batch deletion APSP algorithm supporting up to Δ deletions with proprocessing time P(n) and batch deletion time D(n), then there is a fully dynamic APSP algorithm with worst-case update time $\tilde{O}(P(n)/\Delta + D(n) + \Delta n^2 + hn^2 + n^3/h)$.

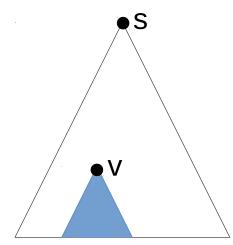
- \bullet Restart batch deletion algorithm periodically, spread out preprocessing time over Δ updates
- Insertions are easy: $\mathcal{O}(\Delta n^2)$ (Floyd-Warshall)
- Hitting set of size $ilde{\mathcal{O}}(n/h)$ for all shortest paths with $\leq h$ nodes

Repairing a shortest path tree



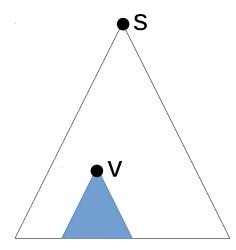
• Given: shortest path tree from s

Repairing a shortest path tree



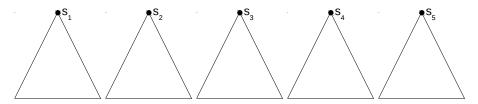
- Given: shortest path tree from s
- Node v is deleted
- Shortest path destroyed only for nodes in subtree of *v*

Repairing a shortest path tree

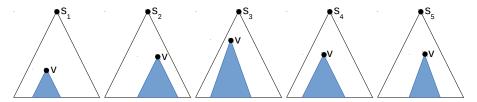


- Given: shortest path tree from s
- Node v is deleted
- Shortest path destroyed only for nodes in subtree of *v*
- Run Dijkstra's algorithm to reattach these nodes to the tree
- Charge time O(deg(u)) ≤ O(n) to every node u in subtree of v

Goal: shortest paths from a set of source nodes S

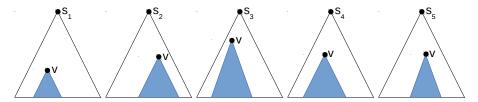


Goal: shortest paths from a set of source nodes \boldsymbol{S}



Deletion of v

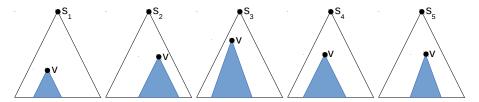
Goal: shortest paths from a set of source nodes \boldsymbol{S}



Deletion of v

Total work: (number of nodes in subtrees of v) $\times n$

Goal: shortest paths from a set of source nodes S

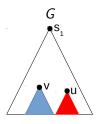


Deletion of v

Total work: (number of nodes in subtrees of v) $\times n$

Goal: limit sizes of subtrees of each node

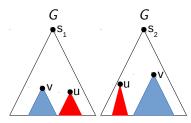
Construct shortest path tree up to depth h for all sources one by one:



Count size of subtrees for every node

- v is added to set of **heavy** nodes H
- v is deleted from graph, i.e., not considered in future trees

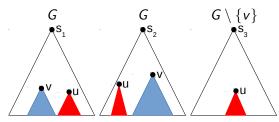
Construct shortest path tree up to depth h for all sources one by one:



Count size of subtrees for every node

- v is added to set of heavy nodes H
- v is deleted from graph, i.e., not considered in future trees

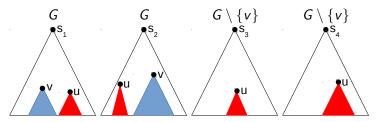
Construct shortest path tree up to depth h for all sources one by one:



Count size of subtrees for every node

- v is added to set of heavy nodes H
- v is deleted from graph, i.e., not considered in future trees

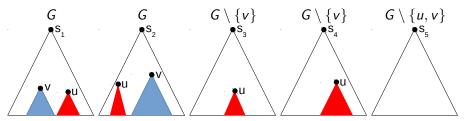
Construct shortest path tree up to depth h for all sources one by one:



Count size of subtrees for every node

- v is added to set of heavy nodes H
- v is deleted from graph, i.e., not considered in future trees

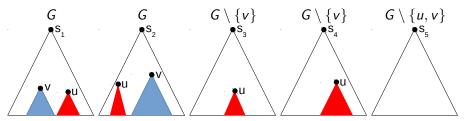
Construct shortest path tree up to depth h for all sources one by one:



Count size of subtrees for every node

- v is added to set of heavy nodes H
- v is deleted from graph, i.e., not considered in future trees

Construct shortest path tree up to depth h for all sources one by one:



Count size of subtrees for every node

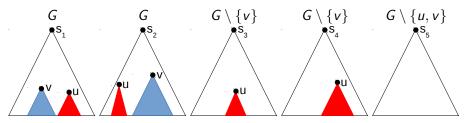
Rule: If number of nodes in subtrees of *v* exceeds λ :

- v is added to set of heavy nodes H
- v is deleted from graph, i.e., not considered in future trees

Observations:

- All shortest paths not using heavy nodes included in trees
- Number of heavy nodes: $|H| \leq \mathcal{O}(\frac{|S|nh}{\lambda}) \leq \mathcal{O}(\frac{n^2h}{\lambda})$
- Preprocessing time: $\mathcal{O}(|S|n^2) \leq \mathcal{O}(n^3)$

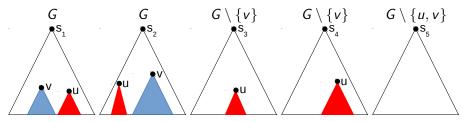
Computing distances after batch of Δ deletions



- For all deleted nodes: Reattach children to tree using Dijkstra Running time: $\mathcal{O}(\Delta \lambda n)$ per deletion
 - Subtree size at most λ per node
 - Number of deleted nodes at most Δ

Correct for all shortest paths not containing heavy nodes

Computing distances after batch of Δ deletions



- For all deleted nodes: Reattach children to tree using Dijkstra Running time: $\mathcal{O}(\Delta \lambda n)$ per deletion
 - Subtree size at most λ per node
 - Number of deleted nodes at most Δ

Correct for all shortest paths not containing heavy nodes

Special treatment of heavy nodes: shortest paths via heavy nodes Compute $\min_{v \in H} (dist(s, v) + dist(v, t))$ for all s and t Time per deletion: $\mathcal{O}(|H|n^2) = \mathcal{O}(\frac{n^4h}{\lambda})$

Running time wrapped up

• $\mathcal{O}(\Delta \lambda n)$ Repair shortest path trees • $\mathcal{O}(\frac{n^4h}{\lambda})$ Shortest paths via heavy nodes

Running time wrapped up

O(Δλn) Repair shortest path trees
 O(^{n⁴h}/_λ) Shortest paths via heavy nodes
 O(^{n³}/_Δ) Preprocessing of O(n³) spread over Δ updates

Running time wrapped up

- $\mathcal{O}(\Delta \lambda n)$ Repair shortest path trees
- $\mathcal{O}(\frac{n^4h}{\lambda})$ Shortest paths via heavy nodes
- $\mathcal{O}(\frac{n^3}{\Delta})$ Preprocessing of $\mathcal{O}(n^3)$ spread over Δ updates
- $\mathcal{O}(\Delta n^2)$ Shortest paths via inserted nodes • $\tilde{\mathcal{O}}(n^2h + \frac{n^3}{h})$ Shortest paths of length more than h

Running time wrapped up

- $\mathcal{O}(\Delta \lambda n)$ Repair shortest path trees
- $\mathcal{O}(\frac{n^4h}{\lambda})$ Shortest paths via heavy nodes
- $\mathcal{O}(\frac{n^3}{\Delta})$ Preprocessing of $\mathcal{O}(n^3)$ spread over Δ updates
- $\mathcal{O}(\Delta n^2)$ Shortest paths via inserted nodes • $\tilde{\mathcal{O}}(n^2h + \frac{n^3}{h})$ Shortest paths of length more than h

$$\Delta = n^{0.25}, \ \lambda = n^{1.5}, \ h = n^{0.25}$$
$$\Rightarrow \tilde{\mathcal{O}}(n^{2.75})$$

Directed graphs:

Two types of shortest path trees: incoming and outgoing

Directed graphs:

Two types of shortest path trees: incoming and outgoing

Weighted graphs:

Requires Bellman-Ford in preprocessing: $O(n^2h)$ per node

Directed graphs:

Two types of shortest path trees: incoming and outgoing

Weighted graphs:

Requires Bellman-Ford in preprocessing: $O(n^2h)$ per node

Increased efficiency:

Multiple instances of algorithm to cover all hop ranges (+randomization) Load balancing trick

Open problems

Is $\tilde{\mathcal{O}}(n^{2.5})$ the right answer?

Open problems

Is $\tilde{\mathcal{O}}(n^{2.5})$ the right answer?

- Pro: Natural barrier for algorithmic approaches
- Con: No scheme for a conditional lower bound applies

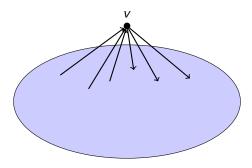
Thank you!

Thank you!

Questions?

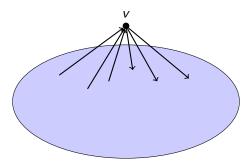
Insertions are easy

Inserting a node v:



Insertions are easy

Inserting a node v:



Floyd-Warshall algorithm

- For every node s: $dist'(s, v) = \min_{(u,v)} (dist(s, u) + w(u, v))$
- For every node t: $dist'(v, t) = \min_{(v,u)} (w(v, u) + dist(u, t))$
- For every pair s, t: dist'(s, t) = min(dist(s, t), dist'(s, v) + dist'(v, t))
 Time per insertion: O(n²)

• Principle approach: deletions-only algorithm

- Principle approach: deletions-only algorithm
- Preprocessing stage: Prepare data structure for handling a batch of $\leq \Delta$ deletions
- After every update:
 - Group updates since preprocessing into insertions and deletions
 - \blacktriangleright Perform $\leq \Delta$ deletions in data structure from preprocessing
 - Process $\leq \Delta$ deletions with Floyd Warshall $\mathcal{O}(\Delta n^2)$

- Principle approach: deletions-only algorithm
- Preprocessing stage: Prepare data structure for handling a batch of $\leq \Delta$ deletions
- After every update:
 - Group updates since preprocessing into insertions and deletions
 - Perform $\leq \Delta$ deletions in data structure from preprocessing
 - Process $\leq \Delta$ deletions with Floyd Warshall $\mathcal{O}(\Delta n^2)$
- $\bullet\,$ Standard trick: preprocessing can be spread out over Δ updates

- Principle approach: deletions-only algorithm
- Preprocessing stage: Prepare data structure for handling a batch of $\leq \Delta$ deletions
- After every update:
 - Group updates since preprocessing into insertions and deletions
 - \blacktriangleright Perform $\leq \Delta$ deletions in data structure from preprocessing
 - Process $\leq \Delta$ deletions with Floyd Warshall $\mathcal{O}(\Delta n^2)$

 \bullet Standard trick: preprocessing can be spread out over Δ updates

Definition

shortest *h*-hop path: shortest among all paths with $\leq h$ edges

Definition

shortest *h*-hop path: shortest among all paths with $\leq h$ edges

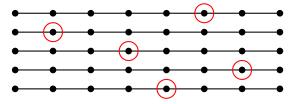
Suppose shortest *h*-hop path known for all pairs of nodes \Rightarrow Can compute all-pairs shortest paths in time $\mathcal{O}(n^3 \log n/h)$:

Definition

shortest *h*-hop path: shortest among all paths with $\leq h$ edges

Suppose shortest *h*-hop path known for all pairs of nodes \Rightarrow Can compute all-pairs shortest paths in time $\mathcal{O}(n^3 \log n/h)$:

• Hitting set of size $\mathcal{O}(n/h)$ (probabilistic argument)

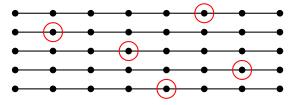


Definition

shortest *h*-hop path: shortest among all paths with $\leq h$ edges

Suppose shortest *h*-hop path known for all pairs of nodes \Rightarrow Can compute all-pairs shortest paths in time $\mathcal{O}(n^3 \log n/h)$:

• Hitting set of size $\mathcal{O}(n/h)$ (probabilistic argument)



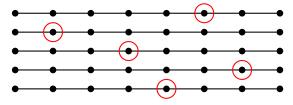
• Find hitting set C of size $\mathcal{O}(n \log n/h)$ in time $\mathcal{O}(n^2h)$ (greedy)

Definition

shortest *h*-hop path: shortest among all paths with $\leq h$ edges

Suppose shortest *h*-hop path known for all pairs of nodes \Rightarrow Can compute all-pairs shortest paths in time $\mathcal{O}(n^3 \log n/h)$:

• Hitting set of size $\mathcal{O}(n/h)$ (probabilistic argument)



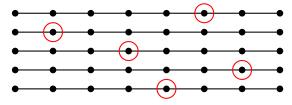
Find hitting set C of size O(n log n/h) in time O(n²h) (greedy)
Compute shortest paths from nodes in C: O(n³ log n/h)

Definition

shortest *h*-hop path: shortest among all paths with $\leq h$ edges

Suppose shortest *h*-hop path known for all pairs of nodes \Rightarrow Can compute all-pairs shortest paths in time $\mathcal{O}(n^3 \log n/h)$:

• Hitting set of size $\mathcal{O}(n/h)$ (probabilistic argument)



- Find hitting set C of size $\mathcal{O}(n \log n/h)$ in time $\mathcal{O}(n^2h)$ (greedy)
- Compute shortest paths from nodes in C: $\mathcal{O}(n^3 \log n/h)$
- For all pairs s, t: $dist(s, t) = min(dist^{h}(s, t), \min_{v \in C}(dist(s, v) + dist(v, t)))$

Summary

Known techniques allow the following restrictions:

 Only necessary to maintain shortest *h*-hop paths up to length (for some parameter *h*)

Summary

Known techniques allow the following restrictions:

- Only necessary to maintain shortest *h*-hop paths up to length (for some parameter *h*)
- To obtain a fully dynamic algorithm it is sufficient to design a deletions-only algorithm that
 - \blacktriangleright can handle up to Δ deletions of nodes with worst-case guarantees
 - after preprocessing the graph

Restart deletions-only algorithm each Δ updates

Barriers

Combinatorial approach [Thorup '05, Abraham/Chechik/Krinninger '17]

The best we can hope for:

- Preprocessing: $\mathcal{O}(n^3)$
- Spread preprocessing over Δ updates: $\mathcal{O}(n^3/k)$
- Deal with $\leq \Delta$ insertions after each update: $\mathcal{O}(n^2k)$ $\Rightarrow \mathcal{O}(n^{2.5})$

Algebraic approach [Sankowski '04/'05]

Here: Intuition in DAGs

Algebraic approach [Sankowski '04/'05]

Here: Intuition in DAGs

Transitive closure:

- Count number of paths from s to t for all pairs
- Reachable iff #paths > 0
- Perform operations for counting modulo random prime
- Update time $\mathcal{O}(n^2)$
- Avoids special treatment of insertions

Algebraic approach [Sankowski '04/'05]

Here: Intuition in DAGs

Transitive closure:

- Count number of paths from s to t for all pairs
- Reachable iff #paths > 0
- Perform operations for counting modulo random prime
- Update time $\mathcal{O}(n^2)$
- Avoids special treatment of insertions

All-pairs shortest paths (distances):

- For every $1 \leq \ell \leq h$, count #paths of length exactly ℓ
- Additional trick: fast convolution
- Update time: $\tilde{\mathcal{O}}(n^2h)$.
- Standard trick for hitting long paths: $h = \sqrt{n}$

 $\Rightarrow \mathcal{O}(n^{2.5})$