
Fully dynamic all-pairs shortest paths with worst-case
update-time revisited

Ittai Abraham1 Shiri Chechik2 Sebastian Krinninger3

1Hebrew University of Jerusalem

2Tel-Aviv University

3Max Planck Institute for Informatics
Saarland Informatics Campus

since Jan: University of Vienna

SODA 2017

1 / 14

Dynamic model
G undergoing updates:

s

t

distG(s, t)?

Dynamic
algorithm

Update

update time

Query

query time

Here: Small query time O(1) or O(log n)

Goal: Minimize update time T (n)
Worst-case: After each update, spend time ≤ T (n)
Amortized: For a sequence of k updates, spend time ≤ kT (n)

2 / 14

Dynamic model
G undergoing updates:

s

t

distG(s, t)?

Dynamic
algorithm

Update

update time

Query

query time

Here: Small query time O(1) or O(log n)

Goal: Minimize update time T (n)
Worst-case: After each update, spend time ≤ T (n)
Amortized: For a sequence of k updates, spend time ≤ kT (n)

2 / 14

Dynamic model
G undergoing updates:

s

t

distG(s, t)?

Dynamic
algorithm

Update

update time

Query

query time

Here: Small query time O(1) or O(log n)

Goal: Minimize update time T (n)
Worst-case: After each update, spend time ≤ T (n)
Amortized: For a sequence of k updates, spend time ≤ kT (n)

2 / 14

Dynamic model
G undergoing updates:

s

t

distG(s, t)?

Dynamic
algorithm

Update

update time

Query

query time

Here: Small query time O(1) or O(log n)

Goal: Minimize update time T (n)
Worst-case: After each update, spend time ≤ T (n)
Amortized: For a sequence of k updates, spend time ≤ kT (n)

2 / 14

Dynamic model
G undergoing updates:

s

t

distG(s, t)?

Dynamic
algorithm

Update

update time

Query

query time

Here: Small query time O(1) or O(log n)

Goal: Minimize update time T (n)
Worst-case: After each update, spend time ≤ T (n)
Amortized: For a sequence of k updates, spend time ≤ kT (n)

2 / 14

Dynamic model
G undergoing updates:

s

t

distG(s, t)?

Dynamic
algorithm

Update

update time

Query

query time

Here: Small query time O(1) or O(log n)

Goal: Minimize update time T (n)
Worst-case: After each update, spend time ≤ T (n)
Amortized: For a sequence of k updates, spend time ≤ kT (n)

2 / 14

Dynamic model
G undergoing updates:

s

t

distG(s, t)?

Dynamic
algorithm

Update

update time

Query

query time

Here: Small query time O(1) or O(log n)

Goal: Minimize update time T (n)

Worst-case: After each update, spend time ≤ T (n)
Amortized: For a sequence of k updates, spend time ≤ kT (n)

2 / 14

Dynamic model
G undergoing updates:

s

t

distG(s, t)?

Dynamic
algorithm

Update

update time

Query

query time

Here: Small query time O(1) or O(log n)

Goal: Minimize update time T (n)
Worst-case: After each update, spend time ≤ T (n)

Amortized: For a sequence of k updates, spend time ≤ kT (n)

2 / 14

Dynamic model
G undergoing updates:

s

t

distG(s, t)?

Dynamic
algorithm

Update

update time

Query

query time

Here: Small query time O(1) or O(log n)

Goal: Minimize update time T (n)
Worst-case: After each update, spend time ≤ T (n)
Amortized: For a sequence of k updates, spend time ≤ kT (n)

2 / 14

Question:
Can worst-case bounds match amortized bounds?

3 / 14

Prior work on dynamic APSP
approx. update time type of graphs reference
exact Õ(mn) weighted directed [Dijkstra]
exact Õ(n2.5√W) weighted directed [King ’99]
1 + ε Õ(n2 logW) weighted directed [King ’99]
2 + ε Õ(n2) weighted directed [King ’99]
exact Õ(n2.5√W) weighted directed [Demetrescu/Italiano ’01]
exact Õ(n2) weighted directed [Demetrescu/Italiano ’03]
exact Õ(n2.75) (*) weighted directed [Thorup ’05]
2 + ε Õ(m logW) weighted undirected [Bernstein ’09]
2O(k) Õ(

√
mn1/k) unweighted undirected [Abr./Chechik/Talwar ’14]

(*) worst case

Õ: ignores log n-factors
n: number of nodes
m: number of edges
W : largest edge weight

4 / 14

Our result

Theorem (for this talk)
There is an algorithm for maintaining a distance matrix under insertions
and deletions of nodes in unweighted undirected graphs with a worst-case
update time of Õ(n2.75).

Toy example! (O(nω) in unweighted graphs)

More sophisticated use of our technique:
Õ(n2.67) in weighted directed graphs (randomized)
Improves Õ(n2.75) of [Thorup ’05]
(Arguably) simpler than [Thorup ’05]
(which is a deamortization of [Demetrescu/Italiano ’03])

5 / 14

Our result

Theorem (for this talk)
There is an algorithm for maintaining a distance matrix under insertions
and deletions of nodes in unweighted undirected graphs with a worst-case
update time of Õ(n2.75).

Toy example! (O(nω) in unweighted graphs)

More sophisticated use of our technique:
Õ(n2.67) in weighted directed graphs (randomized)
Improves Õ(n2.75) of [Thorup ’05]
(Arguably) simpler than [Thorup ’05]
(which is a deamortization of [Demetrescu/Italiano ’03])

5 / 14

Our result

Theorem (for this talk)
There is an algorithm for maintaining a distance matrix under insertions
and deletions of nodes in unweighted undirected graphs with a worst-case
update time of Õ(n2.75).

Toy example! (O(nω) in unweighted graphs)

More sophisticated use of our technique:
Õ(n2.67) in weighted directed graphs (randomized)
Improves Õ(n2.75) of [Thorup ’05]
(Arguably) simpler than [Thorup ’05]
(which is a deamortization of [Demetrescu/Italiano ’03])

5 / 14

Batch deletion problem
Preprocessing phase:

Preprocess a graph G in time P(n)
Deletion phase:

A (single) set D of ≤ ∆ nodes is deleted from the graph
Compute APSP in G \ D in time D(n)

Suffices to compute shortest paths consisting of ≤ h nodes

Lemma (Thorup ’05)
If there is a batch deletion APSP algorithm supporting up to ∆ deletions
with proprocessing time P(n) and batch deletion time D(n), then there is
a fully dynamic APSP algorithm with worst-case update time
Õ(P(n)/∆ + D(n) + ∆n2).

Restart batch deletion algorithm periodically, spread out preprocessing
time over ∆ updates
Insertions are easy: O(∆n2) (Floyd-Warshall)
Hitting set of size Õ(n/h) for all shortest paths with ≤ h nodes

6 / 14

Batch deletion problem
Preprocessing phase:

Preprocess a graph G in time P(n)
Deletion phase:

A (single) set D of ≤ ∆ nodes is deleted from the graph
Compute APSP in G \ D in time D(n)

Suffices to compute shortest paths consisting of ≤ h nodes

Lemma (Thorup ’05)
If there is a batch deletion APSP algorithm supporting up to ∆ deletions
with proprocessing time P(n) and batch deletion time D(n), then there is
a fully dynamic APSP algorithm with worst-case update time
Õ(P(n)/∆ + D(n) + ∆n2).

Restart batch deletion algorithm periodically, spread out preprocessing
time over ∆ updates
Insertions are easy: O(∆n2) (Floyd-Warshall)
Hitting set of size Õ(n/h) for all shortest paths with ≤ h nodes

6 / 14

Batch deletion problem
Preprocessing phase:

Preprocess a graph G in time P(n)
Deletion phase:

A (single) set D of ≤ ∆ nodes is deleted from the graph
Compute APSP in G \ D in time D(n)

Suffices to compute shortest paths consisting of ≤ h nodes

Lemma (Thorup ’05)
If there is a batch deletion APSP algorithm supporting up to ∆ deletions
with proprocessing time P(n) and batch deletion time D(n), then there is
a fully dynamic APSP algorithm with worst-case update time
Õ(P(n)/∆ + D(n) + ∆n2).

Restart batch deletion algorithm periodically, spread out preprocessing
time over ∆ updates

Insertions are easy: O(∆n2) (Floyd-Warshall)
Hitting set of size Õ(n/h) for all shortest paths with ≤ h nodes

6 / 14

Batch deletion problem
Preprocessing phase:

Preprocess a graph G in time P(n)
Deletion phase:

A (single) set D of ≤ ∆ nodes is deleted from the graph
Compute APSP in G \ D in time D(n)

Suffices to compute shortest paths consisting of ≤ h nodes

Lemma (Thorup ’05)
If there is a batch deletion APSP algorithm supporting up to ∆ deletions
with proprocessing time P(n) and batch deletion time D(n), then there is
a fully dynamic APSP algorithm with worst-case update time
Õ(P(n)/∆ + D(n) + ∆n2).

Restart batch deletion algorithm periodically, spread out preprocessing
time over ∆ updates
Insertions are easy: O(∆n2) (Floyd-Warshall)

Hitting set of size Õ(n/h) for all shortest paths with ≤ h nodes

6 / 14

Batch deletion problem
Preprocessing phase:

Preprocess a graph G in time P(n)
Deletion phase:

A (single) set D of ≤ ∆ nodes is deleted from the graph
Compute APSP in G \ D in time D(n)
Suffices to compute shortest paths consisting of ≤ h nodes

Lemma (Thorup ’05)
If there is a batch deletion APSP algorithm supporting up to ∆ deletions
with proprocessing time P(n) and batch deletion time D(n), then there is
a fully dynamic APSP algorithm with worst-case update time
Õ(P(n)/∆ + D(n) + ∆n2 + hn2 + n3/h).

Restart batch deletion algorithm periodically, spread out preprocessing
time over ∆ updates
Insertions are easy: O(∆n2) (Floyd-Warshall)
Hitting set of size Õ(n/h) for all shortest paths with ≤ h nodes

6 / 14

Repairing a shortest path tree

s
Given: shortest path tree from s

Node v is deleted
Shortest path destroyed only for
nodes in subtree of v
Run Dijkstra’s algorithm to
reattach these nodes to the tree
Charge time O(deg(u)) ≤ O(n)
to every node u in subtree of v

7 / 14

Repairing a shortest path tree

s

v

Given: shortest path tree from s
Node v is deleted
Shortest path destroyed only for
nodes in subtree of v

Run Dijkstra’s algorithm to
reattach these nodes to the tree
Charge time O(deg(u)) ≤ O(n)
to every node u in subtree of v

7 / 14

Repairing a shortest path tree

s

v

Given: shortest path tree from s
Node v is deleted
Shortest path destroyed only for
nodes in subtree of v
Run Dijkstra’s algorithm to
reattach these nodes to the tree
Charge time O(deg(u)) ≤ O(n)
to every node u in subtree of v

7 / 14

Multiple shortest path trees

Goal: shortest paths from a set of source nodes S
s

1
s

2
s

3
s

4
s

5

Deletion of v

Total work: (number of nodes in subtrees of v) ×n

Goal: limit sizes of subtrees of each node

8 / 14

Multiple shortest path trees

Goal: shortest paths from a set of source nodes S
s

1

v

s
2

v

s
3

v

s
4

v

s
5

v

Deletion of v

Total work: (number of nodes in subtrees of v) ×n

Goal: limit sizes of subtrees of each node

8 / 14

Multiple shortest path trees

Goal: shortest paths from a set of source nodes S
s

1

v

s
2

v

s
3

v

s
4

v

s
5

v

Deletion of v

Total work: (number of nodes in subtrees of v) ×n

Goal: limit sizes of subtrees of each node

8 / 14

Multiple shortest path trees

Goal: shortest paths from a set of source nodes S
s

1

v

s
2

v

s
3

v

s
4

v

s
5

v

Deletion of v

Total work: (number of nodes in subtrees of v) ×n

Goal: limit sizes of subtrees of each node

8 / 14

Preprocessing
Construct shortest path tree up to depth h for all sources one by one:

G

G G \ {v} G \ {v} G \ {u, v}

s
1

v u

s
2

v
u

s
3

u

s
4

u

s
5

Count size of subtrees for every node
Rule: If number of nodes in subtrees of v exceeds λ:

v is added to set of heavy nodes H
v is deleted from graph, i.e., not considered in future trees

Observations:
All shortest paths not using heavy nodes included in trees

Number of heavy nodes: |H| ≤ O(|S|nh
λ

) ≤ O(n2h
λ

)

Preprocessing time: O(|S|n2) ≤ O(n3)

9 / 14

Preprocessing
Construct shortest path tree up to depth h for all sources one by one:

G G

G \ {v} G \ {v} G \ {u, v}

s
1

v u

s
2

v
u

s
3

u

s
4

u

s
5

Count size of subtrees for every node
Rule: If number of nodes in subtrees of v exceeds λ:

v is added to set of heavy nodes H
v is deleted from graph, i.e., not considered in future trees

Observations:
All shortest paths not using heavy nodes included in trees

Number of heavy nodes: |H| ≤ O(|S|nh
λ

) ≤ O(n2h
λ

)

Preprocessing time: O(|S|n2) ≤ O(n3)

9 / 14

Preprocessing
Construct shortest path tree up to depth h for all sources one by one:

G G G \ {v}

G \ {v} G \ {u, v}

s
1

v u

s
2

v
u

s
3

u

s
4

u

s
5

Count size of subtrees for every node
Rule: If number of nodes in subtrees of v exceeds λ:

v is added to set of heavy nodes H
v is deleted from graph, i.e., not considered in future trees

Observations:
All shortest paths not using heavy nodes included in trees

Number of heavy nodes: |H| ≤ O(|S|nh
λ

) ≤ O(n2h
λ

)

Preprocessing time: O(|S|n2) ≤ O(n3)

9 / 14

Preprocessing
Construct shortest path tree up to depth h for all sources one by one:

G G G \ {v} G \ {v}

G \ {u, v}

s
1

v u

s
2

v
u

s
3

u

s
4

u

s
5

Count size of subtrees for every node
Rule: If number of nodes in subtrees of v exceeds λ:

v is added to set of heavy nodes H
v is deleted from graph, i.e., not considered in future trees

Observations:
All shortest paths not using heavy nodes included in trees

Number of heavy nodes: |H| ≤ O(|S|nh
λ

) ≤ O(n2h
λ

)

Preprocessing time: O(|S|n2) ≤ O(n3)

9 / 14

Preprocessing
Construct shortest path tree up to depth h for all sources one by one:

G G G \ {v} G \ {v} G \ {u, v}
s

1

v u

s
2

v
u

s
3

u

s
4

u

s
5

Count size of subtrees for every node
Rule: If number of nodes in subtrees of v exceeds λ:

v is added to set of heavy nodes H
v is deleted from graph, i.e., not considered in future trees

Observations:
All shortest paths not using heavy nodes included in trees

Number of heavy nodes: |H| ≤ O(|S|nh
λ

) ≤ O(n2h
λ

)

Preprocessing time: O(|S|n2) ≤ O(n3)

9 / 14

Preprocessing
Construct shortest path tree up to depth h for all sources one by one:

G G G \ {v} G \ {v} G \ {u, v}
s

1

v u

s
2

v
u

s
3

u

s
4

u

s
5

Count size of subtrees for every node
Rule: If number of nodes in subtrees of v exceeds λ:

v is added to set of heavy nodes H
v is deleted from graph, i.e., not considered in future trees

Observations:
All shortest paths not using heavy nodes included in trees

Number of heavy nodes: |H| ≤ O(|S|nh
λ

) ≤ O(n2h
λ

)

Preprocessing time: O(|S|n2) ≤ O(n3)
9 / 14

Computing distances after batch of ∆ deletions
G G G \ {v} G \ {v} G \ {u, v}

s
1

v u

s
2

v
u

s
3

u

s
4

u

s
5

1 For all deleted nodes: Reattach children to tree using Dijkstra
Running time: O(∆λn) per deletion

I Subtree size at most λ per node
I Number of deleted nodes at most ∆

Correct for all shortest paths not containing heavy nodes

2 Special treatment of heavy nodes: shortest paths via heavy nodes
Compute min

v∈H
(dist(s, v) + dist(v , t)) for all s and t

Time per deletion: O(|H|n2) = O(n4h
λ

)

10 / 14

Computing distances after batch of ∆ deletions
G G G \ {v} G \ {v} G \ {u, v}

s
1

v u

s
2

v
u

s
3

u

s
4

u

s
5

1 For all deleted nodes: Reattach children to tree using Dijkstra
Running time: O(∆λn) per deletion

I Subtree size at most λ per node
I Number of deleted nodes at most ∆

Correct for all shortest paths not containing heavy nodes
2 Special treatment of heavy nodes: shortest paths via heavy nodes

Compute min
v∈H

(dist(s, v) + dist(v , t)) for all s and t

Time per deletion: O(|H|n2) = O(n4h
λ

)

10 / 14

Running time wrapped up

O(∆λn) Repair shortest path trees

O(n4h
λ

) Shortest paths via heavy nodes

O(n3

∆) Preprocessing of O(n3) spread over ∆ updates

O(∆n2) Shortest paths via inserted nodes

Õ(n2h + n3

h) Shortest paths of length more than h

∆ = n0.25, λ = n1.5, h = n0.25

⇒ Õ(n2.75)

11 / 14

Running time wrapped up

O(∆λn) Repair shortest path trees

O(n4h
λ

) Shortest paths via heavy nodes

O(n3

∆) Preprocessing of O(n3) spread over ∆ updates

O(∆n2) Shortest paths via inserted nodes

Õ(n2h + n3

h) Shortest paths of length more than h

∆ = n0.25, λ = n1.5, h = n0.25

⇒ Õ(n2.75)

11 / 14

Running time wrapped up

O(∆λn) Repair shortest path trees

O(n4h
λ

) Shortest paths via heavy nodes

O(n3

∆) Preprocessing of O(n3) spread over ∆ updates

O(∆n2) Shortest paths via inserted nodes

Õ(n2h + n3

h) Shortest paths of length more than h

∆ = n0.25, λ = n1.5, h = n0.25

⇒ Õ(n2.75)

11 / 14

Running time wrapped up

O(∆λn) Repair shortest path trees

O(n4h
λ

) Shortest paths via heavy nodes

O(n3

∆) Preprocessing of O(n3) spread over ∆ updates

O(∆n2) Shortest paths via inserted nodes

Õ(n2h + n3

h) Shortest paths of length more than h

∆ = n0.25, λ = n1.5, h = n0.25

⇒ Õ(n2.75)

11 / 14

Improvements

Directed graphs:
Two types of shortest path trees: incoming and outgoing

Weighted graphs:
Requires Bellman-Ford in preprocessing: O(n2h) per node

Increased efficiency:
Multiple instances of algorithm to cover all hop ranges (+randomization)
Load balancing trick

12 / 14

Improvements

Directed graphs:
Two types of shortest path trees: incoming and outgoing

Weighted graphs:
Requires Bellman-Ford in preprocessing: O(n2h) per node

Increased efficiency:
Multiple instances of algorithm to cover all hop ranges (+randomization)
Load balancing trick

12 / 14

Improvements

Directed graphs:
Two types of shortest path trees: incoming and outgoing

Weighted graphs:
Requires Bellman-Ford in preprocessing: O(n2h) per node

Increased efficiency:
Multiple instances of algorithm to cover all hop ranges (+randomization)
Load balancing trick

12 / 14

Open problems

Is Õ(n2.5) the right answer?

Pro: Natural barrier for algorithmic approaches
Con: No scheme for a conditional lower bound applies

13 / 14

Open problems

Is Õ(n2.5) the right answer?

Pro: Natural barrier for algorithmic approaches
Con: No scheme for a conditional lower bound applies

13 / 14

Thank you!

Questions?

14 / 14

Thank you!

Questions?

14 / 14

Insertions are easy
Inserting a node v :

v

Floyd-Warshall algorithm
For every node s: dist ′(s, v) = min

(u,v)
(dist(s, u) + w(u, v))

For every node t: dist ′(v , t) = min
(v ,u)

(w(v , u) + dist(u, t))

For every pair s, t: dist ′(s, t) = min(dist(s, t), dist ′(s, v) + dist ′(v , t))
Time per insertion: O(n2)

1 / 7

Insertions are easy
Inserting a node v :

v

Floyd-Warshall algorithm
For every node s: dist ′(s, v) = min

(u,v)
(dist(s, u) + w(u, v))

For every node t: dist ′(v , t) = min
(v ,u)

(w(v , u) + dist(u, t))

For every pair s, t: dist ′(s, t) = min(dist(s, t), dist ′(s, v) + dist ′(v , t))
Time per insertion: O(n2)

1 / 7

Handling deletions

Principle approach: deletions-only algorithm

Preprocessing stage: Prepare data structure for handling a batch of
≤ ∆ deletions
After every update:

I Group updates since preprocessing into insertions and deletions
I Perform ≤ ∆ deletions in data structure from preprocessing
I Process ≤ ∆ deletions with Floyd Warshall O(∆n2)

Standard trick: preprocessing can be spread out over ∆ updates

∆ updates

2 / 7

Handling deletions

Principle approach: deletions-only algorithm
Preprocessing stage: Prepare data structure for handling a batch of
≤ ∆ deletions
After every update:

I Group updates since preprocessing into insertions and deletions
I Perform ≤ ∆ deletions in data structure from preprocessing
I Process ≤ ∆ deletions with Floyd Warshall O(∆n2)

Standard trick: preprocessing can be spread out over ∆ updates

∆ updates

2 / 7

Handling deletions

Principle approach: deletions-only algorithm
Preprocessing stage: Prepare data structure for handling a batch of
≤ ∆ deletions
After every update:

I Group updates since preprocessing into insertions and deletions
I Perform ≤ ∆ deletions in data structure from preprocessing
I Process ≤ ∆ deletions with Floyd Warshall O(∆n2)

Standard trick: preprocessing can be spread out over ∆ updates

∆ updates

2 / 7

Handling deletions

Principle approach: deletions-only algorithm
Preprocessing stage: Prepare data structure for handling a batch of
≤ ∆ deletions
After every update:

I Group updates since preprocessing into insertions and deletions
I Perform ≤ ∆ deletions in data structure from preprocessing
I Process ≤ ∆ deletions with Floyd Warshall O(∆n2)

Standard trick: preprocessing can be spread out over ∆ updates

∆ updates

2 / 7

Restricted hop depth
Definition
shortest h-hop path: shortest among all paths with ≤ h edges

Suppose shortest h-hop path known for all pairs of nodes
⇒ Can compute all-pairs shortest paths in time O(n3 log n/h):

Hitting set of size O(n/h) (probabilistic argument)

Find hitting set C of size O(n log n/h) in time O(n2h) (greedy)
Compute shortest paths from nodes in C : O(n3 log n/h)
For all pairs s, t:
dist(s, t) = min(disth(s, t),min

v∈C
(dist(s, v) + dist(v , t)))

3 / 7

Restricted hop depth
Definition
shortest h-hop path: shortest among all paths with ≤ h edges

Suppose shortest h-hop path known for all pairs of nodes
⇒ Can compute all-pairs shortest paths in time O(n3 log n/h):

Hitting set of size O(n/h) (probabilistic argument)

Find hitting set C of size O(n log n/h) in time O(n2h) (greedy)
Compute shortest paths from nodes in C : O(n3 log n/h)
For all pairs s, t:
dist(s, t) = min(disth(s, t),min

v∈C
(dist(s, v) + dist(v , t)))

3 / 7

Restricted hop depth
Definition
shortest h-hop path: shortest among all paths with ≤ h edges

Suppose shortest h-hop path known for all pairs of nodes
⇒ Can compute all-pairs shortest paths in time O(n3 log n/h):

Hitting set of size O(n/h) (probabilistic argument)

Find hitting set C of size O(n log n/h) in time O(n2h) (greedy)
Compute shortest paths from nodes in C : O(n3 log n/h)
For all pairs s, t:
dist(s, t) = min(disth(s, t),min

v∈C
(dist(s, v) + dist(v , t)))

3 / 7

Restricted hop depth
Definition
shortest h-hop path: shortest among all paths with ≤ h edges

Suppose shortest h-hop path known for all pairs of nodes
⇒ Can compute all-pairs shortest paths in time O(n3 log n/h):

Hitting set of size O(n/h) (probabilistic argument)

Find hitting set C of size O(n log n/h) in time O(n2h) (greedy)

Compute shortest paths from nodes in C : O(n3 log n/h)
For all pairs s, t:
dist(s, t) = min(disth(s, t),min

v∈C
(dist(s, v) + dist(v , t)))

3 / 7

Restricted hop depth
Definition
shortest h-hop path: shortest among all paths with ≤ h edges

Suppose shortest h-hop path known for all pairs of nodes
⇒ Can compute all-pairs shortest paths in time O(n3 log n/h):

Hitting set of size O(n/h) (probabilistic argument)

Find hitting set C of size O(n log n/h) in time O(n2h) (greedy)
Compute shortest paths from nodes in C : O(n3 log n/h)

For all pairs s, t:
dist(s, t) = min(disth(s, t),min

v∈C
(dist(s, v) + dist(v , t)))

3 / 7

Restricted hop depth
Definition
shortest h-hop path: shortest among all paths with ≤ h edges

Suppose shortest h-hop path known for all pairs of nodes
⇒ Can compute all-pairs shortest paths in time O(n3 log n/h):

Hitting set of size O(n/h) (probabilistic argument)

Find hitting set C of size O(n log n/h) in time O(n2h) (greedy)
Compute shortest paths from nodes in C : O(n3 log n/h)
For all pairs s, t:
dist(s, t) = min(disth(s, t),min

v∈C
(dist(s, v) + dist(v , t)))

3 / 7

Summary

Known techniques allow the following restrictions:
1 Only necessary to maintain shortest h-hop paths up to length

(for some parameter h)

2 To obtain a fully dynamic algorithm it is sufficient to design a
deletions-only algorithm that

I can handle up to ∆ deletions of nodes with worst-case guarantees
I after preprocessing the graph

Restart deletions-only algorithm each ∆ updates

4 / 7

Summary

Known techniques allow the following restrictions:
1 Only necessary to maintain shortest h-hop paths up to length

(for some parameter h)
2 To obtain a fully dynamic algorithm it is sufficient to design a

deletions-only algorithm that
I can handle up to ∆ deletions of nodes with worst-case guarantees
I after preprocessing the graph

Restart deletions-only algorithm each ∆ updates

4 / 7

Barriers

5 / 7

Combinatorial approach [Thorup ’05, Abraham/Chechik/Krinninger ’17]

The best we can hope for:
Preprocessing: O(n3)
Spread preprocessing over ∆ updates: O(n3/k)
Deal with ≤ ∆ insertions after each update: O(n2k)

⇒ O(n2.5)

6 / 7

Algebraic approach [Sankowski ’04/’05]

Here: Intuition in DAGs

Transitive closure:
Count number of paths from s to t for all pairs
Reachable iff #paths > 0
Perform operations for counting modulo random prime
Update time O(n2)
Avoids special treatment of insertions

All-pairs shortest paths (distances):
For every 1 ≤ ` ≤ h, count #paths of length exactly `
Additional trick: fast convolution
Update time: Õ(n2h).
Standard trick for hitting long paths: h =

√
n

⇒ O(n2.5)

7 / 7

Algebraic approach [Sankowski ’04/’05]

Here: Intuition in DAGs

Transitive closure:
Count number of paths from s to t for all pairs
Reachable iff #paths > 0
Perform operations for counting modulo random prime
Update time O(n2)
Avoids special treatment of insertions

All-pairs shortest paths (distances):
For every 1 ≤ ` ≤ h, count #paths of length exactly `
Additional trick: fast convolution
Update time: Õ(n2h).
Standard trick for hitting long paths: h =

√
n

⇒ O(n2.5)

7 / 7

Algebraic approach [Sankowski ’04/’05]

Here: Intuition in DAGs

Transitive closure:
Count number of paths from s to t for all pairs
Reachable iff #paths > 0
Perform operations for counting modulo random prime
Update time O(n2)
Avoids special treatment of insertions

All-pairs shortest paths (distances):
For every 1 ≤ ` ≤ h, count #paths of length exactly `
Additional trick: fast convolution
Update time: Õ(n2h).
Standard trick for hitting long paths: h =

√
n

⇒ O(n2.5)
7 / 7

	Appendix

