
Distributed Laplacian Solving with Applications

Sebastian Forster, né Krinninger

University of Salzburg

SIROCCO 2022

Joint work with Gramoz Goranci, Yang P. Liu, Richard Peng, Xiaorui Sun, Tijn de Vos,
and Mingquan Ye

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No 947702). Supported by the Austrian Science Fund (FWF): P 32863-N



Laplacian Paradigm

• Laplacian systems

• Spectral sparsifiers

• Electrical flow

• Effective resistance

• Expander decompositions

• Continuous optimization

• Interior-point methods

• Gradient descent

• Preconditioning

• …

1



Laplacian Paradigm and Distributed Computing

Observation
Laplacian paradigm often yields inherently parallelizable
algorithms

Basic operation:
• Vector x: each node represents a coordinate
• Matrix A: each edge represents a non-zero entry
• Matrix-vector multiplication Ax: one round

State of the art for (approximate) single-source shortest path,
maximum flow, minimum-cost flow:
[Ghaffari, Karrenbauer, Kuhn, Lenzen, Patt-Shamir ’15] [Becker, F,

Karrenbauer, Lenzen ’17] [Zuzic ’21] [Anagnostides, Themis Gouleakis,

Christoph Lenzen ’21] [Zuzic, Goranci, Ye, Haeupler, Sun ’22] [Rozhon,

Grunau, Haeupler, Zuzic, Li ’22]

2



Laplacian Paradigm and Distributed Computing

Observation
Laplacian paradigm often yields inherently parallelizable
algorithms

Basic operation:
• Vector x: each node represents a coordinate
• Matrix A: each edge represents a non-zero entry
• Matrix-vector multiplication Ax: one round

State of the art for (approximate) single-source shortest path,
maximum flow, minimum-cost flow:
[Ghaffari, Karrenbauer, Kuhn, Lenzen, Patt-Shamir ’15] [Becker, F,

Karrenbauer, Lenzen ’17] [Zuzic ’21] [Anagnostides, Themis Gouleakis,

Christoph Lenzen ’21] [Zuzic, Goranci, Ye, Haeupler, Sun ’22] [Rozhon,

Grunau, Haeupler, Zuzic, Li ’22]

2



Laplacian Paradigm and Distributed Computing

Observation
Laplacian paradigm often yields inherently parallelizable
algorithms

Basic operation:
• Vector x: each node represents a coordinate
• Matrix A: each edge represents a non-zero entry
• Matrix-vector multiplication Ax: one round

State of the art for (approximate) single-source shortest path,
maximum flow, minimum-cost flow:
[Ghaffari, Karrenbauer, Kuhn, Lenzen, Patt-Shamir ’15] [Becker, F,

Karrenbauer, Lenzen ’17] [Zuzic ’21] [Anagnostides, Themis Gouleakis,

Christoph Lenzen ’21] [Zuzic, Goranci, Ye, Haeupler, Sun ’22] [Rozhon,

Grunau, Haeupler, Zuzic, Li ’22]

2



Laplacian Systems

Goal
Solve linear system Lx = b such that L is a Laplacian matrix.

Definition
The Laplacian matrix L(𝐺) of graph 𝐺 = (𝑉 , 𝐸, 𝑤) is defined by

L(𝐺)𝑢,𝑣 = {
∑(𝑢,𝑣 ′)∈𝐸 𝑤𝑢,𝑣 ′ if 𝑢 = 𝑣,
−𝑤𝑢,𝑣 otherwise.

High-precision solver: Approximation of solution x∗ with x s.t.

‖x − x∗‖L(𝐺) ≤ 𝜖‖b‖L(𝐺) .

Prior work:
• �̃�(𝑚) sequential running time [Spielman, Teng ’04]

• �̃�(𝑚) work, polylogarithmic depth [Peng, Spielman ’14]

3



Laplacian Systems

Goal
Solve linear system Lx = b such that L is a Laplacian matrix.

Definition
The Laplacian matrix L(𝐺) of graph 𝐺 = (𝑉 , 𝐸, 𝑤) is defined by

L(𝐺)𝑢,𝑣 = {
∑(𝑢,𝑣 ′)∈𝐸 𝑤𝑢,𝑣 ′ if 𝑢 = 𝑣,
−𝑤𝑢,𝑣 otherwise.

High-precision solver: Approximation of solution x∗ with x s.t.

‖x − x∗‖L(𝐺) ≤ 𝜖‖b‖L(𝐺) .

Prior work:
• �̃�(𝑚) sequential running time [Spielman, Teng ’04]

• �̃�(𝑚) work, polylogarithmic depth [Peng, Spielman ’14]

3



Laplacian Systems

Goal
Solve linear system Lx = b such that L is a Laplacian matrix.

Definition
The Laplacian matrix L(𝐺) of graph 𝐺 = (𝑉 , 𝐸, 𝑤) is defined by

L(𝐺)𝑢,𝑣 = {
∑(𝑢,𝑣 ′)∈𝐸 𝑤𝑢,𝑣 ′ if 𝑢 = 𝑣,
−𝑤𝑢,𝑣 otherwise.

High-precision solver: Approximation of solution x∗ with x s.t.

‖x − x∗‖L(𝐺) ≤ 𝜖‖b‖L(𝐺) .

Prior work:
• �̃�(𝑚) sequential running time [Spielman, Teng ’04]

• �̃�(𝑚) work, polylogarithmic depth [Peng, Spielman ’14]

3



Laplacian Systems

Goal
Solve linear system Lx = b such that L is a Laplacian matrix.

Definition
The Laplacian matrix L(𝐺) of graph 𝐺 = (𝑉 , 𝐸, 𝑤) is defined by

L(𝐺)𝑢,𝑣 = {
∑(𝑢,𝑣 ′)∈𝐸 𝑤𝑢,𝑣 ′ if 𝑢 = 𝑣,
−𝑤𝑢,𝑣 otherwise.

High-precision solver: Approximation of solution x∗ with x s.t.

‖x − x∗‖L(𝐺) ≤ 𝜖‖b‖L(𝐺) .

Prior work:
• �̃�(𝑚) sequential running time [Spielman, Teng ’04]

• �̃�(𝑚) work, polylogarithmic depth [Peng, Spielman ’14]

3



CONGEST Model

• Edges correspond to non-zero entries of matrix
• Each node holds one row/column of matrix
• Communication over edges in synchronous rounds
• Bandwidth 𝑂(log 𝑛) per edge 4



Our Results for the CONGEST Model

Theorem ([F, Goranci, Liu, Peng, Sun, Ye])
In the CONGEST model, given a weighted and undirected graph 𝐺
and a vector b on 𝑛 vertices, we can in 𝑂(𝑛𝑜(1)(√𝑛 + 𝐷)) rounds return
a vector x such that ‖x − x∗‖L(𝐺) ≤ 𝜖‖b‖L(𝐺).

Almost matches a Ω̃(√𝑛 + 𝐷) lower bound

Implications

�̃� (𝑚3/7+𝑜(1)(𝑛1/2𝐷1/4 + 𝐷))-round algorithms in CONGEST
model for the following problems:

• Maximum flow [Mądry ’16]
• Unit capacity minimum cost flow [Cohen et al. ’17]
• Negative weight shortest path [Cohen et al. ’17]

First 𝑜(𝑛)-round algorithms for sparse, low-diameter graphs

5



Our Results for the CONGEST Model

Theorem ([F, Goranci, Liu, Peng, Sun, Ye])
In the CONGEST model, given a weighted and undirected graph 𝐺
and a vector b on 𝑛 vertices, we can in 𝑂(𝑛𝑜(1)(√𝑛 + 𝐷)) rounds return
a vector x such that ‖x − x∗‖L(𝐺) ≤ 𝜖‖b‖L(𝐺).

Almost matches a Ω̃(√𝑛 + 𝐷) lower bound

Implications

�̃� (𝑚3/7+𝑜(1)(𝑛1/2𝐷1/4 + 𝐷))-round algorithms in CONGEST
model for the following problems:

• Maximum flow [Mądry ’16]
• Unit capacity minimum cost flow [Cohen et al. ’17]
• Negative weight shortest path [Cohen et al. ’17]

First 𝑜(𝑛)-round algorithms for sparse, low-diameter graphs

5



Approximate Schur Complement

Definition (Schur complement)
For an 𝑛 × 𝑛 symmetric matrix M and a subset of terminals 𝑇 ⊆ [𝑛],
let 𝑆 = [𝑛] ⧵ 𝑇 . Permute the rows/columns of M to write

M = [
M[𝑆,𝑆] M[𝑆,𝑇 ]
M[𝑇 ,𝑆] M[𝑇 ,𝑇 ]

] .

Then the Schur complement of M onto 𝑇 is defined as
SC(M, 𝑇 ) ∶= M[𝑇 ,𝑇 ] −M[𝑇 ,𝑆]M−1

[𝑆,𝑆]M[𝑆,𝑇 ].

Result of block Gaussian elimination

Graphical interpretation:

Input graph

→

Schur complement

≈

Sparsification

6



Approximate Schur Complement

Definition (Schur complement)
For an 𝑛 × 𝑛 symmetric matrix M and a subset of terminals 𝑇 ⊆ [𝑛],
let 𝑆 = [𝑛] ⧵ 𝑇 . Permute the rows/columns of M to write

M = [
M[𝑆,𝑆] M[𝑆,𝑇 ]
M[𝑇 ,𝑆] M[𝑇 ,𝑇 ]

] .

Then the Schur complement of M onto 𝑇 is defined as
SC(M, 𝑇 ) ∶= M[𝑇 ,𝑇 ] −M[𝑇 ,𝑆]M−1

[𝑆,𝑆]M[𝑆,𝑇 ].

Result of block Gaussian elimination

Graphical interpretation:

Input graph

→

Schur complement

≈

Sparsification

6



Approximate Schur Complement

Definition (Schur complement)
For an 𝑛 × 𝑛 symmetric matrix M and a subset of terminals 𝑇 ⊆ [𝑛],
let 𝑆 = [𝑛] ⧵ 𝑇 . Permute the rows/columns of M to write

M = [
M[𝑆,𝑆] M[𝑆,𝑇 ]
M[𝑇 ,𝑆] M[𝑇 ,𝑇 ]

] .

Then the Schur complement of M onto 𝑇 is defined as
SC(M, 𝑇 ) ∶= M[𝑇 ,𝑇 ] −M[𝑇 ,𝑆]M−1

[𝑆,𝑆]M[𝑆,𝑇 ].

Result of block Gaussian elimination

Graphical interpretation:

Input graph

→

Schur complement

≈

Sparsification
6



Minor Sparsifiers

Problem
Communication of edges “along” sparsifier edges my lead to too
much congestion

Solution
Vertex sparsifiers as minors of the communication graph

→

Lemma
Matrix-vector multiplication involving minor sparsifier takes
�̃�(√𝑛 + 𝐷) rounds.

Key contribution: Parallel variant of [Li Schild ’18]

7



Minor Sparsifiers

Problem
Communication of edges “along” sparsifier edges my lead to too
much congestion

Solution
Vertex sparsifiers as minors of the communication graph

→

Lemma
Matrix-vector multiplication involving minor sparsifier takes
�̃�(√𝑛 + 𝐷) rounds.

Key contribution: Parallel variant of [Li Schild ’18]

7



Minor Sparsifiers

Problem
Communication of edges “along” sparsifier edges my lead to too
much congestion

Solution
Vertex sparsifiers as minors of the communication graph

→

Lemma
Matrix-vector multiplication involving minor sparsifier takes
�̃�(√𝑛 + 𝐷) rounds.

Key contribution: Parallel variant of [Li Schild ’18]

7



Minor Sparsifiers

Problem
Communication of edges “along” sparsifier edges my lead to too
much congestion

Solution
Vertex sparsifiers as minors of the communication graph

→

Lemma
Matrix-vector multiplication involving minor sparsifier takes
�̃�(√𝑛 + 𝐷) rounds.

Key contribution: Parallel variant of [Li Schild ’18] 7



Technical Details

• From [Kyng, Lee, Peng, Sachdeva, Spielman ’16]: Repeated
elimination of almost independent sets yields vertex
sparsifier “chain” with recursion depth 𝑑 = 𝑂(log 𝑛)

• Fast computation of inverse of submatrix of eliminated nodes
using iterative method

• In addition to Schur complement itself, we need to compute
further information (linear operators)

• Obtain Schur complement from sampling random walks
• Algorithmically: estimate of congestion in random walks
• Computation introduces round-overhead of (log𝑐 𝑛)𝑑; can only

work with 𝑑 = 𝑂(log log 𝑛) → sophisticated recursion
• Minor sparsifiers: avoid sequential sampling of [Li Schild ’18]

• Identify “steady” edges that can be sampled independently
• Requires recursive solution of linear system: edge reduction via

ultra-sparsifiers
• Distortion of minor property in recursive calls

8



Technical Details

• From [Kyng, Lee, Peng, Sachdeva, Spielman ’16]: Repeated
elimination of almost independent sets yields vertex
sparsifier “chain” with recursion depth 𝑑 = 𝑂(log 𝑛)

• Fast computation of inverse of submatrix of eliminated nodes
using iterative method

• In addition to Schur complement itself, we need to compute
further information (linear operators)

• Obtain Schur complement from sampling random walks
• Algorithmically: estimate of congestion in random walks
• Computation introduces round-overhead of (log𝑐 𝑛)𝑑; can only

work with 𝑑 = 𝑂(log log 𝑛) → sophisticated recursion
• Minor sparsifiers: avoid sequential sampling of [Li Schild ’18]

• Identify “steady” edges that can be sampled independently
• Requires recursive solution of linear system: edge reduction via

ultra-sparsifiers
• Distortion of minor property in recursive calls

8



Technical Details

• From [Kyng, Lee, Peng, Sachdeva, Spielman ’16]: Repeated
elimination of almost independent sets yields vertex
sparsifier “chain” with recursion depth 𝑑 = 𝑂(log 𝑛)

• Fast computation of inverse of submatrix of eliminated nodes
using iterative method

• In addition to Schur complement itself, we need to compute
further information (linear operators)

• Obtain Schur complement from sampling random walks
• Algorithmically: estimate of congestion in random walks
• Computation introduces round-overhead of (log𝑐 𝑛)𝑑; can only

work with 𝑑 = 𝑂(log log 𝑛) → sophisticated recursion
• Minor sparsifiers: avoid sequential sampling of [Li Schild ’18]

• Identify “steady” edges that can be sampled independently
• Requires recursive solution of linear system: edge reduction via

ultra-sparsifiers
• Distortion of minor property in recursive calls

8



Technical Details

• From [Kyng, Lee, Peng, Sachdeva, Spielman ’16]: Repeated
elimination of almost independent sets yields vertex
sparsifier “chain” with recursion depth 𝑑 = 𝑂(log 𝑛)

• Fast computation of inverse of submatrix of eliminated nodes
using iterative method

• In addition to Schur complement itself, we need to compute
further information (linear operators)

• Obtain Schur complement from sampling random walks

• Algorithmically: estimate of congestion in random walks
• Computation introduces round-overhead of (log𝑐 𝑛)𝑑; can only

work with 𝑑 = 𝑂(log log 𝑛) → sophisticated recursion
• Minor sparsifiers: avoid sequential sampling of [Li Schild ’18]

• Identify “steady” edges that can be sampled independently
• Requires recursive solution of linear system: edge reduction via

ultra-sparsifiers
• Distortion of minor property in recursive calls

8



Technical Details

• From [Kyng, Lee, Peng, Sachdeva, Spielman ’16]: Repeated
elimination of almost independent sets yields vertex
sparsifier “chain” with recursion depth 𝑑 = 𝑂(log 𝑛)

• Fast computation of inverse of submatrix of eliminated nodes
using iterative method

• In addition to Schur complement itself, we need to compute
further information (linear operators)

• Obtain Schur complement from sampling random walks
• Algorithmically: estimate of congestion in random walks

• Computation introduces round-overhead of (log𝑐 𝑛)𝑑; can only
work with 𝑑 = 𝑂(log log 𝑛) → sophisticated recursion

• Minor sparsifiers: avoid sequential sampling of [Li Schild ’18]
• Identify “steady” edges that can be sampled independently
• Requires recursive solution of linear system: edge reduction via

ultra-sparsifiers
• Distortion of minor property in recursive calls

8



Technical Details

• From [Kyng, Lee, Peng, Sachdeva, Spielman ’16]: Repeated
elimination of almost independent sets yields vertex
sparsifier “chain” with recursion depth 𝑑 = 𝑂(log 𝑛)

• Fast computation of inverse of submatrix of eliminated nodes
using iterative method

• In addition to Schur complement itself, we need to compute
further information (linear operators)

• Obtain Schur complement from sampling random walks
• Algorithmically: estimate of congestion in random walks
• Computation introduces round-overhead of (log𝑐 𝑛)𝑑; can only

work with 𝑑 = 𝑂(log log 𝑛) → sophisticated recursion

• Minor sparsifiers: avoid sequential sampling of [Li Schild ’18]
• Identify “steady” edges that can be sampled independently
• Requires recursive solution of linear system: edge reduction via

ultra-sparsifiers
• Distortion of minor property in recursive calls

8



Technical Details

• From [Kyng, Lee, Peng, Sachdeva, Spielman ’16]: Repeated
elimination of almost independent sets yields vertex
sparsifier “chain” with recursion depth 𝑑 = 𝑂(log 𝑛)

• Fast computation of inverse of submatrix of eliminated nodes
using iterative method

• In addition to Schur complement itself, we need to compute
further information (linear operators)

• Obtain Schur complement from sampling random walks
• Algorithmically: estimate of congestion in random walks
• Computation introduces round-overhead of (log𝑐 𝑛)𝑑; can only

work with 𝑑 = 𝑂(log log 𝑛) → sophisticated recursion
• Minor sparsifiers: avoid sequential sampling of [Li Schild ’18]

• Identify “steady” edges that can be sampled independently
• Requires recursive solution of linear system: edge reduction via

ultra-sparsifiers
• Distortion of minor property in recursive calls

8



Technical Details

• From [Kyng, Lee, Peng, Sachdeva, Spielman ’16]: Repeated
elimination of almost independent sets yields vertex
sparsifier “chain” with recursion depth 𝑑 = 𝑂(log 𝑛)

• Fast computation of inverse of submatrix of eliminated nodes
using iterative method

• In addition to Schur complement itself, we need to compute
further information (linear operators)

• Obtain Schur complement from sampling random walks
• Algorithmically: estimate of congestion in random walks
• Computation introduces round-overhead of (log𝑐 𝑛)𝑑; can only

work with 𝑑 = 𝑂(log log 𝑛) → sophisticated recursion
• Minor sparsifiers: avoid sequential sampling of [Li Schild ’18]

• Identify “steady” edges that can be sampled independently
• Requires recursive solution of linear system: edge reduction via

ultra-sparsifiers

• Distortion of minor property in recursive calls

8



Technical Details

• From [Kyng, Lee, Peng, Sachdeva, Spielman ’16]: Repeated
elimination of almost independent sets yields vertex
sparsifier “chain” with recursion depth 𝑑 = 𝑂(log 𝑛)

• Fast computation of inverse of submatrix of eliminated nodes
using iterative method

• In addition to Schur complement itself, we need to compute
further information (linear operators)

• Obtain Schur complement from sampling random walks
• Algorithmically: estimate of congestion in random walks
• Computation introduces round-overhead of (log𝑐 𝑛)𝑑; can only

work with 𝑑 = 𝑂(log log 𝑛) → sophisticated recursion
• Minor sparsifiers: avoid sequential sampling of [Li Schild ’18]

• Identify “steady” edges that can be sampled independently
• Requires recursive solution of linear system: edge reduction via

ultra-sparsifiers
• Distortion of minor property in recursive calls

8



What Next?

Implications

�̃� (𝑚3/7+𝑜(1)(𝑛1/2𝐷1/4 + 𝐷))-round algorithms in CONGEST
model for the following problems:

• Maximum flow [Mądry ’16]
• Unit capacity minimum cost flow [Cohen et al. ’17]
• Negative weight shortest path: [Cohen et al. ’17]

Question
Sublinear #rounds in dense graphs?

Easier Question
Sublinear #rounds on the Broadcast Congested Clique?

9



What Next?

Implications

�̃� (𝑚3/7+𝑜(1)(𝑛1/2𝐷1/4 + 𝐷))-round algorithms in CONGEST
model for the following problems:

• Maximum flow [Mądry ’16]
• Unit capacity minimum cost flow [Cohen et al. ’17]
• Negative weight shortest path: [Cohen et al. ’17]

Question
Sublinear #rounds in dense graphs?

Easier Question
Sublinear #rounds on the Broadcast Congested Clique?

9



What Next?

Implications

�̃� (𝑚3/7+𝑜(1)(𝑛1/2𝐷1/4 + 𝐷))-round algorithms in CONGEST
model for the following problems:

• Maximum flow [Mądry ’16]
• Unit capacity minimum cost flow [Cohen et al. ’17]
• Negative weight shortest path: [Cohen et al. ’17]

Question
Sublinear #rounds in dense graphs?

Easier Question
Sublinear #rounds on the Broadcast Congested Clique?

9



Broadcast Congested Clique

• Nodes can communicate with all other nodes [Lotker et al. ’05]
• Broadcast the same message to all nodes [Drucker, Kuhn,

Oshman ’12]

• For many problems: only “trivialization” of CONGEST model
upper bounds with 𝐷 = 1 is known

10



Broadcast Congested Clique

• Nodes can communicate with all other nodes [Lotker et al. ’05]
• Broadcast the same message to all nodes [Drucker, Kuhn,

Oshman ’12]
• For many problems: only “trivialization” of CONGEST model

upper bounds with 𝐷 = 1 is known
10



Our Results for the BCC

Theorem ([F, de Vos ’22])
On the Broadcast Congested Clique, the minimum cost flow problem
can be solved in �̃�(√𝑛) rounds.

Other Results:
• On the Broadcast Congested Clique, a spectral sparsifier of

quality 1 ± 𝜖 and size �̃�(𝑛/𝜖2) can be computed in �̃�(1/𝜖2)
rounds

• On the Broadcast Congested Clique, a Laplacian system can be
solved up to high accuracy in �̃�(log2(1/𝜖)) rounds

• On the Broadcast Congested Clique, certain Linear Programs
can be solved in �̃�(√𝑛) rounds.

11



Our Results for the BCC

Theorem ([F, de Vos ’22])
On the Broadcast Congested Clique, the minimum cost flow problem
can be solved in �̃�(√𝑛) rounds.

Other Results:
• On the Broadcast Congested Clique, a spectral sparsifier of

quality 1 ± 𝜖 and size �̃�(𝑛/𝜖2) can be computed in �̃�(1/𝜖2)
rounds

• On the Broadcast Congested Clique, a Laplacian system can be
solved up to high accuracy in �̃�(log2(1/𝜖)) rounds

• On the Broadcast Congested Clique, certain Linear Programs
can be solved in �̃�(√𝑛) rounds.

11



Main Idea and Challenges

Linear Programming

Minimize cTx subject to Ax = b

Implementation of [Lee, Sidford ’14]:

• Interior point method with �̃�(√rank) iterations

• One linear system solve per iteration

Minimum cost flow:

• Rank = #nodes

• Linear system has Laplacian matrix

12



Main Idea and Challenges

Linear Programming

Minimize cTx subject to Ax = b

Implementation of [Lee, Sidford ’14]:

• Interior point method with �̃�(√rank) iterations

• One linear system solve per iteration

Minimum cost flow:

• Rank = #nodes

• Linear system has Laplacian matrix

12



Main Idea and Challenges

Linear Programming

Minimize cTx subject to Ax = b

Implementation of [Lee, Sidford ’14]:

• Interior point method with �̃�(√rank) iterations

• One linear system solve per iteration

Minimum cost flow:

• Rank = #nodes

• Linear system has Laplacian matrix

12



Key Contribution

Iterative computation of spectral sparsifier [Koutis, Xu ’16]:

• Compute a spanner

• Sample non-spanner edges with constant probability

Problem
On Broadcast Congested Clique, nodes cannot easily coordinate
with neighbors on sampling incident edges

Solution:
• Compute spanner on “probabilistic” graph

• Sample individual edges ad-hoc when needed

• Modification of spanner algorithm of [Baswana, Sen ’07]

13



Key Contribution

Iterative computation of spectral sparsifier [Koutis, Xu ’16]:

• Compute a spanner

• Sample non-spanner edges with constant probability

Problem
On Broadcast Congested Clique, nodes cannot easily coordinate
with neighbors on sampling incident edges

Solution:
• Compute spanner on “probabilistic” graph

• Sample individual edges ad-hoc when needed

• Modification of spanner algorithm of [Baswana, Sen ’07]

13



Key Contribution

Iterative computation of spectral sparsifier [Koutis, Xu ’16]:

• Compute a spanner

• Sample non-spanner edges with constant probability

Problem
On Broadcast Congested Clique, nodes cannot easily coordinate
with neighbors on sampling incident edges

Solution:
• Compute spanner on “probabilistic” graph

• Sample individual edges ad-hoc when needed

• Modification of spanner algorithm of [Baswana, Sen ’07]

13



Optimization vs. Data Structures

[Lee, Sidford ’14]:
#iterations: �̃�(√𝑛)
Time per iteration: �̃�(𝑚)

Iteration count carries over to
round complexity

[Chen et al. ’22]:
#iterations: 𝑚1+𝑜(1)

Time per iteration: 𝑚𝑜(1)

Running time improvement
does not improve round
complexity

Question

Is Θ̃(√𝑛) the right iteration count for min-cost flow LP?

14



Optimization vs. Data Structures

[Lee, Sidford ’14]:
#iterations: �̃�(√𝑛)
Time per iteration: �̃�(𝑚)

Iteration count carries over to
round complexity

[Chen et al. ’22]:
#iterations: 𝑚1+𝑜(1)

Time per iteration: 𝑚𝑜(1)

Running time improvement
does not improve round
complexity

Question

Is Θ̃(√𝑛) the right iteration count for min-cost flow LP?

14



Optimization vs. Data Structures

[Lee, Sidford ’14]:
#iterations: �̃�(√𝑛)
Time per iteration: �̃�(𝑚)

Iteration count carries over to
round complexity

[Chen et al. ’22]:
#iterations: 𝑚1+𝑜(1)

Time per iteration: 𝑚𝑜(1)

Running time improvement
does not improve round
complexity

Question

Is Θ̃(√𝑛) the right iteration count for min-cost flow LP?

14



Open Problem

Question

Is Θ̃(√𝑛) the right round complexity for min-cost flow in the BCC?

• Lower bounds in BCC at least not hopeless
[Frischknecht, Holzer, Wattenhofer ’12] [Drucker, Kuhn,
Oshman ’14] [Censor-Hillel, Kaski, Korhonen, Lenzen, Paz,
Suomela] [Holzer, Pinsker ’15] [Becker, Montealegre, Rapaport,
Todinca ’18]

• Better upper bound already interesting for single-source
reachability

15



Open Problem

Question

Is Θ̃(√𝑛) the right round complexity for min-cost flow in the BCC?

• Lower bounds in BCC at least not hopeless
[Frischknecht, Holzer, Wattenhofer ’12] [Drucker, Kuhn,
Oshman ’14] [Censor-Hillel, Kaski, Korhonen, Lenzen, Paz,
Suomela] [Holzer, Pinsker ’15] [Becker, Montealegre, Rapaport,
Todinca ’18]

• Better upper bound already interesting for single-source
reachability

15



Open Problem

Question

Is Θ̃(√𝑛) the right round complexity for min-cost flow in the BCC?

• Lower bounds in BCC at least not hopeless
[Frischknecht, Holzer, Wattenhofer ’12] [Drucker, Kuhn,
Oshman ’14] [Censor-Hillel, Kaski, Korhonen, Lenzen, Paz,
Suomela] [Holzer, Pinsker ’15] [Becker, Montealegre, Rapaport,
Todinca ’18]

• Better upper bound already interesting for single-source
reachability

15



Conclusion

Almost optimal Laplacian
solvers

Broadcast Congested Clique is
an interesting “burning glass”

16



Conclusion

Almost optimal Laplacian
solvers

Broadcast Congested Clique is
an interesting “burning glass”

16


