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Laplacian Paradigm

• Laplacian systems

• Spectral sparsifiers

• Electrical flow

• Effective resistance

• Expander decompositions

• Continuous optimization

• Interior-point methods

• Gradient descent

• Preconditioning

• …
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Laplacian Paradigm and Distributed Computing

Observation
Laplacian paradigm often yields inherently parallelizable
algorithms

Basic operation:
• Vector x: each node represents a coordinate
• Matrix A: each edge represents a non-zero entry
• Matrix-vector multiplication Ax: one round

State of the art for (approximate) single-source shortest path,
maximum flow, minimum-cost flow:
[Ghaffari, Karrenbauer, Kuhn, Lenzen, Patt-Shamir ’15] [Becker, F,

Karrenbauer, Lenzen ’17] [Zuzic ’21] [Anagnostides, Themis Gouleakis,

Christoph Lenzen ’21] [Zuzic, Goranci, Ye, Haeupler, Sun ’22] [Rozhon,

Grunau, Haeupler, Zuzic, Li ’22]
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Laplacian Systems

Goal
Solve linear system Lx = b such that L is a Laplacian matrix.

Definition
The Laplacian matrix L(𝐺) of graph 𝐺 = (𝑉 , 𝐸, 𝑤) is defined by

L(𝐺)𝑢,𝑣 = {
∑(𝑢,𝑣 ′)∈𝐸 𝑤𝑢,𝑣 ′ if 𝑢 = 𝑣,
−𝑤𝑢,𝑣 otherwise.

High-precision solver: Approximation of solution x∗ with x s.t.

‖x − x∗‖L(𝐺) ≤ 𝜖‖b‖L(𝐺) .

Prior work:
• �̃�(𝑚) sequential running time [Spielman, Teng ’04]

• �̃�(𝑚) work, polylogarithmic depth [Peng, Spielman ’14]
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CONGEST Model

• Edges correspond to non-zero entries of matrix
• Each node holds one row/column of matrix
• Communication over edges in synchronous rounds
• Bandwidth 𝑂(log 𝑛) per edge 4



Our Results for the CONGEST Model

Theorem ([F, Goranci, Liu, Peng, Sun, Ye])
In the CONGEST model, given a weighted and undirected graph 𝐺
and a vector b on 𝑛 vertices, we can in 𝑂(𝑛𝑜(1)(√𝑛 + 𝐷)) rounds return
a vector x such that ‖x − x∗‖L(𝐺) ≤ 𝜖‖b‖L(𝐺).

Almost matches a Ω̃(√𝑛 + 𝐷) lower bound

Implications

�̃� (𝑚3/7+𝑜(1)(𝑛1/2𝐷1/4 + 𝐷))-round algorithms in CONGEST
model for the following problems:

• Maximum flow [Mądry ’16]
• Unit capacity minimum cost flow [Cohen et al. ’17]
• Negative weight shortest path [Cohen et al. ’17]

First 𝑜(𝑛)-round algorithms for sparse, low-diameter graphs
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Approximate Schur Complement

Definition (Schur complement)
For an 𝑛 × 𝑛 symmetric matrix M and a subset of terminals 𝑇 ⊆ [𝑛],
let 𝑆 = [𝑛] ⧵ 𝑇 . Permute the rows/columns of M to write

M = [
M[𝑆,𝑆] M[𝑆,𝑇 ]
M[𝑇 ,𝑆] M[𝑇 ,𝑇 ]

] .

Then the Schur complement of M onto 𝑇 is defined as
SC(M, 𝑇 ) ∶= M[𝑇 ,𝑇 ] −M[𝑇 ,𝑆]M−1

[𝑆,𝑆]M[𝑆,𝑇 ].

Result of block Gaussian elimination

Graphical interpretation:

Input graph

→

Schur complement

≈

Sparsification
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Minor Sparsifiers

Problem
Communication of edges “along” sparsifier edges my lead to too
much congestion

Solution
Vertex sparsifiers as minors of the communication graph

→

Lemma
Matrix-vector multiplication involving minor sparsifier takes
�̃�(√𝑛 + 𝐷) rounds.

Key contribution: Parallel variant of [Li Schild ’18]
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Technical Details

• From [Kyng, Lee, Peng, Sachdeva, Spielman ’16]: Repeated
elimination of almost independent sets yields vertex
sparsifier “chain” with recursion depth 𝑑 = 𝑂(log 𝑛)

• Fast computation of inverse of submatrix of eliminated nodes
using iterative method

• In addition to Schur complement itself, we need to compute
further information (linear operators)

• Obtain Schur complement from sampling random walks
• Algorithmically: estimate of congestion in random walks
• Computation introduces round-overhead of (log𝑐 𝑛)𝑑; can only

work with 𝑑 = 𝑂(log log 𝑛) → sophisticated recursion
• Minor sparsifiers: avoid sequential sampling of [Li Schild ’18]

• Identify “steady” edges that can be sampled independently
• Requires recursive solution of linear system: edge reduction via

ultra-sparsifiers
• Distortion of minor property in recursive calls

8
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What Next?

Implications

�̃� (𝑚3/7+𝑜(1)(𝑛1/2𝐷1/4 + 𝐷))-round algorithms in CONGEST
model for the following problems:

• Maximum flow [Mądry ’16]
• Unit capacity minimum cost flow [Cohen et al. ’17]
• Negative weight shortest path: [Cohen et al. ’17]

Question
Sublinear #rounds in dense graphs?

Easier Question
Sublinear #rounds on the Broadcast Congested Clique?
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Broadcast Congested Clique

• Nodes can communicate with all other nodes [Lotker et al. ’05]
• Broadcast the same message to all nodes [Drucker, Kuhn,

Oshman ’12]

• For many problems: only “trivialization” of CONGEST model
upper bounds with 𝐷 = 1 is known

10
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Our Results for the BCC

Theorem ([F, de Vos ’22])
On the Broadcast Congested Clique, the minimum cost flow problem
can be solved in �̃�(√𝑛) rounds.

Other Results:
• On the Broadcast Congested Clique, a spectral sparsifier of

quality 1 ± 𝜖 and size �̃�(𝑛/𝜖2) can be computed in �̃�(1/𝜖2)
rounds

• On the Broadcast Congested Clique, a Laplacian system can be
solved up to high accuracy in �̃�(log2(1/𝜖)) rounds

• On the Broadcast Congested Clique, certain Linear Programs
can be solved in �̃�(√𝑛) rounds.

11



Our Results for the BCC

Theorem ([F, de Vos ’22])
On the Broadcast Congested Clique, the minimum cost flow problem
can be solved in �̃�(√𝑛) rounds.

Other Results:
• On the Broadcast Congested Clique, a spectral sparsifier of

quality 1 ± 𝜖 and size �̃�(𝑛/𝜖2) can be computed in �̃�(1/𝜖2)
rounds

• On the Broadcast Congested Clique, a Laplacian system can be
solved up to high accuracy in �̃�(log2(1/𝜖)) rounds

• On the Broadcast Congested Clique, certain Linear Programs
can be solved in �̃�(√𝑛) rounds.

11



Main Idea and Challenges

Linear Programming

Minimize cTx subject to Ax = b

Implementation of [Lee, Sidford ’14]:

• Interior point method with �̃�(√rank) iterations

• One linear system solve per iteration

Minimum cost flow:

• Rank = #nodes

• Linear system has Laplacian matrix

12
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Key Contribution

Iterative computation of spectral sparsifier [Koutis, Xu ’16]:

• Compute a spanner

• Sample non-spanner edges with constant probability

Problem
On Broadcast Congested Clique, nodes cannot easily coordinate
with neighbors on sampling incident edges

Solution:
• Compute spanner on “probabilistic” graph

• Sample individual edges ad-hoc when needed

• Modification of spanner algorithm of [Baswana, Sen ’07]
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Optimization vs. Data Structures

[Lee, Sidford ’14]:
#iterations: �̃�(√𝑛)
Time per iteration: �̃�(𝑚)

Iteration count carries over to
round complexity

[Chen et al. ’22]:
#iterations: 𝑚1+𝑜(1)

Time per iteration: 𝑚𝑜(1)

Running time improvement
does not improve round
complexity

Question

Is Θ̃(√𝑛) the right iteration count for min-cost flow LP?
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Time per iteration: 𝑚𝑜(1)

Running time improvement
does not improve round
complexity
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Open Problem

Question

Is Θ̃(√𝑛) the right round complexity for min-cost flow in the BCC?

• Lower bounds in BCC at least not hopeless
[Frischknecht, Holzer, Wattenhofer ’12] [Drucker, Kuhn,
Oshman ’14] [Censor-Hillel, Kaski, Korhonen, Lenzen, Paz,
Suomela] [Holzer, Pinsker ’15] [Becker, Montealegre, Rapaport,
Todinca ’18]

• Better upper bound already interesting for single-source
reachability
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Conclusion

Almost optimal Laplacian
solvers

Broadcast Congested Clique is
an interesting “burning glass”
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