Approximate Single-Source Shortest Paths: Distributed and Dynamic Algorithms

Sebastian Krinninger

Max Planck Institute for Informatics
joint works with

Ruben
Becker

Monika
Henzinger

Andreas
Karrenbauer

Christoph
Lenzen

Danupon Nanongkai

One Problem - Two Results

$(1+\epsilon)$-approximate single-source shortest paths (SSSP)

One Problem - Two Results

$(1+\epsilon)$-approximate single-source shortest paths (SSSP)
(1) Distributed algorithm: Deterministically compute approximate shortest paths in $n^{1 / 2+o(1)}+$ Diam $^{1+o(1)}$ rounds [HKN '16]

One Problem - Two Results

$(1+\epsilon)$-approximate single-source shortest paths (SSSP)
(1) Distributed algorithm: Deterministically compute approximate shortest paths in $n^{1 / 2+o(1)}+$ Diam $^{1+o(1)}$ rounds [HKN '16]

Similar in spirit:
Multipass streaming: $n^{1+o(1)}$ space with $n^{o(1)}$ passes [HKN '16]

One Problem - Two Results

$(1+\epsilon)$-approximate single-source shortest paths (SSSP)
(1) Distributed algorithm: Deterministically compute approximate shortest paths in $n^{1 / 2+o(1)}+$ Diam $^{1+o(1)}$ rounds [HKN '16]

Similar in spirit:
Multipass streaming: $n^{1+o(1)}$ space with $n^{o(1)}$ passes [HKN '16]
(2) Dynamic algorithm: Maintain approximate shortest paths under edge deletions with amortized update time $n^{o(1)}$ [HKN '14]

One Problem - Two Results

($1+\epsilon$)-approximate single-source shortest paths (SSSP)
(1) Distributed algorithm: Deterministically compute approximate shortest paths in $n^{1 / 2+o(1)}+$ Diam $^{1+o(1)}$ rounds [HKN '16]

Similar in spirit:
Multipass streaming: $n^{1+o(1)}$ space with $n^{o(1)}$ passes [HKN '16]
(2) Dynamic algorithm: Maintain approximate shortest paths under edge deletions with amortized update time $n^{o(1)}$ [HKN '14]

Main technique: Iterative computation of hop set

One Problem - Two Results

$(1+\epsilon)$-approximate single-source shortest paths (SSSP)
(1) Distributed algorithm: Deterministically compute approximate shortest paths in $n^{1 / 2+o(1)}+$ Diam $^{1+o(1)}$ rounds [HKN '16]

Similar in spirit:
Multipass streaming: $n^{1+o(1)}$ space with $n^{o(1)}$ passes [HKN '16]
(2) Dynamic algorithm: Maintain approximate shortest paths under edge deletions with amortized update time $n^{o(1)}$ [HKN '14]

Main technique: Iterative computation of hop set

This talk: constant ϵ, positive integer edge weights polynomial in n

Hop Reduction

Well Known: Spanners

Definition

A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v, $\operatorname{dist}_{H}(u, v) \leq k \cdot \operatorname{dist}_{G}(u, v)$.

Well Known: Spanners

Definition

A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v, $\operatorname{dist}_{H}(u, v) \leq k \cdot \operatorname{dist}_{G}(u, v)$.

Well Known: Spanners

Definition

A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v, $\operatorname{dist}_{H}(u, v) \leq k \cdot \operatorname{dist}_{G}(u, v)$.

Well Known: Spanners

Definition

A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v, $\operatorname{dist}_{H}(u, v) \leq k \cdot \operatorname{dist}_{G}(u, v)$.

Fact: Every graph has a k-spanner of size $n^{1+1 / k}$ [Folklore]
Application: Running time $T(m, n) \Rightarrow T\left(n^{1+1 / k}, n\right)$

Less Known: Hop Sets

Definition

An (h, ϵ)-hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with at most h edges of weight at most $(1+\epsilon) \operatorname{dist}(u, v)$.

Less Known: Hop Sets

Definition

An (h, ϵ)-hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with at most h edges of weight at most $(1+\epsilon) \operatorname{dist}(u, v)$.

Less Known: Hop Sets

Definition

An (h, ϵ)-hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with at most h edges of weight at most $(1+\epsilon) \operatorname{dist}(u, v)$.

Less Known: Hop Sets

Definition

An (h, ϵ)-hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with at most h edges of weight at most $(1+\epsilon) \operatorname{dist}(u, v)$.

Fact: Every graph has a $\left(\log ^{O(1)} n, \epsilon\right)$-hop set of size $m^{1+o(1)}$ [Cohen '94]

Less Known: Hop Sets

Definition

An (h, ϵ)-hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with at most h edges of weight at most $(1+\epsilon) \operatorname{dist}(u, v)$.

Application?

- Dijkstra: SSSP in time $O(m+n \log n)$ Not local (global heap), bad for non-centralized models

Less Known: Hop Sets

Definition

An (h, ϵ)-hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with at most h edges of weight at most $(1+\epsilon) \operatorname{dist}(u, v)$.

Application?

- Dijkstra: SSSP in time $O(m+n \log n)$ Not local (global heap), bad for non-centralized models
- Bellman-Ford: SSSP in time $O(m n)$ Actually: SSSP up to h hops in time $O(m h)$ With $\left(n^{o(1)}, \epsilon\right)$ hop set: $(1+\epsilon)$-approximate SSSP in time $O\left(m^{1+o(1)}\right)$ Approach used before in parallel setting [Cohen '94]

Simple Hop Set Based on Balls (following [Thorup/Zwick '06])

$V=A_{0} \supseteq A_{1} \supseteq \cdots \supseteq A_{k}=\emptyset$ where node of
A_{i} goes to A_{i+1} with probability $1 / n^{1 / k}$
v has priority i if $v \in A_{i} \backslash A_{i+1}$

Simple Hop Set Based on Balls (following [Thorup/Zwick '06])

$V=A_{0} \supseteq A_{1} \supseteq \cdots \supseteq A_{k}=\emptyset$ where node of A_{i} goes to A_{i+1} with probability $1 / n^{1 / k}$
v has priority i if $v \in A_{i} \backslash A_{i+1}$

For every node u of priority i :
$\operatorname{Ball}(u)=\left\{v \in V \mid \operatorname{dist}(u, v)<\operatorname{dist}\left(u, A_{i+1}\right)\right\}$

Simple Hop Set Based on Balls (following [Thorup/Zwick '06])

$V=A_{0} \supseteq A_{1} \supseteq \cdots \supseteq A_{k}=\emptyset$ where node of A_{i} goes to A_{i+1} with probability $1 / n^{1 / k}$ v has priority i if $v \in A_{i} \backslash A_{i+1}$

For every node u of priority i :
$\operatorname{Ball}(u)=\left\{v \in V \mid \operatorname{dist}(u, v)<\operatorname{dist}\left(u, A_{i+1}\right)\right\}$

Simple Hop Set Based on Balls (following [Thorup/Zwick '06])

$V=A_{0} \supseteq A_{1} \supseteq \cdots \supseteq A_{k}=\emptyset$ where node of A_{i} goes to A_{i+1} with probability $1 / n^{1 / k}$ v has priority i if $v \in A_{i} \backslash A_{i+1}$

For every node u of priority i :
$\operatorname{Ball}(u)=\left\{v \in V \mid \operatorname{dist}(u, v)<\operatorname{dist}\left(u, A_{i+1}\right)\right\}$

Simple Hop Set Based on Balls (following [Thorup/Zwick '06])

$V=A_{0} \supseteq A_{1} \supseteq \cdots \supseteq A_{k}=\emptyset$ where node of A_{i} goes to A_{i+1} with probability $1 / n^{1 / k}$ v has priority i if $v \in A_{i} \backslash A_{i+1}$

For every node u of priority i :
$\operatorname{Ball}(u)=\left\{v \in V \mid \operatorname{dist}(u, v)<\operatorname{dist}\left(u, A_{i+1}\right)\right\}$

Hop set:

- $(u, v) \in F$ iff $v \in \operatorname{Ball}(u)$
- $w(u, v)=\operatorname{dist}_{G}(u, v)$

Simple Hop Set Based on Balls (following [Thorup/Zwick '06])

$V=A_{0} \supseteq A_{1} \supseteq \cdots \supseteq A_{k}=\emptyset$ where node of A_{i} goes to A_{i+1} with probability $1 / n^{1 / k}$ v has priority i if $v \in A_{i} \backslash A_{i+1}$

For every node u of priority i :
$\operatorname{Ball}(u)=\left\{v \in V \mid \operatorname{dist}(u, v)<\operatorname{dist}\left(u, A_{i+1}\right)\right\}$
priority \# nodes

0	n
1	$n^{1-1 / k}$
\vdots	\vdots
$k-1$	$n^{1 / k}$

Hop set:

- $(u, v) \in F$ iff $v \in \operatorname{Ball}(u)$
- $w(u, v)=\operatorname{dist}_{G}(u, v)$

Simple Hop Set Based on Balls (following [Thorup/Zwick '06])

$V=A_{0} \supseteq A_{1} \supseteq \cdots \supseteq A_{k}=\emptyset$ where node of A_{i} goes to A_{i+1} with probability $1 / n^{1 / k}$ v has priority i if $v \in A_{i} \backslash A_{i+1}$

For every node u of priority i :
$\operatorname{Ball}(u)=\left\{v \in V \mid \operatorname{dist}(u, v)<\operatorname{dist}\left(u, A_{i+1}\right)\right\}$
Expected size: $n^{(i+1) / k}$
priority \# nodes $|\operatorname{Ball}(u)|$

0	n	$n^{1 / k}$
1	$n^{1-1 / k}$	$n^{2 / k}$
\vdots	\vdots	\vdots
$k-1$	$n^{1 / k}$	n

Hop set:

- $(u, v) \in F$ iff $v \in \operatorname{Ball}(u)$
- $w(u, v)=\operatorname{dist}_{G}(u, v)$

Simple Hop Set Based on Balls (following [Thorup/Zwick '06])

$V=A_{0} \supseteq A_{1} \supseteq \cdots \supseteq A_{k}=\emptyset$ where node of A_{i} goes to A_{i+1} with probability $1 / n^{1 / k}$ v has priority i if $v \in A_{i} \backslash A_{i+1}$

For every node u of priority i :
$\operatorname{Ball}(u)=\left\{v \in V \mid \operatorname{dist}(u, v)<\operatorname{dist}\left(u, A_{i+1}\right)\right\}$
Expected size: $n^{(i+1) / k}$
priority \# nodes $|\operatorname{Ball}(u)|$ \# edges

0	n	$n^{1 / k}$	$n^{1+1 / k}$
1	$n^{1-1 / k}$	$n^{2 / k}$	$n^{1+1 / k}$
\vdots	\vdots	\vdots	\vdots
$k-1$	$n^{1 / k}$	n	$n^{1+1 / k}$

Hop set:

- $(u, v) \in F$ iff $v \in \operatorname{Ball}(u)$
- $w(u, v)=\operatorname{dist}_{G}(u, v)$

Simple Hop Set Based on Balls (following [Thorup/Zwick '06])

$V=A_{0} \supseteq A_{1} \supseteq \cdots \supseteq A_{k}=\emptyset$ where node of A_{i} goes to A_{i+1} with probability $1 / n^{1 / k}$ v has priority i if $v \in A_{i} \backslash A_{i+1}$

For every node u of priority i :
$\operatorname{Ball}(u)=\left\{v \in V \mid \operatorname{dist}(u, v)<\operatorname{dist}\left(u, A_{i+1}\right)\right\}$
Expected size: $n^{(i+1) / k}$
priority \# nodes $|\operatorname{Ball}(u)|$ \# edges

0	n	$n^{1 / k}$	$n^{1+1 / k}$
1	$n^{1-1 / k}$	$n^{2 / k}$	$n^{1+1 / k}$
\vdots	\vdots	\vdots	\vdots
$k-1$	$n^{1 / k}$	n	$n^{1+1 / k}$
$n^{1+1 / k}$			

Hop set:

- $(u, v) \in F$ iff $v \in \operatorname{Ball}(u)$
- $w(u, v)=\operatorname{dist}_{G}(u, v)$

Parameter Choice

$$
k=\frac{\sqrt{\log n}}{\sqrt{\log 4 / \epsilon}}
$$

$$
\left(\frac{4}{\epsilon}\right)^{k}=n^{1 / k}
$$

Parameter Choice

$$
k=\frac{\sqrt{\log n}}{\sqrt{\log 4 / \epsilon}}
$$

$$
\left(\frac{4}{\epsilon}\right)^{k}=n^{1 / k}=n^{o(1)}
$$

$\left(n^{1 / 2+o(1)}, \epsilon\right)$-hop set
Case 1: $\operatorname{dist}\left(u_{0}, v\right) \leq n^{1 / 2+1 / k} / \epsilon$

$\left(n^{1 / 2+o(1)}, \epsilon\right)$-hop set
Case 2: $\operatorname{dist}\left(u_{0}, v\right)>n^{1 / 2+1 / k} / \epsilon$

$\left(n^{1 / 2+o(1)}, \epsilon\right)$-hop set
Case 2: $\operatorname{dist}\left(u_{0}, v\right)>n^{1 / 2+1 / k} / \epsilon$

$$
r_{0}=n^{1 / 2}
$$

$\left(n^{1 / 2+o(1)}, \epsilon\right)$-hop set
Case 2: $\operatorname{dist}\left(u_{0}, v\right)>n^{1 / 2+1 / k} / \epsilon$

$$
r_{0}=n^{1 / 2}
$$

For every node u of priority i and every node v, either $(u, v) \in H$, or $\exists u^{\prime}$ of priority $i+1$ s. t. $\operatorname{dist}\left(u, u^{\prime}\right) \leq \operatorname{dist}(u, v)$.
$\left(n^{1 / 2+o(1)}, \epsilon\right)$-hop set
Case 2: $\operatorname{dist}\left(u_{0}, v\right)>n^{1 / 2+1 / k} / \epsilon$

$$
\begin{aligned}
r_{0} & =n^{1 / 2} \\
r_{i+1} & =\left(1+\frac{2}{\epsilon}\right) \sum_{0 \leq j \leq i} r_{j}
\end{aligned}
$$

For every node u of priority i and every node v, either $(u, v) \in H$, or $\exists u^{\prime}$ of priority $i+1$ s. t. $\operatorname{dist}\left(u, u^{\prime}\right) \leq \operatorname{dist}(u, v)$.
$\left(n^{1 / 2+o(1)}, \epsilon\right)$-hop set
Case 2: $\operatorname{dist}\left(u_{0}, v\right)>n^{1 / 2+1 / k} / \epsilon$

$$
r_{0}=n^{1 / 2}
$$

$$
r_{i+1}=\left(1+\frac{2}{\epsilon}\right) \sum_{0 \leq j \leq i} r_{j}
$$

For every node u of priority i and every node v, either $(u, v) \in H$, or $\exists u^{\prime}$ of priority $i+1 \mathrm{~s}$. t. $\operatorname{dist}\left(u, u^{\prime}\right) \leq \operatorname{dist}(u, v)$.
$\left(n^{1 / 2+o(1)}, \epsilon\right)$-hop set
Case 2: $\operatorname{dist}\left(u_{0}, v\right)>n^{1 / 2+1 / k} / \epsilon$

$$
r_{0}=n^{1 / 2}
$$

$$
r_{i+1}=\left(1+\frac{2}{\epsilon}\right) \sum_{0 \leq j \leq i} r_{j}
$$

For every node u of priority i and every node v, either $(u, v) \in H$, or $\exists u^{\prime}$ of priority $i+1$ s. t. $\operatorname{dist}\left(u, u^{\prime}\right) \leq \operatorname{dist}(u, v)$.
$\left(n^{1 / 2+o(1)}, \epsilon\right)$-hop set
Case 2: $\operatorname{dist}\left(u_{0}, v\right)>n^{1 / 2+1 / k} / \epsilon$

$$
r_{0}=n^{1 / 2}
$$

For every node u of priority i and every node v, either $(u, v) \in H$, or $\exists u^{\prime}$ of priority $i+1$ s. t. $\operatorname{dist}\left(u, u^{\prime}\right) \leq \operatorname{dist}(u, v)$.

$$
\text { Weight } \leq(1+\epsilon) \operatorname{dist}\left(u_{0}, v\right)
$$

$\left(n^{1 / 2+o(1)}, \epsilon\right)$-hop set
Case 2: $\operatorname{dist}\left(u_{0}, v\right)>n^{1 / 2+1 / k} / \epsilon$

$$
\begin{aligned}
r_{0} & =n^{1 / 2} \\
r_{i+1} & =\left(1+\frac{2}{\epsilon}\right) \sum_{0 \leq j \leq i} r_{j} \\
& \leq n^{1 / 2} n^{1 / k} \\
k & =\sqrt{\log n /} \sqrt{\log 4 / \epsilon}
\end{aligned}
$$

$$
\text { decreasing distance to } v
$$

For every node u of priority i and every node v, either $(u, v) \in H$, or $\exists u^{\prime}$ of priority $i+1$ s. t. $\operatorname{dist}\left(u, u^{\prime}\right) \leq \operatorname{dist}(u, v)$.

$$
\begin{aligned}
& \text { Weight } \leq(1+\epsilon) \operatorname{dist}\left(u_{0}, v\right) \\
& \# \text { Edges } \leq \frac{k \cdot \operatorname{dist}(u, v)}{n^{1 / 2}} \leq \frac{k \cdot n}{n^{1 / 2}}=k n^{1 / 2}
\end{aligned}
$$

Chicken-Egg Problem?

(1) Goal: Faster SSSP via hop set
(2) Compute hop set by computing balls
(3) Computing balls at least as hard as SSSP
\Rightarrow Back at problem we wanted to solve initially?

Chicken-Egg Problem?

(1) Goal: Faster SSSP via hop set
(2) Compute hop set by computing balls
(3) Computing balls at least as hard as SSSP
\Rightarrow Back at problem we wanted to solve initially?

No! ($n^{1 / 2+o(1)}, \epsilon$)-hop set only requires balls up to $n^{1 / 2+o(1)}$ hops

$\left(n^{1 / 2+o(1)}, \epsilon\right)$-hop set

Iterative computation

In each iteration number of hops is reduced by a factor of $n^{1 / k}$

$\left(n^{1 / 2+o(1)}, \epsilon\right)$-hop set

Iterative computation

In each iteration number of hops is reduced by a factor of $n^{1 / k}$

Algorithm:

$$
\text { for } i=1 \text { to } k \text { do }
$$

$$
H_{i}=G \cup \bigcup_{1 \leq j \leq i-1} F_{j}
$$

Compute balls with k priorities in H_{i} up to $n^{2 / k}$ hops

$$
F_{i}=\{(u, v) \mid v \in \operatorname{Ball}(u)\}
$$

end
return $F=\bigcup_{1 \leq i \leq k} F_{i}$

$\left(n^{1 / 2+o(1)}, \epsilon\right)$-hop set

Iterative computation

In each iteration number of hops is reduced by a factor of $n^{1 / k}$

Algorithm:

for $i=1$ to k do

$$
H_{i}=G \cup \bigcup_{1 \leq j \leq i-1} F_{j}
$$

Compute balls with k priorities in H_{i} up to $n^{2 / k}$ hops $F_{i}=\{(u, v) \mid v \in \operatorname{Ball}(u)\}$
end
return $F=\bigcup_{1 \leq i \leq k} F_{i}$
Error amplification: $\left(1+\epsilon^{\prime}\right)^{k} \leq(1+\epsilon)$ for $\epsilon^{\prime}=1 /(2 \epsilon \log n)$
$\left(n^{1 / 2+o(1)}, \epsilon\right)$-hop set

Iterative computation

In each iteration number of hops is reduced by a factor of $n^{1 / k}$

Algorithm:

for $i=1$ to k do

$$
H_{i}=G \cup \bigcup_{1 \leq j \leq i-1} F_{j}
$$

Compute balls with k priorities in H_{i} up to $n^{2 / k}$ hops
$F_{i}=\{(u, v) \mid v \in \operatorname{Ball}(u)\}$
end
return $F=\bigcup_{1 \leq i \leq k} F_{i}$
Error amplification: $\left(1+\epsilon^{\prime}\right)^{k} \leq(1+\epsilon)$ for $\epsilon^{\prime}=1 /(2 \epsilon \log n)$
Omitted detail: weighted graphs, use rounding technique

Distributed Algorithm

Distributed Algorithm

SSSP in CONGEST model: synchronous rounds, message size $O(\log n)$
Running time = number of rounds

- Exact: $O(n)$ (Bellman-Ford)
- ($1+\epsilon$)-approximation:
- $\Omega\left(n^{1 / 2} / \log n+\right.$ Diam [Das Sarma et al. '11]
- $O\left(\epsilon^{-1} \log \epsilon^{-1}\right): O\left(n^{1 / 2+\epsilon}+\right.$ Diam $)$ (randomized) [Lenzen, Patt-Shamir '13]
- $1+\epsilon: O\left(n^{1 / 2}\right.$ Diam $^{1 / 4}+$ Diam) (randomized) [Nanongkai '14]
- $1+\epsilon: O\left(n^{1 / 2+o(1)}+\right.$ Diam $\left.^{1+o(1)}\right)$ (deterministic) (New)

Distributed Algorithm

SSSP in CONGEST model: synchronous rounds, message size $O(\log n)$
Running time = number of rounds

- Exact: $O(n)$ (Bellman-Ford)
- ($1+\epsilon$)-approximation:
- $\Omega\left(n^{1 / 2} / \log n+\right.$ Diam [Das Sarma et al. '11]
- $O\left(\epsilon^{-1} \log \epsilon^{-1}\right): O\left(n^{1 / 2+\epsilon}+\right.$ Diam $)$ (randomized) [Lenzen, Patt-Shamir '13]
- $1+\epsilon: O\left(n^{1 / 2}\right.$ Diam $^{1 / 4}+$ Diam) (randomized) [Nanongkai '14]
- $1+\epsilon: O\left(n^{1 / 2+o(1)}+\right.$ Diam $\left.^{1+o(1)}\right)$ (deterministic) (New)

Our approach:
(1) Compute overlay network
(2) Compute hop set and approximate SSSP on overlay network

Distributed Algorithm

SSSP in CONGEST model: synchronous rounds, message size $O(\log n)$
Running time = number of rounds

- Exact: $O(n)$ (Bellman-Ford)
- ($1+\epsilon$)-approximation:
- $\Omega\left(n^{1 / 2} / \log n+\right.$ Diam [Das Sarma et al. '11]
- $O\left(\epsilon^{-1} \log \epsilon^{-1}\right): O\left(n^{1 / 2+\epsilon}+\right.$ Diam $)$ (randomized) [Lenzen, Patt-Shamir '13]
- $1+\epsilon: O\left(n^{1 / 2}\right.$ Diam $^{1 / 4}+$ Diam) (randomized) [Nanongkai '14]
- $1+\epsilon: O\left(n^{1 / 2+o(1)}+\right.$ Diam $\left.^{1+o(1)}\right)$ (deterministic) (New)

Our approach:
(1) Compute overlay network

Derandomization of "hitting paths" argument at cost of approximation
(2) Compute hop set and approximate SSSP on overlay network Deterministic hop set using greedy hitting set heuristic

Overlay Network

Overlay Network

Sample $N=\widetilde{O}\left(n^{1 / 2}\right)$ centers (+ source s)
\Rightarrow Every shortest path with $\geq n^{1 / 2}$ edges contains center whp

Overlay Network

Sample $N=\widetilde{O}\left(n^{1 / 2}\right)$ centers (+ source s)
\Rightarrow Every shortest path with $\geq n^{1 / 2}$ edges contains center whp Solve SSSP on overlay network using hop set

Derandomization of Overlay Network

Randomization: Hit every shortest path with $\geq \sqrt{n}$ edges

Derandomization of Overlay Network

Randomization: Hit every shortest path with $\geq \sqrt{n}$ edges

Deterministic relaxation: Almost hit every path $\geq \sqrt{n}$ edges

Computing Hop Set on Overlay Network

Shortest paths from source s up to distance D :

Computing Hop Set on Overlay Network

Shortest paths from source s up to distance D :

Computing Hop Set on Overlay Network

Shortest paths from source s up to distance D :

Computing Hop Set on Overlay Network

Shortest paths from source s up to distance D :

D iterations, each $O\left(\operatorname{Diam}+\mathcal{M}_{\ell}\right)$ rounds where $\mathcal{M}_{\ell}=$ \#nodes at level ℓ Running time: $O\left(D \cdot \operatorname{Diam}+\sum_{l \leq D} \mathcal{M}_{\ell}\right)=O(D \cdot \operatorname{Diam}+N)$

Computing Hop Set on Overlay Network

Shortest paths from source s up to distance D :

D iterations, each $O\left(\right.$ Diam $\left.+\mathcal{M}_{\ell}\right)$ rounds where $\mathcal{M}_{\ell}=$ \#nodes at level ℓ Running time: $O\left(D \cdot \operatorname{Diam}+\sum_{l \leq D} \mathcal{M}_{\ell}\right)=O(D \cdot \operatorname{Diam}+N)$

Computing balls: $\widetilde{O}\left(n^{1 / k} \cdot \operatorname{Diam}+\sum_{v}|\operatorname{Ball}(v)|\right)=\widetilde{O}\left(n^{1 / k} \cdot \operatorname{Diam}+N^{1+1 / k}\right)$

Computing Hop Set on Overlay Network

Shortest paths from source s up to distance D :

D iterations, each $O\left(\right.$ Diam $\left.+\mathcal{M}_{\ell}\right)$ rounds where $\mathcal{M}_{\ell}=$ \#nodes at level ℓ Running time: $O\left(D \cdot \operatorname{Diam}+\sum_{l \leq D} \mathcal{M}_{\ell}\right)=O(D \cdot \operatorname{Diam}+N)$

Computing balls: $\widetilde{O}\left(n^{1 / k} \cdot \operatorname{Diam}+\sum_{v}|\operatorname{Ball}(v)|\right)=\widetilde{O}\left(n^{1 / k} \cdot \operatorname{Diam}+N^{1+1 / k}\right)$
\Rightarrow Hop Set and approximate SSSP: $O\left(n^{1 / 2+o(1)}+\operatorname{Diam}^{1+o(1)}\right)$

Dynamic Algorithm

Decremental Approximate Shortest Path Problem

G undergoing deletions:

Decremental Approximate Shortest Path Problem

G undergoing deletions:

Decremental Approximate Shortest Path Problem

G undergoing deletions:

Decremental Approximate Shortest Path Problem

G undergoing deletions:

Decremental Approximate Shortest Path Problem

G undergoing deletions:

Answer: approximate shortest path of length

$$
\delta(s, v)
$$

Decremental Approximate Shortest Path Problem

G undergoing deletions:

Answer: approximate shortest path of length

$$
\operatorname{dist}_{G}(s, v) \leq \delta(s, v) \leq(1+\epsilon) \operatorname{dist}_{G}(s, v)
$$

Decremental Approximate Shortest Path Problem

G undergoing deletions:

Answer: approximate shortest path of length

$$
\operatorname{dist}_{G}(s, v) \leq \delta(s, v) \leq(1+\epsilon) \operatorname{dist}_{G}(s, v)
$$

Overview of Result

New result:

- Exact: total update time $O(\mathrm{mn})$ (unweighted) [Even/Shiloach '81] $\Omega(m n)$ [Roditty/Zwick '04, Henzinger/K/Nanongkai/Saranurak '15]
- (1+ ϵ)-approx.: $O\left(n^{2+o(1)}\right)$ (unweighted) [Bernstein/Roditty '11]
- New: $O\left(m^{1+o(1)}\right)$ (weighted) [Henzinger/K/Nanongkai '14]

Overview of Result

New result:

- Exact: total update time $O(m n)$ (unweighted) [Even/Shiloach '81] $\Omega(m n)$ [Roditty/Zwick '04, Henzinger/K/Nanongkai/Saranurak '15]
- (1+ ϵ-approx.: $O\left(n^{2+o(1)}\right)$ (unweighted) [Bernstein/Roditty '11]
- New: $O\left(m^{1+o(1)}\right)$ (weighted) [Henzinger/K/Nanongkai '14]

Techniques for maintaining balls:

Overview of Result

New result:

- Exact: total update time $O(m n)$ (unweighted) [Even/Shiloach '81] $\Omega(m n)$ [Roditty/Zwick '04, Henzinger/K/Nanongkai/Saranurak '15]
- (1+ ϵ)-approx.: $O\left(n^{2+o(1)}\right)$ (unweighted) [Bernstein/Roditty '11]
- New: $O\left(m^{1+o(1)}\right)$ (weighted) [Henzinger/K/Nanongkai '14]

Techniques for maintaining balls:

- Even-Shiloach: $O(m D)$ for SSSP up to depth D

Overview of Result

New result:

- Exact: total update time $O(m n)$ (unweighted) [Even/Shiloach '81] $\Omega(m n)$ [Roditty/Zwick '04, Henzinger/K/Nanongkai/Saranurak '15]
- ($1+\epsilon$)-approx.: $O\left(n^{2+o(1)}\right)$ (unweighted) [Bernstein/Roditty '11]
- New: $O\left(m^{1+o(1)}\right)$ (weighted) [Henzinger/K/Nanongkai '14]

Techniques for maintaining balls:

- Even-Shiloach: $O(m D)$ for SSSP up to depth D
- Restart when distance to next priority changes

Overview of Result

New result:

- Exact: total update time $O(m n)$ (unweighted) [Even/Shiloach '81] $\Omega(m n)$ [Roditty/Zwick '04, Henzinger/K/Nanongkai/Saranurak '15]
- ($1+\epsilon$)-approx.: $O\left(n^{2+o(1)}\right)$ (unweighted) [Bernstein/Roditty '11]
- New: $O\left(m^{1+o(1)}\right)$ (weighted) [Henzinger/K/Nanongkai '14]

Techniques for maintaining balls:

- Even-Shiloach: $O(m D)$ for SSSP up to depth D
- Restart when distance to next priority changes
- Bounding number of nodes in balls not enough All edges incident to balls go into running time \Rightarrow Sample edges instead of nodes

Overview of Result

New result:

- Exact: total update time $O(m n)$ (unweighted) [Even/Shiloach '81] $\Omega(m n)$ [Roditty/Zwick '04, Henzinger/K/Nanongkai/Saranurak '15]
- ($1+\epsilon$)-approx.: $O\left(n^{2+o(1)}\right)$ (unweighted) [Bernstein/Roditty '11]
- New: $O\left(m^{1+o(1)}\right)$ (weighted) [Henzinger/K/Nanongkai '14]

Techniques for maintaining balls:

- Even-Shiloach: $O(m D)$ for SSSP up to depth D
- Restart when distance to next priority changes
- Bounding number of nodes in balls not enough All edges incident to balls go into running time \Rightarrow Sample edges instead of nodes
- Deletions-only problem, but edges might be added to hop set Monotone ES-tree framework [Henzinger/K/Nanongkai '13]

New Approach

New Distributed Algorithm

Theorem ([Becker/Karrenbauer/K/Lenzen arXiv'16])
There is a deterministic algorithm for computing $(1+\epsilon)$ approximate SSSP in $\widetilde{O}(\sqrt{n}+$ Diam $)$ rounds.

New Distributed Algorithm

Theorem ([Becker/Karrenbauer/K/Lenzen arXiv'16])
There is a deterministic algorithm for computing $(1+\epsilon)$ approximate SSSP in $\widetilde{O}(\sqrt{n}+$ Diam $)$ rounds.

Key insight: Solve more general problem

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to sinks along the edges of a graph as specified by demands on nodes.

New Distributed Algorithm

Theorem ([Becker/Karrenbauer/K/Lenzen arXiv'16])
There is a deterministic algorithm for computing $(1+\epsilon)$ approximate SSSP in $\widetilde{O}(\sqrt{n}+$ Diam $)$ rounds.

Key insight: Solve more general problem

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to sinks along the edges of a graph as specified by demands on nodes.
"Uncapacitated minimum-cost flow"

New Distributed Algorithm

Theorem ([Becker/Karrenbauer/K/Lenzen arXiv'16])
There is a deterministic algorithm for computing $(1+\epsilon)$ approximate SSSP in $\widetilde{O}(\sqrt{n}+$ Diam $)$ rounds.

Key insight: Solve more general problem

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to sinks along the edges of a graph as specified by demands on nodes.
"Uncapacitated minimum-cost flow"
SSSP: source has demand $-(n-1)$, other nodes have demand 1

Shortest Transshipment Problem

Shortest transshipment as linear program:

$$
\operatorname{minimize}\|W x\|_{1} \quad \text { s.t. } A x=b
$$

Shortest Transshipment Problem

Shortest transshipment as linear program:

$$
\operatorname{minimize}\|W x\|_{1} \quad \text { s.t. } A x=b
$$

Dual program:

$$
\operatorname{maximize} b^{T} y \quad \text { s.t. }\left\|W^{-1} A^{T} y\right\|_{\infty} \leq 1
$$

Shortest Transshipment Problem

Shortest transshipment as linear program:

$$
\operatorname{minimize}\|W x\|_{1} \quad \text { s.t. } A x=b
$$

Dual program:

$$
\operatorname{maximize} b^{T} y \quad \text { s.t. }\left\|W^{-1} A^{T} y\right\|_{\infty} \leq 1
$$

Equivalent:

$$
\text { minimize }\left\|W^{-1} A^{T} y\right\|_{\infty} \quad \text { s.t. } b^{T} \pi=1
$$

Shortest Transshipment Problem

Shortest transshipment as linear program:

$$
\operatorname{minimize}\|W x\|_{1} \quad \text { s.t. } A x=b
$$

Dual program:

$$
\operatorname{maximize} b^{T} y \quad \text { s.t. }\left\|W^{-1} A^{T} y\right\|_{\infty} \leq 1
$$

Equivalent:

$$
\operatorname{minimize}\left\|W^{-1} A^{T} y\right\|_{\infty} \quad \text { s.t. } b^{T} \pi=1
$$

We approximate $\|\cdot\|_{\infty}$ by soft-max:

$$
\operatorname{lse}_{\beta}(x):=\frac{1}{\beta} \ln \left(\sum_{i \in[d]}\left(e^{\beta x_{i}}+e^{-\beta x_{i}}\right)\right)
$$

Gradient Descent

Algorithm at a glance:
(1) Soft-max is differentiable \rightarrow apply gradient descent

Gradient Descent

Algorithm at a glance:
(1) Soft-max is differentiable \rightarrow apply gradient descent
(2) Each iteration: solve transshipment problem with different demand vector b^{\prime} depending on current gradient

Gradient Descent

Algorithm at a glance:
(1) Soft-max is differentiable \rightarrow apply gradient descent
(2) Each iteration: solve transshipment problem with different demand vector b^{\prime} depending on current gradient
(3) Key observation: For b^{\prime}, bad approximation is sufficient

Gradient Descent

Algorithm at a glance:
(1) Soft-max is differentiable \rightarrow apply gradient descent
(2) Each iteration: solve transshipment problem with different demand vector b^{\prime} depending on current gradient
(3) Key observation: For b^{\prime}, bad approximation is sufficient
(1) Compute spanner on overlay network and solving transshipment on overlay spanner
Spanner has stretch $O(\log n)$ and size $\widetilde{O}(n)$

Gradient Descent

Algorithm at a glance:
(1) Soft-max is differentiable \rightarrow apply gradient descent
(2) Each iteration: solve transshipment problem with different demand vector b^{\prime} depending on current gradient
(3) Key observation: For b^{\prime}, bad approximation is sufficient
(1) Compute spanner on overlay network and solving transshipment on overlay spanner
Spanner has stretch $O(\log n)$ and size $\widetilde{O}(n)$
(5) Overall: Polylog iterations, each solving $O(\log n)$-approximate transshipment on graph of $\widetilde{O}(n)$ edges

Conclusion

Main contributions:

- Two almost tight algorithms
- Combinatorial and algebraic tools

Conclusion

Main contributions:

- Two almost tight algorithms
- Combinatorial and algebraic tools

Open problems:

- Parallel: improve Cohen's $m^{1+o(1)}$ work with polylog depth?
- Better hop set? $n^{o(1)} \rightarrow \log ^{O(1)} n$
- Deterministic dynamic SSSP algorithm

Vision: Dynamic algorithms as data structures inside other algorithms

- Is $O(n)$ rounds for exact distributed SSSP optimal?

