Approximate Single-Source Shortest Paths: Distributed and Dynamic Algorithms

Sebastian Krinninger

Max Planck Institute for Informatics

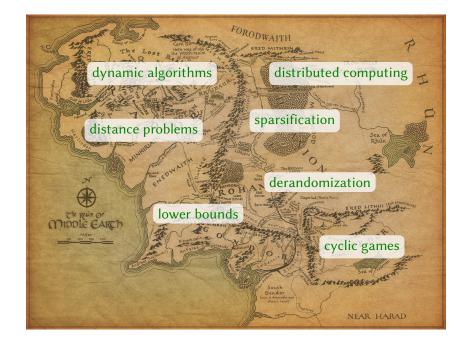
joint works with

Ruben Becker

Monika Henzinger

Andreas Karrenbauer

Danupon Nanongkai



 $(1 + \epsilon)$ -approximate single-source shortest paths (SSSP)

$(1 + \epsilon)$ -approximate single-source shortest paths (SSSP)

• Distributed algorithm: Deterministically compute approximate shortest paths in $n^{1/2+o(1)} + Diam^{1+o(1)}$ rounds [HKN '16]

$(1 + \epsilon)$ -approximate single-source shortest paths (SSSP)

• Distributed algorithm: Deterministically compute approximate shortest paths in $n^{1/2+o(1)} + Diam^{1+o(1)}$ rounds [HKN '16]

Similar in spirit: Multipass streaming: $n^{1+o(1)}$ space with $n^{o(1)}$ passes [HKN '16]

$(1 + \epsilon)$ -approximate single-source shortest paths (SSSP)

Distributed algorithm: Deterministically compute approximate shortest paths in n^{1/2+o(1)} + Diam^{1+o(1)} rounds [HKN '16]
 Similar in spirit:

Multipass streaming: $n^{1+o(1)}$ space with $n^{o(1)}$ passes [HKN '16]

Oynamic algorithm: Maintain approximate shortest paths under edge deletions with amortized update time n^{o(1)} [HKN '14]

$(1 + \epsilon)$ -approximate single-source shortest paths (SSSP)

- Distributed algorithm: Deterministically compute approximate shortest paths in n^{1/2+o(1)} + Diam^{1+o(1)} rounds [HKN '16]
 Similar in spirit: Multipass streaming: n^{1+o(1)} space with n^{o(1)} passes [HKN '16]
- Oynamic algorithm: Maintain approximate shortest paths under edge deletions with amortized update time n^{o(1)} [HKN '14]

Main technique: Iterative computation of hop set

$(1 + \epsilon)$ -approximate single-source shortest paths (SSSP)

- Distributed algorithm: Deterministically compute approximate shortest paths in n^{1/2+o(1)} + Diam^{1+o(1)} rounds [HKN '16]
 Similar in spirit: Multipass streaming: n^{1+o(1)} space with n^{o(1)} passes [HKN '16]
- Oynamic algorithm: Maintain approximate shortest paths under edge deletions with amortized update time n^{o(1)} [HKN '14]

Main technique: Iterative computation of hop set

This talk: constant ϵ , positive integer edge weights polynomial in *n*

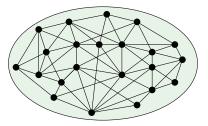
Hop Reduction

Definition

A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v, $dist_H(u, v) \le k \cdot dist_G(u, v).$

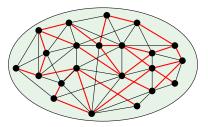
Definition

A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v, $dist_H(u, v) \le k \cdot dist_G(u, v).$



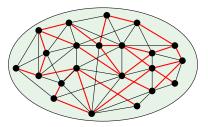
Definition

A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v, $dist_H(u, v) \le k \cdot dist_G(u, v).$



Definition

A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v, $dist_H(u,v) \le k \cdot dist_G(u,v).$



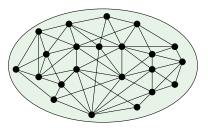
Fact: Every graph has a *k*-spanner of size $n^{1+1/k}$ [Folklore] **Application:** Running time $T(m, n) \Rightarrow T(n^{1+1/k}, n)$

Definition

An (h, ϵ) -hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with **at most h edges** of weight at most $(1 + \epsilon)dist(u, v)$.

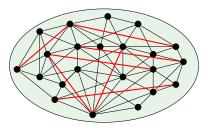
Definition

An (h, ϵ) -hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with **at most h edges** of weight at most $(1 + \epsilon)dist(u, v)$.



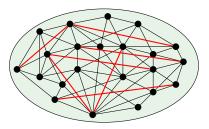
Definition

An (h, ϵ) -hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with **at most h edges** of weight at most $(1 + \epsilon)dist(u, v)$.



Definition

An (h, ϵ) -hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with **at most h edges** of weight at most $(1 + \epsilon)dist(u, v)$.



Fact: Every graph has a $(\log^{O(1)} n, \epsilon)$ -hop set of size $m^{1+o(1)}$ [Cohen '94]

Definition

An (h, ϵ) -hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with **at most h edges** of weight at most $(1 + \epsilon)dist(u, v)$.

Application?

Dijkstra: SSSP in time O(m + n log n)
 Not local (global heap), bad for non-centralized models

Definition

An (h, ϵ) -hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with **at most h edges** of weight at most $(1 + \epsilon)dist(u, v)$.

Application?

- Dijkstra: SSSP in time O(m + n log n)
 Not local (global heap), bad for non-centralized models
- Bellman-Ford: SSSP in time O(mn) Actually: SSSP up to h hops in time O(mh) With (n^{o(1)}, ε) hop set: (1 + ε)-approximate SSSP in time O(m^{1+o(1)}) Approach used before in parallel setting [Cohen '94]

 $V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset$ where node of A_i goes to A_{i+1} with probability $1/n^{1/k}$

v has **priority** *i* if $v \in A_i \setminus A_{i+1}$

 $V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset$ where node of A_i goes to A_{i+1} with probability $1/n^{1/k}$

v has **priority** *i* if $v \in A_i \setminus A_{i+1}$

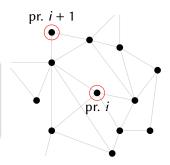
For every node *u* of priority *i*:

 $Ball(u) = \{v \in V \mid dist(u, v) < dist(u, A_{i+1})\}$

 $V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset \text{ where node of } A_i \text{ goes to } A_{i+1} \text{ with probability } 1/n^{1/k}$ v has **priority** i if $v \in A_i \setminus A_{i+1}$

For every node *u* of priority *i*:

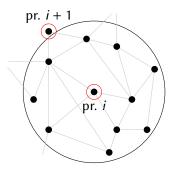
 $Ball(u) = \{v \in V \mid dist(u, v) < dist(u, A_{i+1})\}$



 $V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset$ where node of A_i goes to A_{i+1} with probability $1/n^{1/k}$ v has **priority** i if $v \in A_i \setminus A_{i+1}$

For every node *u* of priority *i*:

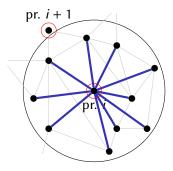
 $Ball(u) = \{v \in V \mid dist(u, v) < dist(u, A_{i+1})\}$



 $V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset$ where node of A_i goes to A_{i+1} with probability $1/n^{1/k}$ v has **priority** i if $v \in A_i \setminus A_{i+1}$

For every node *u* of priority *i*:

 $Ball(u) = \{v \in V \mid dist(u, v) < dist(u, A_{i+1})\}$



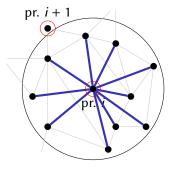
Hop set:

• $(u, v) \in F$ iff $v \in Ball(u)$

• $w(u, v) = dist_G(u, v)$

 $V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset$ where node of A_i goes to A_{i+1} with probability $1/n^{1/k}$ v has **priority** i if $v \in A_i \setminus A_{i+1}$

For every node *u* of priority *i*: $Ball(u) = \{v \in V \mid dist(u, v) < dist(u, A_{i+1})\}$



priority	# nodes
0	п
1	$n^{1-1/k}$
:	:
<i>k</i> – 1	$n^{1/k}$

Hop set:

• $(u, v) \in F$ iff $v \in Ball(u)$

• $w(u, v) = dist_G(u, v)$

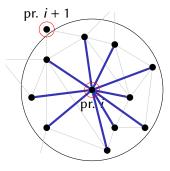
 $V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset$ where node of A_i goes to A_{i+1} with probability $1/n^{1/k}$ v has **priority** i if $v \in A_i \setminus A_{i+1}$

For every node *u* of priority *i*:

 $Ball(u) = \{v \in V \mid dist(u, v) < dist(u, A_{i+1})\}$

Expected size: $n^{(i+1)/k}$

priority	# nodes	Ball(u)
0	п	$n^{1/k}$
1	$n^{1-1/k}$	$n^{2/k}$
:	:	
<i>k</i> – 1	$n^{1/k}$	п



Hop set:

• $(u, v) \in F$ iff $v \in Ball(u)$

• $w(u, v) = dist_G(u, v)$

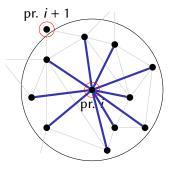
 $V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset$ where node of A_i goes to A_{i+1} with probability $1/n^{1/k}$ v has **priority** i if $v \in A_i \setminus A_{i+1}$

For every node *u* of priority *i*:

 $Ball(u) = \{v \in V \mid dist(u, v) < dist(u, A_{i+1})\}$

Expected size: $n^{(i+1)/k}$

priority	# nodes	Ball(u)	# edges
0	п	$n^{1/k}$	$n^{1+1/k}$
1	$n^{1-1/k}$	$n^{2/k}$	$n^{1+1/k}$
÷	:	:	÷
<i>k</i> – 1	$n^{1/k}$	п	$n^{1+1/k}$



Hop set:

- $(u, v) \in F$ iff $v \in Ball(u)$
- $w(u, v) = dist_G(u, v)$

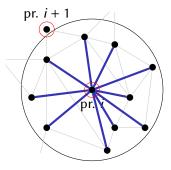
 $V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset$ where node of A_i goes to A_{i+1} with probability $1/n^{1/k}$ v has **priority** i if $v \in A_i \setminus A_{i+1}$

For every node *u* of priority *i*:

 $Ball(u) = \{v \in V \mid dist(u, v) < dist(u, A_{i+1})\}$

Expected size: $n^{(i+1)/k}$

priority	# nodes	Ball(u)	# edges
0	п	$n^{1/k}$	$n^{1+1/k}$
1	$n^{1-1/k}$	$n^{2/k}$	$n^{1+1/k}$
:	:	:	:
<i>k</i> – 1	$n^{1/k}$	п	$n^{1+1/k}$
			$kn^{1+1/k}$



Hop set:

• $(u, v) \in F$ iff $v \in Ball(u)$

•
$$w(u, v) = dist_G(u, v)$$

Parameter Choice

$$k = \frac{\sqrt{\log n}}{\sqrt{\log 4/\epsilon}}$$

$$\left(\frac{4}{\epsilon}\right)^k = n^{1/k}$$

Parameter Choice

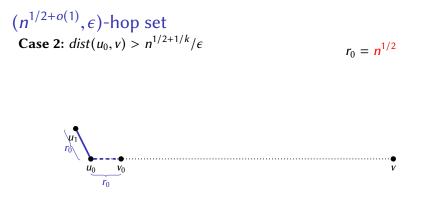
$$k = \frac{\sqrt{\log n}}{\sqrt{\log 4/\epsilon}}$$

$$\left(\frac{4}{\epsilon}\right)^k = n^{1/k} = n^{o(1)}$$

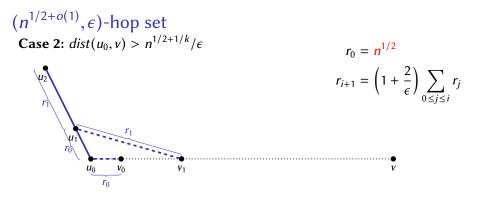
 $(n^{1/2+o(1)},\epsilon)$ -hop set Case 1: $dist(u_0,v) \le n^{1/2+1/k}/\epsilon$

 $(n^{1/2+o(1)}, \epsilon)$ -hop set Case 2: $dist(u_0, v) > n^{1/2+1/k}/\epsilon$

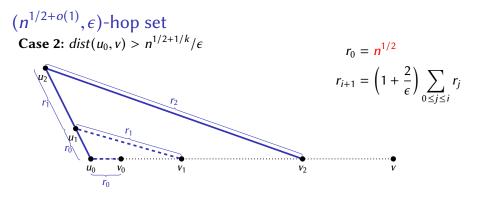
 $(n^{1/2+o(1)}, \epsilon)$ -hop set Case 2: $dist(u_0, v) > n^{1/2+1/k}/\epsilon$

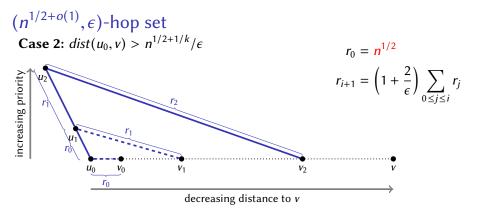


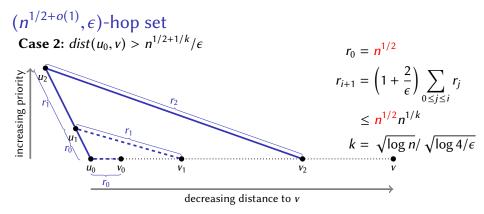
For every node *u* of priority *i* and every node *v*, either $(u, v) \in H$, or $\exists u'$ of priority i + 1 s. t. $dist(u, u') \leq dist(u, v)$.



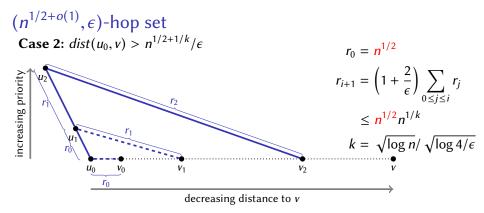
For every node *u* of priority *i* and every node *v*, either $(u, v) \in H$, or $\exists u'$ of priority i + 1 s. t. $dist(u, u') \leq dist(u, v)$.







Weight $\leq (1 + \epsilon) dist(u_0, v)$



Weight
$$\leq (1 + \epsilon) dist(u_0, v)$$

#Edges $\leq \frac{k \cdot dist(u, v)}{n^{1/2}} \leq \frac{k \cdot n}{n^{1/2}} = kn^{1/2}$

Chicken-Egg Problem?

- Goal: Faster SSSP via hop set
- Compute hop set by computing balls
- Computing balls at least as hard as SSSP
- \Rightarrow Back at problem we wanted to solve initially?

Chicken-Egg Problem?

- Goal: Faster SSSP via hop set
- Compute hop set by computing balls
- Computing balls at least as hard as SSSP
- ⇒ Back at problem we wanted to solve initially?

No! $(n^{1/2+o(1)}, \epsilon)$ -hop set only requires balls up to $n^{1/2+o(1)}$ hops

$(n^{1/2+o(1)},\epsilon)$ -hop set

Iterative computation

In each iteration number of hops is reduced by a factor of $n^{1/k}$

$$(n^{1/2+o(1)},\epsilon)$$
-hop set

Iterative computation

In each iteration number of hops is reduced by a factor of $n^{1/k}$

Algorithm:

for i = 1 to k do $\begin{array}{c}
H_i = G \cup \bigcup_{1 \le j \le i-1} F_j \\
\text{Compute balls with } k \text{ priorities in } H_i \text{ up to } n^{2/k} \text{ hops} \\
F_i = \{(u, v) \mid v \in Ball(u)\}
\end{array}$

end

$$\mathbf{return}\ F = \bigcup_{1 \le i \le k} F_i$$

$$(n^{1/2+o(1)},\epsilon)$$
-hop set

Iterative computation

In each iteration number of hops is reduced by a factor of $n^{1/k}$

Algorithm:

for i = 1 to k do $\begin{array}{c}
H_i = G \cup \bigcup_{1 \le j \le i-1} F_j \\
\text{Compute balls with } k \text{ priorities in } H_i \text{ up to } n^{2/k} \text{ hops} \\
F_i = \{(u, v) \mid v \in Ball(u)\}
\end{array}$ end

end

$$\mathbf{return} \ F = \bigcup_{1 \le i \le k} F_i$$

Error amplification: $(1 + \epsilon')^k \le (1 + \epsilon)$ for $\epsilon' = 1/(2\epsilon \log n)$

$$(n^{1/2+o(1)},\epsilon)$$
-hop set

Iterative computation

In each iteration number of hops is reduced by a factor of $n^{1/k}$

Algorithm:

for i = 1 to k do $\begin{array}{c}
H_i = G \cup \bigcup_{1 \le j \le i-1} F_j \\
\text{Compute balls with } k \text{ priorities in } H_i \text{ up to } n^{2/k} \text{ hops} \\
F_i = \{(u, v) \mid v \in Ball(u)\}
\end{array}$ end

return
$$F = \bigcup_{1 \le i \le k} F_i$$

Error amplification: $(1 + \epsilon')^k \le (1 + \epsilon)$ for $\epsilon' = 1/(2\epsilon \log n)$

Omitted detail: weighted graphs, use rounding technique

SSSP in **CONGEST** model: synchronous rounds, message size $O(\log n)$

Running time = number of rounds

- Exact: O(n) (Bellman-Ford)
- $(1 + \epsilon)$ -approximation:
 - $\Omega(n^{1/2}/\log n + Diam)$ [Das Sarma et al. '11]
 - $O(\epsilon^{-1} \log \epsilon^{-1})$: $O(n^{1/2+\epsilon} + Diam)$ (randomized) [Lenzen, Patt-Shamir '13]
 - ► $1 + \epsilon$: $O(n^{1/2}Diam^{1/4} + Diam)$ (randomized) [Nanongkai '14]
 - ► $1 + \epsilon$: $O(n^{1/2+o(1)} + Diam^{1+o(1)})$ (deterministic) (New)

SSSP in **CONGEST** model: synchronous rounds, message size $O(\log n)$

Running time = number of rounds

- Exact: O(n) (Bellman-Ford)
- $(1 + \epsilon)$ -approximation:
 - $\Omega(n^{1/2}/\log n + Diam)$ [Das Sarma et al. '11]
 - $O(\epsilon^{-1} \log \epsilon^{-1})$: $O(n^{1/2+\epsilon} + Diam)$ (randomized) [Lenzen, Patt-Shamir '13]
 - ► $1 + \epsilon$: $O(n^{1/2}Diam^{1/4} + Diam)$ (randomized) [Nanongkai '14]
 - ► $1 + \epsilon$: $O(n^{1/2+o(1)} + Diam^{1+o(1)})$ (deterministic) (New)

Our approach:

- Compute overlay network
- Ocompute hop set and approximate SSSP on overlay network

SSSP in **CONGEST** model: synchronous rounds, message size $O(\log n)$

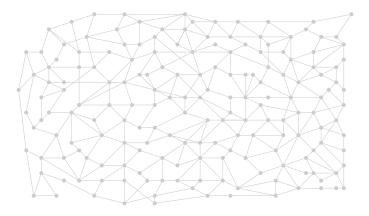
Running time = number of rounds

- Exact: O(n) (Bellman-Ford)
- $(1 + \epsilon)$ -approximation:
 - $\Omega(n^{1/2}/\log n + Diam)$ [Das Sarma et al. '11]
 - $O(\epsilon^{-1} \log \epsilon^{-1})$: $O(n^{1/2+\epsilon} + Diam)$ (randomized) [Lenzen, Patt-Shamir '13]
 - ► $1 + \epsilon$: $O(n^{1/2}Diam^{1/4} + Diam)$ (randomized) [Nanongkai '14]
 - ► $1 + \epsilon$: $O(n^{1/2+o(1)} + Diam^{1+o(1)})$ (deterministic) (New)

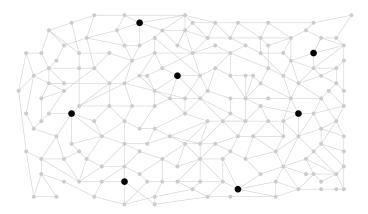
Our approach:

- Compute overlay network
 Derandomization of "hitting paths" argument at cost of approximation
- Compute hop set and approximate SSSP on overlay network Deterministic hop set using greedy hitting set heuristic

Overlay Network

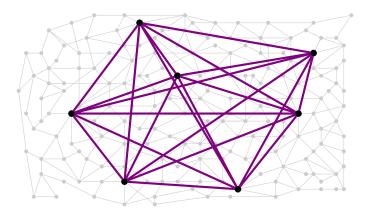


Overlay Network



Sample $N = \widetilde{O}(n^{1/2})$ centers (+ source *s*) \Rightarrow Every shortest path with $\ge n^{1/2}$ edges contains center whp

Overlay Network



Sample $N = \widetilde{O}(n^{1/2})$ centers (+ source *s*) \Rightarrow Every shortest path with $\ge n^{1/2}$ edges contains center whp Solve SSSP on overlay network using hop set

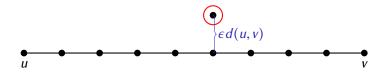
Derandomization of Overlay Network

Randomization: Hit every shortest path with $\geq \sqrt{n}$ edges

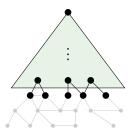
Derandomization of Overlay Network

Randomization: Hit every shortest path with $\geq \sqrt{n}$ edges

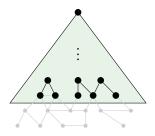
Deterministic relaxation: Almost hit every path $\geq \sqrt{n}$ edges



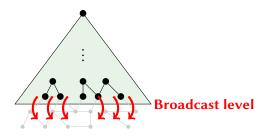
Shortest paths from source *s* up to distance *D*:



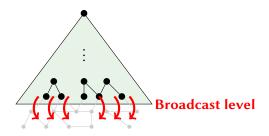
Shortest paths from source *s* up to distance *D*:



Shortest paths from source *s* up to distance *D*:

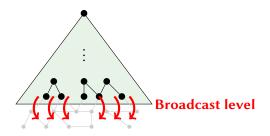


Shortest paths from source *s* up to distance *D*:



D iterations, each $O(Diam + M_{\ell})$ rounds where M_{ℓ} = #nodes at level ℓ Running time: $O(D \cdot Diam + \sum_{l \leq D} M_{\ell}) = O(D \cdot Diam + N)$

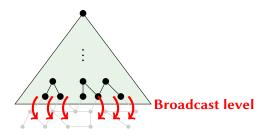
Shortest paths from source *s* up to distance *D*:



D iterations, each $O(Diam + M_{\ell})$ rounds where $M_{\ell} = \#$ nodes at level ℓ Running time: $O(D \cdot Diam + \sum_{l \le D} M_{\ell}) = O(D \cdot Diam + N)$

Computing balls:
$$\widetilde{O}(n^{1/k} \cdot Diam + \sum_{v} |Ball(v)|) = \widetilde{O}(n^{1/k} \cdot Diam + N^{1+1/k})$$

Shortest paths from source *s* up to distance *D*:

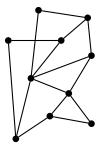


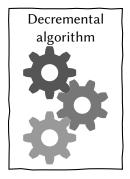
D iterations, each $O(Diam + M_{\ell})$ rounds where M_{ℓ} = #nodes at level ℓ Running time: $O(D \cdot Diam + \sum_{l \leq D} M_{\ell}) = O(D \cdot Diam + N)$

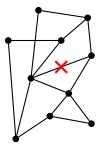
Computing balls:
$$\widetilde{O}(n^{1/k} \cdot Diam + \sum_{v} |Ball(v)|) = \widetilde{O}(n^{1/k} \cdot Diam + N^{1+1/k})$$

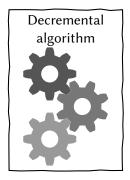
 \Rightarrow Hop Set and approximate SSSP: $O(n^{1/2+o(1)} + Diam^{1+o(1)})$

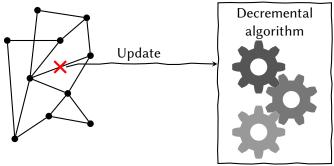
Dynamic Algorithm

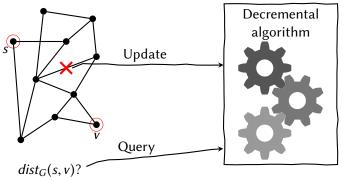


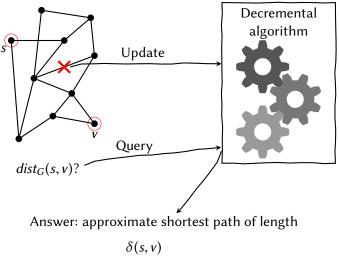


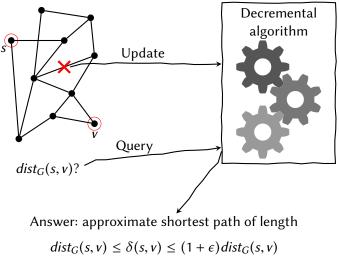


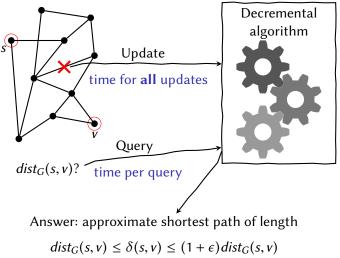












Overview of Result

New result:

- Exact: total update time O(mn) (unweighted) [Even/Shiloach '81] $\Omega(mn)$ [Roditty/Zwick '04, Henzinger/K/Nanongkai/Saranurak '15]
- $(1 + \epsilon)$ -approx.: $O(n^{2+o(1)})$ (unweighted) [Bernstein/Roditty '11]
- New: $O(m^{1+o(1)})$ (weighted) [Henzinger/K/Nanongkai '14]

Overview of Result

New result:

- Exact: total update time O(mn) (unweighted) [Even/Shiloach '81] $\Omega(mn)$ [Roditty/Zwick '04, Henzinger/K/Nanongkai/Saranurak '15]
- $(1 + \epsilon)$ -approx.: $O(n^{2+o(1)})$ (unweighted) [Bernstein/Roditty '11]
- New: $O(m^{1+o(1)})$ (weighted) [Henzinger/K/Nanongkai '14]

Techniques for maintaining balls:

Overview of Result

New result:

- Exact: total update time O(mn) (unweighted) [Even/Shiloach '81] $\Omega(mn)$ [Roditty/Zwick '04, Henzinger/K/Nanongkai/Saranurak '15]
- $(1 + \epsilon)$ -approx.: $O(n^{2+o(1)})$ (unweighted) [Bernstein/Roditty '11]
- New: $O(m^{1+o(1)})$ (weighted) [Henzinger/K/Nanongkai '14]

Techniques for maintaining balls:

• Even-Shiloach: O(mD) for SSSP up to depth D

Overview of Result

New result:

- Exact: total update time O(mn) (unweighted) [Even/Shiloach '81] $\Omega(mn)$ [Roditty/Zwick '04, Henzinger/K/Nanongkai/Saranurak '15]
- $(1 + \epsilon)$ -approx.: $O(n^{2+o(1)})$ (unweighted) [Bernstein/Roditty '11]
- New: $O(m^{1+o(1)})$ (weighted) [Henzinger/K/Nanongkai '14]

Techniques for maintaining balls:

- Even-Shiloach: O(mD) for SSSP up to depth D
- Restart when distance to next priority changes

Overview of Result

New result:

- Exact: total update time O(mn) (unweighted) [Even/Shiloach '81] $\Omega(mn)$ [Roditty/Zwick '04, Henzinger/K/Nanongkai/Saranurak '15]
- $(1 + \epsilon)$ -approx.: $O(n^{2+o(1)})$ (unweighted) [Bernstein/Roditty '11]
- New: $O(m^{1+o(1)})$ (weighted) [Henzinger/K/Nanongkai '14]

Techniques for maintaining balls:

- Even-Shiloach: O(mD) for SSSP up to depth D
- Restart when distance to next priority changes
- Bounding number of nodes in balls not enough All edges incident to balls go into running time ⇒ Sample edges instead of nodes

Overview of Result

New result:

- Exact: total update time O(mn) (unweighted) [Even/Shiloach '81] $\Omega(mn)$ [Roditty/Zwick '04, Henzinger/K/Nanongkai/Saranurak '15]
- $(1 + \epsilon)$ -approx.: $O(n^{2+o(1)})$ (unweighted) [Bernstein/Roditty '11]
- New: $O(m^{1+o(1)})$ (weighted) [Henzinger/K/Nanongkai '14]

Techniques for maintaining balls:

- Even-Shiloach: O(mD) for SSSP up to depth D
- Restart when distance to next priority changes
- Bounding number of nodes in balls not enough All edges incident to balls go into running time
 ⇒ Sample edges instead of nodes
- Deletions-only problem, but edges might be added to hop set Monotone ES-tree framework [Henzinger/K/Nanongkai '13]

New Approach

Theorem ([Becker/Karrenbauer/K/Lenzen arXiv'16])

There is a deterministic algorithm for computing $(1 + \epsilon)$ approximate SSSP in $\widetilde{O}(\sqrt{n} + \text{Diam})$ rounds.

Theorem ([Becker/Karrenbauer/K/Lenzen arXiv'16])

There is a deterministic algorithm for computing $(1 + \epsilon)$ approximate SSSP in $\widetilde{O}(\sqrt{n} + \text{Diam})$ rounds.

Key insight: Solve more general problem

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to sinks along the edges of a graph as specified by demands on nodes.

Theorem ([Becker/Karrenbauer/K/Lenzen arXiv'16])

There is a deterministic algorithm for computing $(1 + \epsilon)$ approximate SSSP in $\widetilde{O}(\sqrt{n} + \text{Diam})$ rounds.

Key insight: Solve more general problem

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to sinks along the edges of a graph as specified by demands on nodes.

"Uncapacitated minimum-cost flow"

Theorem ([Becker/Karrenbauer/K/Lenzen arXiv'16])

There is a deterministic algorithm for computing $(1 + \epsilon)$ approximate SSSP in $\widetilde{O}(\sqrt{n} + \text{Diam})$ rounds.

Key insight: Solve more general problem

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to sinks along the edges of a graph as specified by demands on nodes.

"Uncapacitated minimum-cost flow"

SSSP: source has demand -(n-1), other nodes have demand 1

Shortest transshipment as linear program:

minimize $||Wx||_1$ s.t. Ax = b

Shortest transshipment as linear program:

minimize $||Wx||_1$ s.t. Ax = b

Dual program:

maximize
$$b^T y$$
 s.t. $||W^{-1}A^T y||_{\infty} \le 1$

Shortest transshipment as linear program:

minimize $||Wx||_1$ s.t. Ax = b

Dual program:

maximize
$$b^T y$$
 s.t. $||W^{-1}A^T y||_{\infty} \le 1$

Equivalent:

minimize
$$||W^{-1}A^Ty||_{\infty}$$
 s.t. $b^T\pi = 1$

Shortest transshipment as linear program:

minimize $||Wx||_1$ s.t. Ax = b

Dual program:

maximize
$$b^T y$$
 s.t. $||W^{-1}A^T y||_{\infty} \le 1$

Equivalent:

minimize
$$||W^{-1}A^Ty||_{\infty}$$
 s.t. $b^T\pi = 1$

We approximate $\|\cdot\|_{\infty}$ by soft-max:

$$\operatorname{lse}_{\beta}(x) := \frac{1}{\beta} \ln \left(\sum_{i \in [d]} \left(e^{\beta x_i} + e^{-\beta x_i} \right) \right)$$

Algorithm at a glance:

 $\textbf{ 0 Soft-max is differentiable} \rightarrow apply gradient descent$

- $\textbf{O} \quad \text{Soft-max is differentiable} \rightarrow \text{apply gradient descent}$
- Each iteration: solve transshipment problem with different demand vector b' depending on current gradient

- Soft-max is differentiable \rightarrow apply gradient descent
- Each iteration: solve transshipment problem with different demand vector b' depending on current gradient
- Solution Section: For b', bad approximation is sufficient

- Soft-max is differentiable \rightarrow apply gradient descent
- Each iteration: solve transshipment problem with different demand vector b' depending on current gradient
- Solution: Solution: For b', bad approximation is sufficient
- Compute spanner on overlay network and solving transshipment on overlay spanner
 Spanner has stretch O(log n) and size O(n)

- Soft-max is differentiable \rightarrow apply gradient descent
- Each iteration: solve transshipment problem with different demand vector b' depending on current gradient
- Solution: Solution: For b', bad approximation is sufficient
- Compute spanner on overlay network and solving transshipment on overlay spanner
 Spanner has stretch O(log n) and size O(n)
- Overall: Polylog iterations, each solving O(log n)-approximate transshipment on graph of O(n) edges

Conclusion

Main contributions:

- Two almost tight algorithms
- Combinatorial and algebraic tools

Conclusion

Main contributions:

- Two almost tight algorithms
- Combinatorial and algebraic tools

Open problems:

- Parallel: improve Cohen's $m^{1+o(1)}$ work with polylog depth?
- Better hop set? $n^{o(1)} \rightarrow \log^{O(1)} n$
- Deterministic dynamic SSSP algorithm
 Vision: Dynamic algorithms as data structures inside other algorithms
- Is O(n) rounds for exact distributed SSSP optimal?