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Problem Definition

Goal: Compute shortests paths from a source node s to all other nodes

How can this be an open problem??

@ (Nearly) optimal solutions known in RAM model
@ Not fully understood in PRAM model
@ Not fully understood in CONGEST model

@ To be fair: non-negative weights also not fully understood in RAM model
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CONGEST Model

Idea: Measure amount of communication for network to compute result
Running time = #communication rounds

Model definition:

Processors with unique IDs modeled as nodes

Synchronous rounds (global clock)

In each round, every node sends (at most) one message to each neighbor
Message size O(log n)

Unlimited internal computation between rounds

Communication network: unweighted undirected graph of diameter D
Edges are “annotated” with (non-negative) weights and directions

Weights represent costs (not time)

Distributed problem statement:

Initial knowledge: incident edges, source

Terminal knowledge: distance to the source, parent on shortest path tree

1/ 15



Unweighted Graphs: BFS



Unweighted Graphs: BFS




Unweighted Graphs: BFS




Unweighted Graphs: BFS




Unweighted Graphs: BFS




Unweighted Graphs: BFS




Unweighted Graphs: BFS




Unweighted Graphs: BFS

Breadth-first search tree can be computed in O(D) rounds.




Unweighted Graphs: BFS

Breadth-first search tree can be computed in O(D) rounds.

Our goal: efficient algorithms for weighted graphs
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@ O(n) (Bellman-Ford)
o O(n?*D'® + n®%) [Elkin *17]
O(n3/*D'/*) [Ghaffari/Li 18]
O(n/*°™ 4 min{n®*D'6, n%7} + D) [Ghaffari/Li *18]
O(VnD) Our result
O(\nDY* + n3/5 + D) Our result

All Pairs Shortest Paths: [Holzer/Wattenhofer *12] [Censor-Hillel et al. *15]
[Huang/Nanongkai/Saranurak 17] [Agarwal et al. *18]
[Agarwal/Ramachandran 18]

Approximation Algorithms: [Nanongkai *14] [Holzer and Pinsker *15]
[Henzinger/K/Nanongkai *16] [Elkin/Neiman '16] [Becker et al. *17]
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The Scaling Approach
Two scaling techniques [Gabow ’85]:
@ Bitwise scaling: In each iteration read next bit of weights

@ Recursive scaling: Reduce maximum distance by potential
transformation with approximate distances

We follow recursive scaling:
@ Similar to [Klein/Subramanian '97] in PRAM model

@ Compute approximate distances: & - distg (s, v) < d(s,v) < distg(s, )

1

2

@ Potential transformation: w’(u,v) = wg(u,v) +d(s,u) — d(s,v)
Does not change shortest paths

Solve recursively with weights w’: Maximum distance has halved!
But: Want to keep edge weights non-negative
Require: cf(s, v) < az(s,u) + wg(u, v)

Scaling forces us to solve directed problem

Inherent dependence on log(Wyax) due to maximum distance



Reduction

Theorem ([Klein/Subramanian ’97])

Suppose auxiliary algorithm computes distance estimate d(s, ) such that
@ For every node v: % - distg (s, v) < (f(s, v) < distg(s,v) (approximation)
@ For every edge (u,v): d(s, v) < af(s, u) + wg(u, v) (domination)

Then exact SSSP can be computed by calling auxiliary algorithm O(log(nWpax))
times (+ bookkeeping work).
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Reduction

Theorem ([Klein/Subramanian ’97])

Suppose auxiliary algorithm computes distance estimate d(s, ) such that
@ For every node v: % - distg (s, v) < (f(s, v) < distg(s,v) (approximation)
@ For every edge (u,v): d(s, v) < af(s, u) + wg(u, v) (domination)

Then exact SSSP can be computed by calling auxiliary algorithm O(log(nWpax))
times (+ bookkeeping work).

Our contribution: Design suitable auxiliary algorithm
@ Leverage techniques from approximate SSSP

@ Careful design to satisfy domination constraint

8/15
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Omitted in this talk:
@ Detailed running time analyis
@ Dealing with 0-weight edges: Reduce to positive edge weights

@ Faster approximation algorithm for directed graphs



Skeleton Graph

ey
/
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Skeleton Graph

Sample O(n/h) skeleton nodes uniformly at random (+ source s)

Lemma (Ullman/Yannakakis ’90)

Every shortest path with h/2 edges contains skeleton with high probability.

Idea:
@ Reduce to computing SSSP on skeleton graph
@ Add skeleton shortcuts
@ Left to deal with shortest paths with < h edges
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@ Sample O(n/h) skeleton nodes
@ Compute approximate skeleton graph H:

> Compute J(x,Ny) for every pair of skeleton nodes x, y s.t.
distg(x,y) < d(x,y) < 2distg(x,y) [Nanongkai "14]
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Compute distg (s, x) for every skeleton node x

@ Augment original graph G to G’ by adding skeleton shortcuts
Set wgr (s, x) = disty (s, x) for every skeleton node x

@ Compute h-hop distances in G’ o?(s, V) = disté, (s,v) for every node v
Shortest path using at most h edges: h iterations of Bellman-Ford
Theorem
@ For every node v: % - distg(s,v) < dA(s, v) < distg(s, v) (approximation)

@ For every edge (u,v): (f(s, v) < cf(s, u) + wg(u, v) (domination)
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Proof of Domination

@ Need to show: distg, (s,v) < distg, (s,u) + wg(u,v)
@ We show that dist}(’;, (s,v) = distg: (s, v)
@ Then domination follows from triangle inequality

(Q @

N (%
h/2 edges h/2 edges < h/2 edges
Proof idea:

@ Shortest path in G” has the following structure: at most one shortcut
edge to skeleton node followed by a shortest path 7 in G

@ Subdivide x into subsequent chunks of h/2 edges

@ With high probability, each chunk contains a skeleton node

@ Following skeleton nodes with skeleton edges would be at least as cheap
as following & (underestimated approximation!)

@ Shortcut edge in G’ to last skeleton node is as least as cheap

Reason: Triangle inequality for exact distances!

@ Now: remainder of 7 has < h edges
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How to Solve on Skeleton

Recall: We need exact SSSP on skeleton

Two Variants:
@ Dijkstra’s algorithm
Running time: O(VnD)
© Recurse
Running time: O(ynD* + n3/> + D)

Why is SSSP instance different?
@ Small size

@ Computation on skeleton via broadcasting in original network
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Discussion: Implementation of Klein/Subramanian?

We borrow many ideas from PRAM algorithm of Klein and Subramanian

Main difference:

@ Klein and Subramanian treat skeleton edges as a hop set
@ We solve SSSP on skeleton explicitly

New trade-off for directed graphs in PRAM model:
e Klein and Subramanian: work O(m+/n) and depth O(~+/n)
@ Our approach: work O((n®/h® + mh + mn/h)) and depth O(h)
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Open Problems

@ Match the single-source reachability barrier for SSSP!

» CONGEST model: O(y/nD'* + D) rounds [Ghaffari/Udwani *15]
(Is this tight??)
> PRAM model:

* (?(mh + h*/n) work and O(n/h) depth [Ullman/Yannakakis *90]
* O(m) work and O(n?/3) depth [Fineman ’18]

@ Deterministic algorithms?

Thank you for your attention!

slides: https://www.cosy.sbg.ac.at/~forster/
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