A Faster Distributed Single-Source Shortest Paths
Algorithm

Sebastian Forster! Danupon Nanongkai?

!Department of Computer Sciences
University of Salzburg, Austria
Previously known as S. Krinninger

2School of Electrical Engineering and Computer Science (EECS)
KTH Royal Institute of Technology, Sweden

FOCS 2018

Q@ Basilique 18 St-Denis- Université.
Camefour de StDenis
Cbd 1 i =y P Courneuve Courneuve L= Bourget

MERTRREC SaintOuen decenis Deris-Porte de Peis “hiseng: b s 7
' Fort
Garibaldi_~ Stade de France /Lamame :)
e Stade de France Aubegters-parin dAubenilliers by
Porte D chapete Quatie Chemins e e
de St Ouen o ol
Gu 7 Pa
@ Mouer Porte de a Vitette G5 <
7 Chateau Rouge Corentin Cariou Egng de Paniin, Ve
Ola Fourche sl I G
= Riquet _“Ourcq Porte Hoche

Rocheghouart
— ;\mgm Laumiere de Partin
Dangie prg

A' (Eeplanade
nse
e Neully

Eowaris

Les sablons Colonel Buttes
Porte Mailo Fabien _Chaumont 0
PRl ot f hatea. Pyrénees Jourdain Plice Telégraphe
dEau) Jacques des Fétes

Argentine Eonsergent

SaintFargeau

Ménilmontant FPelleport

~ Porte
de Bagnoler Galli

Vicwor HugnPoceer ™ Franian
0. Rooseve . 1 A =
Boissiere Alma Eileane Mirce! W Gambetta
Marceal Champs! Palais Royal | Philippe
. el o ,,5555 Concorde Mustedy Louns Les Hallest Rambuteau | gtsebastien StAmbroise | Augt de Monti
wenue dela Bompe éna T Clemenceau Lowre, Rwoll Fichan ™ vortare Crofx de Chavaux
et -~ o 1 Tuleges PoneNeor Chiteletly o Lon0IT Alexanche
nvalices, r cue >
S o} e Cite stPaul | o Sabin Charonne Maraichers 5, hebesplerrs
LaMuette | passy £ Tour Maubourg Bastile o v Potpig
Eoumm,‘e,s(/c " Champ de Mars LedruRolin __des Boulets, D Bizenval
,Eﬁmr iffel 3 ue | SEGErmain sy ichel) Faidherb:
Ranelagh' avenie du Bir-Hakeim Miltare | s e Moot S e 3 %
Pt kenrBY \aDupleix L“‘("’m My Babyionsry Mation odeo EReuill - Diderot yincennes ~ S-Mandé
sasmin Ehuenues ek ;”""“ Lembourgy TR / Momgallet #Picpus gy
Micheknge| felise jauel Si_ségur CBF. StPlackde ™ Notre.Dame Lemaine b=y
| Poree Auteull,_ dhiceui OT A el des-Champs Place Monge 0’?;’.?_‘6,@\ Daumesniley, o poe Chateau
Rt Mirabeay Rvel Michels | Commerce CGonite o / de Vincennes
5 A ol PortRoyal Pt B N~ Dugommier
o] Chamen Felix Faure o perien L5 s MaRel B Parte Dorée
Fauigne, el o otpamasse | e St P Fombe el Ga “eihpi
Jean Jau Ba Victor Boucicaut NHaaues (Pllce OmIE e Liberie
i door ey L, Conisant | idita cvaleret
40 sempac J 9 StCloud Lourmel Glaciere s Nationale e | Charenton- Ecoles
Boul 1 & Rocisance Tolbiac Fran(ql;llllkmmd P Ecole Verdrinaire
Pont de Stloud @ Bala Cite Maisonsy Porte 2 de MaisonsAffort
i . Porte s Banche. dRave ae Choky Ay i R
X de Vanves Le Kremlin] Maisons-Alfort
5 pont alakoff. Gentilly Bicetre « Pierre Curie Les Juilliottes
de Sevres fPlateau de vanves Lt
, e ranee Male @ v Créteil- L chat
sy wle. sueSeine Creteil- Université
FueEllenne Dol | PaulVaillantCouturier
©<< Chitillon - Montrouge 15 @® orty JRRR/S L ©aa ©) (8 Créteil-Préfecture

Problem Definition

Goal: Compute shortests paths from a source node s to all other nodes

Problem Definition

Goal: Compute shortests paths from a source node s to all other nodes

How can this be an open problem??

Problem Definition

Goal: Compute shortests paths from a source node s to all other nodes

How can this be an open problem??

@ (Nearly) optimal solutions known in RAM model

Problem Definition

Goal: Compute shortests paths from a source node s to all other nodes

How can this be an open problem??

@ (Nearly) optimal solutions known in RAM model
@ Not fully understood in PRAM model

Problem Definition

Goal: Compute shortests paths from a source node s to all other nodes

How can this be an open problem??

@ (Nearly) optimal solutions known in RAM model
@ Not fully understood in PRAM model
@ Not fully understood in CONGEST model

Problem Definition

Goal: Compute shortests paths from a source node s to all other nodes

How can this be an open problem??

@ (Nearly) optimal solutions known in RAM model
@ Not fully understood in PRAM model
@ Not fully understood in CONGEST model

@ To be fair: non-negative weights also not fully understood in RAM model

CONGEST Model

Idea: Measure amount of communication for network to compute result
Running time = #communication rounds

15

CONGEST Model

Idea: Measure amount of communication for network to compute result
Running time = #communication rounds

Model definition:
@ Processors with unique IDs modeled as nodes
@ Synchronous rounds (global clock)
@ In each round, every node sends (at most) one message to each neighbor
@ Message size O(logn)
°

Unlimited internal computation between rounds

CONGEST Model

Idea: Measure amount of communication for network to compute result
Running time = #communication rounds

Model definition:

Processors with unique IDs modeled as nodes

Synchronous rounds (global clock)

In each round, every node sends (at most) one message to each neighbor
Message size O(log n)

Unlimited internal computation between rounds

Communication network: unweighted undirected graph of diameter D
Edges are “annotated” with (non-negative) weights and directions

Weights represent costs (not time)

CONGEST Model

Idea: Measure amount of communication for network to compute result
Running time = #communication rounds

Model definition:

Processors with unique IDs modeled as nodes

Synchronous rounds (global clock)

In each round, every node sends (at most) one message to each neighbor
Message size O(log n)

Unlimited internal computation between rounds

Communication network: unweighted undirected graph of diameter D
Edges are “annotated” with (non-negative) weights and directions

Weights represent costs (not time)

Distributed problem statement:

Initial knowledge: incident edges, source

Terminal knowledge: distance to the source, parent on shortest path tree

1/ 15

Unweighted Graphs: BFS

Unweighted Graphs: BFS

Unweighted Graphs: BFS

Unweighted Graphs: BFS

Unweighted Graphs: BFS

Unweighted Graphs: BFS

Unweighted Graphs: BFS

Unweighted Graphs: BFS

Breadth-first search tree can be computed in O(D) rounds.

Unweighted Graphs: BFS

Breadth-first search tree can be computed in O(D) rounds.

Our goal: efficient algorithms for weighted graphs

Comparison Related Work

Lower Bound: Q(\/n + D) [Peleg/Rubinovich ’99] [Das Sarma et al. ’11]

Comparison Related Work

Lower Bound: Q(\/n + D) [Peleg/Rubinovich ’99] [Das Sarma et al. ’11]

Upper Bounds:
@ O(n) (Bellman-Ford)

Comparison Related Work

Lower Bound: Q(\/n + D) [Peleg/Rubinovich ’99] [Das Sarma et al. ’11]
Upper Bounds:

@ O(n) (Bellman-Ford)

o O(n?*D'® + n®%) [Elkin *17]

Comparison Related Work

Lower Bound: Q(\/n + D) [Peleg/Rubinovich ’99] [Das Sarma et al. ’11]

Upper Bounds:
@ O(n) (Bellman-Ford)
o O(n?*D'® + n®%) [Elkin *17]
o O(n*/*D'/*) [Ghaffari/Li *18]
o O(n*/*°M) 4 min{n**DV®, n®7} + D) [Ghaffari/Li *18]

Comparison Related Work

Lower Bound: Q(\/n + D) [Peleg/Rubinovich ’99] [Das Sarma et al. ’11]

Upper Bounds:
@ O(n) (Bellman-Ford)
o O(n?*D'® + n®%) [Elkin *17]
O(n3/*D'/*) [Ghaffari/Li 18]
O(n/*°™ 4 min{n®*D'6, n%7} + D) [Ghaffari/Li *18]
O(VnD) Our result
O(\nDY* + n3/5 + D) Our result

Comparison Related Work

Lower Bound: Q(\/n + D) [Peleg/Rubinovich ’99] [Das Sarma et al. ’11]

Upper Bounds:
@ O(n) (Bellman-Ford)
o O(n?*D'® + n®%) [Elkin *17]
O(n3/*D'/*) [Ghaffari/Li 18]
O(n/*°™ 4 min{n®*D'6, n%7} + D) [Ghaffari/Li *18]
O(VnD) Our result
O(\nDY* + n3/5 + D) Our result

All Pairs Shortest Paths: [Holzer/Wattenhofer *12] [Censor-Hillel et al. *15]
[Huang/Nanongkai/Saranurak 17] [Agarwal et al. *18]
[Agarwal/Ramachandran 18]

Comparison Related Work

Lower Bound: Q(\/n + D) [Peleg/Rubinovich ’99] [Das Sarma et al. ’11]
Upper Bounds:
@ O(n) (Bellman-Ford)
o O(n?*D'® + n®%) [Elkin *17]
O(n3/*D'/*) [Ghaffari/Li 18]
O(n/*°™ 4 min{n®*D'6, n%7} + D) [Ghaffari/Li *18]
O(VnD) Our result
O(\nDY* + n3/5 + D) Our result

All Pairs Shortest Paths: [Holzer/Wattenhofer *12] [Censor-Hillel et al. *15]
[Huang/Nanongkai/Saranurak 17] [Agarwal et al. *18]
[Agarwal/Ramachandran 18]

Approximation Algorithms: [Nanongkai *14] [Holzer and Pinsker *15]
[Henzinger/K/Nanongkai *16] [Elkin/Neiman '16] [Becker et al. *17]

The Scaling Approach

Two scaling techniques [Gabow ’85]:
@ Bitwise scaling: In each iteration read next bit of weights

@ Recursive scaling: Reduce maximum distance by potential
transformation with approximate distances

The Scaling Approach

Two scaling techniques [Gabow ’85]:
@ Bitwise scaling: In each iteration read next bit of weights

@ Recursive scaling: Reduce maximum distance by potential
transformation with approximate distances

We follow recursive scaling:
@ Similar to [Klein/Subramanian '97] in PRAM model

The Scaling Approach

Two scaling techniques [Gabow ’85]:
@ Bitwise scaling: In each iteration read next bit of weights

@ Recursive scaling: Reduce maximum distance by potential
transformation with approximate distances

We follow recursive scaling:
@ Similar to [Klein/Subramanian '97] in PRAM model

-distg(s, v) < d(s,v) < distg(s, v)

@ Compute approximate distances: %

The Scaling Approach

Two scaling techniques [Gabow ’85]:
@ Bitwise scaling: In each iteration read next bit of weights

@ Recursive scaling: Reduce maximum distance by potential
transformation with approximate distances

We follow recursive scaling:
@ Similar to [Klein/Subramanian '97] in PRAM model
@ Compute approximate distances: 3 - distg (s, v) < d(s,v) < dist(s, v)

@ Potential transformation: w’(u, v) = wg(u,v) + cf(s, u) — cf(s, V)
Does not change shortest paths

The Scaling Approach
Two scaling techniques [Gabow ’85]:
@ Bitwise scaling: In each iteration read next bit of weights

@ Recursive scaling: Reduce maximum distance by potential
transformation with approximate distances

We follow recursive scaling:
@ Similar to [Klein/Subramanian '97] in PRAM model
@ Compute approximate distances: 3 - distg (s, v) < d(s,v) < dist(s, v)

@ Potential transformation: w’(u, v) = wg(u,v) + cf(s, u) — cf(s, V)
Does not change shortest paths

Solve recursively with weights w’: Maximum distance has halved!

The Scaling Approach
Two scaling techniques [Gabow ’85]:
@ Bitwise scaling: In each iteration read next bit of weights

@ Recursive scaling: Reduce maximum distance by potential
transformation with approximate distances

We follow recursive scaling:
@ Similar to [Klein/Subramanian '97] in PRAM model

@ Compute approximate distances: & - distg (s, v) < d(s,v) < distg(s,)

1

2

@ Potential transformation: w’(u,v) = wg(u,v) +d(s,u) — d(s,v)
Does not change shortest paths

Solve recursively with weights w’: Maximum distance has halved!

But: Want to keep edge weights non-negative

The Scaling Approach
Two scaling techniques [Gabow ’85]:
@ Bitwise scaling: In each iteration read next bit of weights

@ Recursive scaling: Reduce maximum distance by potential
transformation with approximate distances

We follow recursive scaling:
@ Similar to [Klein/Subramanian '97] in PRAM model

@ Compute approximate distances: & - distg (s, v) < d(s,v) < distg(s,)

1

2

@ Potential transformation: w’(u,v) = wg(u,v) +d(s,u) — d(s,v)
Does not change shortest paths

@ Solve recursively with weights w’: Maximum distance has halved!
@ But: Want to keep edge weights non-negative

@ Require: cf(s, v) < az(s,u) + wg(u, v)

The Scaling Approach

Two scaling techniques [Gabow ’85]:
@ Bitwise scaling: In each iteration read next bit of weights

@ Recursive scaling: Reduce maximum distance by potential
transformation with approximate distances

We follow recursive scaling:
@ Similar to [Klein/Subramanian '97] in PRAM model
@ Compute approximate distances: % - distg(s,v) < ci(s, v) < distg(s,v)
@ Potential transformation: w’(u, v) = wg(u,v) + ai(s, u) — cf(s, V)
Does not change shortest paths
Solve recursively with weights w’: Maximum distance has halved!
But: Want to keep edge weights non-negative

Require: cf(s, v) < az(s,u) + wg(u, v)

Scaling forces us to solve directed problem

The Scaling Approach
Two scaling techniques [Gabow ’85]:
@ Bitwise scaling: In each iteration read next bit of weights

@ Recursive scaling: Reduce maximum distance by potential
transformation with approximate distances

We follow recursive scaling:
@ Similar to [Klein/Subramanian '97] in PRAM model

@ Compute approximate distances: & - distg (s, v) < d(s,v) < distg(s,)

1

2

@ Potential transformation: w’(u,v) = wg(u,v) +d(s,u) — d(s,v)
Does not change shortest paths

Solve recursively with weights w’: Maximum distance has halved!
But: Want to keep edge weights non-negative
Require: cf(s, v) < az(s,u) + wg(u, v)

Scaling forces us to solve directed problem

Inherent dependence on log(Wyax) due to maximum distance

Reduction

Theorem ([Klein/Subramanian ’97])

Suppose auxiliary algorithm computes distance estimate d(s,) such that
@ For every node v: % - distg (s, v) < (f(s, v) < distg(s,v) (approximation)
@ For every edge (u,v): d(s, v) < af(s, u) + wg(u, v) (domination)

Then exact SSSP can be computed by calling auxiliary algorithm O(log(nWpax))
times (+ bookkeeping work).

8/15

Reduction

Theorem ([Klein/Subramanian ’97])

Suppose auxiliary algorithm computes distance estimate d(s,) such that
@ For every node v: % - distg (s, v) < (f(s, v) < distg(s,v) (approximation)
@ For every edge (u,v): d(s, v) < af(s, u) + wg(u, v) (domination)

Then exact SSSP can be computed by calling auxiliary algorithm O(log(nWpax))
times (+ bookkeeping work).

Our contribution: Design suitable auxiliary algorithm

8/15

Reduction

Theorem ([Klein/Subramanian ’97])

Suppose auxiliary algorithm computes distance estimate d(s,) such that
@ For every node v: % - distg (s, v) < (f(s, v) < distg(s,v) (approximation)
@ For every edge (u,v): d(s, v) < cf(s, u) + wg(u, v) (domination)

Then exact SSSP can be computed by calling auxiliary algorithm O(log(nWpax))
times (+ bookkeeping work).

Our contribution: Design suitable auxiliary algorithm

@ Leverage techniques from approximate SSSP

8/15

Reduction

Theorem ([Klein/Subramanian ’97])

Suppose auxiliary algorithm computes distance estimate d(s,) such that
@ For every node v: % - distg (s, v) < (f(s, v) < distg(s,v) (approximation)
@ For every edge (u,v): d(s, v) < af(s, u) + wg(u, v) (domination)

Then exact SSSP can be computed by calling auxiliary algorithm O(log(nWpax))
times (+ bookkeeping work).

Our contribution: Design suitable auxiliary algorithm
@ Leverage techniques from approximate SSSP

@ Careful design to satisfy domination constraint

8/15

9/15

Omitted in this talk:
@ Detailed running time analyis
@ Dealing with 0-weight edges: Reduce to positive edge weights

@ Faster approximation algorithm for directed graphs

Skeleton Graph

ey
/

10/15

Skeleton Graph

Sample O(n/h) skeleton nodes uniformly at random (+ source s)

10/15

Skeleton Graph

Sample O(n/h) skeleton nodes uniformly at random (+ source s)

Lemma (Ullman/Yannakakis ’90)
Every shortest path with h/2 edges contains skeleton with high probability.

Skeleton Graph

Sample O(n/h) skeleton nodes uniformly at random (+ source s)

Lemma (Ullman/Yannakakis ’90)
Every shortest path with h/2 edges contains skeleton with high probability. J

Idea:
@ Reduce to computing SSSP on skeleton graph

Skeleton Graph

Sample O(n/h) skeleton nodes uniformly at random (+ source s)

Lemma (Ullman/Yannakakis ’90)

Every shortest path with h/2 edges contains skeleton with high probability.

Idea:
@ Reduce to computing SSSP on skeleton graph
@ Add skeleton shortcuts

Skeleton Graph

Sample O(n/h) skeleton nodes uniformly at random (+ source s)

Lemma (Ullman/Yannakakis ’90)

Every shortest path with h/2 edges contains skeleton with high probability.

Idea:
@ Reduce to computing SSSP on skeleton graph
@ Add skeleton shortcuts
@ Left to deal with shortest paths with < h edges

Auxiliary Algorithm
@ Sample O(n/h) skeleton nodes

Auxiliary Algorithm

@ Sample O(n/h) skeleton nodes
@ Compute approximate skeleton graph H:

Auxiliary Algorithm

@ Sample O(n/h) skeleton nodes
@ Compute approximate skeleton graph H:

> Compute J(x,~y) for every pair of skeleton nodes x, y s.t.
distg(x,y) < d(x,y) < 2distg(x,y) [Nanongkai "14]
> Set wy(x,y) := %d(x, y)

11/15

Auxiliary Algorithm

@ Sample O(n/h) skeleton nodes
@ Compute approximate skeleton graph H:

> Compute J(x,~y) for every pair of skeleton nodes x, y s.t.

distg(x,y) < d(x,y) < 2distg(x,y) [Nanongkai "14]
> Set wy(x,y) := %d(x, y)

@ Solve exact SSSP on skeleton

11/15

Auxiliary Algorithm

@ Sample O(n/h) skeleton nodes
@ Compute approximate skeleton graph H:

> Compute J(x,~y) for every pair of skeleton nodes x, y s.t.

distg(x,y) < d(x,y) < 2distg(x,y) [Nanongkai "14]
> Set wy(x,y) := %d(x, y)

@ Solve exact SSSP on skeleton
Compute distg (s, x) for every skeleton node x

11/15

Auxiliary Algorithm

@ Sample O(n/h) skeleton nodes
@ Compute approximate skeleton graph H:

> Compute J(x,~y) for every pair of skeleton nodes x, y s.t.
distg(x,y) < d(x,y) < 2distg(x,y) [Nanongkai "14]
> Set wy(x,y) := %d(x, y)

@ Solve exact SSSP on skeleton
Compute distg (s, x) for every skeleton node x

@ Augment original graph G to G’ by adding skeleton shortcuts

11/15

Auxiliary Algorithm

@ Sample O(n/h) skeleton nodes
@ Compute approximate skeleton graph H:
> Compute J(x,~y) for every pair of skeleton nodes x, y s.t.
distg(x,y) < d(x,y) < 2distg(x,y) [Nanongkai "14]
> Set wy(x,y) := %d(x, y)
@ Solve exact SSSP on skeleton
Compute distg (s, x) for every skeleton node x
@ Augment original graph G to G’ by adding skeleton shortcuts
Set wgr (s, x) = disty (s, x) for every skeleton node x

Auxiliary Algorithm

@ Sample O(n/h) skeleton nodes
@ Compute approximate skeleton graph H:

> Compute J(x,~y) for every pair of skeleton nodes x, y s.t.
distg(x,y) < d(x,y) < 2distg(x,y) [Nanongkai "14]
> Set wy(x,y) := %d(x, y)

@ Solve exact SSSP on skeleton
Compute distg (s, x) for every skeleton node x

@ Augment original graph G to G’ by adding skeleton shortcuts
Set wgr (s, x) = disty (s, x) for every skeleton node x

@ Compute h-hop distances in G’ o?(s, V) = disté, (s,v) for every node v

Auxiliary Algorithm

Sample O(n/h) skeleton nodes
Compute approximate skeleton graph H:

> Compute J(x,Ny) for every pair of skeleton nodes x, y s.t.
distg(x,y) < d(x,y) < 2distg(x,y) [Nanongkai "14]
> Set wy(x,y) := %d(x, y)
Solve exact SSSP on skeleton
Compute distg (s, x) for every skeleton node x

Augment original graph G to G’ by adding skeleton shortcuts

Set wgr (s, x) = disty (s, x) for every skeleton node x

Compute h-hop distances in G’ o?(s, V) = disté, (s,v) for every node v
Shortest path using at most h edges: h iterations of Bellman-Ford

Auxiliary Algorithm

@ Sample O(n/h) skeleton nodes
@ Compute approximate skeleton graph H:

> Compute J(x,Ny) for every pair of skeleton nodes x, y s.t.
distg(x,y) < d(x,y) < 2distg(x,y) [Nanongkai "14]
> Set wy(x,y) := %d(x, y)

@ Solve exact SSSP on skeleton
Compute distg (s, x) for every skeleton node x

@ Augment original graph G to G’ by adding skeleton shortcuts
Set wgr (s, x) = disty (s, x) for every skeleton node x

@ Compute h-hop distances in G’ o?(s, V) = disté, (s,v) for every node v
Shortest path using at most h edges: h iterations of Bellman-Ford
Theorem
@ For every node v: % - distg(s,v) < dA(s, v) < distg(s, v) (approximation)

@ For every edge (u,v): (f(s, v) < cf(s, u) + wg(u, v) (domination)

Proof of Domination

@ Need to show: distg, (s,v) < distg, (s,u) + wg(u,v)

Proof of Domination

@ Need to show: distg, (s,v) < distg, (s,u) + wg(u,v)
@ We show that dist}(’;, (s,v) = distg: (s, v)

Proof of Domination

@ Need to show: distg, (s,v) < distg, (s,u) + wg(u,v)
@ We show that dist}(’;, (s,v) = distg: (s, v)
@ Then domination follows from triangle inequality

12/15

Proof of Domination

@ Need to show: distg, (s,v) < distg, (s,u) + wg(u,v)
@ We show that dist}(’;, (s,v) = distg: (s, v)
@ Then domination follows from triangle inequality

ceo

s
Proof idea:

@ Shortest path in G” has the following structure: at most one shortcut
edge to skeleton node followed by a shortest path 7 in G

Proof of Domination

@ Need to show: distg,(s,v) < distg,(s,u) + wg(u, v)
@ We show that dist}(’;, (s,v) = distg: (s, v)
@ Then domination follows from triangle inequality

o e ——
h/2 edges h/2 edges < h/2 edges

s
Proof idea:
@ Shortest path in G” has the following structure: at most one shortcut

edge to skeleton node followed by a shortest path 7 in G
@ Subdivide x into subsequent chunks of h/2 edges

Proof of Domination

@ Need to show: distg,(s,v) < distg,(s,u) + wg(u, v)
@ We show that dist}(’;, (s,v) = distg: (s, v)
@ Then domination follows from triangle inequality

> ® *
t (%
h/2 edges h/2 edges < h/2 edges

s
Proof idea:
@ Shortest path in G” has the following structure: at most one shortcut
edge to skeleton node followed by a shortest path 7 in G

@ Subdivide x into subsequent chunks of h/2 edges
@ With high probability, each chunk contains a skeleton node

Proof of Domination

@ Need to show: distg,(s,v) < distg,(s,u) + wg(u, v)
@ We show that dist}(’;, (s,v) = distg: (s, v)
@ Then domination follows from triangle inequality

e —

(%
h/2 edges h/2 edges < h/2 edges

s
Proof idea:

@ Shortest path in G” has the following structure: at most one shortcut
edge to skeleton node followed by a shortest path 7 in G

@ Subdivide x into subsequent chunks of h/2 edges

@ With high probability, each chunk contains a skeleton node

@ Following skeleton nodes with skeleton edges would be at least as cheap
as following & (underestimated approximation!)

Proof of Domination

@ Need to show: distg, (s,v) < distg, (s,u) + wg(u,v)
@ We show that dist}(’;, (s,v) = distg: (s, v)
@ Then domination follows from triangle inequality

(Q @

N (%
h/2 edges h/2 edges < h/2 edges
Proof idea:

@ Shortest path in G” has the following structure: at most one shortcut
edge to skeleton node followed by a shortest path 7 in G

@ Subdivide x into subsequent chunks of h/2 edges

@ With high probability, each chunk contains a skeleton node

@ Following skeleton nodes with skeleton edges would be at least as cheap
as following & (underestimated approximation!)

@ Shortcut edge in G’ to last skeleton node is as least as cheap

12/15

Proof of Domination

@ Need to show: distg, (s,v) < distg, (s,u) + wg(u,v)
@ We show that dist}(’;, (s,v) = distg: (s, v)
@ Then domination follows from triangle inequality

(Q @

N (%
h/2 edges h/2 edges < h/2 edges
Proof idea:

@ Shortest path in G” has the following structure: at most one shortcut
edge to skeleton node followed by a shortest path 7 in G

@ Subdivide x into subsequent chunks of h/2 edges

@ With high probability, each chunk contains a skeleton node

@ Following skeleton nodes with skeleton edges would be at least as cheap
as following & (underestimated approximation!)

@ Shortcut edge in G’ to last skeleton node is as least as cheap

@ Reason: Triangle inequality for exact distances!

Proof of Domination

@ Need to show: distg, (s,v) < distg, (s,u) + wg(u,v)
@ We show that dist}(’;, (s,v) = distg: (s, v)
@ Then domination follows from triangle inequality

(Q @

N (%
h/2 edges h/2 edges < h/2 edges
Proof idea:

@ Shortest path in G” has the following structure: at most one shortcut
edge to skeleton node followed by a shortest path 7 in G

@ Subdivide x into subsequent chunks of h/2 edges

@ With high probability, each chunk contains a skeleton node

@ Following skeleton nodes with skeleton edges would be at least as cheap
as following & (underestimated approximation!)

@ Shortcut edge in G’ to last skeleton node is as least as cheap

Reason: Triangle inequality for exact distances!

@ Now: remainder of 7 has < h edges

How to Solve on Skeleton

Recall: We need exact SSSP on skeleton

How to Solve on Skeleton

Recall: We need exact SSSP on skeleton

Two Variants:
@ Dijkstra’s algorithm

@ Recurse

How to Solve on Skeleton

Recall: We need exact SSSP on skeleton

Two Variants:
@ Dijkstra’s algorithm
Running time: O(VnD)
© Recurse
Running time: O(ynD* + n3/> + D)

How to Solve on Skeleton

Recall: We need exact SSSP on skeleton

Two Variants:
@ Dijkstra’s algorithm
Running time: O(VnD)
© Recurse
Running time: O(ynD* + n3/> + D)

Why is SSSP instance different?

@ Small size

How to Solve on Skeleton

Recall: We need exact SSSP on skeleton

Two Variants:
@ Dijkstra’s algorithm
Running time: O(VnD)
© Recurse
Running time: O(ynD* + n3/> + D)

Why is SSSP instance different?
@ Small size

@ Computation on skeleton via broadcasting in original network

Discussion: Implementation of Klein/Subramanian?

We borrow many ideas from PRAM algorithm of Klein and Subramanian

14/15

Discussion: Implementation of Klein/Subramanian?

We borrow many ideas from PRAM algorithm of Klein and Subramanian

Main difference:
@ Klein and Subramanian treat skeleton edges as a hop set

@ We solve SSSP on skeleton explicitly

14/15

Discussion: Implementation of Klein/Subramanian?

We borrow many ideas from PRAM algorithm of Klein and Subramanian

Main difference:

@ Klein and Subramanian treat skeleton edges as a hop set
@ We solve SSSP on skeleton explicitly

New trade-off for directed graphs in PRAM model:
e Klein and Subramanian: work O(m+/n) and depth O(~+/n)
@ Our approach: work O((n®/h® + mh + mn/h)) and depth O(h)

Open Problems

@ Match the single-source reachability barrier for SSSP!

Open Problems

@ Match the single-source reachability barrier for SSSP!
» CONGEST model: O(y/nD'* + D) rounds [Ghaffari/Udwani *15]

15/15

Open Problems

@ Match the single-source reachability barrier for SSSP!

» CONGEST model: O(y/nD'* + D) rounds [Ghaffari/Udwani *15]
(Is this tight??)

15/15

Open Problems

@ Match the single-source reachability barrier for SSSP!
» CONGEST model: O(y/nD'* + D) rounds [Ghaffari/Udwani *15]
(Is this tight??)
> PRAM model:

* (?(mh + h*/n) work and O(n/h) depth [Ullman/Yannakakis *90]
* O(m) work and O(n?/3) depth [Fineman ’18]

15/15

Open Problems

@ Match the single-source reachability barrier for SSSP!
» CONGEST model: O(y/nD'* + D) rounds [Ghaffari/Udwani *15]
(Is this tight??)
> PRAM model:
* O(mh + h*/n) work and O(n/h) depth [Ullman/Yannakakis *90]
* O(m) work and O(n?/3) depth [Fineman ’18]

@ Deterministic algorithms?

15/15

Open Problems

@ Match the single-source reachability barrier for SSSP!

» CONGEST model: O(y/nD'* + D) rounds [Ghaffari/Udwani *15]
(Is this tight??)
> PRAM model:

* (?(mh + h*/n) work and O(n/h) depth [Ullman/Yannakakis *90]
* O(m) work and O(n?/3) depth [Fineman ’18]

@ Deterministic algorithms?

Thank you for your attention!

slides: https://www.cosy.sbg.ac.at/~forster/

15/15

