
Fully Dynamic Spanners with
Worst-Case Update Time Guarantees

Greg Bodwin
Stanford University

Sebastian Krinninger
Max Planck Institute for Informatics

European Symposium on Algorithms 2016

1 / 13

Motivation

Computing on Sparser Graphs

Idea: Sparsify graph while (approximately) preserving relevant
properties

Goal: Graph with m′ � n2 edges (where n is number of nodes)

Improves running time / space requirements of algorithms

Sparsification was key to recent progress in dynamic algorithms

Study sparsification as dynamic problem on its own

Amortized vs. Worst-Case Bounds

Many dynamic algorithms amortize running time over sequence of
updates

Not suitable for real-time systems: Hard guarantees needed

2 / 13

Motivation

Computing on Sparser Graphs

Idea: Sparsify graph while (approximately) preserving relevant
properties

Goal: Graph with m′ � n2 edges (where n is number of nodes)

Improves running time / space requirements of algorithms

Sparsification was key to recent progress in dynamic algorithms

Study sparsification as dynamic problem on its own

Amortized vs. Worst-Case Bounds

Many dynamic algorithms amortize running time over sequence of
updates

Not suitable for real-time systems: Hard guarantees needed

2 / 13

Motivation

Computing on Sparser Graphs

Idea: Sparsify graph while (approximately) preserving relevant
properties

Goal: Graph with m′ � n2 edges (where n is number of nodes)

Improves running time / space requirements of algorithms

Sparsification was key to recent progress in dynamic algorithms

Study sparsification as dynamic problem on its own

Amortized vs. Worst-Case Bounds

Many dynamic algorithms amortize running time over sequence of
updates

Not suitable for real-time systems: Hard guarantees needed

2 / 13

Motivation

Computing on Sparser Graphs

Idea: Sparsify graph while (approximately) preserving relevant
properties

Goal: Graph with m′ � n2 edges (where n is number of nodes)

Improves running time / space requirements of algorithms

Sparsification was key to recent progress in dynamic algorithms

Study sparsification as dynamic problem on its own

Amortized vs. Worst-Case Bounds

Many dynamic algorithms amortize running time over sequence of
updates

Not suitable for real-time systems: Hard guarantees needed

2 / 13

Motivation

Computing on Sparser Graphs

Idea: Sparsify graph while (approximately) preserving relevant
properties

Goal: Graph with m′ � n2 edges (where n is number of nodes)

Improves running time / space requirements of algorithms

Sparsification was key to recent progress in dynamic algorithms

Study sparsification as dynamic problem on its own

Amortized vs. Worst-Case Bounds

Many dynamic algorithms amortize running time over sequence of
updates

Not suitable for real-time systems: Hard guarantees needed

2 / 13

Motivation

Computing on Sparser Graphs

Idea: Sparsify graph while (approximately) preserving relevant
properties

Goal: Graph with m′ � n2 edges (where n is number of nodes)

Improves running time / space requirements of algorithms

Sparsification was key to recent progress in dynamic algorithms

Study sparsification as dynamic problem on its own

Amortized vs. Worst-Case Bounds

Many dynamic algorithms amortize running time over sequence of
updates

Not suitable for real-time systems: Hard guarantees needed

2 / 13

Motivation

Computing on Sparser Graphs

Idea: Sparsify graph while (approximately) preserving relevant
properties

Goal: Graph with m′ � n2 edges (where n is number of nodes)

Improves running time / space requirements of algorithms

Sparsification was key to recent progress in dynamic algorithms

Study sparsification as dynamic problem on its own

Amortized vs. Worst-Case Bounds

Many dynamic algorithms amortize running time over sequence of
updates

Not suitable for real-time systems: Hard guarantees needed

2 / 13

Spanners
Definition
A spanner of stretch k is a subgraph H of G such that, for all pairs of nodes
u and v , distH (u,v) ≤ k · distG (u,v).

Fact: Every graph has a (2k − 1)-spanner of size n1+1/k (k ≥ 2) [Folklore]

Essentially tight if girth conjecture is true [Erdős]

3 / 13

Spanners
Definition
A spanner of stretch k is a subgraph H of G such that, for all pairs of nodes
u and v , distH (u,v) ≤ k · distG (u,v).

Fact: Every graph has a (2k − 1)-spanner of size n1+1/k (k ≥ 2) [Folklore]

Essentially tight if girth conjecture is true [Erdős]

3 / 13

Spanners
Definition
A spanner of stretch k is a subgraph H of G such that, for all pairs of nodes
u and v , distH (u,v) ≤ k · distG (u,v).

Fact: Every graph has a (2k − 1)-spanner of size n1+1/k (k ≥ 2) [Folklore]

Essentially tight if girth conjecture is true [Erdős]

3 / 13

Spanners
Definition
A spanner of stretch k is a subgraph H of G such that, for all pairs of nodes
u and v , distH (u,v) ≤ k · distG (u,v).

Fact: Every graph has a (2k − 1)-spanner of size n1+1/k (k ≥ 2) [Folklore]

Essentially tight if girth conjecture is true [Erdős]
3 / 13

Dynamic Problem

undirected G

adversary inserts and
deletes edges

Dynamic
algorithm

spanner H

algorithm adds and
removes edges

Goal: Maintain edges of spanner H with small update time a�er edge
insertion/deletion in G

4 / 13

Dynamic Problem

undirected G

adversary inserts and
deletes edges

Dynamic
algorithm

spanner H

algorithm adds and
removes edges

Goal: Maintain edges of spanner H with small update time a�er edge
insertion/deletion in G

4 / 13

Dynamic Problem

undirected G

adversary inserts and
deletes edges

Dynamic
algorithm

spanner H

algorithm adds and
removes edges

Goal: Maintain edges of spanner H with small update time a�er edge
insertion/deletion in G

4 / 13

Dynamic Problem

undirected G

adversary inserts and
deletes edges

Dynamic
algorithm

spanner H

algorithm adds and
removes edges

Goal: Maintain edges of spanner H with small update time a�er edge
insertion/deletion in G

4 / 13

Our Results and Related Work
Amortized bounds:
stretch size time reference

3 O(n1+1/2) O(n) [Ausiello et al.]
5 O(n1+1/3) O(n) [Ausiello et al.]
2k − 1 O(n1+1/kk log n) O(k2 log2 n) [Baswana et al.]
2k − 1 O(n1+1/kk8 log2 n) O(7k) [Baswana et al.]

Worst-case bounds:
stretch size time reference
2k − 1 O(n1+1/kk log1−1/k n) O(mn−1/k log1/k n) [Elkin]
3 O(n1+1/2log1/2 n log log n) O(n3/4log4 n) Our result
5 O(n1+1/3log2/3 n log log n) O(n5/9log4 n) Our result

⇒We give first sublinear worst-case bounds

Guarantees with high probability against oblivious adversary

This talk: Sparsification of paper (reduces time until BBQ)

Will only show: stretch 3 in worst-case update time O(n5/6)

5 / 13

Our Results and Related Work
Amortized bounds:
stretch size time reference
3 O(n1+1/2) O(n) [Ausiello et al.]
5 O(n1+1/3) O(n) [Ausiello et al.]

2k − 1 O(n1+1/kk log n) O(k2 log2 n) [Baswana et al.]
2k − 1 O(n1+1/kk8 log2 n) O(7k) [Baswana et al.]

Worst-case bounds:
stretch size time reference
2k − 1 O(n1+1/kk log1−1/k n) O(mn−1/k log1/k n) [Elkin]
3 O(n1+1/2log1/2 n log log n) O(n3/4log4 n) Our result
5 O(n1+1/3log2/3 n log log n) O(n5/9log4 n) Our result

⇒We give first sublinear worst-case bounds

Guarantees with high probability against oblivious adversary

This talk: Sparsification of paper (reduces time until BBQ)

Will only show: stretch 3 in worst-case update time O(n5/6)

5 / 13

Our Results and Related Work
Amortized bounds:
stretch size time reference
3 O(n1+1/2) O(n) [Ausiello et al.]
5 O(n1+1/3) O(n) [Ausiello et al.]
2k − 1 O(n1+1/kk log n) O(k2 log2 n) [Baswana et al.]
2k − 1 O(n1+1/kk8 log2 n) O(7k) [Baswana et al.]

Worst-case bounds:
stretch size time reference
2k − 1 O(n1+1/kk log1−1/k n) O(mn−1/k log1/k n) [Elkin]
3 O(n1+1/2log1/2 n log log n) O(n3/4log4 n) Our result
5 O(n1+1/3log2/3 n log log n) O(n5/9log4 n) Our result

⇒We give first sublinear worst-case bounds

Guarantees with high probability against oblivious adversary

This talk: Sparsification of paper (reduces time until BBQ)

Will only show: stretch 3 in worst-case update time O(n5/6)

5 / 13

Our Results and Related Work
Amortized bounds:
stretch size time reference
3 O(n1+1/2) O(n) [Ausiello et al.]
5 O(n1+1/3) O(n) [Ausiello et al.]
2k − 1 O(n1+1/kk log n) O(k2 log2 n) [Baswana et al.]
2k − 1 O(n1+1/kk8 log2 n) O(7k) [Baswana et al.]

Worst-case bounds:

stretch size time reference
2k − 1 O(n1+1/kk log1−1/k n) O(mn−1/k log1/k n) [Elkin]
3 O(n1+1/2log1/2 n log log n) O(n3/4log4 n) Our result
5 O(n1+1/3log2/3 n log log n) O(n5/9log4 n) Our result

⇒We give first sublinear worst-case bounds

Guarantees with high probability against oblivious adversary

This talk: Sparsification of paper (reduces time until BBQ)

Will only show: stretch 3 in worst-case update time O(n5/6)

5 / 13

Our Results and Related Work
Amortized bounds:
stretch size time reference
3 O(n1+1/2) O(n) [Ausiello et al.]
5 O(n1+1/3) O(n) [Ausiello et al.]
2k − 1 O(n1+1/kk log n) O(k2 log2 n) [Baswana et al.]
2k − 1 O(n1+1/kk8 log2 n) O(7k) [Baswana et al.]

Worst-case bounds:
stretch size time reference
2k − 1 O(n1+1/kk log1−1/k n) O(mn−1/k log1/k n) [Elkin]

3 O(n1+1/2log1/2 n log log n) O(n3/4log4 n) Our result
5 O(n1+1/3log2/3 n log log n) O(n5/9log4 n) Our result

⇒We give first sublinear worst-case bounds

Guarantees with high probability against oblivious adversary

This talk: Sparsification of paper (reduces time until BBQ)

Will only show: stretch 3 in worst-case update time O(n5/6)

5 / 13

Our Results and Related Work
Amortized bounds:
stretch size time reference
3 O(n1+1/2) O(n) [Ausiello et al.]
5 O(n1+1/3) O(n) [Ausiello et al.]
2k − 1 O(n1+1/kk log n) O(k2 log2 n) [Baswana et al.]
2k − 1 O(n1+1/kk8 log2 n) O(7k) [Baswana et al.]

Worst-case bounds:
stretch size time reference
2k − 1 O(n1+1/kk log1−1/k n) O(mn−1/k log1/k n) [Elkin]
3 O(n1+1/2log1/2 n log log n) O(n3/4log4 n) Our result
5 O(n1+1/3log2/3 n log log n) O(n5/9log4 n) Our result

⇒We give first sublinear worst-case bounds

Guarantees with high probability against oblivious adversary

This talk: Sparsification of paper (reduces time until BBQ)

Will only show: stretch 3 in worst-case update time O(n5/6)

5 / 13

Our Results and Related Work
Amortized bounds:
stretch size time reference
3 O(n1+1/2) O(n) [Ausiello et al.]
5 O(n1+1/3) O(n) [Ausiello et al.]
2k − 1 O(n1+1/kk log n) O(k2 log2 n) [Baswana et al.]
2k − 1 O(n1+1/kk8 log2 n) O(7k) [Baswana et al.]

Worst-case bounds:
stretch size time reference
2k − 1 O(n1+1/kk log1−1/k n) O(mn−1/k log1/k n) [Elkin]
3 O(n1+1/2log1/2 n log log n) O(n3/4log4 n) Our result
5 O(n1+1/3log2/3 n log log n) O(n5/9log4 n) Our result

⇒We give first sublinear worst-case bounds

Guarantees with high probability against oblivious adversary

This talk: Sparsification of paper (reduces time until BBQ)

Will only show: stretch 3 in worst-case update time O(n5/6)

5 / 13

Our Results and Related Work
Amortized bounds:
stretch size time reference
3 O(n1+1/2) O(n) [Ausiello et al.]
5 O(n1+1/3) O(n) [Ausiello et al.]
2k − 1 O(n1+1/kk log n) O(k2 log2 n) [Baswana et al.]
2k − 1 O(n1+1/kk8 log2 n) O(7k) [Baswana et al.]

Worst-case bounds:
stretch size time reference
2k − 1 O(n1+1/kk log1−1/k n) O(mn−1/k log1/k n) [Elkin]
3 O(n1+1/2log1/2 n log log n) O(n3/4log4 n) Our result
5 O(n1+1/3log2/3 n log log n) O(n5/9log4 n) Our result

⇒We give first sublinear worst-case bounds

Guarantees with high probability against oblivious adversary

This talk: Sparsification of paper (reduces time until BBQ)

Will only show: stretch 3 in worst-case update time O(n5/6)

5 / 13

Our Results and Related Work
Amortized bounds:
stretch size time reference
3 O(n1+1/2) O(n) [Ausiello et al.]
5 O(n1+1/3) O(n) [Ausiello et al.]
2k − 1 O(n1+1/kk log n) O(k2 log2 n) [Baswana et al.]
2k − 1 O(n1+1/kk8 log2 n) O(7k) [Baswana et al.]

Worst-case bounds:
stretch size time reference
2k − 1 O(n1+1/kk log1−1/k n) O(mn−1/k log1/k n) [Elkin]
3 O(n1+1/2log1/2 n log log n) O(n3/4log4 n) Our result
5 O(n1+1/3log2/3 n log log n) O(n5/9log4 n) Our result

⇒We give first sublinear worst-case bounds

Guarantees with high probability against oblivious adversary

This talk: Sparsification of paper (reduces time until BBQ)

Will only show: stretch 3 in worst-case update time O(n5/6)

5 / 13

Our Results and Related Work
Amortized bounds:
stretch size time reference
3 O(n1+1/2) O(n) [Ausiello et al.]
5 O(n1+1/3) O(n) [Ausiello et al.]
2k − 1 O(n1+1/kk log n) O(k2 log2 n) [Baswana et al.]
2k − 1 O(n1+1/kk8 log2 n) O(7k) [Baswana et al.]

Worst-case bounds:
stretch size time reference
2k − 1 O(n1+1/kk log1−1/k n) O(mn−1/k log1/k n) [Elkin]
3 O(n1+1/2log1/2 n log log n) O(n3/4log4 n) Our result
5 O(n1+1/3log2/3 n log log n) O(n5/9log4 n) Our result

⇒We give first sublinear worst-case bounds

Guarantees with high probability against oblivious adversary

This talk: Sparsification of paper (reduces time until BBQ)

Will only show: stretch 3 in worst-case update time O(n5/6)

5 / 13

Spanner by Randomized Clustering

1 Pick O(
√
n log n) centers at random

2 Form clusters: Connect every node to
one of its neighboring centers

⇒ Unclustered nodes have at most
√
n

neighbors with high probability

At any time, spanner consists of following edges:
1 For every clustered node, edge to cluster center
2 For every clustered node v and every other cluster, one edge from v to

other cluster
3 For every node, edge to its first

√
n neighbors

⇒ Spanner has stretch 3 and size O(n1+1/2 log n) whp (standard proof)

6 / 13

Spanner by Randomized Clustering

1 Pick O(
√
n log n) centers at random

2 Form clusters: Connect every node to
one of its neighboring centers

⇒ Unclustered nodes have at most
√
n

neighbors with high probability

At any time, spanner consists of following edges:
1 For every clustered node, edge to cluster center
2 For every clustered node v and every other cluster, one edge from v to

other cluster
3 For every node, edge to its first

√
n neighbors

⇒ Spanner has stretch 3 and size O(n1+1/2 log n) whp (standard proof)

6 / 13

Spanner by Randomized Clustering

1 Pick O(
√
n log n) centers at random

2 Form clusters: Connect every node to
one of its neighboring centers

⇒ Unclustered nodes have at most
√
n

neighbors with high probability

At any time, spanner consists of following edges:
1 For every clustered node, edge to cluster center
2 For every clustered node v and every other cluster, one edge from v to

other cluster
3 For every node, edge to its first

√
n neighbors

⇒ Spanner has stretch 3 and size O(n1+1/2 log n) whp (standard proof)

6 / 13

Spanner by Randomized Clustering

1 Pick O(
√
n log n) centers at random

2 Form clusters: Connect every node to
one of its neighboring centers

⇒ Unclustered nodes have at most
√
n

neighbors with high probability

At any time, spanner consists of following edges:
1 For every clustered node, edge to cluster center
2 For every clustered node v and every other cluster, one edge from v to

other cluster
3 For every node, edge to its first

√
n neighbors

⇒ Spanner has stretch 3 and size O(n1+1/2 log n) whp (standard proof)

6 / 13

Spanner by Randomized Clustering

1 Pick O(
√
n log n) centers at random

2 Form clusters: Connect every node to
one of its neighboring centers

⇒ Unclustered nodes have at most
√
n

neighbors with high probability

At any time, spanner consists of following edges:

1 For every clustered node, edge to cluster center
2 For every clustered node v and every other cluster, one edge from v to

other cluster
3 For every node, edge to its first

√
n neighbors

⇒ Spanner has stretch 3 and size O(n1+1/2 log n) whp (standard proof)

6 / 13

Spanner by Randomized Clustering

1 Pick O(
√
n log n) centers at random

2 Form clusters: Connect every node to
one of its neighboring centers

⇒ Unclustered nodes have at most
√
n

neighbors with high probability

At any time, spanner consists of following edges:
1 For every clustered node, edge to cluster center

2 For every clustered node v and every other cluster, one edge from v to
other cluster

3 For every node, edge to its first
√
n neighbors

⇒ Spanner has stretch 3 and size O(n1+1/2 log n) whp (standard proof)

6 / 13

Spanner by Randomized Clustering

1 Pick O(
√
n log n) centers at random

2 Form clusters: Connect every node to
one of its neighboring centers

⇒ Unclustered nodes have at most
√
n

neighbors with high probability

At any time, spanner consists of following edges:
1 For every clustered node, edge to cluster center
2 For every clustered node v and every other cluster, one edge from v to

other cluster

3 For every node, edge to its first
√
n neighbors

⇒ Spanner has stretch 3 and size O(n1+1/2 log n) whp (standard proof)

6 / 13

Spanner by Randomized Clustering

1 Pick O(
√
n log n) centers at random

2 Form clusters: Connect every node to
one of its neighboring centers

⇒ Unclustered nodes have at most
√
n

neighbors with high probability

At any time, spanner consists of following edges:
1 For every clustered node, edge to cluster center
2 For every clustered node v and every other cluster, one edge from v to

other cluster
3 For every node, edge to its first

√
n neighbors

⇒ Spanner has stretch 3 and size O(n1+1/2 log n) whp (standard proof)

6 / 13

Spanner by Randomized Clustering

1 Pick O(
√
n log n) centers at random

2 Form clusters: Connect every node to
one of its neighboring centers

⇒ Unclustered nodes have at most
√
n

neighbors with high probability

At any time, spanner consists of following edges:
1 For every clustered node, edge to cluster center
2 For every clustered node v and every other cluster, one edge from v to

other cluster
3 For every node, edge to its first

√
n neighbors

⇒ Spanner has stretch 3 and size O(n1+1/2 log n) whp (standard proof)

6 / 13

Maintaining Spanner I

Random choice of centers at initialization

Nodes might join or leave clusters a�er
update in G

For every clustered node v and every other
cluster C, maintain set N (v,C): edges
between v and C

Keep one entry of N (v,C) in spanner

Whenever node u changes from cluster C to
cluster C′:
For every incident edge (u,v)

Remove (u,v) from N (v,C)
Add (u,v) to N (v,C′)

⇒ Update time: O(maxdeg (G) log n)

7 / 13

Maintaining Spanner I

Random choice of centers at initialization

Nodes might join or leave clusters a�er
update in G

For every clustered node v and every other
cluster C, maintain set N (v,C): edges
between v and C

Keep one entry of N (v,C) in spanner

Whenever node u changes from cluster C to
cluster C′:
For every incident edge (u,v)

Remove (u,v) from N (v,C)
Add (u,v) to N (v,C′)

⇒ Update time: O(maxdeg (G) log n)

7 / 13

Maintaining Spanner I

Random choice of centers at initialization

Nodes might join or leave clusters a�er
update in G

For every clustered node v and every other
cluster C, maintain set N (v,C): edges
between v and C

Keep one entry of N (v,C) in spanner

Whenever node u changes from cluster C to
cluster C′:
For every incident edge (u,v)

Remove (u,v) from N (v,C)
Add (u,v) to N (v,C′)

⇒ Update time: O(maxdeg (G) log n)

7 / 13

Maintaining Spanner I

Random choice of centers at initialization

Nodes might join or leave clusters a�er
update in G

For every clustered node v and every other
cluster C, maintain set N (v,C): edges
between v and C

Keep one entry of N (v,C) in spanner

Whenever node u changes from cluster C to
cluster C′:
For every incident edge (u,v)

Remove (u,v) from N (v,C)
Add (u,v) to N (v,C′)

⇒ Update time: O(maxdeg (G) log n)

7 / 13

Maintaining Spanner I

Random choice of centers at initialization

Nodes might join or leave clusters a�er
update in G

For every clustered node v and every other
cluster C, maintain set N (v,C): edges
between v and C

Keep one entry of N (v,C) in spanner

Whenever node u changes from cluster C to
cluster C′:
For every incident edge (u,v)

Remove (u,v) from N (v,C)
Add (u,v) to N (v,C′)

⇒ Update time: O(maxdeg (G) log n)

7 / 13

Maintaining Spanner I

Random choice of centers at initialization

Nodes might join or leave clusters a�er
update in G

For every clustered node v and every other
cluster C, maintain set N (v,C): edges
between v and C

Keep one entry of N (v,C) in spanner

Whenever node u changes from cluster C to
cluster C′:
For every incident edge (u,v)

Remove (u,v) from N (v,C)
Add (u,v) to N (v,C′)

⇒ Update time: O(maxdeg (G) log n)

7 / 13

Maintaining Spanner II
More fine-grained approach:

Orient edges in arbitrary way

For every clustered node v and every other
cluster C, maintain set In(v,C): incoming
edges from cluster C to v

Keep one entry of In(v,C) in spanner

No connection between clusters lost! For
inter-cluster edge, one endpoint responsible
to connect clusters

Whenever node u changes from cluster C to
cluster C′:
For every outgoing edge (u,v) of v

Remove u from N (v, i)
Add u to N (v, j)

⇒ Update time: O(maxoutdeg (~G) log n)

8 / 13

Maintaining Spanner II
More fine-grained approach:

Orient edges in arbitrary way

For every clustered node v and every other
cluster C, maintain set In(v,C): incoming
edges from cluster C to v

Keep one entry of In(v,C) in spanner

No connection between clusters lost! For
inter-cluster edge, one endpoint responsible
to connect clusters

Whenever node u changes from cluster C to
cluster C′:
For every outgoing edge (u,v) of v

Remove u from N (v, i)
Add u to N (v, j)

⇒ Update time: O(maxoutdeg (~G) log n)

8 / 13

Maintaining Spanner II
More fine-grained approach:

Orient edges in arbitrary way

For every clustered node v and every other
cluster C, maintain set In(v,C): incoming
edges from cluster C to v

Keep one entry of In(v,C) in spanner

No connection between clusters lost! For
inter-cluster edge, one endpoint responsible
to connect clusters

Whenever node u changes from cluster C to
cluster C′:
For every outgoing edge (u,v) of v

Remove u from N (v, i)
Add u to N (v, j)

⇒ Update time: O(maxoutdeg (~G) log n)

8 / 13

Maintaining Spanner II
More fine-grained approach:

Orient edges in arbitrary way

For every clustered node v and every other
cluster C, maintain set In(v,C): incoming
edges from cluster C to v

Keep one entry of In(v,C) in spanner

No connection between clusters lost! For
inter-cluster edge, one endpoint responsible
to connect clusters

Whenever node u changes from cluster C to
cluster C′:
For every outgoing edge (u,v) of v

Remove u from N (v, i)
Add u to N (v, j)

⇒ Update time: O(maxoutdeg (~G) log n)

8 / 13

Maintaining Spanner II
More fine-grained approach:

Orient edges in arbitrary way

For every clustered node v and every other
cluster C, maintain set In(v,C): incoming
edges from cluster C to v

Keep one entry of In(v,C) in spanner

No connection between clusters lost! For
inter-cluster edge, one endpoint responsible
to connect clusters

Whenever node u changes from cluster C to
cluster C′:
For every outgoing edge (u,v) of v

Remove u from N (v, i)
Add u to N (v, j)

⇒ Update time: O(maxoutdeg (~G) log n)

8 / 13

Maintaining Spanner II
More fine-grained approach:

Orient edges in arbitrary way

For every clustered node v and every other
cluster C, maintain set In(v,C): incoming
edges from cluster C to v

Keep one entry of In(v,C) in spanner

No connection between clusters lost! For
inter-cluster edge, one endpoint responsible
to connect clusters

Whenever node u changes from cluster C to
cluster C′:
For every outgoing edge (u,v) of v

Remove u from N (v, i)
Add u to N (v, j)

⇒ Update time: O(maxoutdeg (~G) log n)

8 / 13

Maintaining Spanner II
More fine-grained approach:

Orient edges in arbitrary way

For every clustered node v and every other
cluster C, maintain set In(v,C): incoming
edges from cluster C to v

Keep one entry of In(v,C) in spanner

No connection between clusters lost! For
inter-cluster edge, one endpoint responsible
to connect clusters

Whenever node u changes from cluster C to
cluster C′:
For every outgoing edge (u,v) of v

Remove u from N (v, i)
Add u to N (v, j)

⇒ Update time: O(maxoutdeg (~G) log n)

8 / 13

Partitioning Trick
Idea: Partition outgoing edges each node into groups of size s

undirected graph G
orient edges ↓

~G
partition into subgraphs ↓ ↓ . . . ↓ ↓

~G1 ~G2 . . . ~Gt−1 ~Gt

maintain sub-spanners ↓ ↓ . . . ↓ ↓

~H1 ~H2 . . . ~Ht−1 ~Ht

take union ↓ ↓ . . . ↓ ↓

spanner H

Key observation
Each edge update has to be performed in only one subgraph

Update time: O(maxoutdeg (~Gi)) = O(s)
Size of spanner: O(t |Hi |) = O(tn1+1/2 log n) = O(n2+1/2/s)

9 / 13

Partitioning Trick
Idea: Partition outgoing edges each node into groups of size s

undirected graph G

orient edges ↓

~G
partition into subgraphs ↓ ↓ . . . ↓ ↓

~G1 ~G2 . . . ~Gt−1 ~Gt

maintain sub-spanners ↓ ↓ . . . ↓ ↓

~H1 ~H2 . . . ~Ht−1 ~Ht

take union ↓ ↓ . . . ↓ ↓

spanner H

Key observation
Each edge update has to be performed in only one subgraph

Update time: O(maxoutdeg (~Gi)) = O(s)
Size of spanner: O(t |Hi |) = O(tn1+1/2 log n) = O(n2+1/2/s)

9 / 13

Partitioning Trick
Idea: Partition outgoing edges each node into groups of size s

undirected graph G
orient edges ↓

~G

partition into subgraphs ↓ ↓ . . . ↓ ↓

~G1 ~G2 . . . ~Gt−1 ~Gt

maintain sub-spanners ↓ ↓ . . . ↓ ↓

~H1 ~H2 . . . ~Ht−1 ~Ht

take union ↓ ↓ . . . ↓ ↓

spanner H

Key observation
Each edge update has to be performed in only one subgraph

Update time: O(maxoutdeg (~Gi)) = O(s)
Size of spanner: O(t |Hi |) = O(tn1+1/2 log n) = O(n2+1/2/s)

9 / 13

Partitioning Trick
Idea: Partition outgoing edges each node into groups of size s

undirected graph G
orient edges ↓

~G
partition into subgraphs ↓ ↓ . . . ↓ ↓

~G1 ~G2 . . . ~Gt−1 ~Gt

maintain sub-spanners ↓ ↓ . . . ↓ ↓

~H1 ~H2 . . . ~Ht−1 ~Ht

take union ↓ ↓ . . . ↓ ↓

spanner H

Key observation
Each edge update has to be performed in only one subgraph

Update time: O(maxoutdeg (~Gi)) = O(s)
Size of spanner: O(t |Hi |) = O(tn1+1/2 log n) = O(n2+1/2/s)

9 / 13

Partitioning Trick
Idea: Partition outgoing edges each node into groups of size s

undirected graph G
orient edges ↓

~G
partition into subgraphs ↓ ↓ . . . ↓ ↓

~G1 ~G2 . . . ~Gt−1 ~Gt

maintain sub-spanners ↓ ↓ . . . ↓ ↓

~H1 ~H2 . . . ~Ht−1 ~Ht

take union ↓ ↓ . . . ↓ ↓

spanner H

Key observation
Each edge update has to be performed in only one subgraph

Update time: O(maxoutdeg (~Gi)) = O(s)
Size of spanner: O(t |Hi |) = O(tn1+1/2 log n) = O(n2+1/2/s)

9 / 13

Partitioning Trick
Idea: Partition outgoing edges each node into groups of size s

undirected graph G
orient edges ↓

~G
partition into subgraphs ↓ ↓ . . . ↓ ↓

~G1 ~G2 . . . ~Gt−1 ~Gt

maintain sub-spanners ↓ ↓ . . . ↓ ↓

~H1 ~H2 . . . ~Ht−1 ~Ht

take union ↓ ↓ . . . ↓ ↓

spanner H

Key observation
Each edge update has to be performed in only one subgraph

Update time: O(maxoutdeg (~Gi)) = O(s)
Size of spanner: O(t |Hi |) = O(tn1+1/2 log n) = O(n2+1/2/s)

9 / 13

Partitioning Trick
Idea: Partition outgoing edges each node into groups of size s

undirected graph G
orient edges ↓

~G
partition into subgraphs ↓ ↓ . . . ↓ ↓

~G1 ~G2 . . . ~Gt−1 ~Gt

maintain sub-spanners ↓ ↓ . . . ↓ ↓

~H1 ~H2 . . . ~Ht−1 ~Ht

take union ↓ ↓ . . . ↓ ↓

spanner H

Key observation
Each edge update has to be performed in only one subgraph

Update time: O(maxoutdeg (~Gi)) = O(s)

Size of spanner: O(t |Hi |) = O(tn1+1/2 log n) = O(n2+1/2/s)

9 / 13

Partitioning Trick
Idea: Partition outgoing edges each node into groups of size s

undirected graph G
orient edges ↓

~G
partition into subgraphs ↓ ↓ . . . ↓ ↓

~G1 ~G2 . . . ~Gt−1 ~Gt

maintain sub-spanners ↓ ↓ . . . ↓ ↓

~H1 ~H2 . . . ~Ht−1 ~Ht

take union ↓ ↓ . . . ↓ ↓

spanner H

Key observation
Each edge update has to be performed in only one subgraph

Update time: O(maxoutdeg (~Gi)) = O(s)
Size of spanner: O(t |Hi |) = O(tn1+1/2 log n) = O(n2+1/2/s)

9 / 13

Smaller Spanner Size
Hierarchical approach:

Clustering with O((n log n)/d)
centers

A: Edges between clustered nodes

B: Edges incident to unclustered
nodes

|A| ≤ O((n2 log n)/d)

Every node in B has degree ≤ d

Apply spanner algorithm on B
Update Time: O(d log n)

A

B

Observation: With every update in G, at most 4 edges are added to or
removed from in H

Every node has edges to its first d neighbors in spanner

When node becomes unclustered, incident edges already contained

10 / 13

Smaller Spanner Size
Hierarchical approach:

Clustering with O((n log n)/d)
centers

A: Edges between clustered nodes

B: Edges incident to unclustered
nodes

|A| ≤ O((n2 log n)/d)

Every node in B has degree ≤ d

Apply spanner algorithm on B
Update Time: O(d log n)

A

B

Observation: With every update in G, at most 4 edges are added to or
removed from in H

Every node has edges to its first d neighbors in spanner

When node becomes unclustered, incident edges already contained

10 / 13

Smaller Spanner Size
Hierarchical approach:

Clustering with O((n log n)/d)
centers

A: Edges between clustered nodes

B: Edges incident to unclustered
nodes

|A| ≤ O((n2 log n)/d)

Every node in B has degree ≤ d

Apply spanner algorithm on B
Update Time: O(d log n)

A

B

Observation: With every update in G, at most 4 edges are added to or
removed from in H

Every node has edges to its first d neighbors in spanner

When node becomes unclustered, incident edges already contained

10 / 13

Smaller Spanner Size
Hierarchical approach:

Clustering with O((n log n)/d)
centers

A: Edges between clustered nodes

B: Edges incident to unclustered
nodes

|A| ≤ O((n2 log n)/d)

Every node in B has degree ≤ d

Apply spanner algorithm on B
Update Time: O(d log n)

A

B

Observation: With every update in G, at most 4 edges are added to or
removed from in H

Every node has edges to its first d neighbors in spanner

When node becomes unclustered, incident edges already contained

10 / 13

Smaller Spanner Size
Hierarchical approach:

Clustering with O((n log n)/d)
centers

A: Edges between clustered nodes

B: Edges incident to unclustered
nodes

|A| ≤ O((n2 log n)/d)

Every node in B has degree ≤ d

Apply spanner algorithm on B
Update Time: O(d log n)

A

B

Observation: With every update in G, at most 4 edges are added to or
removed from in H

Every node has edges to its first d neighbors in spanner

When node becomes unclustered, incident edges already contained

10 / 13

Smaller Spanner Size
Hierarchical approach:

Clustering with O((n log n)/d)
centers

A: Edges between clustered nodes

B: Edges incident to unclustered
nodes

|A| ≤ O((n2 log n)/d)

Every node in B has degree ≤ d

Apply spanner algorithm on B
Update Time: O(d log n)

A

B

Observation: With every update in G, at most 4 edges are added to or
removed from in H

Every node has edges to its first d neighbors in spanner

When node becomes unclustered, incident edges already contained

10 / 13

Full Algorithm
undirected graph G

orient edges ↓

~G
partition into subgraphs ↓ . . . ↓

~G1 . . . ~Gt

maintain partitioned sub-spanners ↓ ↓ . . . ↓ ↓

A1 B1 . . . At Bt

union of unclustered parts ↓ . . . ↓

B
maintain spanner ↓

H′

Final spanner: H = A1 ∪ · · · ∪ At ∪ H′

Update time: O(s + td) = O(s + nd/s) = O(n5/6)

Size of spanner: O(t · n2/d + n1+1/2) = O(n3/(sd) + n1+1/2) = O(n1+1/2)

s = n5/6, d = n2/3, logarithms omi�ed

11 / 13

Full Algorithm
undirected graph G
orient edges ↓

~G

partition into subgraphs ↓ . . . ↓
~G1 . . . ~Gt

maintain partitioned sub-spanners ↓ ↓ . . . ↓ ↓

A1 B1 . . . At Bt

union of unclustered parts ↓ . . . ↓

B
maintain spanner ↓

H′

Final spanner: H = A1 ∪ · · · ∪ At ∪ H′

Update time: O(s + td) = O(s + nd/s) = O(n5/6)

Size of spanner: O(t · n2/d + n1+1/2) = O(n3/(sd) + n1+1/2) = O(n1+1/2)

s = n5/6, d = n2/3, logarithms omi�ed

11 / 13

Full Algorithm
undirected graph G
orient edges ↓

~G
partition into subgraphs ↓ . . . ↓

~G1 . . . ~Gt

maintain partitioned sub-spanners ↓ ↓ . . . ↓ ↓

A1 B1 . . . At Bt

union of unclustered parts ↓ . . . ↓

B
maintain spanner ↓

H′

Final spanner: H = A1 ∪ · · · ∪ At ∪ H′

Update time: O(s + td) = O(s + nd/s) = O(n5/6)

Size of spanner: O(t · n2/d + n1+1/2) = O(n3/(sd) + n1+1/2) = O(n1+1/2)

s = n5/6, d = n2/3, logarithms omi�ed

11 / 13

Full Algorithm
undirected graph G
orient edges ↓

~G
partition into subgraphs ↓ . . . ↓

~G1 . . . ~Gt

maintain partitioned sub-spanners ↓ ↓ . . . ↓ ↓

A1 B1 . . . At Bt

union of unclustered parts ↓ . . . ↓

B
maintain spanner ↓

H′

Final spanner: H = A1 ∪ · · · ∪ At ∪ H′

Update time: O(s + td) = O(s + nd/s) = O(n5/6)

Size of spanner: O(t · n2/d + n1+1/2) = O(n3/(sd) + n1+1/2) = O(n1+1/2)

s = n5/6, d = n2/3, logarithms omi�ed

11 / 13

Full Algorithm
undirected graph G
orient edges ↓

~G
partition into subgraphs ↓ . . . ↓

~G1 . . . ~Gt

maintain partitioned sub-spanners ↓ ↓ . . . ↓ ↓

A1 B1 . . . At Bt

union of unclustered parts ↓ . . . ↓

B

maintain spanner ↓

H′

Final spanner: H = A1 ∪ · · · ∪ At ∪ H′

Update time: O(s + td) = O(s + nd/s) = O(n5/6)

Size of spanner: O(t · n2/d + n1+1/2) = O(n3/(sd) + n1+1/2) = O(n1+1/2)

s = n5/6, d = n2/3, logarithms omi�ed

11 / 13

Full Algorithm
undirected graph G
orient edges ↓

~G
partition into subgraphs ↓ . . . ↓

~G1 . . . ~Gt

maintain partitioned sub-spanners ↓ ↓ . . . ↓ ↓

A1 B1 . . . At Bt

union of unclustered parts ↓ . . . ↓

B
maintain spanner ↓

H′

Final spanner: H = A1 ∪ · · · ∪ At ∪ H′

Update time: O(s + td) = O(s + nd/s) = O(n5/6)

Size of spanner: O(t · n2/d + n1+1/2) = O(n3/(sd) + n1+1/2) = O(n1+1/2)

s = n5/6, d = n2/3, logarithms omi�ed

11 / 13

Full Algorithm
undirected graph G
orient edges ↓

~G
partition into subgraphs ↓ . . . ↓

~G1 . . . ~Gt

maintain partitioned sub-spanners ↓ ↓ . . . ↓ ↓

A1 B1 . . . At Bt

union of unclustered parts ↓ . . . ↓

B
maintain spanner ↓

H′

Final spanner: H = A1 ∪ · · · ∪ At ∪ H′

Update time: O(s + td) = O(s + nd/s) = O(n5/6)

Size of spanner: O(t · n2/d + n1+1/2) = O(n3/(sd) + n1+1/2) = O(n1+1/2)

s = n5/6, d = n2/3, logarithms omi�ed

11 / 13

Full Algorithm
undirected graph G
orient edges ↓

~G
partition into subgraphs ↓ . . . ↓

~G1 . . . ~Gt

maintain partitioned sub-spanners ↓ ↓ . . . ↓ ↓

A1 B1 . . . At Bt

union of unclustered parts ↓ . . . ↓

B
maintain spanner ↓

H′

Final spanner: H = A1 ∪ · · · ∪ At ∪ H′

Update time: O(s + td) = O(s + nd/s) = O(n5/6)

Size of spanner: O(t · n2/d + n1+1/2) = O(n3/(sd) + n1+1/2) = O(n1+1/2)

s = n5/6, d = n2/3, logarithms omi�ed

11 / 13

Full Algorithm
undirected graph G
orient edges ↓

~G
partition into subgraphs ↓ . . . ↓

~G1 . . . ~Gt

maintain partitioned sub-spanners ↓ ↓ . . . ↓ ↓

A1 B1 . . . At Bt

union of unclustered parts ↓ . . . ↓

B
maintain spanner ↓

H′

Final spanner: H = A1 ∪ · · · ∪ At ∪ H′

Update time: O(s + td) = O(s + nd/s) = O(n5/6)

Size of spanner: O(t · n2/d + n1+1/2) = O(n3/(sd) + n1+1/2) = O(n1+1/2)

s = n5/6, d = n2/3, logarithms omi�ed

11 / 13

Full Algorithm
undirected graph G
orient edges ↓

~G
partition into subgraphs ↓ . . . ↓

~G1 . . . ~Gt

maintain partitioned sub-spanners ↓ ↓ . . . ↓ ↓

A1 B1 . . . At Bt

union of unclustered parts ↓ . . . ↓

B
maintain spanner ↓

H′

Final spanner: H = A1 ∪ · · · ∪ At ∪ H′

Update time: O(s + td) = O(s + nd/s) = O(n5/6)
Size of spanner: O(t · n2/d + n1+1/2) = O(n3/(sd) + n1+1/2) = O(n1+1/2)

s = n5/6, d = n2/3, logarithms omi�ed

11 / 13

Conclusion

Summary:
Main idea: Orienting and partitioning edges

Careful hierarchy unleashes full potential

3-spanner: O(n3/4 log4 n) update time

5-spanner: O(n5/9 log4 n) update time

Open Problems:
Emerging barrier of

√
n: lower bound?

Worst-case update time for larger stretches

Sublinear deterministic algorithms

12 / 13

Conclusion

Summary:
Main idea: Orienting and partitioning edges

Careful hierarchy unleashes full potential

3-spanner: O(n3/4 log4 n) update time

5-spanner: O(n5/9 log4 n) update time

Open Problems:
Emerging barrier of

√
n: lower bound?

Worst-case update time for larger stretches

Sublinear deterministic algorithms

12 / 13

Conclusion

Summary:
Main idea: Orienting and partitioning edges

Careful hierarchy unleashes full potential

3-spanner: O(n3/4 log4 n) update time

5-spanner: O(n5/9 log4 n) update time

Open Problems:
Emerging barrier of

√
n: lower bound?

Worst-case update time for larger stretches

Sublinear deterministic algorithms

12 / 13

�estions?

13 / 13

