Fully Dynamic Spanners with
Worst-Case Update Time Guarantees

Greg Bodwin Sebastian Krinninger
Stanford University Max Planck Institute for Informatics

European Symposium on Algorithms 2016

/13

Motivation

Computing on Sparser Graphs

@ ldea: Sparsify graph while (approximately) preserving relevant
properties

13

Motivation

Computing on Sparser Graphs

@ ldea: Sparsify graph while (approximately) preserving relevant
properties

@ Goal: Graph with m" < n? edges (where n is number of nodes)

13

Motivation

Computing on Sparser Graphs

@ ldea: Sparsify graph while (approximately) preserving relevant
properties

@ Goal: Graph with m" < n? edges (where n is number of nodes)

@ Improves running time / space requirements of algorithms

13

Motivation

Computing on Sparser Graphs
@ ldea: Sparsify graph while (approximately) preserving relevant
properties
@ Goal: Graph with m" < n? edges (where n is number of nodes)
@ Improves running time / space requirements of algorithms
@ Sparsification was key to recent progress in dynamic algorithms

@ Study sparsification as dynamic problem on its own

Motivation

Computing on Sparser Graphs
@ ldea: Sparsify graph while (approximately) preserving relevant
properties
@ Goal: Graph with m" < n? edges (where n is number of nodes)
@ Improves running time / space requirements of algorithms
@ Sparsification was key to recent progress in dynamic algorithms

@ Study sparsification as dynamic problem on its own

Amortized vs. Worst-Case Bounds

Motivation

Computing on Sparser Graphs
@ ldea: Sparsify graph while (approximately) preserving relevant
properties
@ Goal: Graph with m" < n? edges (where n is number of nodes)
@ Improves running time / space requirements of algorithms
@ Sparsification was key to recent progress in dynamic algorithms

@ Study sparsification as dynamic problem on its own

Amortized vs. Worst-Case Bounds

@ Many dynamic algorithms amortize running time over sequence of
updates

Motivation

Computing on Sparser Graphs

Idea: Sparsify graph while (approximately) preserving relevant
properties

Goal: Graph with m’ < n? edges (where n is number of nodes)
Improves running time / space requirements of algorithms

Sparsification was key to recent progress in dynamic algorithms

Study sparsification as dynamic problem on its own

Amortized vs. Worst-Case Bounds

@ Many dynamic algorithms amortize running time over sequence of
updates

@ Not suitable for real-time systems: Hard guarantees needed

Spanners

Definition
A spanner of stretch k is a subgraph H of G such that, for all pairs of nodes
u and v, disty(u,v) < k - distg(u, v).

13

Spanners

desJ

of no

bgraph H of G such that, for all pairs

—~
>
=)

U(
c =2
o S
x X
= VI
C\n/
EES
s =
S(H\
e
o g ©
= BN
= B
£ &8 T
- Qa C
v N
O < s

Spanners

odesJ

of n

V).

bgraph H of G such that, for all pairs

(u,

of stretch k is a su
v) < k- distg

u and v, disty(u,

Definition
A spanner

Spanners

A spanner of stretch k is a subgraph H of G such that, for all pairs of nodes

Definition
u and v, disty(u,v) < k - distg(u, v). J

Fact: Every graph has a (2k — 1)-spanner of size n'*'/* (k > 2) [Folklore]
Essentially tight if girth conjecture is true [Erdés]

Dynamic Problem

undirected G

spanner H

Dynamic
algorithm

Dynamic Problem

undirected G

Dynamic
algorithm

adversary inserts and
deletes edges

spanner H

13

Dynamic Problem

undirected G

spanner H

Dynamic

algorithm

B A

adversary inserts and

lgorith d
deletes edges algorithm adds an

removes edges

Dynamic Problem

undirected G

B
AR

Vavae,
PaNig,
S

adversary inserts and
deletes edges

r Dynamic

algorithm

|

A

spanner H

algorithm adds and
removes edges

Goal: Maintain edges of spanner H with small update time after edge

insertion/deletion in G

Our Results and Related Work

Amortized bounds:
stretch size time

reference

Our Results and Related Work

Amortized bounds:
stretch size time reference

3 O(n'*1/?) O(n) [Ausiello et al.]
5 O(n'*1/3) O(n) [Ausiello et al.]

Our Results and Related Work

Amortized bounds:

stretch
3

5

2k -1

2k -1

size

O(n1+1/2)
O(n1+1/3)
O(n"*"*klog n)
O(n1+1/kk8]OgZ n)

time

O(n)

O(n)
O(k?log? n)
0(7%)

reference
[Ausiello et al.]
[Ausiello et al.]
[Baswana et al.]
[Baswana et al.]

Our Results and Related Work

Amortized bounds:
stretch size

3 O(n1+1/2)

5 O(n1+1/3)

2k—1 O(n""V*klog n)

2k—=1 O(n"™VkiE log? n)
Worst-case bounds:

time

O(n)

O(n)
O(k?log? n)
0(7%)

reference
[Ausiello et al.]
[Ausiello et al.]
[Baswana et al.]
[Baswana et al.]

Our Results and Related Work

Amortized bounds:

size

O(n1+1/2)
O(n1+1/3)
O(n"*"*klog n)
O(n1+1/kk8]Og2 n)

Worst-case bounds:

stretch
3

5

2k — 1
2k — 1
stretch
2k —1

size
O(n1+1/kk [Og17]/k n)

time
O(n)
O(n)

0(7%)

reference
[Ausiello et al.]
Ausiello et al.]

[
O(k?log®n) [Baswana et al.]
[

Baswana et al.]

time reference
O(mn"*log" n) [Elkin]

Our Results and Related Work

Amortized bounds:

size time
O(n1+1/2) O(n)
O(n1+1/3) O(n)

reference
[Ausiello et al.]
Ausiello et al.]

[
O(n1+1/kl< log n) O(k? log2 n) [Baswana et al.]
[

O(n™* Vi log?) O(7%)

Worst-case bounds:

stretch
3
5
2k — 1
2k — 1
stretch
2k —1
3
5

size

O(n1+1/kk[0g17]/k n)
O(n"*"2log'/? nlog log n)
O(n"*"3log?’® nlog log n)

Baswana et al.]

time reference
O(mn"*log" n) [Elkin]
O(n*'*log* n) Our result

O(n*"°log* n) Our result

Our Results and Related Work

Amortized bounds:

stretch size time
3 O(n'*1/?) O(n)
5 O(n'*1/3) O(n)

2k—1 O(n""V*klog n) O(k?log? n)
2k—1 O(n"™VkiElog? n) O(7%)
Worst-case bounds:

reference
[Ausiello et al.]
[Ausiello et al.]
[Baswana et al.]
[

Baswana et al.]

stretch size time reference
2k—1 O(n"™*Vkilog'= 1k p) O(mn"*log" n) [Elkin]

3 o(n"*"2log'? nloglogn) O(m**log* n) Our result
5 O(n"*"3log?3 nloglogn) O(n*°log* n) Our result

= We give first sublinear worst-case bounds

Our Results and Related Work

Amortized bounds:

stretch size time reference
3 O(n'*1/?) O(n) [Ausiello et al.]
5 O(n'*1/3) O(n) Ausiello et al.]

(
2k—1 O(n""V*klog n) O(k?log? n) [Baswana et al.]
2k—1 O(n"™VkiElog? n) O(7%) [
Worst-case bounds:

Baswana et al.]

stretch size time reference
2k—1 O(n"™*Vkilog'= 1k p) O(mn"*log" n) [Elkin]

3 o(n"*"2log'? nloglogn) O(m**log* n) Our result
5 O(n"*"3log?3 nloglogn) O(n*°log* n) Our result

= We give first sublinear worst-case bounds

Guarantees with high probability against oblivious adversary

Our Results and Related Work

Amortized bounds:

stretch size time reference
3 O(n'*1/?) O(n) [Ausiello et al.]
5 O(n'*1/3) O(n) Ausiello et al.]

([

2k—1 O(n""V*klog n) O(k?log? n) [Baswana et al.]
2k—1 O(n"™VkiElog? n) O(7%) [

Worst-case bounds:

Baswana et al.]

stretch size time reference
2k—1 O(n"™*Vkilog'= 1k p) O(mn"*log" n) [Elkin]

3 o(n"*"2log'? nloglogn) O(m**log* n) Our result
5 O(n"*"3log?3 nloglogn) O(n*°log* n) Our result

= We give first sublinear worst-case bounds

Guarantees with high probability against oblivious adversary

This talk: Sparsification of paper (reduces time until BBQ)

Our Results and Related Work

Amortized bounds:

stretch size time reference
3 O(n'*1/?) O(n) [Ausiello et al.]
5 O(n'*1/3) O(n) Ausiello et al.]

([

2k—1 O(n""V*klog n) O(k?log? n) [Baswana et al.]
2k—1 O(n"™VkiElog? n) O(7%) [

Worst-case bounds:

Baswana et al.]

stretch size time reference
2k—1 O(n"™*Vkilog'= 1k p) O(mn"*log" n) [Elkin]

3 o(n"*"2log'? nloglogn) O(m**log* n) Our result
5 O(n"*"3log?3 nloglogn) O(n*°log* n) Our result

= We give first sublinear worst-case bounds

Guarantees with high probability against oblivious adversary

This talk: Sparsification of paper (reduces time until BBQ)

Will only show: stretch 3 in worst-case update time O(n*/®)

Spanner by Randomized Clustering

Spanner by Randomized Clustering

@ Pick O(Vnlog n) centers at random

VAN
VaVa-—a

Spanner by Randomized Clustering

@ Pick O(Vnlog n) centers at random

@ Form clusters: Connect every node to
one of its neighboring centers

5/13

Spanner by Randomized Clustering

@ Pick O(Vnlog n) centers at random

@ Form clusters: Connect every node to
one of its neighboring centers

= Unclustered nodes have at most Vn
neighbors with high probability

5/13

Spanner by Randomized Clustering

@ Pick O(Vnlog n) centers at random

@ Form clusters: Connect every node to
one of its neighboring centers

= Unclustered nodes have at most Vn
neighbors with high probability

At any time, spanner consists of following edges:

13

Spanner by Randomized Clustering

@ Pick O(Vnlog n) centers at random

@ Form clusters: Connect every node to
one of its neighboring centers

= Unclustered nodes have at most Vn
neighbors with high probability

At any time, spanner consists of following edges:

@ For every clustered node, edge to cluster center

5/13

Spanner by Randomized Clustering

@ Pick O(+/nlog n) centers at random

@ Form clusters: Connect every node to
one of its neighboring centers

= Unclustered nodes have at most Vn
neighbors with high probability

At any time, spanner consists of following edges:
@ For every clustered node, edge to cluster center

@ For every clustered node v and every other cluster, one edge from v to
other cluster

13

Spanner by Randomized Clustering

@ Pick O(Vnlog n) centers at random

@ Form clusters: Connect every node to
one of its neighboring centers

= Unclustered nodes have at most Vn
neighbors with high probability

At any time, spanner consists of following edges:
@ For every clustered node, edge to cluster center

@ For every clustered node v and every other cluster, one edge from v to
other cluster

@ For every node, edge to its first \/n neighbors

13

Spanner by Randomized Clustering

@ Pick O(Vnlog n) centers at random

@ Form clusters: Connect every node to
one of its neighboring centers

= Unclustered nodes have at most Vn
neighbors with high probability

At any time, spanner consists of following edges:
@ For every clustered node, edge to cluster center

@ For every clustered node v and every other cluster, one edge from v to
other cluster

@ For every node, edge to its first \/n neighbors

1+1/2

= Spanner has stretch 3 and size O(n log n) whp (standard proof)

Maintaining Spanner |

@ Random choice of centers at initialization

L N
PESIN
VAVSS AV,

Maintaining Spanner |

@ Random choice of centers at initialization

@ Nodes might join or leave clusters after
update in G

Maintaining Spanner |

@ Random choice of centers at initialization
@ Nodes might join or leave clusters after
update in G

@ For every clustered node v and every other
cluster C, maintain set N(v, C): edges
between v and C

Maintaining Spanner |

@ Random choice of centers at initialization

@ Nodes might join or leave clusters after
update in G

@ For every clustered node v and every other
cluster C, maintain set N(v, C): edges
between v and C

@ Keep one entry of N(v,C) in spanner

Maintaining Spanner |

@ Random choice of centers at initialization

@ Nodes might join or leave clusters after
update in G

@ For every clustered node v and every other
cluster C, maintain set N(v, C): edges
between v and C

@ Keep one entry of N(v,C) in spanner

@ Whenever node u changes from cluster C to
cluster C’:
For every incident edge (u,v)
Remove (u,v) from N(v,C)
Add (u,v) to N(v,C’)

Maintaining Spanner |

@ Random choice of centers at initialization

@ Nodes might join or leave clusters after
update in G

@ For every clustered node v and every other
cluster C, maintain set N(v, C): edges
between v and C

@ Keep one entry of N(v,C) in spanner

@ Whenever node u changes from cluster C to
cluster C’:

For every incident edge (u,v)
Remove (u,v) from N(v,C)
Add (u,v) to N(v,C’)

= Update time: O(maxdeg(G) log n)

Maintaining Spanner Il

More fine-grained approach:

Maintaining Spanner Il

More fine-grained approach:

@ Orient edges in arbitrary way

W icas
(’;X EE N

2 V‘:‘«\\
SR
VS aVAVY

Maintaining Spanner Il

More fine-grained approach:
@ Orient edges in arbitrary way

@ For every clustered node v and every other
cluster C, maintain set In(v, C): incoming
edges from cluster C to v

Maintaining Spanner Il

More fine-grained approach:
@ Orient edges in arbitrary way

@ For every clustered node v and every other
cluster C, maintain set In(v, C): incoming
edges from cluster C to v

@ Keep one entry of In(v,C) in spanner

Maintaining Spanner Il

More fine-grained approach:
@ Orient edges in arbitrary way

@ For every clustered node v and every other
cluster C, maintain set In(v, C): incoming
edges from cluster C to v

@ Keep one entry of In(v,C) in spanner

@ No connection between clusters lost! For
inter-cluster edge, one endpoint responsible
to connect clusters

Maintaining Spanner Il

More fine-grained approach:
@ Orient edges in arbitrary way

@ For every clustered node v and every other
cluster C, maintain set In(v, C): incoming
edges from cluster C to v

@ Keep one entry of In(v,C) in spanner

@ No connection between clusters lost! For
inter-cluster edge, one endpoint responsible
to connect clusters

@ Whenever node u changes from cluster C to
cluster C”:
For every outgoing edge (u,v) of v
Remove u from N(v,)
Add u to N(v,j)

Maintaining Spanner Il

More fine-grained approach:
@ Orient edges in arbitrary way

@ For every clustered node v and every other
cluster C, maintain set In(v, C): incoming
edges from cluster C to v

@ Keep one entry of In(v,C) in spanner

@ No connection between clusters lost! For
inter-cluster edge, one endpoint responsible
to connect clusters

@ Whenever node u changes from cluster C to
cluster C”:
For every outgoing edge (u,v) of v
Remove u from N(v,)
Add u to N(v,j)

= Update time: O(maxoutdeg(é) log n)

Partitioning Trick

Idea: Partition outgoing edges each node into groups of size s

9/13

Partitioning Trick

Idea: Partition outgoing edges each node into groups of size s

undirected graph G

9/13

Partitioning Trick

Idea: Partition outgoing edges each node into groups of size s

undirected graph
orient edges

Qi Q

9/13

Partitioning Trick

Idea: Partition outgoing edges each node into groups of size s

undirected graph G
orient edges l
G
partition into subgraphs « v ... N ~

G G .. G G

9/13

Partitioning Trick

Idea: Partition outgoing edges each node into groups of size s

undirected graph G
orient edges l
G

partition into subgraphs « v ... NN

G G G1 G

maintain sub-spanners l .. 1 !

Partitioning Trick

Idea: Partition outgoing edges each node into groups of size s

undirected graph G
orient edges l
G
partition into subgraphs « v ... NN
G G G- G
maintain sub-spanners l .. l l
Hy Hy ... Hiq H;
take union ~ 0N L v &

spanner H

9/13

Partitioning Trick

Idea: Partition outgoing edges each node into groups of size s

undirected graph G
orient edges l
G

partition into subgraphs « v ... N ~

G G G- G

maintain sub-spanners l .. l l

Hy H, ... H—1 H;

take union ~ 0N L v &
spanner H

Key observation

Each edge update has to be performed in only one subgraph

Update time: O(maxoutdeg(ai)) = O(s)

9/13

Partitioning Trick

Idea: Partition outgoing edges each node into groups of size s

undirected graph G
orient edges l
G

partition into subgraphs « v ... N ~

G G G- G

maintain sub-spanners l .. l l

Hy H, ... H—1 H;

take union ~ 0N L v &
spanner H

Key observation

Each edge update has to be performed in only one subgraph

Update time: O(maxoutdeg(a) = O(s)
Size of spanner: O(t|H;|) = O(tn'""?log n) = O(n**/?/s)

9/13

Smaller Spanner Size

Hierarchical approach:

@ Clustering with O((nlog n)/d)
centers

LR

10/13

Smaller Spanner Size

Hierarchical approach:

@ Clustering with O((nlog n)/d) (
centers

@ A: Edges between clustered nodes

AN €KL
"‘:';@‘a

10/13

Smaller Spanner Size

Hierarchical approach:

@ Clustering with O((nlog n)/d) (
centers
@ A: Edges between clustered nodes e
@ B: Edges incident to unclustered A< 14’ “»‘4‘\
nodes ‘
A‘“}(’A\‘A
\

10/13

Smaller Spanner Size

Hierarchical approach:

@ Clustering with O((nlog n)/d) (
centers

@ A: Edges between clustered nodes

@ B: Edges incident to unclustered A { & 4
nodes ‘
, A‘“}(’A\‘A
@ |A| < O((n’log n)/d) ‘»—4\' v
@ Every node in B has degree < d \

10/13

Smaller Spanner Size

Hierarchical approach:

@ Clustering with O((nlog n)/d)
centers

A: Edges between clustered nodes

B: Edges incident to unclustered
nodes

Al < O((n” log n)/d)
Every node in B has degree < d

Apply spanner algorithm on B
Update Time: O(d log n)

Observation: With every update in G, at most 4 edges are added to or
removed from in H

10/13

Smaller Spanner Size

Hierarchical approach:

@ Clustering with O((nlog n)/d)
centers

A: Edges between clustered nodes

B: Edges incident to unclustered
nodes

|Al < O((n*log n)/d)
Every node in B has degree < d

Apply spanner algorithm on B
Update Time: O(d log n)

Observation: With every update in G, at most 4 edges are added to or
removed from in H

@ Every node has edges to its first d neighbors in spanner
@ When node becomes unclustered, incident edges already contained

10/13

Full Algorithm
undirected graph G

11/13

Full Algorithm

undirected graph
orient edges

Qi Q

11/13

Full Algorithm

undirected graph G
orient edges l

G
partition into subgraphs v o\

11/13

Full Algorithm

undirected graph
orient edges

partition into subgraphs

maintain partitioned sub-spanners

v
A

Qi Q

11/13

Full Algorithm

undirected graph
orient edges

partition into subgraphs
Gy
maintain partitioned sub-spanners v
A

union of unclustered parts

By

Qi Q

11/13

Full Algorithm

undirected graph
orient edges

partition into subgraphs
Gy
maintain partitioned sub-spanners v
A

union of unclustered parts

maintain spanner

By

Qi Q

11/13

Full Algorithm

undirected graph
orient edges

partition into subgraphs
Gy
maintain partitioned sub-spanners v
A

union of unclustered parts

maintain spanner

Final spanner: H=A;U---UA; UH’

By

Qi Q

11/13

Full Algorithm

undirected graph G
orient edges l
G
partition into subgraphs v o\
Gi G
maintain partitioned sub-spanners v N N
Aq By ... A B;
union of unclustered parts N v
B
maintain spanner l
HI

Final spanner: H=A;U---UA; UH’

s= n5/6, d= n2/3, logarithms omitted

11/13

Full Algorithm

undirected graph G
orient edges l
G
partition into subgraphs v o\
Gy Gt
maintain partitioned sub-spanners v N N
Aq By ... A B;
union of unclustered parts N v
B
maintain spanner l
HI
Final spanner: H=A;U---UA; UH’
Update time: O(s + td) = O(s + nd/s) = O(n°/®)

s= n5/6, d= n2/3, logarithms omitted

11/13

Full Algorithm

undirected graph G
orient edges l
G
partition into subgraphs v o\
Gi G
maintain partitioned sub-spanners v N N
Aq By ... A B;
union of unclustered parts N v
B
maintain spanner l
HI

Final spanner: H=A;U---UA; UH’

Update time: O(s + td) = O(s + nd/s) = O(n*/®)
Size of spanner: O(t- n?/d + n't'/2) = O(n*/(sd) + n'*V/%) = O(n'*"/?)

s= n5/6, d= n2/3, logarithms omitted

11/13

Conclusion

Summary:
@ Main idea: Orienting and partitioning edges

@ Careful hierarchy unleashes full potential

12/13

Conclusion

Summary:
@ Main idea: Orienting and partitioning edges

@ Careful hierarchy unleashes full potential

@ 3-spanner: O(n*/*log* n) update time
5/9

@ 5-spanner: O(n’’? log* n) update time

12/13

Conclusion

Summary:
@ Main idea: Orienting and partitioning edges
@ Careful hierarchy unleashes full potential

3/4

@ 3-spanner: O(n*/*log* n) update time

5% log* n) update time

@ 5-spanner: O(n
Open Problems:

@ Emerging barrier of vn: lower bound?

@ Worst-case update time for larger stretches

@ Sublinear deterministic algorithms

Questions?

