Fully Dynamic Spanners with Worst-Case Update Time Guarantees

Greg Bodwin Stanford University

Sebastian Krinninger Max Planck Institute for Informatics

European Symposium on Algorithms 2016

Computing on Sparser Graphs

• Idea: Sparsify graph while (approximately) preserving relevant properties

Computing on Sparser Graphs

- Idea: Sparsify graph while (approximately) preserving relevant properties
- **Goal:** Graph with $m' \ll n^2$ edges (where *n* is number of nodes)

Computing on Sparser Graphs

- Idea: Sparsify graph while (approximately) preserving relevant properties
- **Goal:** Graph with $m' \ll n^2$ edges (where *n* is number of nodes)
- Improves running time / space requirements of algorithms

Computing on Sparser Graphs

- Idea: Sparsify graph while (approximately) preserving relevant properties
- **Goal:** Graph with $m' \ll n^2$ edges (where *n* is number of nodes)
- Improves running time / space requirements of algorithms
- Sparsification was key to recent progress in dynamic algorithms
- Study sparsification as dynamic problem on its own

Computing on Sparser Graphs

- Idea: Sparsify graph while (approximately) preserving relevant properties
- **Goal:** Graph with $m' \ll n^2$ edges (where *n* is number of nodes)
- Improves running time / space requirements of algorithms
- Sparsification was key to recent progress in dynamic algorithms
- Study sparsification as dynamic problem on its own

Amortized vs. Worst-Case Bounds

Computing on Sparser Graphs

- Idea: Sparsify graph while (approximately) preserving relevant properties
- **Goal:** Graph with $m' \ll n^2$ edges (where *n* is number of nodes)
- Improves running time / space requirements of algorithms
- Sparsification was key to recent progress in dynamic algorithms
- Study sparsification as dynamic problem on its own

Amortized vs. Worst-Case Bounds

 Many dynamic algorithms amortize running time over sequence of updates

Computing on Sparser Graphs

- Idea: Sparsify graph while (approximately) preserving relevant properties
- **Goal:** Graph with $m' \ll n^2$ edges (where *n* is number of nodes)
- Improves running time / space requirements of algorithms
- Sparsification was key to recent progress in dynamic algorithms
- Study sparsification as dynamic problem on its own

Amortized vs. Worst-Case Bounds

- Many dynamic algorithms amortize running time over sequence of updates
- Not suitable for real-time systems: Hard guarantees needed

Definition

Definition

Definition

Definition

Fact: Every graph has a (2k - 1)-spanner of size $n^{1+1/k}$ $(k \ge 2)$ [Folklore] Essentially tight if **girth conjecture** is true [Erdős]

undirected G

spanner H

undirected G

spanner H

adversary inserts and deletes edges

deletes edges

algorithm adds and removes edges

Goal: Maintain edges of spanner H with small update time after edge insertion/deletion in G

Amortized bounds:

stretch size

time

reference

Amortized bounds:

stretch	size	time	reference
3	$O(n^{1+1/2})$	<i>O</i> (<i>n</i>)	[Ausiello et al.]
5	$O(n^{1+1/3})$	<i>O</i> (<i>n</i>)	[Ausiello et al.]

Amortized bounds:

stretch	size	time	reference
3	$O(n^{1+1/2})$	<i>O</i> (<i>n</i>)	[Ausiello et al.]
5	$O(n^{1+1/3})$	<i>O</i> (<i>n</i>)	[Ausiello et al.]
2 <i>k</i> – 1	$O(n^{1+1/k}k\log n)$	$O(k^2 \log^2 n)$	[Baswana et al.]
2 <i>k</i> – 1	$O(n^{1+1/k}k^8\log^2 n)$	$O(7^k)$	[Baswana et al.]

Amortized bounds:

Amortized bounds:

stretch	size	time	reference	
3	$O(n^{1+1/2})$	<i>O</i> (<i>n</i>)	[Ausiello et al.]	
5	$O(n^{1+1/3})$	<i>O</i> (<i>n</i>)	[Ausiello et al.]	
	$O(n^{1+1/k}k\log n)$	$O(k^2 \log^2 n)$	[Baswana et al.]	
2 <i>k</i> – 1	$O(n^{1+1/k}k^8 \log^2 n)$	$O(7^k)$	[Baswana et al.]	
Worst-case bounds:				

stretchsizetimereference2k-1 $O(n^{1+1/k}k\log^{1-1/k}n)$ $O(mn^{-1/k}\log^{1/k}n)$ [Elkin]

Amortized bounds:

stretch	size	time	reference
3	$O(n^{1+1/2})$	<i>O</i> (<i>n</i>)	[Ausiello et al.]
5	$O(n^{1+1/3})$	<i>O</i> (<i>n</i>)	[Ausiello et al.]
2 <i>k</i> – 1	$O(n^{1+1/k}k\log n)$	$O(k^2 \log^2 n)$	[Baswana et al.]
2 <i>k</i> – 1	$O(n^{1+1/k}k^8 \log^2 n)$	$O(7^k)$	[Baswana et al.]
Worst of	asa haunda		

'st-case bounds: stretch size 2k - 1 $O(n^{1+1/k} k \log^{1-1/k} n)$ $O(mn^{-1/k} \log^{1/k} n)$ [Elkin] 3 $O(n^{1+1/2}\log^{1/2} n \log \log n) O(n^{3/4}\log^4 n)$ Our result 5 $O(n^{1+1/3}\log^{2/3} n \log \log n) O(n^{5/9}\log^4 n)$ Our result

time

reference

Amortized bounds:

stretch	size	time	reference	
3	$O(n^{1+1/2})$	<i>O</i> (<i>n</i>)	[Ausiello et al	.]
5	$O(n^{1+1/3})$	<i>O</i> (<i>n</i>)	[Ausiello et al	.]
2 <i>k</i> – 1	$O(n^{1+1/k}k\log n)$	$O(k^2 \log^2 n)$	[Baswana et a	al.]
2 <i>k</i> – 1	$O(n^{1+1/k}k^8 \log^2 n)$	$O(7^k)$	[Baswana et a	al.]
Worst-ca	ase bounds:			
stretch	size	time		refe
2 <i>k</i> – 1	$O(n^{1+1/k}k\log^{1-1/k}r)$	n) O(m n	$-^{1/k}\log^{1/k}n$	[Elk
3	$O(n^{1+1/2}\log^{1/2} n\log^{1/2} n)$		$4\log^4 n$)	Ou
5	$O(n^{1+1/3}\log^{2/3} n\log^{2})$	$\log n$) $O(n^{5/2})$	⁹ log ⁴ n)	Ou

reference [Elkin] Our result Our result

 \Rightarrow We give **first** sublinear worst-case bounds

Amortized bounds:

stretch	size	time	reference		
3	$O(n^{1+1/2})$	<i>O</i> (<i>n</i>)	[Ausiello et al	.]	
5	$O(n^{1+1/3})$	<i>O</i> (<i>n</i>)	[Ausiello et al	.]	
2 <i>k</i> – 1	$O(n^{1+1/k}k\log n)$	$O(k^2 \log^2 n)$) [Baswana et a	al.]	
2 <i>k</i> – 1	$O(n^{1+1/k}k^8\log^2 n)$	$O(7^k)$	[Baswana et a	al.]	
Worst-case bounds:					
stretch	size	tim	e	reference	
2 <i>k</i> – 1	$O(n^{1+1/k}k\log^{1-1/k}r)$		$mn^{-1/k}\log^{1/k}n$	[Elkin]	
3	$O(n^{1+1/2}\log^{1/2} n\log^{1/2} n)$		n ^{3/4} log ⁴ n)	Our result	
5	$O(n^{1+1/3}\log^{2/3} n\log^{2})$	$\log n$) $O(n$	n ^{5/9} log ⁴ n)	Our result	

 \Rightarrow We give **first** sublinear worst-case bounds

Guarantees with high probability against oblivious adversary

Amortized bounds:

stretch	size	time	reference		
3	$O(n^{1+1/2})$	<i>O</i> (<i>n</i>)	[Ausiello et al	.]	
5	$O(n^{1+1/3})$	<i>O</i> (<i>n</i>)	[Ausiello et al	.]	
2 <i>k</i> – 1	$O(n^{1+1/k}k\log n)$	$O(k^2 \log^2 n)$) [Baswana et a	al.]	
2 <i>k</i> – 1	$O(n^{1+1/k}k^8 \log^2 n)$	$O(7^k)$	[Baswana et a	al.]	
Worst-case bounds:					
stretch	size	tim	е	reference	
2 <i>k</i> – 1	$O(n^{1+1/k}k\log^{1-1/k}r)$	/	$nn^{-1/k}\log^{1/k}n$	[Elkin]	
3	$O(n^{1+1/2}\log^{1/2} n\log^{1/2} n)$		$n^{3/4}\log^4 n$	Our result	
5	$O(n^{1+1/3}\log^{2/3} n \log^{2/3} n)$	$\log n$ $O(r$	n ^{5/9} log ⁴ n)	Our result	

 \Rightarrow We give **first** sublinear worst-case bounds

Guarantees with high probability against oblivious adversary

This talk: Sparsification of paper (reduces time until BBQ)

Amortized bounds:

stretch	size	time	reference		
3	$O(n^{1+1/2})$	<i>O</i> (<i>n</i>)	[Ausiello et al	.]	
5	$O(n^{1+1/3})$	<i>O</i> (<i>n</i>)	[Ausiello et al	.]	
2 <i>k</i> – 1	$O(n^{1+1/k}k\log n)$	$O(k^2 \log^2 n)$) [Baswana et a	al.]	
2 <i>k</i> – 1	$O(n^{1+1/k}k^8\log^2 n)$	$O(7^k)$	[Baswana et a	al.]	
Worst-case bounds:					
stretch	size	time	2	reference	
2 <i>k</i> – 1	$O(n^{1+1/k}k\log^{1-1/k}r)$	n) O(n	$nn^{-1/k}\log^{1/k}n$	[Elkin]	
3	$O(n^{1+1/2}\log^{1/2} n\log^{1/2} n)$		$^{3/4}\log^4 n$	Our result	
5	$O(n^{1+1/3}\log^{2/3} n\log^{2})$	$\log n$ $O(n$	$5^{5/9}\log^4 n$	Our result	

 \Rightarrow We give **first** sublinear worst-case bounds

Guarantees with high probability against oblivious adversary

This talk: *Sparsification of paper* (reduces time until BBQ) Will only show: stretch 3 in worst-case update time $O(n^{5/6})$

• Pick $O(\sqrt{n} \log n)$ centers at random

- Pick $O(\sqrt{n} \log n)$ centers at random
- Form clusters: Connect every node to one of its neighboring centers

- Pick $O(\sqrt{n} \log n)$ centers at random
- Form clusters: Connect every node to one of its neighboring centers
- $\Rightarrow \text{ Unclustered nodes have at most } \sqrt{n}$ neighbors with high probability

- Pick $O(\sqrt{n} \log n)$ centers at random
- Form clusters: Connect every node to one of its neighboring centers
- $\Rightarrow \text{ Unclustered nodes have at most } \sqrt{n}$ neighbors with high probability

- Pick $O(\sqrt{n} \log n)$ centers at random
- Form clusters: Connect every node to one of its neighboring centers
- $\Rightarrow \text{ Unclustered nodes have at most } \sqrt{n}$ neighbors with high probability

At any time, spanner consists of following edges:

For every clustered node, edge to cluster center

- Pick $O(\sqrt{n} \log n)$ centers at random
- Form clusters: Connect every node to one of its neighboring centers
- $\Rightarrow \text{ Unclustered nodes have at most } \sqrt{n}$ neighbors with high probability

- For every clustered node, edge to cluster center
- For every clustered node v and every other cluster, one edge from v to other cluster

- Pick $O(\sqrt{n} \log n)$ centers at random
- Form clusters: Connect every node to one of its neighboring centers
- $\Rightarrow \text{ Unclustered nodes have at most } \sqrt{n}$ neighbors with high probability

- For every clustered node, edge to cluster center
- For every clustered node v and every other cluster, one edge from v to other cluster
- Solution For every node, edge to its first \sqrt{n} neighbors

- Pick $O(\sqrt{n} \log n)$ centers at random
- Form clusters: Connect every node to one of its neighboring centers
- $\Rightarrow \text{ Unclustered nodes have at most } \sqrt{n}$ neighbors with high probability

- For every clustered node, edge to cluster center
- For every clustered node v and every other cluster, one edge from v to other cluster
- Sor every node, edge to its **first** \sqrt{n} neighbors
- ⇒ Spanner has stretch 3 and size $O(n^{1+1/2} \log n)$ whp (standard proof)

Maintaining Spanner I

• Random choice of centers at initialization

- Random choice of centers at initialization
- Nodes might join or leave clusters after update in *G*

- Random choice of centers at initialization
- Nodes might join or leave clusters after update in *G*
- For every clustered node *v* and every other cluster *C*, maintain set *N*(*v*, *C*): edges between *v* and *C*

- Random choice of centers at initialization
- Nodes might join or leave clusters after update in *G*
- For every clustered node *v* and every other cluster *C*, maintain set *N*(*v*, *C*): edges between *v* and *C*
- Keep **one** entry of *N*(*v*, *C*) in spanner

- Random choice of centers at initialization
- Nodes might join or leave clusters after update in *G*
- For every clustered node *v* and every other cluster *C*, maintain set *N*(*v*, *C*): edges between *v* and *C*
- Keep **one** entry of *N*(*v*, *C*) in spanner
- Whenever node *u* changes from cluster *C* to cluster *C*':

For every incident edge (u, v)Remove (u, v) from N(v, C)Add (u, v) to N(v, C')

- Random choice of centers at initialization
- Nodes might join or leave clusters after update in *G*
- For every clustered node *v* and every other cluster *C*, maintain set *N*(*v*, *C*): edges between *v* and *C*
- Keep **one** entry of *N*(*v*, *C*) in spanner
- Whenever node *u* changes from cluster *C* to cluster *C*':

For every incident edge (u, v)Remove (u, v) from N(v, C)Add (u, v) to N(v, C')

 \Rightarrow Update time: $O(maxdeg(G) \log n)$

More fine-grained approach:

• Orient edges in **arbitrary** way

- Orient edges in arbitrary way
- For every clustered node v and every other cluster C, maintain set In(v, C): incoming edges from cluster C to v

- Orient edges in arbitrary way
- For every clustered node v and every other cluster C, maintain set In(v, C): incoming edges from cluster C to v
- Keep **one** entry of In(v, C) in spanner

- Orient edges in arbitrary way
- For every clustered node v and every other cluster C, maintain set In(v, C): incoming edges from cluster C to v
- Keep **one** entry of *ln*(*v*, *C*) in spanner
- No connection between clusters lost! For inter-cluster edge, one endpoint responsible to connect clusters

More fine-grained approach:

- Orient edges in arbitrary way
- For every clustered node v and every other cluster C, maintain set In(v, C): incoming edges from cluster C to v
- Keep **one** entry of *ln*(*v*, *C*) in spanner
- No connection between clusters lost! For inter-cluster edge, one endpoint responsible to connect clusters
- Whenever node *u* changes from cluster *C* to cluster *C*':

For every outgoing edge (u, v) of vRemove u from N(v, i)Add u to N(v, j)

More fine-grained approach:

- Orient edges in arbitrary way
- For every clustered node v and every other cluster C, maintain set In(v, C): incoming edges from cluster C to v
- Keep **one** entry of *ln*(*v*, *C*) in spanner
- No connection between clusters lost! For inter-cluster edge, one endpoint responsible to connect clusters
- Whenever node *u* changes from cluster *C* to cluster *C*':

For every outgoing edge (u, v) of vRemove u from N(v, i)Add u to N(v, j)

 \Rightarrow Update time: $O(maxoutdeg(\vec{G}) \log n)$

Idea: Partition outgoing edges each node into groups of size s

Idea: Partition outgoing edges each node into groups of size s

undirected graph

G

Idea: Partition outgoing edges each node into groups of size s

undirected graph orient edges

 $G \rightarrow \vec{G}$

Idea: Partition outgoing edges each node into groups of size s

undirected graph orient edges

partition into subgraphs

Idea: Partition outgoing edges each node into groups of size s

undirected graph orient edges

partition into subgraphs

maintain sub-spanners

$$\begin{array}{c} G \\ \downarrow \\ \vec{G} \end{array}$$

$$\swarrow \qquad \checkmark \qquad \checkmark \qquad \checkmark$$

$$\vec{G}_1 \quad \vec{G}_2 \quad \dots \quad \vec{G}_{t-1} \quad \vec{G}_t$$

$$\downarrow \qquad \downarrow \qquad \dots \qquad \downarrow \qquad \downarrow$$

$$\vec{H}_1 \quad \vec{H}_2 \quad \dots \quad \vec{H}_{t-1} \quad \vec{H}_t$$

Idea: Partition outgoing edges each node into groups of size s

undirected graph orient edges

partition into subgraphs

maintain sub-spanners

take union spanner

Idea: Partition outgoing edges each node into groups of size s

undirected graph orient edges			$G \downarrow \vec{C}$		
partition into subgraphs	K	\checkmark		2	>
1 01	\vec{G}_1	\vec{G}_2		\vec{G}_{t-1}	\vec{G}_t
maintain sub-spanners	\downarrow	\downarrow		\downarrow	\downarrow
	\vec{H}_1	\vec{H}_2		\vec{H}_{t-1}	\vec{H}_t
take union	\searrow	\mathbf{Y}		\checkmark	\checkmark
spanner			Н		

Key observation

Each edge update has to be performed in only **one** subgraph

Update time: $O(maxoutdeg(\vec{G}_i)) = O(s)$

Idea: Partition outgoing edges each node into groups of size s

undirected graph			G		
orient edges			Ť		
			Ğ		
partition into subgraphs	K	\checkmark	•••	\searrow	\searrow
	\vec{G}_1	\vec{G}_2		\vec{G}_{t-1}	\vec{G}_t
maintain sub-spanners	\downarrow	\downarrow		\downarrow	\downarrow
	\vec{H}_1	\vec{H}_2		\vec{H}_{t-1}	\vec{H}_t
take union	\searrow	\mathbf{Y}		\checkmark	K
spanner			Н		

Key observation

Each edge update has to be performed in only **one** subgraph

Update time: $O(maxoutdeg(\vec{G}_i)) = O(s)$ **Size of spanner:** $O(t|H_i|) = O(tn^{1+1/2} \log n) = O(n^{2+1/2}/s)$

Hierarchical approach:

• Clustering with $O((n \log n)/d)$ centers

Hierarchical approach:

- Clustering with $O((n \log n)/d)$ centers
- A: Edges between clustered nodes

Hierarchical approach:

- Clustering with $O((n \log n)/d)$ centers
- A: Edges between clustered nodes
- *B*: Edges incident to unclustered nodes

Hierarchical approach:

- Clustering with $O((n \log n)/d)$ centers
- A: Edges between clustered nodes
- *B*: Edges incident to unclustered nodes
- $|A| \leq O((n^2 \log n)/d)$
- Every node in *B* has degree $\leq d$

Hierarchical approach:

- Clustering with O((n log n)/d) centers
- A: Edges between clustered nodes
- *B*: Edges incident to unclustered nodes
- $|A| \leq O((n^2 \log n)/d)$
- Every node in *B* has degree $\leq d$
- Apply spanner algorithm on *B* Update Time: *O*(*d* log *n*)

Observation: With every update in G, at most 4 edges are added to or removed from in *H*

Hierarchical approach:

- Clustering with $O((n \log n)/d)$ centers
- A: Edges between clustered nodes
- *B*: Edges incident to unclustered nodes
- $|A| \leq O((n^2 \log n)/d)$
- Every node in *B* has degree $\leq d$
- Apply spanner algorithm on *B* Update Time: *O*(*d* log *n*)

Observation: With every update in G, at most 4 edges are added to or removed from in *H*

- Every node has edges to its first *d* neighbors in spanner
- When node becomes **unclustered**, incident edges already contained

undirected graph

G

undirected graph orient edges

 $G \\ \downarrow \\ \vec{G}$

undirected graph orient edges

partition into subgraphs

undirected graph orient edges

partition into subgraphs

maintain partitioned sub-spanners

undirected graph orient edges

partition into subgraphs

maintain partitioned sub-spanners

union of unclustered parts

undirected graph orient edges

partition into subgraphs

maintain partitioned sub-spanners

union of unclustered parts

maintain spanner

		G			
		$\stackrel{\downarrow}{\vec{G}}$			
		Ğ			
	\checkmark		\mathbf{Y}		
\vec{G}_1				\vec{G}_t	
	\mathbf{Y}	•••	2		7
	B_1	•••	A_t		B_t
	\mathbf{Y}	•••		\checkmark	
		В			
		\downarrow			
		H'			

∠ A₁

undirected graph G orient edges ↓ Ĝ partition into subgraphs \searrow B_t maintain partitioned sub-spanners union of unclustered parts \searrow . . . 4 В maintain spanner ↓ H'

Final spanner: $H = A_1 \cup \cdots \cup A_t \cup H'$

undirected graph G orient edges \downarrow \vec{G} partition into subgraphs maintain partitioned sub-spanners union of unclustered parts <u>۱</u>... В maintain spanner ↓ H'

Final spanner: $H = A_1 \cup \cdots \cup A_t \cup H'$

 $s = n^{5/6}$, $d = n^{2/3}$, logarithms omitted

undirected graph G orient edges \downarrow \vec{G} partition into subgraphs maintain partitioned sub-spanners union of unclustered parts <u>۱</u>... د В maintain spanner ↓ H'

Final spanner: $H = A_1 \cup \cdots \cup A_t \cup H'$ Update time: $O(s + td) = O(s + nd/s) = O(n^{5/6})$

 $s = n^{5/6}$, $d = n^{2/3}$, logarithms omitted

undirected graph G \downarrow \vec{G} orient edges partition into subgraphs maintain partitioned sub-spanners union of unclustered parts <u>۱</u>... В maintain spanner ↓ H'

Final spanner: $H = A_1 \cup \cdots \cup A_t \cup H'$

Update time: $O(s + td) = O(s + nd/s) = O(n^{5/6})$ Size of spanner: $O(t \cdot n^2/d + n^{1+1/2}) = O(n^3/(sd) + n^{1+1/2}) = O(n^{1+1/2})$

 $s = n^{5/6}$, $d = n^{2/3}$, logarithms omitted

Conclusion

Summary:

- Main idea: Orienting and partitioning edges
- Careful hierarchy unleashes full potential

Conclusion

Summary:

- Main idea: Orienting and partitioning edges
- Careful hierarchy unleashes full potential
- 3-spanner: $O(n^{3/4} \log^4 n)$ update time
- 5-spanner: $O(n^{5/9} \log^4 n)$ update time

Conclusion

Summary:

- Main idea: Orienting and partitioning edges
- Careful hierarchy unleashes full potential
- 3-spanner: $O(n^{3/4} \log^4 n)$ update time
- 5-spanner: $O(n^{5/9} \log^4 n)$ update time

Open Problems:

- Emerging barrier of \sqrt{n} : lower bound?
- Worst-case update time for larger stretches
- Sublinear deterministic algorithms

Questions?