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Motivation

Computing on Sparser Graphs

Idea: Sparsify graph while (approximately) preserving relevant
properties

Goal: Graph with m’ < n? edges (where n is number of nodes)
Improves running time / space requirements of algorithms

Sparsification was key to recent progress in dynamic algorithms

Study sparsification as dynamic problem on its own

Amortized vs. Worst-Case Bounds

@ Many dynamic algorithms amortize running time over sequence of
updates

@ Not suitable for real-time systems: Hard guarantees needed



Spanners

Definition
A spanner of stretch k is a subgraph H of G such that, for all pairs of nodes
u and v, disty(u,v) < k - distg(u, v).
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Spanners

A spanner of stretch k is a subgraph H of G such that, for all pairs of nodes

Definition
u and v, disty(u,v) < k - distg(u, v). J

Fact: Every graph has a (2k — 1)-spanner of size n'*'/* (k > 2) [Folklore]
Essentially tight if girth conjecture is true [Erdés]
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Goal: Maintain edges of spanner H with small update time after edge

insertion/deletion in G
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= We give first sublinear worst-case bounds

Guarantees with high probability against oblivious adversary

This talk: Sparsification of paper (reduces time until BBQ)

Will only show: stretch 3 in worst-case update time O(n*/®)
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Spanner by Randomized Clustering

@ Pick O(Vnlog n) centers at random

@ Form clusters: Connect every node to
one of its neighboring centers

= Unclustered nodes have at most Vn
neighbors with high probability

At any time, spanner consists of following edges:
@ For every clustered node, edge to cluster center

@ For every clustered node v and every other cluster, one edge from v to
other cluster

@ For every node, edge to its first \/n neighbors

1+1/2

= Spanner has stretch 3 and size O(n log n) whp (standard proof)
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@ Nodes might join or leave clusters after
update in G

@ For every clustered node v and every other
cluster C, maintain set N(v, C): edges
between v and C

@ Keep one entry of N(v,C) in spanner

@ Whenever node u changes from cluster C to
cluster C’:

For every incident edge (u,v)
Remove (u,v) from N(v,C)
Add (u,v) to N(v,C’)

= Update time: O(maxdeg(G) log n)
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More fine-grained approach:
@ Orient edges in arbitrary way

@ For every clustered node v and every other
cluster C, maintain set In(v, C): incoming
edges from cluster C to v

@ Keep one entry of In(v,C) in spanner

@ No connection between clusters lost! For
inter-cluster edge, one endpoint responsible
to connect clusters

@ Whenever node u changes from cluster C to
cluster C”:
For every outgoing edge (u,v) of v
Remove u from N(v, )
Add u to N(v,j)

= Update time: O(maxoutdeg(é) log n)
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Idea: Partition outgoing edges each node into groups of size s

undirected graph G
orient edges l
G

partition into subgraphs « v ... N ~

G G G- G

maintain sub-spanners l .. l l

Hy H, ... H—1 H;

take union ~ 0N L v &
spanner H

Key observation

Each edge update has to be performed in only one subgraph

Update time: O(maxoutdeg(a ) = O(s)
Size of spanner:  O(t|H;|) = O(tn'""?log n) = O(n**/?/s)
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Smaller Spanner Size

Hierarchical approach:

@ Clustering with O((nlog n)/d)
centers

A: Edges between clustered nodes

B: Edges incident to unclustered
nodes

|Al < O((n*log n)/d)
Every node in B has degree < d

Apply spanner algorithm on B
Update Time: O(d log n)

Observation: With every update in G, at most 4 edges are added to or
removed from in H

@ Every node has edges to its first d neighbors in spanner
@ When node becomes unclustered, incident edges already contained
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Full Algorithm

undirected graph G
orient edges l
G
partition into subgraphs v o\
Gi G
maintain partitioned sub-spanners v N N
Aq By ... A B;
union of unclustered parts N v
B
maintain spanner l
HI

Final spanner: H=A;U---UA; UH’

Update time: O(s + td) = O(s + nd/s) = O(n*/®)
Size of spanner: O(t- n?/d + n't'/2) = O(n*/(sd) + n'*V/%) = O(n'*"/?)

s= n5/6, d= n2/3, logarithms omitted
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Conclusion

Summary:
@ Main idea: Orienting and partitioning edges
@ Careful hierarchy unleashes full potential

3/4

@ 3-spanner: O(n*/*log* n) update time

5% log* n) update time

@ 5-spanner: O(n
Open Problems:

@ Emerging barrier of vn: lower bound?

@ Worst-case update time for larger stretches

@ Sublinear deterministic algorithms
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