Advances in Fully Dynamic Algorithms with Worst-Case Update Time Guarantees

Sebastian Krinninger

Max Planck Institute for Informatics Saarland Informatics Campus

Dagstuhl Seminar "Structure and Hardness in P"

Our world is not static

Our world is not static

Our world is not static

G undergoing updates:

Here: Small query time $\mathcal{O}(1)$ or $\mathcal{O}(\log n)$

G undergoing updates:

Here: Small query time $\mathcal{O}(1)$ or $\mathcal{O}(\log n)$

Goal: Minimize update time T(n, m)

G undergoing updates:

Here: Small query time $\mathcal{O}(1)$ or $\mathcal{O}(\log n)$

Goal: Minimize update time T(n, m)

• Worst-case: After each update, spend time $\leq T(n, m)$

G undergoing updates:

Here: Small query time $\mathcal{O}(1)$ or $\mathcal{O}(\log n)$

Goal: Minimize update time T(n, m)

- Worst-case: After each update, spend time $\leq T(n, m)$
- Amortized: For a sequence of k updates, spend time $\leq kT(n,m)$

Why worst-case bounds?

Why worst-case bounds?

Why worst-case bounds?

Connectivity

amortized

 $\log^{\mathcal{O}(1)} n_{\text{[Henzinger/King '95]}}$

worst-case

 $\log^{\mathcal{O}(1)} n$ [Kapron/King/Mountjoy '13]

Connectivity

Min. spanning tree

Transitive closure

All-pairs shortest paths

amortized $\log^{\mathcal{O}(1)} n$ [Henzinger/King '95] $\log^{\mathcal{O}(1)} n$ [Holm/Lichtenberg/Thorup '98] $\mathcal{O}(n^2)$ [Demetrescu/Italiano '00] $\widetilde{\mathcal{O}}(n^2)$ [Demetrescu/Italiano '03]

worst-case

 $\log^{O(1)} n$ [Kapron/King/Mountjoy '13]

 $\mathcal{O}(\sqrt{n})$ [Eppstein/Galil/Ital./Nissenzweig '92]

 $\mathcal{O}(n^2)$ [Sankowski '04]

 $\tilde{O}(n^{2+2/3})$

[Abraham/Chechik/K '17]

Connectivity

Min. spanning tree

Transitive closure

All-pairs shortest paths

Maximal matching

 $(1+\epsilon)$ -max. matching

amortized $\log^{\mathcal{O}(1)} n$ [Henzinger/King '95] $\log^{\mathcal{O}(1)} n$ [Holm/Lichtenberg/Thorup '98] $\mathcal{O}(n^2)$ [Demetrescu/Italiano '00] $\tilde{O}(n^2)$ [Demetrescu/Italiano '03] $\mathcal{O}(1)$ [Solomon '16] $\mathcal{O}(\sqrt{m}/\epsilon^2)$ [Gupta/Peng '13]

worst-case $\log^{\mathcal{O}(1)} n$ [Kapron/King/Mountjoy '13]

 $\mathcal{O}(\sqrt{n})$ [Eppstein/Galil/Ital./Nissenzweig '92]

 $\mathcal{O}(n^2)$ [Sankowski '04] $\tilde{O}(n^{2+2/3})$ [Abraham/Chechik/K '17] [Neiman/Solomon '13]

 $\mathcal{O}(\sqrt{m}/\epsilon^2)$ [Gupta/Peng '13]

Connectivity

Min. spanning tree

Transitive closure

All-pairs shortest paths

Maximal matching

 $(1+\epsilon)$ -max. matching

(2k-1)-spanner

amortized $\log^{\mathcal{O}(1)} n$ [Henzinger/King '95] $\log^{\mathcal{O}(1)} n$ [Holm/Lichtenberg/Thorup '98] $\mathcal{O}(n^2)$ [Demetrescu/Italiano '00] $\tilde{O}(n^2)$ [Demetrescu/Italiano '03] $\mathcal{O}(1)$ [Solomon '16] $\mathcal{O}(\sqrt{m}/\epsilon^2)$ [Gupta/Peng '13] $k \log^{\mathcal{O}(1)} n$ [Baswana/Sarkar '08]

worst-case $\log^{\mathcal{O}(1)} n$ [Kapron/King/Mountjoy '13] $\mathcal{O}(\sqrt{n})$

[Eppstein/Galil/Ital./Nissenzweig '92]

 $\mathcal{O}(n^2)$ [Sankowski '04] $\tilde{\mathcal{O}}(n^{2+2/3})$ [Abraham/Chechik/K '17] $\mathcal{O}(\sqrt{m})$ [Neiman/Solomon '13] $\mathcal{O}(\sqrt{m}/\epsilon^2)$ [Gupta/Peng '13]

???

Connectivity

Min. spanning tree

Transitive closure

All-pairs shortest paths

Maximal matching

 $(1+\epsilon)$ -max. matching

(2k-1)-spanner

3-spanner

amortized $\log^{\mathcal{O}(1)} n$ [Henzinger/King '95] $\log^{\mathcal{O}(1)} n$ [Holm/Lichtenberg/Thorup '98] $\mathcal{O}(n^2)$ [Demetrescu/Italiano '00] $\tilde{O}(n^2)$ [Demetrescu/Italiano '03] $\mathcal{O}(1)$ [Solomon '16] $\mathcal{O}(\sqrt{m}/\epsilon^2)$ [Gupta/Peng '13] $k \log^{\mathcal{O}(1)} n$ [Baswana/Sarkar '08] $\log^{\mathcal{O}(1)} n$ [BaswanaSarkar '08]

worst-case $\log^{\mathcal{O}(1)} n$ [Kapron/King/Mountjoy '13] $\mathcal{O}(\sqrt{n})$ [Eppstein/Galil/Ital./Nissenzweig '92] $\mathcal{O}(n^2)$ [Sankowski '04] $\tilde{O}(n^{2+2/3})$ [Abraham/Chechik/K '17] $\mathcal{O}(\sqrt{m})$ [Neiman/Solomon '13] $\mathcal{O}(\sqrt{m}/\epsilon^2)$ [Gupta/Peng '13] 777

 $\tilde{\mathcal{O}}(n^{3/4})$ [Bodwin/K '16]

Connectivity Min. spanning tree Transitive closure All-pairs shortest paths Maximal matching $(1+\epsilon)$ -max. matching (2k-1)-spanner 3-spanner

 $(1+\epsilon)$ -cut sparsifier

amortized $\log^{\mathcal{O}(1)} n$ [Henzinger/King '95] $\log^{\mathcal{O}(1)} n$ [Holm/Lichtenberg/Thorup '98] $\mathcal{O}(n^2)$ [Demetrescu/Italiano '00] $\tilde{O}(n^2)$ [Demetrescu/Italiano '03] $\mathcal{O}(1)$ [Solomon '16] $\mathcal{O}(\sqrt{m}/\epsilon^2)$ [Gupta/Peng '13] $k \log^{\mathcal{O}(1)} n$ [Baswana/Sarkar '08] $\log^{\mathcal{O}(1)} n$ [BaswanaSarkar '08] $\log^{\mathcal{O}(1)} n$ [Abr./Durfee/Koutis/K/Peng '16]

worst-case $\log^{\mathcal{O}(1)} n$ [Kapron/King/Mountjoy '13] $\mathcal{O}(\sqrt{n})$ [Eppstein/Galil/Ital./Nissenzweig '92] $\mathcal{O}(n^2)$ [Sankowski '04] $\tilde{O}(n^{2+2/3})$ [Abraham/Chechik/K '17] $\mathcal{O}(\sqrt{m})$ [Neiman/Solomon '13] $\mathcal{O}(\sqrt{m}/\epsilon^2)$ [Gupta/Peng '13] 777 $\tilde{\mathcal{O}}(n^{3/4})$ [Bodwin/K '16] $\log^{\mathcal{O}(1)} n$ [Abr./Durfee/Koutis/K/Peng '16]

Question: Can worst-case bounds match amortized bounds?

Case study: APSP

Joint work with Ittai Abraham and Shiri Chechik

Dynamic shortest paths data structure: • initialize(G)

• insert(
$$v$$
)

• delete(
$$v$$
)

• dist
$$(s, t)$$

update

Prior work

approx.	update time	type of graphs	reference
exact	$ ilde{\mathcal{O}}(mn)$	weighted directed	[Dijkstra]
exact	$\tilde{\mathcal{O}}(n^{2.5}\sqrt{W})$	weighted directed	[King '99]
$1 + \epsilon$	$\tilde{\mathcal{O}}(n^2 \log W)$	weighted directed	[King '99]
$2 + \epsilon$	$\tilde{\mathcal{O}}(n^2)$	weighted directed	[King '99]
exact	$\tilde{\mathcal{O}}(n^{2.5}\sqrt{W})$	weighted directed	[Demetrescu/Italiano '01]
exact	$\tilde{\mathcal{O}}(n^2)$	weighted directed	[Demetrescu/Italiano '03]
exact	$\tilde{\mathcal{O}}(n^{2.75})$ (*)	weighted directed	[Thorup '05]
$2 + \epsilon$	$ ilde{\mathcal{O}}(m \log W)$	weighted undirected	[Bernstein '09]
$2^{\mathcal{O}(k)}$	$ ilde{\mathcal{O}}(\sqrt{m}n^{1/k})$	unweighted undirected	[A/C/Talwar '14]

(*) worst case

Õ: ignores log *n*-factors *n*: number of nodes *m*: number of edges *W*: largest edge weight

Our result

Theorem (for this talk)

There is an algorithm for maintaining a distance matrix under insertions and deletions of nodes in unweighted undirected graphs with a worst-case update time of $\tilde{O}(n^{2.75})$.

Our result

Theorem (for this talk)

There is an algorithm for maintaining a distance matrix under insertions and deletions of nodes in unweighted undirected graphs with a worst-case update time of $\tilde{O}(n^{2.75})$.

Toy example! ($O(n^{\omega})$ in unweighted graphs)

Our result

Theorem (for this talk)

There is an algorithm for maintaining a distance matrix under insertions and deletions of nodes in unweighted undirected graphs with a worst-case update time of $\tilde{O}(n^{2.75})$.

Toy example! ($O(n^{\omega})$ in unweighted graphs)

More sophisticated use of our technique:

- $\tilde{\mathcal{O}}(n^{2.67})$ in weighted directed graphs
- Improves $ilde{\mathcal{O}}(n^{2.75})$ of [Thorup '05]
- (Hopefully) simpler than [Thorup '05] (which is a deamortization of [Demetrescu/Italiano '03])

Restrictions

Known techniques allow the following restrictions:

 Only necessary to maintain shortest paths up to length h (for some parameter h)

Restrictions

Known techniques allow the following restrictions:

- Only necessary to maintain shortest paths up to length h (for some parameter h)
- To obtain a fully dynamic algorithm it is sufficient to design a deletions-only algorithm that
 - \blacktriangleright can handle up to Δ deletions of nodes with worst-case guarantees
 - after preprocessing the graph

Restart deletions-only algorithm each Δ updates (Preprocessing time can be amortized over previous Δ deletions!) Floyd-Warshall to process Δ insertions in time $\mathcal{O}(\Delta n^2)$ Repairing a shortest path tree

• Given: shortest path tree from s

Repairing a shortest path tree

- Given: shortest path tree from s
- Node v is deleted
- Shortest path destroyed only for nodes in subtree of *v*

Repairing a shortest path tree

- Given: shortest path tree from s
- Node v is deleted
- Shortest path destroyed only for nodes in subtree of *v*
- Run Dijkstra's algorithm to reattach these nodes to the tree
- Charge time O(deg(u)) ≤ O(n) to every node u in subtree of v

Goal: shortest paths from a set of source nodes S

Goal: shortest paths from a set of source nodes \boldsymbol{S}

Deletion of v

Goal: shortest paths from a set of source nodes \boldsymbol{S}

Deletion of v

Total work: (number of nodes in subtrees of v) $\times n$

Goal: shortest paths from a set of source nodes S

Deletion of v

Total work: (number of nodes in subtrees of v) $\times n$

Goal: limit sizes of subtrees of each node

For every source, construct shortest path tree up to depth h:

Count size of subtrees for every node

- v is added to set of **heavy** nodes H
- v is deleted from graph, i.e., not considered in future trees

For every source, construct shortest path tree up to depth h:

Count size of subtrees for every node

- v is added to set of heavy nodes H
- v is deleted from graph, i.e., not considered in future trees

For every source, construct shortest path tree up to depth h:

Count size of subtrees for every node

- v is added to set of heavy nodes H
- v is deleted from graph, i.e., not considered in future trees

For every source, construct shortest path tree up to depth h:

Count size of subtrees for every node

- v is added to set of heavy nodes H
- v is deleted from graph, i.e., not considered in future trees

For every source, construct shortest path tree up to depth h:

Count size of subtrees for every node

- v is added to set of heavy nodes H
- v is deleted from graph, i.e., not considered in future trees

For every source, construct shortest path tree up to depth h:

Count size of subtrees for every node

Rule: If number of nodes in subtrees of *v* exceeds λ :

- v is added to set of heavy nodes H
- v is deleted from graph, i.e., not considered in future trees

Observations:

- All shortest paths not using heavy nodes included in trees
- Number of heavy nodes: $|H| \leq \mathcal{O}(\frac{|S|nh}{\lambda}) \leq \mathcal{O}(\frac{n^2h}{\lambda})$

• Preprocessing time: $\mathcal{O}(|S|n^2) \leq \mathcal{O}(n^3)$

Computing distances after deletions

- For all deleted nodes: Reattach children to tree using Dijkstra Running time: $\mathcal{O}(\Delta \lambda n)$ per deletion
 - Subtree size at most λ per node
 - Number of deleted nodes at most Δ

Correct for all shortest paths not containing heavy nodes

Computing distances after deletions

- For all deleted nodes: Reattach children to tree using Dijkstra Running time: $\mathcal{O}(\Delta \lambda n)$ per deletion
 - Subtree size at most λ per node
 - Number of deleted nodes at most Δ

Correct for all shortest paths not containing heavy nodes

Special treatment of heavy nodes: shortest paths via heavy nodes Compute $\min_{v \in H} (dist(s, v) + dist(v, t))$ for all s and t Time per deletion: $\mathcal{O}(|H|n^2) = \mathcal{O}(\frac{n^4h}{\lambda})$

• $\mathcal{O}(\Delta \lambda n)$ Repair shortest path trees • $\mathcal{O}(\frac{n^4h}{\lambda})$ Shortest paths via heavy nodes

O(Δλn) Repair shortest path trees
 O(^{n⁴h}/_λ) Shortest paths via heavy nodes
 O(^{n³}/_Δ) Preprocessing of O(n³) amortized over Δ updates

- $\mathcal{O}(\Delta \lambda n)$ Repair shortest path trees
- $\mathcal{O}(\frac{n^4h}{\lambda})$ Shortest paths via heavy nodes
- $\mathcal{O}(\frac{n^3}{\Delta})$ Preprocessing of $\mathcal{O}(n^3)$ amortized over Δ updates
- $\mathcal{O}(\Delta n^2)$ Shortest paths via inserted nodes • $\tilde{\mathcal{O}}(n^2h + \frac{n^3}{h})$ Shortest paths of length more than h

- $\mathcal{O}(\Delta \lambda n)$ Repair shortest path trees
- $\mathcal{O}(\frac{n^4h}{\lambda})$ Shortest paths via heavy nodes
- $\mathcal{O}(\frac{n^3}{\Delta})$ Preprocessing of $\mathcal{O}(n^3)$ amortized over Δ updates
- O(Δn²) Shortest paths via inserted nodes
 Õ(n²h + n³/h) Shortest paths of length more than h

$$\Delta = n^{0.25}, \ \lambda = n^{1.5}, \ h = n^{0.25}$$
$$\Rightarrow \tilde{\mathcal{O}}(n^{2.75})$$

Improvements

Directed graphs:

Two types of shortest path trees: incoming and outgoing

Directed graphs:

Two types of shortest path trees: incoming and outgoing

Weighted graphs:

Length of path \rightarrow number of nodes on path ("hops") Requires Bellman-Ford in preprocessing: $O(n^2h)$ per node

Directed graphs:

Two types of shortest path trees: incoming and outgoing

Weighted graphs:

Length of path \rightarrow number of nodes on path ("hops") Requires Bellman-Ford in preprocessing: $O(n^2h)$ per node

Increased efficiency:

Multiple instances of algorithm to cover all hop ranges (+randomization) Load balancing trick

Barriers

Combinatorial approach [Thorup '05, Abraham/Chechik/Krinninger '17]

The best we can hope for:

- Preprocessing: $\mathcal{O}(n^3)$
- "Amortize" preprocessing over k updates: $\mathcal{O}(n^3/k)$
- Deal with $\leq k$ insertions after each update: $\mathcal{O}(n^2k)$ $\Rightarrow \mathcal{O}(n^{2.5})$

Algebraic approach [Sankowski '04/'05]

Here: Intuition in DAGs

Algebraic approach [Sankowski '04/'05]

Here: Intuition in DAGs

Transitive closure:

- Count number of paths from s to t for all pairs
- Reachable iff #paths > 0
- Perform operations for counting modulo random prime
- Update time $\mathcal{O}(n^2)$
- Avoids special treatment of insertions

Algebraic approach [Sankowski '04/'05]

Here: Intuition in DAGs

Transitive closure:

- Count number of paths from s to t for all pairs
- Reachable iff #paths > 0
- Perform operations for counting modulo random prime
- Update time $\mathcal{O}(n^2)$
- Avoids special treatment of insertions

All-pairs shortest paths (distances):

- For every $1 \leq \ell \leq h$, count #paths of length exactly ℓ
- Additional trick: fast convolution
- Update time: $\tilde{\mathcal{O}}(n^2h)$.
- Standard trick for hitting long paths: $h = \sqrt{n}$

 $\Rightarrow \mathcal{O}(n^{2.5})$

Conclusion

Worst-case update time is the real deal!¹

 $^1...$ and correctness against adaptive online adversary \rightarrow Thatchapol Saranurak's talk $_{21/22}$

Conclusion

Worst-case update time is the real deal!¹

- Often requires new approaches
- Technically challenging

 $^{^{1}}$... and correctness against adaptive online adversary ightarrow Thatchapol Saranurak's talk $^{21/22}$

Conclusion

Worst-case update time is the real deal!¹

- Often requires new approaches
- Technically challenging
- Conditional lower bounds: No technique yet to separate amortized and worst-case update time for **fully dynamic** problems

 $^{^{1}}$... and correctness against adaptive online adversary ightarrow Thatchapol Saranurak's talk $_{21/22}$

How about the following worst-case bounds?

- Fully dynamic APSP: Meet $n^{2.5}$ barrier
- Fully dynamic APSP: $(1 + \epsilon)$ -approximation in $\tilde{\mathcal{O}}(n^2/\epsilon)$ time?
- Fully dynamic transitive closure: deterministic $O(n^2)$ algorithm?