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Dynamic model
G undergoing updates:

s

t

distG(s, t)?

Dynamic
algorithm

Update

update time

Query

query time

Here: Small query time O(1) or O(log n)

Goal: Minimize update time T (n,m)
Worst-case: After each update, spend time ≤ T (n,m)
Amortized: For a sequence of k updates, spend time ≤ kT (n,m)
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Why worst-case bounds?

Be punctual!

Sink of real-time systems!
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Overview
amortized worst-case

Connectivity logO(1) n logO(1) n
[Henzinger/King ’95] [Kapron/King/Mountjoy ’13]

Min. spanning tree logO(1) n O(
√

n)
[Holm/Lichtenberg/Thorup ’98] [Eppstein/Galil/Ital./Nissenzweig ’92]

Transitive closure O(n2) O(n2)
[Demetrescu/Italiano ’00] [Sankowski ’04]

All-pairs shortest paths Õ(n2) Õ(n2+2/3)
[Demetrescu/Italiano ’03] [Abraham/Chechik/K ’17]

Maximal matching O(1) O(
√

m)
[Solomon ’16] [Neiman/Solomon ’13]

(1 + ε)-max. matching O(
√

m/ε2) O(
√

m/ε2)
[Gupta/Peng ’13] [Gupta/Peng ’13]

(2k − 1)-spanner k logO(1) n ???
[Baswana/Sarkar ’08]

3-spanner logO(1) n Õ(n3/4)
[BaswanaSarkar ’08] [Bodwin/K ’16]

(1 + ε)-cut sparsifier logO(1) n logO(1) n
[Abr./Durfee/Koutis/K/Peng ’16] [Abr./Durfee/Koutis/K/Peng ’16]
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Question:
Can worst-case bounds match amortized bounds?
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Case study: APSP
Joint work with Ittai Abraham and Shiri Chechik
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Simple example – Distance from s to v

s

t

s

t

dist(s, t) = 2

dist(s, t) = 3

Dynamic shortest paths data structure: • initialize(G)
• insert(v) } update• delete(v)
• dist(s, t) } query• path(s, t)
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Prior work
approx. update time type of graphs reference
exact Õ(mn) weighted directed [Dijkstra]
exact Õ(n2.5√W ) weighted directed [King ’99]
1 + ε Õ(n2 logW ) weighted directed [King ’99]
2 + ε Õ(n2) weighted directed [King ’99]
exact Õ(n2.5√W ) weighted directed [Demetrescu/Italiano ’01]
exact Õ(n2) weighted directed [Demetrescu/Italiano ’03]
exact Õ(n2.75) (*) weighted directed [Thorup ’05]
2 + ε Õ(m logW ) weighted undirected [Bernstein ’09]
2O(k) Õ(

√
mn1/k) unweighted undirected [A/C/Talwar ’14]

(*) worst case

Õ: ignores log n-factors
n: number of nodes
m: number of edges
W : largest edge weight
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Our result

Theorem (for this talk)
There is an algorithm for maintaining a distance matrix under insertions
and deletions of nodes in unweighted undirected graphs with a worst-case
update time of Õ(n2.75).

Toy example! (O(nω) in unweighted graphs)

More sophisticated use of our technique:
Õ(n2.67) in weighted directed graphs
Improves Õ(n2.75) of [Thorup ’05]
(Hopefully) simpler than [Thorup ’05]
(which is a deamortization of [Demetrescu/Italiano ’03])
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Õ(n2.67) in weighted directed graphs
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Restrictions

Known techniques allow the following restrictions:
1 Only necessary to maintain shortest paths up to length h

(for some parameter h)

2 To obtain a fully dynamic algorithm it is sufficient to design a
deletions-only algorithm that

I can handle up to ∆ deletions of nodes with worst-case guarantees
I after preprocessing the graph

Restart deletions-only algorithm each ∆ updates
(Preprocessing time can be amortized over previous ∆ deletions!)
Floyd-Warshall to process ∆ insertions in time O(∆n2)

11 / 22



Restrictions

Known techniques allow the following restrictions:
1 Only necessary to maintain shortest paths up to length h

(for some parameter h)
2 To obtain a fully dynamic algorithm it is sufficient to design a

deletions-only algorithm that
I can handle up to ∆ deletions of nodes with worst-case guarantees
I after preprocessing the graph

Restart deletions-only algorithm each ∆ updates
(Preprocessing time can be amortized over previous ∆ deletions!)
Floyd-Warshall to process ∆ insertions in time O(∆n2)

11 / 22



Repairing a shortest path tree

s
Given: shortest path tree from s

Node v is deleted
Shortest path destroyed only for
nodes in subtree of v
Run Dijkstra’s algorithm to
reattach these nodes to the tree
Charge time O(deg(u)) ≤ O(n)
to every node u in subtree of v
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Multiple shortest path trees

Goal: shortest paths from a set of source nodes S
s

1
s

2
s

3
s

4
s

5

Deletion of v

Total work: (number of nodes in subtrees of v) ×n

Goal: limit sizes of subtrees of each node
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Preprocessing
For every source, construct shortest path tree up to depth h:

G

G G \ {v} G \ {v} G \ {u, v}

s
1

v u

s
2

v
u

s
3

u

s
4

u

s
5

Count size of subtrees for every node
Rule: If number of nodes in subtrees of v exceeds λ:

v is added to set of heavy nodes H
v is deleted from graph, i.e., not considered in future trees

Observations:
All shortest paths not using heavy nodes included in trees

Number of heavy nodes: |H| ≤ O( |S|nh
λ

) ≤ O(n2h
λ

)

Preprocessing time: O(|S|n2) ≤ O(n3)
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Computing distances after deletions
G G G \ {v} G \ {v} G \ {u, v}

s
1

v u

s
2

v
u

s
3

u

s
4

u

s
5

1 For all deleted nodes: Reattach children to tree using Dijkstra
Running time: O(∆λn) per deletion

I Subtree size at most λ per node
I Number of deleted nodes at most ∆

Correct for all shortest paths not containing heavy nodes

2 Special treatment of heavy nodes: shortest paths via heavy nodes
Compute min

v∈H
(dist(s, v) + dist(v , t)) for all s and t

Time per deletion: O(|H|n2) = O(n4h
λ

)
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Running time wrapped up

O(∆λn) Repair shortest path trees

O(n4h
λ

) Shortest paths via heavy nodes

O(n3

∆ ) Preprocessing of O(n3) amortized over ∆ updates

O(∆n2) Shortest paths via inserted nodes

Õ(n2h + n3

h ) Shortest paths of length more than h

∆ = n0.25, λ = n1.5, h = n0.25

⇒ Õ(n2.75)
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Improvements

Directed graphs:
Two types of shortest path trees: incoming and outgoing

Weighted graphs:
Length of path → number of nodes on path (“hops”)
Requires Bellman-Ford in preprocessing: O(n2h) per node

Increased efficiency:
Multiple instances of algorithm to cover all hop ranges (+randomization)
Load balancing trick
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Barriers

18 / 22



Combinatorial approach [Thorup ’05, Abraham/Chechik/Krinninger ’17]

The best we can hope for:
Preprocessing: O(n3)
"Amortize" preprocessing over k updates: O(n3/k)
Deal with ≤ k insertions after each update: O(n2k)

⇒ O(n2.5)
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Algebraic approach [Sankowski ’04/’05]

Here: Intuition in DAGs

Transitive closure:
Count number of paths from s to t for all pairs
Reachable iff #paths > 0
Perform operations for counting modulo random prime
Update time O(n2)
Avoids special treatment of insertions

All-pairs shortest paths (distances):
For every 1 ≤ ` ≤ h, count #paths of length exactly `
Additional trick: fast convolution
Update time: Õ(n2h).
Standard trick for hitting long paths: h =

√
n

⇒ O(n2.5)
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Conclusion

Worst-case update time is the real deal!1

Often requires new approaches
Technically challenging
Conditional lower bounds: No technique yet to separate amortized
and worst-case update time for fully dynamic problems

1. . . and correctness against adaptive online adversary → Thatchapol Saranurak’s talk
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Open problems

How about the following worst-case bounds?

Fully dynamic APSP: Meet n2.5 barrier
Fully dynamic APSP: (1 + ε)-approximation in Õ(n2/ε) time?
Fully dynamic transitive closure: deterministic O(n2) algorithm?
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