Brief Announcement: A Note on Hardness of Diameter Approximation

Karl Bringmann ${ }^{1}$ Sebastian Krinninger ${ }^{2}$

${ }^{1}$ Max Planck Institute for Informatics Saarland Informatics Campus
${ }^{2}$ Department of Computer Sciences
University of Salzburg

DISC 2017

Motivation

Situation:

- Knowing diameter of a network is of fundamental interest

Motivation

Situation:

- Knowing diameter of a network is of fundamental interest
- Unfortunately, computing the diameter is hard

Motivation

Situation:

- Knowing diameter of a network is of fundamental interest
- Unfortunately, computing the diameter is hard
- Unfortunately, approximating the diameter is also not easy Upper: 3/2-approximation in $O(\sqrt{n \log n}+D)$ rounds [Holzer et al. '14] Lower: $(3 / 2-\varepsilon)$-approximation in $\tilde{\Omega}(n)$ rounds [Abboud et al. '16]

Motivation

Situation:

- Knowing diameter of a network is of fundamental interest
- Unfortunately, computing the diameter is hard
- Unfortunately, approximating the diameter is also not easy Upper: 3/2-approximation in $O(\sqrt{n \log n}+D)$ rounds [Holzer et al. '14] Lower: $(3 / 2-\varepsilon)$-approximation in $\tilde{\Omega}(n)$ rounds [Abboud et al. '16]

Goal: Fine-grained understanding of hardness of diameter approximation

Several recent works in CONGEST model and RAM model:
[Frischknecht at al. '12, Roditty/Williams '13, Chechik et al. '14, Holzer et al. '14, Cairo et al. '16, Abboud et al. '16]

Our Results: CONGEST Model

Theorem

In the CONGEST model, any algorithm distinguishing between graphs of diameter $2 \ell+q$ and graphs of diameter $3 \ell+q$ when $\ell \geq 1$ and $q \geq 1$ requires $\tilde{\Omega}(n)$ rounds.
n : \#nodes

Our Results: CONGEST Model

Theorem

In the CONGEST model, any algorithm distinguishing between graphs of diameter $2 \ell+q$ and graphs of diameter $3 \ell+q$ when $\ell \geq 1$ and $q \geq 1$ requires $\tilde{\Omega}(n)$ rounds.
n: \#nodes

Theorem ([Abboud et al. '16])
In the CONGEST model, any algorithm distinguishing between graphs of diameter $4 \ell+1+q$ and graphs of diameter $6 \ell+q$ when $\ell \geq 1$ and $q \geq 1$ requires $\tilde{\Omega}(n)$ rounds.

Our Results: CONGEST Model

Theorem

In the CONGEST model, any algorithm distinguishing between graphs of diameter $2 \ell+q$ and graphs of diameter $3 \ell+q$ when $\ell \geq 1$ and $q \geq 1$ requires $\tilde{\Omega}(n)$ rounds.
n : \#nodes

Theorem ([Abboud et al. '16])
In the CONGEST model, any algorithm distinguishing between graphs of diameter $4 \ell+1+q$ and graphs of diameter $6 \ell+q$ when $\ell \geq 1$ and $q \geq 1$ requires $\tilde{\Omega}(n)$ rounds.

Left open: 2ℓ vs 3ℓ ?

Our Results: CONGEST Model

Theorem

In the CONGEST model, any algorithm distinguishing between graphs of diameter $2 \ell+q$ and graphs of diameter $3 \ell+q$ when $\ell \geq 1$ and $q \geq 1$ requires $\tilde{\Omega}(n)$ rounds.
n : \#nodes

Theorem ([Abboud et al. '16])
In the CONGEST model, any algorithm distinguishing between graphs of diameter $4 \ell+1+q$ and graphs of diameter $6 \ell+q$ when $\ell \geq 1$ and $q \geq 1$ requires $\tilde{\Omega}(n)$ rounds.

Left open: 2ℓ vs 3ℓ ?
2 vs. 3 is hard [Frischknecht et al. '12]

Our Results: RAM Model

Theorem

In the RAM model, under the Orthogonal Vectors Hypothesis, there is no algorithm distinguishing between graphs of diameter $2 \ell+q$ and graphs of diameter $3 \ell+q$, where $\ell \geq 1$ and $q \geq 0$, in time $O\left(m^{2-\delta}\right)$ for any constant $\delta>0$.
m: \#edges

Our Results: RAM Model

Theorem

In the RAM model, under the Orthogonal Vectors Hypothesis, there is no algorithm distinguishing between graphs of diameter $2 \ell+q$ and graphs of diameter $3 \ell+q$, where $\ell \geq 1$ and $q \geq 0$, in time $O\left(m^{2-\delta}\right)$ for any constant $\delta>0$.
m: \#edges

Theorem ([Cairo et al. '16])

In the RAM model, under the Strong Exponential Time Hypothesis, there is no algorithm distinguishing between graphs of diameter $2 \ell+q$ and graphs of diameter $3 \ell+q$, where $\ell \geq 1$ and $q \geq 0$, in time $O\left(m^{2-\delta}\right)$ for any constant $\delta>0$.

Our Results: RAM Model

Theorem

In the RAM model, under the Orthogonal Vectors Hypothesis, there is no algorithm distinguishing between graphs of diameter $2 \ell+q$ and graphs of diameter $3 \ell+q$, where $\ell \geq 1$ and $q \geq 0$, in time $O\left(m^{2-\delta}\right)$ for any constant $\delta>0$.
m: \#edges

Theorem ([Cairo et al. '16])

In the RAM model, under the Strong Exponential Time Hypothesis, there is no algorithm distinguishing between graphs of diameter $2 \ell+q$ and graphs of diameter $3 \ell+q$, where $\ell \geq 1$ and $q \geq 0$, in time $O\left(m^{2-\delta}\right)$ for any constant $\delta>0$.

Strong Exponential Time Hypothesis \Rightarrow Orthogonal Vectors Hypothesis

Our Approach
 Orthogonal Vectors Problem:

Given sets $A, B \subseteq\{0,1\}^{d}$, decide if there are $a \in A$ and $b \in B$ such that $a \perp b$

Our Approach

Orthogonal Vectors Problem:

Given sets $A, B \subseteq\{0,1\}^{d}$, decide if there are $a \in A$ and $b \in B$ such that $a \perp b$ $n=|A|=|B|, d=c \log n$

Hypothesis: No $n^{2-\varepsilon}$ poly(d)-time algorithm in RAM model

Our Approach

Orthogonal Vectors Problem:

Given sets $A, B \subseteq\{0,1\}^{d}$, decide if there are $a \in A$ and $b \in B$ such that $a \perp b$ $n=|A|=|B|, d=c \log n$

Hypothesis: No $n^{2-\varepsilon}$ poly(d)-time algorithm in RAM model

Communication Complexity: Reduce Set Disjointness to OV (simple reduction, makes connection to Orthogonal Vectors explicit)

Our Approach

Orthogonal Vectors Problem:

Given sets $A, B \subseteq\{0,1\}^{d}$, decide if there are $a \in A$ and $b \in B$ such that $a \perp b$ $n=|A|=|B|, d=c \log n$

Hypothesis: No $n^{2-\varepsilon}$ poly(d)-time algorithm in RAM model
Communication Complexity: Reduce Set Disjointness to OV (simple reduction, makes connection to Orthogonal Vectors explicit)

CONGEST model: Reduce OV to Diameter

Take-Home Message

CONGEST model lower bounds:
Set Disjointness
Your Problem

Take-Home Message

CONGEST model lower bounds:

RAM model conditional lower bounds:

Take-Home Message

CONGEST model lower bounds:

RAM model conditional lower bounds:
Set Disjointness is easy in RAM model!

Take-Home Message

CONGEST model lower bounds:

RAM model conditional lower bounds:
Set Disjointness is easy in RAM model!

Suggestion:

Set Disjointness
\longrightarrow
Orthogonal Vectors
\longrightarrow Your Problem

