Brief Announcement: A Note on Hardness of Diameter Approximation

Karl Bringmann¹ Sebastian Krinninger²

¹Max Planck Institute for Informatics Saarland Informatics Campus

²Department of Computer Sciences University of Salzburg

DISC 2017

Situation:

• Knowing diameter of a network is of fundamental interest

Situation:

- Knowing diameter of a network is of fundamental interest
- Unfortunately, computing the diameter is hard

Situation:

- Knowing diameter of a network is of fundamental interest
- Unfortunately, computing the diameter is hard
- Unfortunately, *approximating* the diameter is also not easy Upper: 3/2-approximation in $O(\sqrt{n \log n} + D)$ rounds [Holzer et al. '14] Lower: $(3/2 - \varepsilon)$ -approximation in $\tilde{\Omega}(n)$ rounds [Abboud et al. '16]

Situation:

- Knowing diameter of a network is of fundamental interest
- Unfortunately, computing the diameter is hard
- Unfortunately, *approximating* the diameter is also not easy Upper: 3/2-approximation in $O(\sqrt{n \log n} + D)$ rounds [Holzer et al. '14] Lower: $(3/2 - \varepsilon)$ -approximation in $\tilde{\Omega}(n)$ rounds [Abboud et al. '16]

Goal: Fine-grained understanding of hardness of diameter approximation

Several recent works in CONGEST model and RAM model: [Frischknecht at al. '12, Roditty/Williams '13, Chechik et al. '14, Holzer et al. '14, Cairo et al. '16, Abboud et al. '16]

Theorem

In the CONGEST model, any algorithm distinguishing between graphs of diameter $2\ell + q$ and graphs of diameter $3\ell + q$ when $\ell \ge 1$ and $q \ge 1$ requires $\tilde{\Omega}(n)$ rounds.

n: #nodes

Theorem

In the CONGEST model, any algorithm distinguishing between graphs of diameter $2\ell + q$ and graphs of diameter $3\ell + q$ when $\ell \ge 1$ and $q \ge 1$ requires $\tilde{\Omega}(n)$ rounds.

n: #nodes

Theorem ([Abboud et al. '16])

In the CONGEST model, any algorithm distinguishing between graphs of diameter $4\ell + 1 + q$ and graphs of diameter $6\ell + q$ when $\ell \ge 1$ and $q \ge 1$ requires $\tilde{\Omega}(n)$ rounds.

Theorem

In the CONGEST model, any algorithm distinguishing between graphs of diameter $2\ell + q$ and graphs of diameter $3\ell + q$ when $\ell \ge 1$ and $q \ge 1$ requires $\tilde{\Omega}(n)$ rounds.

n: #nodes

Theorem ([Abboud et al. '16])

In the CONGEST model, any algorithm distinguishing between graphs of diameter $4\ell + 1 + q$ and graphs of diameter $6\ell + q$ when $\ell \ge 1$ and $q \ge 1$ requires $\tilde{\Omega}(n)$ rounds.

Left open: 2ℓ vs 3ℓ ?

Theorem

In the CONGEST model, any algorithm distinguishing between graphs of diameter $2\ell + q$ and graphs of diameter $3\ell + q$ when $\ell \ge 1$ and $q \ge 1$ requires $\tilde{\Omega}(n)$ rounds.

n: #nodes

Theorem ([Abboud et al. '16])

In the CONGEST model, any algorithm distinguishing between graphs of diameter $4\ell + 1 + q$ and graphs of diameter $6\ell + q$ when $\ell \ge 1$ and $q \ge 1$ requires $\tilde{\Omega}(n)$ rounds.

Left open: 2ℓ vs 3ℓ ?

2 vs. 3 is hard [Frischknecht et al. '12]

Our Results: RAM Model

Theorem

In the RAM model, under the Orthogonal Vectors Hypothesis, there is no algorithm distinguishing between graphs of diameter $2\ell + q$ and graphs of diameter $3\ell + q$, where $\ell \ge 1$ and $q \ge 0$, in time $O(m^{2-\delta})$ for any constant $\delta > 0$.

m: #edges

Our Results: RAM Model

Theorem

In the RAM model, under the Orthogonal Vectors Hypothesis, there is no algorithm distinguishing between graphs of diameter $2\ell + q$ and graphs of diameter $3\ell + q$, where $\ell \ge 1$ and $q \ge 0$, in time $O(m^{2-\delta})$ for any constant $\delta > 0$.

m: #edges

Theorem ([Cairo et al. '16])

In the RAM model, under the Strong Exponential Time Hypothesis, there is no algorithm distinguishing between graphs of diameter $2\ell + q$ and graphs of diameter $3\ell + q$, where $\ell \ge 1$ and $q \ge 0$, in time $O(m^{2-\delta})$ for any constant $\delta > 0$.

Our Results: RAM Model

Theorem

In the RAM model, under the Orthogonal Vectors Hypothesis, there is no algorithm distinguishing between graphs of diameter $2\ell + q$ and graphs of diameter $3\ell + q$, where $\ell \ge 1$ and $q \ge 0$, in time $O(m^{2-\delta})$ for any constant $\delta > 0$.

m: #edges

Theorem ([Cairo et al. '16])

In the RAM model, under the Strong Exponential Time Hypothesis, there is no algorithm distinguishing between graphs of diameter $2\ell + q$ and graphs of diameter $3\ell + q$, where $\ell \ge 1$ and $q \ge 0$, in time $O(m^{2-\delta})$ for any constant $\delta > 0$.

Strong Exponential Time Hypothesis \Rightarrow Orthogonal Vectors Hypothesis

Orthogonal Vectors Problem:

Given sets $A, B \subseteq \{0, 1\}^d$, decide if there are $a \in A$ and $b \in B$ such that $a \perp b$

Orthogonal Vectors Problem:

Given sets $A, B \subseteq \{0, 1\}^d$, decide if there are $a \in A$ and $b \in B$ such that $a \perp b$ $n = |A| = |B|, d = c \log n$

Hypothesis: No $n^{2-\varepsilon} poly(d)$ -time algorithm in RAM model

Orthogonal Vectors Problem:

Given sets $A, B \subseteq \{0, 1\}^d$, decide if there are $a \in A$ and $b \in B$ such that $a \perp b$ $n = |A| = |B|, d = c \log n$

Hypothesis: No $n^{2-\varepsilon} poly(d)$ -time algorithm in RAM model

Communication Complexity: Reduce Set Disjointness to OV (simple reduction, makes connection to Orthogonal Vectors explicit)

Orthogonal Vectors Problem:

Given sets $A, B \subseteq \{0, 1\}^d$, decide if there are $a \in A$ and $b \in B$ such that $a \perp b$ $n = |A| = |B|, d = c \log n$

Hypothesis: No $n^{2-\varepsilon} poly(d)$ -time algorithm in RAM model

Communication Complexity: Reduce Set Disjointness to OV (simple reduction, makes connection to Orthogonal Vectors explicit)

CONGEST model: Reduce OV to Diameter

CONGEST model lower bounds:

CONGEST model lower bounds:

RAM model conditional lower bounds:

CONGEST model lower bounds:

RAM model conditional lower bounds: Set Disjointness is easy in RAM model!

CONGEST model lower bounds:

RAM model conditional lower bounds: Set Disjointness is easy in RAM model!

