Distributed Approximate Single-Source Shortest Paths

Sebastian Krinninger

University of Vienna

joint works with

Ruben Becker

Monika Henzinger

Andreas Karrenbauer

Christoph Lenzen

Danupon Nanongkai

Distributed $(1 + \varepsilon)$ -approximate single-source shortest paths (SSSP)

Distributed $(1 + \varepsilon)$ -approximate single-source shortest paths (SSSP)

• Deterministically compute approximate shortest paths in $(\sqrt{n} + Diam) \cdot n^{o(1)}$ rounds for $\varepsilon \ge 1/polylog(n)$ [Henzinger/K/Nanongkai 16]

Distributed $(1 + \varepsilon)$ -approximate single-source shortest paths (SSSP)

• Deterministically compute approximate shortest paths in $(\sqrt{n} + Diam) \cdot n^{o(1)}$ rounds for $\varepsilon \ge 1/polylog(n)$ [Henzinger/K/Nanongkai 16]

Oterministically compute approximate shortest paths in $(\sqrt{n} + Diam) \cdot poly(\log n, \varepsilon)$ rounds [Becker/Lenzen/Karrenbauer/K 16]

Distributed $(1 + \varepsilon)$ -approximate single-source shortest paths (SSSP)

• Deterministically compute approximate shortest paths in $(\sqrt{n} + Diam) \cdot n^{o(1)}$ rounds for $\varepsilon \ge 1/polylog(n)$ [Henzinger/K/Nanongkai 16]

Oterministically compute approximate shortest paths in $(\sqrt{n} + Diam) \cdot poly(\log n, \varepsilon)$ rounds [Becker/Lenzen/Karrenbauer/K 16]

Comparison:

- Lower bound: $\tilde{\Omega}(\sqrt{n} + Diam)$ rounds [Das Sarma et al '11]
- Exact SSSP: $O((n \log n)^{2/3} Diam^{1/3})$ rounds (randomized) [Elkin '17]
- 1 + ε: O(n^{1/2}Diam^{1/4} + Diam) (randomized) [Nanongkai '14]

Distributed $(1 + \varepsilon)$ -approximate single-source shortest paths (SSSP)

• Deterministically compute approximate shortest paths in $(\sqrt{n} + Diam) \cdot n^{o(1)}$ rounds for $\varepsilon \ge 1/polylog(n)$ [Henzinger/K/Nanongkai 16]

Oterministically compute approximate shortest paths in $(\sqrt{n} + Diam) \cdot poly(\log n, \varepsilon)$ rounds [Becker/Lenzen/Karrenbauer/K 16]

Comparison:

- Lower bound: $\tilde{\Omega}(\sqrt{n} + Diam)$ rounds [Das Sarma et al '11]
- Exact SSSP: $O((n \log n)^{2/3} Diam^{1/3})$ rounds (randomized) [Elkin '17]
- 1 + ε: O(n^{1/2}Diam^{1/4} + Diam) (randomized) [Nanongkai '14]

Today: Weighted undirected graphs

Tight and Tighter

Tight and Tighter Combinatorics & Optimization

Model and Problem Statement

Many distributed models measure amount of communication Running time = number of rounds

Model and Problem Statement

Many distributed models measure amount of communication Running time = number of rounds

CONGEST model:

- Synchronous rounds (global clock)
- Message size $O(\log n)$
- In each round, every node sends (at most) one message to each neighbor
- Local computation is free

Model and Problem Statement

Many distributed models measure amount of communication Running time = number of rounds

CONGEST model:

- Synchronous rounds (global clock)
- Message size $O(\log n)$
- In each round, every node sends (at most) one message to each neighbor
- Local computation is free

Problem statement:

- Initially, each node knows whether it is the source or not
- Finally: Every node knows its approximate distance to the source Often also: Implicit tree; every node knows next edge on approximate shortest path to source

BFS tree can be computed in O(Diam) rounds

Reduce to SSSP on Overlay Network [Nanongkai '14]

Reduce to SSSP on Overlay Network [Nanongkai '14]

- Solve SSSP on overlay network and make global knowledge
- Ombine local knowledge of local neighborhoods with global knowledge

Reduce to SSSP on Overlay Network [Nanongkai '14]

Solve SSSP on overlay network and make global knowledgeCombine local knowledge of local neighborhoods with global knowledge

Sample $N = \tilde{O}(n^{1/2})$ centers (+ source *s*) \Rightarrow Every shortest path with $\ge n^{1/2}$ edges contains center whp

Derandomization of Overlay Network [нкм '16]

Randomization: Hit every shortest path with $\geq \sqrt{n}$ edges

Derandomization of Overlay Network [нкм '16]

Randomization: Hit every shortest path with $\geq \sqrt{n}$ edges

Deterministic relaxation: Almost hit every path $\geq \sqrt{n}$ edges

Congested Clique

Special model: Communication not restricted to neighbors

In each round, each node can send one message to each other node Heavily studied in recent years!

Congested Clique

Special model: Communication not restricted to neighbors

In each round, each node can send one message to each other node Heavily studied in recent years!

Simulation: Overlay network as congested clique

t rounds in Congested Clique $\rightarrow \tilde{O}(t \cdot (\sqrt{n} + Diam))$ rounds in CONGEST

Hop Reduction

Definition

A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v, $dist_H(u, v) \le k \cdot dist_G(u, v)$.

Definition

A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v, $dist_H(u, v) \le k \cdot dist_G(u, v)$.

Definition

A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v, $dist_H(u, v) \le k \cdot dist_G(u, v)$.

Definition

A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v, $dist_H(u, v) \le k \cdot dist_G(u, v).$

Fact: Every graph has a *k*-spanner of size $n^{1+1/k}$ [Folklore] **Application:** Running time $T(m, n) \Rightarrow T(n^{1+1/k}, n)$

Definition

An (h, ε) -hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with **at most h edges** of weight at most $(1 + \varepsilon)dist(u, v)$.

Definition

An (h, ε) -hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with **at most h edges** of weight at most $(1 + \varepsilon)dist(u, v)$.

Definition

An (h, ε) -hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with **at most h edges** of weight at most $(1 + \varepsilon)dist(u, v)$.

Definition

An (h, ε) -hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with **at most h edges** of weight at most $(1 + \varepsilon)dist(u, v)$.

Fact: Every graph has a $(n^{o(1)}, \varepsilon)$ -hop set of size $n^{1+o(1)}$ [Cohen '94] (for $\varepsilon \ge 1/polylogn$)

Definition

An (h, ε) -hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with **at most h edges** of weight at most $(1 + \varepsilon)dist(u, v)$.

Application?

SSSP up to h hops (Bellman-Ford)

• RAM: O(mh) time

Definition

An (h, ε) -hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with **at most h edges** of weight at most $(1 + \varepsilon)dist(u, v)$.

Application?

- RAM: O(mh) time
- PRAM: *O*(*mh*) with *O*(*h*) depth

Definition

An (h, ε) -hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with **at most h edges** of weight at most $(1 + \varepsilon)dist(u, v)$.

Application?

- RAM: O(mh) time
- PRAM: *O*(*mh*) with *O*(*h*) depth
- Congested Clique: *O*(*h*) rounds

Definition

An (h, ε) -hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with **at most h edges** of weight at most $(1 + \varepsilon)dist(u, v)$.

Application?

- RAM: O(mh) time
- PRAM: O(mh) with O(h) depth
- Congested Clique: O(h) rounds
- Streaming: *h* passes with *O*(*n*) space

Definition

An (h, ε) -hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with **at most h edges** of weight at most $(1 + \varepsilon)dist(u, v)$.

Application?

- RAM: O(mh) time
- PRAM: O(mh) with O(h) depth
- Congested Clique: *O*(*h*) rounds
- Streaming: *h* passes with *O*(*n*) space
- Incremental/Decremental O(mh) [Even/Shiloach '81, HKN '14]

Definition

An (h, ε) -hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with **at most h edges** of weight at most $(1 + \varepsilon)dist(u, v)$.

Application?

SSSP up to h hops (Bellman-Ford)

- RAM: O(mh) time
- PRAM: O(mh) with O(h) depth
- Congested Clique: O(h) rounds
- Streaming: *h* passes with *O*(*n*) space
- Incremental/Decremental O(mh) [Even/Shiloach '81, HKN '14]

Hopset with $h = n^{o(1)}$ and size $n^{1+o(1)}$ gives almost tight algorithms

Definition

An (h, ε) -hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with **at most h edges** of weight at most $(1 + \varepsilon)dist(u, v)$.

Application?

SSSP up to h hops (Bellman-Ford)

- RAM: O(mh) time
- PRAM: O(mh) with O(h) depth
- Congested Clique: *O*(*h*) rounds
- Streaming: *h* passes with *O*(*n*) space
- Incremental/Decremental O(mh) [Even/Shiloach '81, HKN '14]

Hopset with $h = n^{o(1)}$ and size $n^{1+o(1)}$ gives almost tight algorithms Remaining challenge: Compute hop set efficiently

Authors	Stretch α	Hopbound h	Size
[Baseline]	1	1	$O(n^2)$

Authors	Stretch α	Hopbound h	Size
[Baseline]	1	1	$O(n^2)$
[Klein/Subramanian '97]	1	$O(\frac{n\log n}{t})$	$O(t^2)$
[Shi/Spencer '99]	1	$O(\frac{n}{t})$	O(nt)

Authors	Stretch α	Hopbound h	Size
[Baseline]	1	1	$O(n^2)$
[Klein/Subramanian '97]	1	$O(\frac{n\log n}{t})$	$O(t^2)$
[Shi/Spencer '99]	1	$O(\frac{n}{t})$	O(nt)
[Thorup/Zwick'01]	2 <i>k</i> – 1	2	$O(kn^{1+\frac{1}{k}})$

Authors	Stretch <i>α</i>	Hopbound h	Size
[Baseline]	1	1	$O(n^2)$
[Klein/Subramanian '97]	1	$O(\frac{n\log n}{t})$	$O(t^2)$
[Shi/Spencer '99]	1	$O(\frac{n}{t})$	O(nt)
[Thorup/Zwick'01]	2 <i>k</i> – 1	2	$O(kn^{1+\frac{1}{k}})$
[Cohen'94]	1 + <i>ε</i>	$(\frac{\log n}{\varepsilon})^{O(\log k)}$	$O(n^{1+\frac{1}{k}} \log n)$
[Bernstein'09]	1 + <i>ε</i>	$O(\frac{3}{\varepsilon})^k \log n$	$O(kn^{1+\frac{1}{k}})$
[Elkin/Neiman'16]	$1 + \varepsilon$	$\left(\frac{\log k}{\varepsilon}\right)^{O(\log k)}$	$O(n^{1+\frac{1}{k}} \log n \log k)$
[Elkin/Neiman'17]	1 + <i>ε</i>	$O(\frac{k+1}{\varepsilon})^{k+1}$	$O(n^{1+\frac{1}{2^{k+1}-1}})$
[Huang/Pettie'17]	1 + <i>ε</i>	$O(\frac{k}{\varepsilon})^k$	$O(n^{1+\frac{1}{2^{k+1}-1}})$

Authors	Stretch α	Hopbound h	Size
[Baseline]	1	1	$O(n^2)$
[Klein/Subramanian '97]	1	$O(\frac{n\log n}{t})$	$O(t^2)$
[Shi/Spencer '99]	1	$O(\frac{n}{t})$	O(nt)
[Thorup/Zwick'01]	2 <i>k</i> – 1	2	$O(kn^{1+\frac{1}{k}})$
[Cohen'94]	1 + <i>ε</i>	$(\frac{\log n}{\varepsilon})^{O(\log k)}$	$O(n^{1+\frac{1}{k}}\log n)$
[Bernstein'09]	1 + <i>ε</i>	$O(\frac{3}{\varepsilon})^k \log n$	$O(kn^{1+\frac{1}{k}})$
[Elkin/Neiman'16]	1 + <i>ε</i>	$(\frac{\log k}{\varepsilon})^{O(\log k)}$	$O(n^{1+\frac{1}{k}}\log n\log k)$
[Elkin/Neiman'17]	1 + <i>ε</i>	$O(\frac{k+1}{\varepsilon})^{k+1}$	$O(n^{1+\frac{1}{2^{k+1}-1}})$
[Huang/Pettie'17]	$1 + \varepsilon$	$O(\frac{k}{\varepsilon})^k$	$O(n^{1+\frac{1}{2^{k+1}-1}})$
[Abboud/Bodwin/Pettie'16]	1 + <i>ε</i>	$\Omega_k(\frac{1}{\varepsilon})^k$	$n^{1+\frac{1}{2^k-1}-\delta}$

Authors	Stretch α	Hopbound h	Size
[Baseline]	1	1	$O(n^2)$
[Klein/Subramanian '97]	1	$O(\frac{n\log n}{t})$	$O(t^2)$
[Shi/Spencer '99]	1	$O(\frac{n}{t})$	O(nt)
[Thorup/Zwick'01]	2 <i>k</i> – 1	2	$O(kn^{1+\frac{1}{k}})$
[Cohen'94]	1 + <i>ε</i>	$(\frac{\log n}{\varepsilon})^{O(\log k)}$	$O(n^{1+\frac{1}{k}}\log n)$
[Bernstein'09]	1 + <i>ε</i>	$O(\frac{3}{\varepsilon})^k \log n$	$O(kn^{1+\frac{1}{k}})$
[Elkin/Neiman'16]	1 + <i>ε</i>	$(\frac{\log k}{\varepsilon})^{O(\log k)}$	$O(n^{1+\frac{1}{k}}\log n\log k)$
[Elkin/Neiman'17]	1 + <i>ε</i>	$O(\frac{k+1}{\varepsilon})^{k+1}$	$O(n^{1+\frac{1}{2^{k+1}-1}})$
[Huang/Pettie'17]	1 + <i>ε</i>	$O(\frac{k}{\varepsilon})^k$	$O(n^{1+\frac{1}{2^{k+1}-1}})$
[Abboud/Bodwin/Pettie'16]	1 + <i>ε</i>	$\Omega_k(\frac{1}{\varepsilon})^k$	$n^{1+\frac{1}{2^k-1}-\delta}$

 \Rightarrow Cannot have $\alpha = 1 + \varepsilon$, $h = poly(1/\varepsilon)$ and size $n \cdot polylog(n)$.

It was too good to be true...

Hop Set Example

 $V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset$ where node of A_i goes to A_{i+1} with probability $1/n^{1/k}$

v has **priority** *i* if $v \in A_i \setminus A_{i+1}$

 $V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset$ where node of A_i goes to A_{i+1} with probability $1/n^{1/k}$

v has **priority** *i* if $v \in A_i \setminus A_{i+1}$

For every node *u* of priority *i*:

 $Ball(u) = \{v \in V \mid dist(u, v) < dist(u, A_{i+1})\}$

 $V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset \text{ where node of } A_i \text{ goes to } A_{i+1} \text{ with probability } 1/n^{1/k}$ v has **priority** i if $v \in A_i \setminus A_{i+1}$

For every node *u* of priority *i*:

 $Ball(u) = \{v \in V \mid dist(u, v) < dist(u, A_{i+1})\}$

 $V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset \text{ where node of } A_i \text{ goes to } A_{i+1} \text{ with probability } 1/n^{1/k}$ v has **priority** i if $v \in A_i \setminus A_{i+1}$

For every node *u* of priority *i*:

 $Ball(u) = \{v \in V \mid dist(u, v) < dist(u, A_{i+1})\}$

 $V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset$ where node of A_i goes to A_{i+1} with probability $1/n^{1/k}$ v has **priority** i if $v \in A_i \setminus A_{i+1}$

For every node *u* of priority *i*:

 $Ball(u) = \{v \in V \mid dist(u, v) < dist(u, A_{i+1})\}$

Hop set:

•
$$w(u, v) = dist_G(u, v)$$

 $V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset$ where node of A_i goes to A_{i+1} with probability $1/n^{1/k}$ v has **priority** i if $v \in A_i \setminus A_{i+1}$

For every node *u* of priority *i*:

 $Ball(u) = \{v \in V \mid dist(u, v) < dist(u, A_{i+1})\}$

priority	# nodes
0	п
1	$n^{1-1/k}$
÷	:
<i>k</i> – 1	$n^{1/k}$

Hop set:

•
$$w(u, v) = dist_G(u, v)$$

 $V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset$ where node of A_i goes to A_{i+1} with probability $1/n^{1/k}$ v has **priority** i if $v \in A_i \setminus A_{i+1}$

For every node *u* of priority *i*:

$$Ball(u) = \{v \in V \mid dist(u, v) < dist(u, A_{i+1})\}$$

Expected size: $n^{(i+1)/k}$			
priority	# nodes		
0	п	$n^{1/k}$	
1	$n^{1-1/k}$	$n^{2/k}$	
:	:	:	
<i>k</i> – 1	$n^{1/k}$	п	

Hop set:

•
$$w(u, v) = dist_G(u, v)$$

 $V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset$ where node of A_i goes to A_{i+1} with probability $1/n^{1/k}$ v has **priority** i if $v \in A_i \setminus A_{i+1}$

For every node *u* of priority *i*:

$$Ball(u) = \{v \in V \mid dist(u, v) < dist(u, A_{i+1})\}$$

priority	# nodes	Ball(u)	# edges
0	п	$n^{1/k}$	$n^{1+1/k}$
1	$n^{1-1/k}$	$n^{2/k}$	$n^{1+1/k}$
÷	:	:	÷
<i>k</i> – 1	$n^{1/k}$	п	$n^{1+1/k}$

Hop set:

- $(u, v) \in F$ iff $v \in Ball(u)$
- $w(u, v) = dist_G(u, v)$

 $V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset$ where node of A_i goes to A_{i+1} with probability $1/n^{1/k}$ v has **priority** i if $v \in A_i \setminus A_{i+1}$

For every node *u* of priority *i*:

$$Ball(u) = \{v \in V \mid dist(u, v) < dist(u, A_{i+1})\}$$

Expected size: $n^{(i+1)/k}$				
priority	# nodes	Ball(u)	# edges	
0	п	$n^{1/k}$	$n^{1+1/k}$	
1	$n^{1-1/k}$	$n^{2/k}$	$n^{1+1/k}$	
:			:	
<i>k</i> – 1	$n^{1/k}$	п	$n^{1+1/k}$	
			$kn^{1+1/k}$	

Hop set:

•
$$w(u, v) = dist_G(u, v)$$

Parameter Choice

$$k = \frac{\sqrt{\log n}}{\sqrt{\log 4/\varepsilon}}$$
$$\left(\frac{4}{\varepsilon}\right)^k = n^{1/k}$$

Parameter Choice

$$k = \frac{\sqrt{\log n}}{\sqrt{\log 4/\varepsilon}}$$
$$\left(\frac{4}{\varepsilon}\right)^{k} = n^{1/k} = n^{o(1)}$$

 $(n^{1/2+o(1)}, \varepsilon)$ -hop set Case 1: $dist(u_0, v) \le n^{1/2+1/k}/\varepsilon$

 $(n^{1/2+o(1)}, \varepsilon)$ -hop set Case 2: $dist(u_0, v) > n^{1/2+1/k}/\varepsilon$

$$r_0 = n^{1/2}$$

Weight $\leq (1 + \varepsilon) dist(u_0, v)$

Weight
$$\leq (1 + \varepsilon) dist(u_0, v)$$

#Edges $\leq \frac{k \cdot dist(u, v)}{n^{1/2}} \leq \frac{k \cdot n}{n^{1/2}} = kn^{1/2}$

Chicken-Egg Problem?

- Goal: Faster SSSP via hop set
- Compute hop set by computing balls
- Computing balls at least as hard as SSSP
- ⇒ Back at problem we wanted to solve initially?

Chicken-Egg Problem?

- Goal: Faster SSSP via hop set
- Compute hop set by computing balls
- Computing balls at least as hard as SSSP
- ⇒ Back at problem we wanted to solve initially?

No! $(n^{1/2+o(1)}, \varepsilon)$ -hop set only requires balls up to $n^{1/2+o(1)}$ hops

Iterative computation

In each iteration number of hops is reduced by a factor of $n^{1/k}$

Iterative computation

In each iteration number of hops is reduced by a factor of $n^{1/k}$

Algorithm:

for i = 1 to k do $\begin{array}{c}
H_i = G \cup \bigcup_{1 \le j \le i-1} F_j \\
\text{Compute balls with } k \text{ priorities in } H_i \text{ up to } n^{2/k} \text{ hops} \\
F_i = \{(u, v) \mid v \in Ball(u)\}
\end{array}$

end

return
$$F = \bigcup_{1 \le i \le k} F_i$$

Iterative computation

In each iteration number of hops is reduced by a factor of $n^{1/k}$

Algorithm:

for i = 1 to k do $H_i = G \cup \bigcup F_j$ 1<*i*<*i*-1 Compute balls with k priorities in H_i up to $n^{2/k}$ hops $F_i = \{(u, v) \mid v \in Ball(u)\}$

end

return
$$F = \bigcup_{1 \le i \le k} F_i$$

Error amplification: $(1 + \varepsilon')^k \le (1 + \varepsilon)$ for $\varepsilon' = 1/(2\varepsilon \log n)$

Iterative computation

In each iteration number of hops is reduced by a factor of $n^{1/k}$

Algorithm:

for i = 1 to k do $H_i = G \cup \bigcup F_j$ $1 \le i \le i = 1$ Compute balls with k priorities in H_i up to $n^{2/k}$ hops $F_i = \{(u, v) \mid v \in Ball(u)\}$

end

$$\mathbf{return} \ F = \bigcup_{1 \le i \le k} F_i$$

Error amplification: $(1 + \varepsilon')^k \le (1 + \varepsilon)$ for $\varepsilon' = 1/(2\varepsilon \log n)$

Omitted detail: weighted graphs, use rounding technique

Beyond Hop Sets

Theorem ([Becker/Karrenbauer/K/Lenzen arXiv'16])

There is a deterministic algorithm for computing $(1 + \varepsilon)$ approximate SSSP in $(\sqrt{n} + Diam)poly(\log n, \varepsilon)$ rounds.

Theorem ([Becker/Karrenbauer/K/Lenzen arXiv'16])

There is a deterministic algorithm for computing $(1 + \varepsilon)$ approximate SSSP in $(\sqrt{n} + Diam)poly(\log n, \varepsilon)$ rounds.

Key insight: Solve more general problem

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to sinks along the edges of a graph as specified by demands on nodes.

Theorem ([Becker/Karrenbauer/K/Lenzen arXiv'16])

There is a deterministic algorithm for computing $(1 + \varepsilon)$ approximate SSSP in $(\sqrt{n} + Diam)poly(\log n, \varepsilon)$ rounds.

Key insight: Solve more general problem

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to sinks along the edges of a graph as specified by demands on nodes.

"Uncapacitated minimum-cost flow"

Theorem ([Becker/Karrenbauer/K/Lenzen arXiv'16])

There is a deterministic algorithm for computing $(1 + \varepsilon)$ approximate SSSP in $(\sqrt{n} + Diam)poly(\log n, \varepsilon)$ rounds.

Key insight: Solve more general problem

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to sinks along the edges of a graph as specified by demands on nodes.

"Uncapacitated minimum-cost flow"

SSSP: source has demand -(n-1), other nodes have demand 1

Shortest transshipment as linear program:

minimize $||Wx||_1$ s.t. Ax = b

Shortest transshipment as linear program:

minimize $||Wx||_1$ s.t. Ax = b

Dual program:

maximize
$$b^T y$$
 s.t. $||W^{-1}A^T y||_{\infty} \leq 1$

Shortest transshipment as linear program:

minimize $||Wx||_1$ s.t. Ax = b

Dual program:

maximize
$$b^T y$$
 s.t. $||W^{-1}A^T y||_{\infty} \le 1$

Equivalent:

minimize
$$||W^{-1}A^T y||_{\infty}$$
 s.t. $b^T \pi = 1$

Shortest transshipment as linear program:

minimize $||Wx||_1$ s.t. Ax = b

Dual program:

maximize
$$b^T y$$
 s.t. $||W^{-1}A^T y||_{\infty} \le 1$

Equivalent:

minimize
$$||W^{-1}A^Ty||_{\infty}$$
 s.t. $b^T\pi = 1$

We approximate $\|\cdot\|_{\infty}$ by soft-max:

$$\mathsf{lse}_{\beta}(x) := \frac{1}{\beta} \ln \left(\sum_{i \in [d]} \left(e^{\beta x_i} + e^{-\beta x_i} \right) \right)$$

Algorithm at a glance:

• Soft-max is differentiable \rightarrow apply gradient descent

Algorithm at a glance:

- Soft-max is differentiable \rightarrow apply gradient descent
- Each iteration: solve transshipment problem with different demand vector b' depending on current gradient

Algorithm at a glance:

- Soft-max is differentiable \rightarrow apply gradient descent
- Each iteration: solve transshipment problem with different demand vector b' depending on current gradient
- Solution: For b', bad approximation is sufficient

Algorithm at a glance:

- Soft-max is differentiable \rightarrow apply gradient descent
- Each iteration: solve transshipment problem with different demand vector b' depending on current gradient
- Solution: For b', bad approximation is sufficient
- Compute spanner on overlay network and solving transshipment on overlay spanner
 Spanner has stretch O(log n) and size Õ(n)

Algorithm at a glance:

- Soft-max is differentiable \rightarrow apply gradient descent
- Each iteration: solve transshipment problem with different demand vector b' depending on current gradient
- Solution: For b', bad approximation is sufficient
- Compute spanner on overlay network and solving transshipment on overlay spanner
 Spanner has stretch O(log n) and size Õ(n)

Overall: Polylog iterations, each solving O(log n)-approximate transshipment on graph of Õ(n) edges

Algorithm at a glance:

- Soft-max is differentiable \rightarrow apply gradient descent
- Each iteration: solve transshipment problem with different demand vector b' depending on current gradient
 Congested Clique: Compute gradient in O(1) rounds
- Solution: For b', bad approximation is sufficient
- Compute spanner on overlay network and solving transshipment on overlay spanner
 Spanner has stretch O(log n) and size Õ(n)

Overall: Polylog iterations, each solving O(log n)-approximate transshipment on graph of Õ(n) edges

Algorithm at a glance:

- Soft-max is differentiable \rightarrow apply gradient descent
- Each iteration: solve transshipment problem with different demand vector b' depending on current gradient
 Congested Clique: Compute gradient in O(1) rounds
- Solution: For b', bad approximation is sufficient

Compute spanner on overlay network and solving transshipment on overlay spanner
 Spanner has stretch O(log n) and size Õ(n)
 Congested Clique: Spanner can be computed in O(log n) rounds
 [Baswana/Sen '03]

Overall: Polylog iterations, each solving O(log n)-approximate transshipment on graph of Õ(n) edges

Black-box reduction from SSSP to shortest transshipment only for exact solutions

- Black-box reduction from SSSP to shortest transshipment only for exact solutions
- **②** Transshipment will only guarantee $(1 + \varepsilon)$ -approximation on average

- Black-box reduction from SSSP to shortest transshipment only for exact solutions
- **2** Transshipment will only guarantee $(1 + \varepsilon)$ -approximation on average
- Item to obtain per-node guarantee:
 - Solve with increased precision
 - Inspect gradient to identify "good nodes"
 - Repeat transshipment for "bad" nodes only
 - Analysis: Total "mass" reduced by constant fraction in each run

- Black-box reduction from SSSP to shortest transshipment only for exact solutions
- **2** Transshipment will only guarantee $(1 + \varepsilon)$ -approximation on average
- Item to obtain per-node guarantee:
 - Solve with increased precision
 - Inspect gradient to identify "good nodes"
 - Repeat transshipment for "bad" nodes only
 - Analysis: Total "mass" reduced by constant fraction in each run

- Black-box reduction from SSSP to shortest transshipment only for exact solutions
- **2** Transshipment will only guarantee $(1 + \varepsilon)$ -approximation on average
- Itow to obtain per-node guarantee:
 - Solve with increased precision
 - Inspect gradient to identify "good nodes"
 - Repeat transshipment for "bad" nodes only
 - Analysis: Total "mass" reduced by constant fraction in each run

Independent work: Approximate transshipment [Sherman '16]

· More general solvers based on generalized preconditioning

- Black-box reduction from SSSP to shortest transshipment only for exact solutions
- **2** Transshipment will only guarantee $(1 + \varepsilon)$ -approximation on average
- Itow to obtain per-node guarantee:
 - Solve with increased precision
 - Inspect gradient to identify "good nodes"
 - Repeat transshipment for "bad" nodes only
 - Analysis: Total "mass" reduced by constant fraction in each run

- More general solvers based on generalized preconditioning
- Linear preconditioner based on metric embeddings

- Black-box reduction from SSSP to shortest transshipment only for exact solutions
- **2** Transshipment will only guarantee $(1 + \varepsilon)$ -approximation on average
- Item to obtain per-node guarantee:
 - Solve with increased precision
 - Inspect gradient to identify "good nodes"
 - Repeat transshipment for "bad" nodes only
 - Analysis: Total "mass" reduced by constant fraction in each run

- More general solvers based on generalized preconditioning
- Linear preconditioner based on metric embeddings
- With additional analysis: spanner-based oracle as non-linear preconditioner

- Black-box reduction from SSSP to shortest transshipment only for exact solutions
- **2** Transshipment will only guarantee $(1 + \varepsilon)$ -approximation on average
- Item to obtain per-node guarantee:
 - Solve with increased precision
 - Inspect gradient to identify "good nodes"
 - Repeat transshipment for "bad" nodes only
 - Analysis: Total "mass" reduced by constant fraction in each run

- More general solvers based on generalized preconditioning
- Linear preconditioner based on metric embeddings
- With additional analysis: spanner-based oracle as non-linear preconditioner
- No straightforward way of obtaining per-node guarantee

Conclusion

Main contributions:

- Two almost tight algorithms in distributed and streaming models
- Combinatorial and continuous tools

Conclusion

Main contributions:

- Two almost tight algorithms in distributed and streaming models
- Combinatorial and continuous tools

Open problems:

- PRAM: improve Cohen's $m^{1+o(1)}$ work with polylog depth?
- Deterministic decremental SSSP algorithm

Tight and Tighter