Distributed Approximate Single-Source Shortest Paths

Sebastian Krinninger

University of Vienna
joint works with

Ruben
Becker

Monika
Henzinger

Andreas
Karrenbauer

Christoph
Lenzen

Danupon
Nanongkai

One Problem - Two Results

Distributed $(1+\varepsilon)$-approximate single-source shortest paths (SSSP)

One Problem - Two Results

Distributed $(1+\varepsilon)$-approximate single-source shortest paths (SSSP)
(1) Deterministically compute approximate shortest paths in $(\sqrt{n}+$ Diam $) \cdot n^{o(1)}$ rounds for $\varepsilon \geq 1 / \operatorname{polylog}(n)$ [Henzinger/K/Nanongkai 16]

One Problem - Two Results

Distributed ($1+\varepsilon$)-approximate single-source shortest paths (SSSP)

(1. Deterministically compute approximate shortest paths in $(\sqrt{n}+$ Diam $) \cdot n^{o(1)}$ rounds for $\varepsilon \geq 1 / \operatorname{polylog}(n)$ [Henzinger/K/Nanongkai 16]
(2) Deterministically compute approximate shortest paths in $(\sqrt{n}+$ Diam $) \cdot \operatorname{poly}(\log n, \varepsilon)$ rounds [Becker/Lenzen/Karrenbauer/K 16]

One Problem - Two Results

Distributed $(1+\varepsilon)$-approximate single-source shortest paths (SSSP)

(1) Deterministically compute approximate shortest paths in $(\sqrt{n}+$ Diam $) \cdot n^{o(1)}$ rounds for $\varepsilon \geq 1 / \operatorname{polylog}(n)$ [Henzinger/K/Nanongkai 16]
(2) Deterministically compute approximate shortest paths in $(\sqrt{n}+$ Diam $) \cdot \operatorname{poly}(\log n, \varepsilon)$ rounds $[B e c k e r /$ Lenzen/Karrenbauer/K 16]

Comparison:

- Lower bound: $\tilde{\Omega}(\sqrt{n}+$ Diam $)$ rounds [Das Sarma et al '11]
- Exact SSSP: $O\left((n \log n)^{2 / 3}\right.$ Diam $\left.^{1 / 3}\right)$ rounds (randomized) [Elkin '17]
- $1+\varepsilon: O\left(n^{1 / 2}\right.$ Diam $^{1 / 4}+$ Diam) (randomized) [Nanongkai '14]

One Problem - Two Results

Distributed $(1+\varepsilon)$-approximate single-source shortest paths (SSSP)

(1) Deterministically compute approximate shortest paths in $(\sqrt{n}+$ Diam $) \cdot n^{o(1)}$ rounds for $\varepsilon \geq 1 / \operatorname{polylog}(n)$ [Henzinger/K/Nanongkai 16]
(2) Deterministically compute approximate shortest paths in $(\sqrt{n}+$ Diam $) \cdot \operatorname{poly}(\log n, \varepsilon)$ rounds [Becker/Lenzen/Karrenbauer/K 16]

Comparison:

- Lower bound: $\tilde{\Omega}(\sqrt{n}+$ Diam $)$ rounds [Das Sarma et al '11]
- Exact SSSP: $O\left((n \log n)^{2 / 3}\right.$ Diam $\left.^{1 / 3}\right)$ rounds (randomized) [Elkin '17]
- $1+\varepsilon: O\left(n^{1 / 2}\right.$ Diam $^{1 / 4}+$ Diam) (randomized) [Nanongkai '14]

Today: Weighted undirected graphs

Tight and Tighter

Tight and Tighter
Combinatorics \& Optimization

Model and Problem Statement

Many distributed models measure amount of communication Running time = number of rounds

Model and Problem Statement

Many distributed models measure amount of communication
Running time = number of rounds
CONGEST model:

- Synchronous rounds (global clock)
- Message size $O(\log n)$
- In each round, every node sends (at most) one message to each neighbor
- Local computation is free

Model and Problem Statement

Many distributed models measure amount of communication
Running time = number of rounds
CONGEST model:

- Synchronous rounds (global clock)
- Message size $O(\log n)$
- In each round, every node sends (at most) one message to each neighbor
- Local computation is free

Problem statement:

- Initially, each node knows whether it is the source or not
- Finally: Every node knows its approximate distance to the source Often also: Implicit tree; every node knows next edge on approximate shortest path to source

Unweighted Graphs: BFS

BFS tree can be computed in O (Diam) rounds

Reduce to SSSP on Overlay Network [Nanongkai '14]

Reduce to SSSP on Overlay Network [Nanongkai '14]

(1) Solve SSSP on overlay network and make global knowledge
(2) Combine local knowledge of local neighborhoods with global knowledge

Reduce to SSSP on Overlay Network [Nanongkai '14]

(1) Solve SSSP on overlay network and make global knowledge
(2) Combine local knowledge of local neighborhoods with global knowledge

Sample $N=\tilde{O}\left(n^{1 / 2}\right)$ centers (+ source s)
\Rightarrow Every shortest path with $\geq n^{1 / 2}$ edges contains center whp

Derandomization of Overlay Network [HKN '16]

Randomization: Hit every shortest path with $\geq \sqrt{n}$ edges

Derandomization of Overlay Network [HKN '16]

Randomization: Hit every shortest path with $\geq \sqrt{n}$ edges

Deterministic relaxation: Almost hit every path $\geq \sqrt{n}$ edges

Congested Clique

Special model: Communication not restricted to neighbors

In each round, each node can send one message to each other node Heavily studied in recent years!

Congested Clique

Special model: Communication not restricted to neighbors

In each round, each node can send one message to each other node Heavily studied in recent years!

Simulation: Overlay network as congested clique t rounds in Congested Clique $\rightarrow \tilde{O}(t \cdot(\sqrt{n}+$ Diam $))$ rounds in CONGEST

Hop Reduction

Well Known: Spanners

Definition

A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v, $\operatorname{dist}_{H}(u, v) \leq k \cdot \operatorname{dist}_{G}(u, v)$.

Well Known: Spanners

Definition

A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v, $\operatorname{dist}_{H}(u, v) \leq k \cdot \operatorname{dist}_{G}(u, v)$.

Well Known: Spanners

Definition

A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v, $\operatorname{dist}_{H}(u, v) \leq k \cdot \operatorname{dist}_{G}(u, v)$.

Well Known: Spanners

Definition

A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v, $\operatorname{dist}_{H}(u, v) \leq k \cdot \operatorname{dist}_{G}(u, v)$.

Fact: Every graph has a k-spanner of size $n^{1+1 / k}$ [Folklore]
Application: Running time $T(m, n) \Rightarrow T\left(n^{1+1 / k}, n\right)$

Less Known: Hop Sets

Definition

An (h, ε)-hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with at most h edges of weight at most $(1+\varepsilon) \operatorname{dist}(u, v)$.

Less Known: Hop Sets

Definition

An (h, ε)-hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with at most h edges of weight at most $(1+\varepsilon) \operatorname{dist}(u, v)$.

Less Known: Hop Sets

Definition

An (h, ε)-hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with at most h edges of weight at most $(1+\varepsilon) \operatorname{dist}(u, v)$.

Less Known: Hop Sets

Definition

An (h, ε)-hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with at most h edges of weight at most $(1+\varepsilon) \operatorname{dist}(u, v)$.

Fact: Every graph has a $\left(n^{o(1)}, \varepsilon\right)$-hop set of size $n^{1+o(1)}$ [Cohen '94] (for $\varepsilon \geq 1 /$ polylogn)

Less Known: Hop Sets

Definition

An (h, ε)-hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with at most h edges of weight at most $(1+\varepsilon) \operatorname{dist}(u, v)$.

Application?

SSSP up to h hops (Bellman-Ford)

- RAM: $O(m h)$ time

Less Known: Hop Sets

Definition

An (h, ε)-hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with at most h edges of weight at most $(1+\varepsilon) \operatorname{dist}(u, v)$.

Application?

SSSP up to h hops (Bellman-Ford)

- RAM: $O(m h)$ time
- PRAM: $O(m h)$ with $O(h)$ depth

Less Known: Hop Sets

Definition

An (h, ε)-hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with at most h edges of weight at most $(1+\varepsilon) \operatorname{dist}(u, v)$.

Application?

SSSP up to h hops (Bellman-Ford)

- RAM: $O(m h)$ time
- PRAM: $O(m h)$ with $O(h)$ depth
- Congested Clique: $O(h)$ rounds

Less Known: Hop Sets

Definition

An (h, ε)-hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with at most h edges of weight at most $(1+\varepsilon) \operatorname{dist}(u, v)$.

Application?

SSSP up to h hops (Bellman-Ford)

- RAM: $O(m h)$ time
- PRAM: $O(m h)$ with $O(h)$ depth
- Congested Clique: $O(h)$ rounds
- Streaming: h passes with $O(n)$ space

Less Known: Hop Sets

Definition

An (h, ε)-hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with at most h edges of weight at most $(1+\varepsilon) \operatorname{dist}(u, v)$.

Application?
 SSSP up to h hops (Bellman-Ford)

- RAM: $O(m h)$ time
- PRAM: $O(m h)$ with $O(h)$ depth
- Congested Clique: $O(h)$ rounds
- Streaming: h passes with $O(n)$ space
- Incremental/Decremental $O(m h)$ [Even/Shiloach '81, HKN '14]

Less Known: Hop Sets

Definition

An (h, ε)-hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with at most h edges of weight at most $(1+\varepsilon) \operatorname{dist}(u, v)$.

Application?
 SSSP up to h hops (Bellman-Ford)

- RAM: $O(m h)$ time
- PRAM: $O(m h)$ with $O(h)$ depth
- Congested Clique: $O(h)$ rounds
- Streaming: h passes with $O(n)$ space
- Incremental/Decremental $O(m h)$ [Even/Shiloach '81, HKN '14]

Hopset with $h=n^{o(1)}$ and size $n^{1+o(1)}$ gives almost tight algorithms

Less Known: Hop Sets

Definition

An (h, ε)-hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with at most h edges of weight at most $(1+\varepsilon) \operatorname{dist}(u, v)$.

Application?
 SSSP up to h hops (Bellman-Ford)

- RAM: $O(m h)$ time
- PRAM: $O(m h)$ with $O(h)$ depth
- Congested Clique: $O(h)$ rounds
- Streaming: h passes with $O(n)$ space
- Incremental/Decremental $O(m h)$ [Even/Shiloach '81, HKN '14]

Hopset with $h=n^{o(1)}$ and size $n^{1+o(1)}$ gives almost tight algorithms Remaining challenge: Compute hop set efficiently

Hop Sets: Approaching Optimality

Authors
[Baseline]

Stretch α Hopbound $h \quad$ Size
1

Hop Sets: Approaching Optimality

Authors
[Baseline]
[Klein/Subramanian '97]
[Shi/Spencer '99]

S
1
1
1

Hopbound h Size
1
$O\left(\frac{n \log n}{t}\right)$
$O\left(\frac{n}{t}\right)$
$O\left(n^{2}\right)$ $O\left(t^{2}\right)$ $O(n t)$

Hop Sets: Approaching Optimality

Authors
[Baseline]
[Klein/Subramanian '97]
[Shi/Spencer '99]
[Thorup/Zwick'01]

Stretch α Hopbound h Size
1
1
1
$2 k-1$
2
$O\left(n^{2}\right)$ $O\left(t^{2}\right)$ $O(n t)$ $O\left(k n^{1+\frac{1}{k}}\right)$

Hop Sets: Approaching Optimality

Authors

[Baseline]
[Klein/Subramanian '97]
[Shi/Spencer '99]
[Thorup/Zwick'01]
[Cohen'94]
[Bernstein'09]
[Elkin/Neiman'16]
[Elkin/Neiman'17]
[Huang/Pettie'17]

S
1
1
$2 k-1$
$1+\varepsilon$
$1+\varepsilon$
$1+\varepsilon$
$1+\varepsilon$
$1+\varepsilon$

Hopbound h Size
1
$O\left(\frac{n \log n}{t}\right)$
$O\left(\frac{n}{t}\right)$
2
$\left(\frac{\log n}{\varepsilon}\right)^{O(\log k)}$
$O\left(\frac{3}{\varepsilon}\right)^{k} \log n$
$\left(\frac{\log k}{\varepsilon}\right)^{O(\log k)}$
$O\left(\frac{k+1}{\varepsilon}\right)^{k+1}$
$O\left(\frac{k}{\varepsilon}\right)^{k}$
$O\left(n^{2}\right)$
$O\left(t^{2}\right)$
$O(n t)$
$O\left(k n^{1+\frac{1}{k}}\right)$
$O\left(n^{1+\frac{1}{k}} \log n\right)$
$O\left(k n^{1+\frac{1}{k}}\right)$
$O\left(n^{1+\frac{1}{k}} \log n \log k\right)$
$O\left(n^{1+\frac{1}{2^{k+1}-1}}\right)$
$O\left(n^{1+\frac{1}{2^{k+1}-1}}\right)$

Hop Sets: Approaching Optimality

Authors

[Baseline]
[Klein/Subramanian '97]
[Shi/Spencer '99]
[Thorup/Zwick'01]
[Cohen'94]
[Bernstein'09]
[Elkin/Neiman'16]
[Elkin/Neiman'17]
[Huang/Pettie'17]
[Abboud/Bodwin/Pettie'16] $1+\varepsilon$

S
1
1
1
$2 k-1$
$1+\varepsilon$
$1+\varepsilon$
$1+\varepsilon$
$1+\varepsilon$
$1+\varepsilon$

Hopbound h Size
1
$O\left(\frac{n \log n}{t}\right)$
$O\left(\frac{n}{t}\right)$
2
$\left(\frac{\log n}{\varepsilon}\right)^{O(\log k)}$
$O\left(\frac{3}{\varepsilon}\right)^{k} \log n$
$\left(\frac{\log k}{\varepsilon}\right)^{O(\log k)}$
$O\left(\frac{k+1}{\varepsilon}\right)^{k+1}$
$O\left(\frac{k}{\varepsilon}\right)^{k}$
$\Omega_{k}\left(\frac{1}{\varepsilon}\right)^{k}$
$O\left(n^{2}\right)$
$O\left(t^{2}\right)$
$O(n t)$
$O\left(k n^{1+\frac{1}{k}}\right)$
$O\left(n^{1+\frac{1}{k}} \log n\right)$
$O\left(k n^{1+\frac{1}{k}}\right)$
$O\left(n^{1+\frac{1}{k}} \log n \log k\right)$
$O\left(n^{1+\frac{1}{2^{k+1}-1}}\right)$
$O\left(n^{1+\frac{1}{2^{k+1}-1}}\right)$
$n^{1+\frac{1}{2^{k}-1}-\delta}$

Hop Sets: Approaching Optimality

Authors

[Baseline]
[Klein/Subramanian '97]
[Shi/Spencer '99]
[Thorup/Zwick'01]
[Cohen'94]
[Bernstein'09]
[Elkin/Neiman'16]
[Elkin/Neiman'17]
[Huang/Pettie'17]
[Abboud/Bodwin/Pettie'16] $1+\varepsilon$

Stretch α Hopbound $h \quad$ Size
1 1
1
$O\left(\frac{n \log n}{t}\right)$
$O\left(\frac{n}{t}\right)$
2
$\left(\frac{\log n}{\varepsilon}\right)^{O(\log k)}$
$O\left(\frac{3}{\varepsilon}\right)^{k} \log n$
$\left(\frac{\log k}{\varepsilon}\right)^{O(\log k)}$
$O\left(\frac{k+1}{\varepsilon}\right)^{k+1}$
$O\left(\frac{k}{\varepsilon}\right)^{k}$
$\Omega_{k}\left(\frac{1}{\varepsilon}\right)^{k}$
$O\left(n^{2}\right)$
$O\left(t^{2}\right)$
$O(n t)$
$O\left(k n^{1+\frac{1}{k}}\right)$
$O\left(n^{1+\frac{1}{k}} \log n\right)$
$O\left(k n^{1+\frac{1}{k}}\right)$
$O\left(n^{1+\frac{1}{k}} \log n \log k\right)$
$O\left(n^{1+\frac{1}{2^{k+1}-1}}\right)$
$O\left(n^{1+\frac{1}{2^{k+1}-1}}\right)$
$n^{1+\frac{1}{2^{k}-1}-\delta}$
\Rightarrow Cannot have $\alpha=1+\varepsilon, h=\operatorname{poly}(1 / \varepsilon)$ and size $n \cdot \operatorname{polylog}(n)$.

It was too good to be true...

Hop Set Example

Simple Hop Set Based on Balls (following [Thorup/Zwick '06])

$V=A_{0} \supseteq A_{1} \supseteq \cdots \supseteq A_{k}=\emptyset$ where node of
A_{i} goes to A_{i+1} with probability $1 / n^{1 / k}$
v has priority i if $v \in A_{i} \backslash A_{i+1}$

Simple Hop Set Based on Balls (following [Thorup/Zwick '06])

$V=A_{0} \supseteq A_{1} \supseteq \cdots \supseteq A_{k}=\emptyset$ where node of
A_{i} goes to A_{i+1} with probability $1 / n^{1 / k}$
v has priority i if $v \in A_{i} \backslash A_{i+1}$

For every node u of priority i :
$\operatorname{Ball}(u)=\left\{v \in V \mid \operatorname{dist}(u, v)<\operatorname{dist}\left(u, A_{i+1}\right)\right\}$

Simple Hop Set Based on Balls (following [Thorup/Zwick '06])

$V=A_{0} \supseteq A_{1} \supseteq \cdots \supseteq A_{k}=\emptyset$ where node of A_{i} goes to A_{i+1} with probability $1 / n^{1 / k}$ v has priority if $v \in A_{i} \backslash A_{i+1}$

For every node u of priority i :
$\operatorname{Ball}(u)=\left\{v \in V \mid \operatorname{dist}(u, v)<\operatorname{dist}\left(u, A_{i+1}\right)\right\}$

Simple Hop Set Based on Balls (following [Thorup/Zwick ’06])

$V=A_{0} \supseteq A_{1} \supseteq \cdots \supseteq A_{k}=\emptyset$ where node of A_{i} goes to A_{i+1} with probability $1 / n^{1 / k}$ v has priority if $v \in A_{i} \backslash A_{i+1}$

For every node u of priority i :
$\operatorname{Ball}(u)=\left\{v \in V \mid \operatorname{dist}(u, v)<\operatorname{dist}\left(u, A_{i+1}\right)\right\}$

Simple Hop Set Based on Balls (following [Thorup/Zwick '06])

$V=A_{0} \supseteq A_{1} \supseteq \cdots \supseteq A_{k}=\emptyset$ where node of A_{i} goes to A_{i+1} with probability $1 / n^{1 / k}$ v has priority i if $v \in A_{i} \backslash A_{i+1}$

For every node u of priority i :
$\operatorname{Ball}(u)=\left\{v \in V \mid \operatorname{dist}(u, v)<\operatorname{dist}\left(u, A_{i+1}\right)\right\}$

Hop set:

- $(u, v) \in F$ iff $v \in \operatorname{Ball}(u)$
- $w(u, v)=\operatorname{dist}_{G}(u, v)$

Simple Hop Set Based on Balls (following [Thorup/Zwick ’06])

$V=A_{0} \supseteq A_{1} \supseteq \cdots \supseteq A_{k}=\emptyset$ where node of A_{i} goes to A_{i+1} with probability $1 / n^{1 / k}$ v has priority i if $v \in A_{i} \backslash A_{i+1}$

For every node u of priority i :
$\operatorname{Ball}(u)=\left\{v \in V \mid \operatorname{dist}(u, v)<\operatorname{dist}\left(u, A_{i+1}\right)\right\}$
priority \# nodes

0	n
1	$n^{1-1 / k}$
\vdots	\vdots
$k-1$	$n^{1 / k}$

Hop set:

- $(u, v) \in F$ iff $v \in \operatorname{Ball}(u)$
- $w(u, v)=\operatorname{dist}_{G}(u, v)$

Simple Hop Set Based on Balls (following [Thorup/Zwick '06])

$V=A_{0} \supseteq A_{1} \supseteq \cdots \supseteq A_{k}=\emptyset$ where node of A_{i} goes to A_{i+1} with probability $1 / n^{1 / k}$ v has priority if $v \in A_{i} \backslash A_{i+1}$

For every node u of priority i :
$\operatorname{Ball}(u)=\left\{v \in V \mid \operatorname{dist}(u, v)<\operatorname{dist}\left(u, A_{i+1}\right)\right\}$
Expected size: $\boldsymbol{n}^{(i+1) / k}$

priority	\# nodes	\mid Ball $(u) \mid$
0	n	$n^{1 / k}$
1	$n^{1-1 / k}$	$n^{2 / k}$
\vdots	\vdots	\vdots
$k-1$	$n^{1 / k}$	n

Hop set:

- $(u, v) \in F$ iff $v \in \operatorname{Ball}(u)$
- $w(u, v)=\operatorname{dist}_{G}(u, v)$

Simple Hop Set Based on Balls (following [Thorup/Zwick ’06])

$V=A_{0} \supseteq A_{1} \supseteq \cdots \supseteq A_{k}=\emptyset$ where node of A_{i} goes to A_{i+1} with probability $1 / n^{1 / k}$ v has priority i if $v \in A_{i} \backslash A_{i+1}$

For every node u of priority i :
$\operatorname{Ball}(u)=\left\{v \in V \mid \operatorname{dist}(u, v)<\operatorname{dist}\left(u, A_{i+1}\right)\right\}$
Expected size: $n^{(i+1) / k}$

priority	\# nodes	\mid Ball $(u) \mid$	\# edges
0	n	$n^{1 / k}$	$n^{1+1 / k}$
1	$n^{1-1 / k}$	$n^{2 / k}$	$n^{1+1 / k}$
\vdots	\vdots	\vdots	\vdots
$k-1$	$n^{1 / k}$	n	$n^{1+1 / k}$

Hop set:

- $(u, v) \in F$ iff $v \in \operatorname{Ball}(u)$
- $w(u, v)=\operatorname{dist}_{G}(u, v)$

Simple Hop Set Based on Balls (following [Thorup/Zwick ’06])

$V=A_{0} \supseteq A_{1} \supseteq \cdots \supseteq A_{k}=\emptyset$ where node of A_{i} goes to A_{i+1} with probability $1 / n^{1 / k}$ v has priority if $v \in A_{i} \backslash A_{i+1}$

For every node u of priority i :
$\operatorname{Ball}(u)=\left\{v \in V \mid \operatorname{dist}(u, v)<\operatorname{dist}\left(u, A_{i+1}\right)\right\}$
Expected size: $n^{(i+1) / k}$

priority	\# nodes	\mid Ball $(u) \mid$	\# edges
0	n	$n^{1 / k}$	$n^{1+1 / k}$
1	$n^{1-1 / k}$	$n^{2 / k}$	$n^{1+1 / k}$
\vdots	\vdots	\vdots	\vdots
$k-1$	$n^{1 / k}$	n	$\frac{n^{1+1 / k}}{k n^{1+1 / k}}$

Hop set:

- $(u, v) \in F$ iff $v \in \operatorname{Ball}(u)$
- $w(u, v)=\operatorname{dist}_{G}(u, v)$

Parameter Choice

$$
k=\frac{\sqrt{\log n}}{\sqrt{\log 4 / \varepsilon}}
$$

$$
\left(\frac{4}{\varepsilon}\right)^{k}=n^{1 / k}
$$

Parameter Choice

$$
k=\frac{\sqrt{\log n}}{\sqrt{\log 4 / \varepsilon}}
$$

$$
\left(\frac{4}{\varepsilon}\right)^{k}=n^{1 / k}=n^{o(1)}
$$

$\left(n^{1 / 2+o(1)}, \varepsilon\right)$-hop set
Case 1: $\operatorname{dist}\left(u_{0}, v\right) \leq n^{1 / 2+1 / k} / \varepsilon$

$\left(n^{1 / 2+o(1)}, \varepsilon\right)$-hop set
Case 2: $\operatorname{dist}\left(u_{0}, v\right)>n^{1 / 2+1 / k} / \varepsilon$
u_{0}
$\left(n^{1 / 2+o(1)}, \varepsilon\right)$-hop set
Case 2: $\operatorname{dist}\left(u_{0}, v\right)>n^{1 / 2+1 / k} / \varepsilon$

$$
r_{0}=n^{1 / 2}
$$

$\underbrace{u_{0}--\cdots \quad v_{0}}_{r_{0}}$
$\left(n^{1 / 2+o(1)}, \varepsilon\right)$-hop set
Case 2: $\operatorname{dist}\left(u_{0}, v\right)>n^{1 / 2+1 / k} / \varepsilon$

$$
r_{0}=n^{1 / 2}
$$

For every node u of priority i and every node v, either $(u, v) \in H$, or $\exists u^{\prime}$ of priority $i+1$ s. t. $\operatorname{dist}\left(u, u^{\prime}\right) \leq \operatorname{dist}(u, v)$.

$\left(n^{1 / 2+o(1)}, \varepsilon\right)$-hop set

Case 2: $\operatorname{dist}\left(u_{0}, v\right)>n^{1 / 2+1 / k} / \varepsilon$

$$
\begin{aligned}
r_{0} & =n^{1 / 2} \\
r_{i+1} & =\left(1+\frac{2}{\varepsilon}\right) \sum_{0 \leq j \leq i} r_{j}
\end{aligned}
$$

For every node u of priority i and every node v, either $(u, v) \in H$, or $\exists u^{\prime}$ of priority $i+1$ s. t. $\operatorname{dist}\left(u, u^{\prime}\right) \leq \operatorname{dist}(u, v)$.

$\left(n^{1 / 2+o(1)}, \varepsilon\right)$-hop set

Case 2: $\operatorname{dist}\left(u_{0}, v\right)>n^{1 / 2+1 / k} / \varepsilon$

$$
\begin{aligned}
r_{0} & =n^{1 / 2} \\
r_{i+1} & =\left(1+\frac{2}{\varepsilon}\right) \sum_{0 \leq j \leq i} r_{j}
\end{aligned}
$$

For every node u of priority i and every node v, either $(u, v) \in H$, or $\exists u^{\prime}$ of priority $i+1$ s. t. $\operatorname{dist}\left(u, u^{\prime}\right) \leq \operatorname{dist}(u, v)$.

$\left(n^{1 / 2+o(1)}, \varepsilon\right)$-hop set

Case 2: $\operatorname{dist}\left(u_{0}, v\right)>n^{1 / 2+1 / k} / \varepsilon$

$$
\begin{aligned}
r_{0} & =n^{1 / 2} \\
r_{i+1} & =\left(1+\frac{2}{\varepsilon}\right) \sum_{0 \leq j \leq i} r_{j}
\end{aligned}
$$

For every node u of priority i and every node v, either $(u, v) \in H$, or $\exists u^{\prime}$ of priority $i+1$ s. t. $\operatorname{dist}\left(u, u^{\prime}\right) \leq \operatorname{dist}(u, v)$.

$\left(n^{1 / 2+o(1)}, \varepsilon\right)$-hop set

Case 2: $\operatorname{dist}\left(u_{0}, v\right)>n^{1 / 2+1 / k} / \varepsilon$

$$
\begin{aligned}
r_{0} & =n^{1 / 2} \\
r_{i+1} & =\left(1+\frac{2}{\varepsilon}\right) \sum_{0 \leq j \leq i} r_{j} \\
& \leq n^{1 / 2} n^{1 / k} \\
k & =\sqrt{\log n} / \sqrt{\log 4 / \varepsilon}
\end{aligned}
$$

$$
\text { decreasing distance to } v
$$

For every node u of priority i and every node v, either $(u, v) \in H$, or $\exists u^{\prime}$ of priority $i+1$ s. t. $\operatorname{dist}\left(u, u^{\prime}\right) \leq \operatorname{dist}(u, v)$.

$$
\text { Weight } \leq(1+\varepsilon) \operatorname{dist}\left(u_{0}, v\right)
$$

$\left(n^{1 / 2+o(1)}, \varepsilon\right)$-hop set

Case 2: $\operatorname{dist}\left(u_{0}, v\right)>n^{1 / 2+1 / k} / \varepsilon$

$$
\begin{aligned}
r_{0} & =n^{1 / 2} \\
r_{i+1} & =\left(1+\frac{2}{\varepsilon}\right) \sum_{0 \leq j \leq i} r_{j} \\
& \leq n^{1 / 2} n^{1 / k} \\
k & =\sqrt{\log n} / \sqrt{\log 4 / \varepsilon}
\end{aligned}
$$

decreasing distance to v
For every node u of priority i and every node v, either $(u, v) \in H$, or $\exists u^{\prime}$ of priority $i+1$ s. t. $\operatorname{dist}\left(u, u^{\prime}\right) \leq \operatorname{dist}(u, v)$.

$$
\begin{aligned}
& \text { Weight } \leq(1+\varepsilon) \operatorname{dist}\left(u_{0}, v\right) \\
& \# \text { Edges } \leq \frac{k \cdot \operatorname{dist}(u, v)}{n^{1 / 2}} \leq \frac{k \cdot n}{n^{1 / 2}}=k n^{1 / 2}
\end{aligned}
$$

Chicken-Egg Problem?

(1) Goal: Faster SSSP via hop set
(2) Compute hop set by computing balls
(3) Computing balls at least as hard as SSSP
\Rightarrow Back at problem we wanted to solve initially?

Chicken-Egg Problem?

(1) Goal: Faster SSSP via hop set
(2) Compute hop set by computing balls
(3) Computing balls at least as hard as SSSP
\Rightarrow Back at problem we wanted to solve initially?

No! $\left(n^{1 / 2+o(1)}, \varepsilon\right)$-hop set only requires balls up to $n^{1 / 2+o(1)}$ hops

$\left(n^{1 / 2+o(1)}, \varepsilon\right)$-hop set

Iterative computation

In each iteration number of hops is reduced by a factor of $n^{1 / k}$

$\left(n^{1 / 2+o(1)}, \varepsilon\right)$-hop set

Iterative computation

In each iteration number of hops is reduced by a factor of $n^{1 / k}$
Algorithm:
for $i=1$ to k do

$$
H_{i}=G \cup \bigcup_{1 \leq j \leq i-1} F_{j}
$$

Compute balls with k priorities in H_{i} up to $n^{2 / k}$ hops

$$
F_{i}=\{(u, v) \mid v \in \operatorname{Ball}(u)\}
$$

end
return $F=\bigcup_{1 \leq i \leq k} F_{i}$

$\left(n^{1 / 2+o(1)}, \varepsilon\right)$-hop set

Iterative computation

In each iteration number of hops is reduced by a factor of $n^{1 / k}$
Algorithm:
for $i=1$ to k do

$$
H_{i}=G \cup \bigcup_{1 \leq j \leq i-1} F_{j}
$$

Compute balls with k priorities in H_{i} up to $n^{2 / k}$ hops $F_{i}=\{(u, v) \mid v \in \operatorname{Ball}(u)\}$
end
return $F=\bigcup_{1 \leq i \leq k} F_{i}$
Error amplification: $\left(1+\varepsilon^{\prime}\right)^{k} \leq(1+\varepsilon)$ for $\varepsilon^{\prime}=1 /(2 \varepsilon \log n)$
$\left(n^{1 / 2+o(1)}, \varepsilon\right)$-hop set

Iterative computation

In each iteration number of hops is reduced by a factor of $n^{1 / k}$
Algorithm:
for $i=1$ to k do

$$
H_{i}=G \cup \bigcup_{1 \leq j \leq i-1} F_{j}
$$

Compute balls with k priorities in H_{i} up to $n^{2 / k}$ hops $F_{i}=\{(u, v) \mid v \in \operatorname{Ball}(u)\}$
end
return $F=\bigcup_{1 \leq i \leq k} F_{i}$
Error amplification: $\left(1+\varepsilon^{\prime}\right)^{k} \leq(1+\varepsilon)$ for $\varepsilon^{\prime}=1 /(2 \varepsilon \log n)$
Omitted detail: weighted graphs, use rounding technique

Beyond Hop Sets

New Distributed Algorithm

Theorem ([Becker/Karrenbauer/K/Lenzen arXiv'16])
There is a deterministic algorithm for computing $(1+\varepsilon)$ approximate SSSP in $(\sqrt{n}+$ Diam $)$ poly $(\log n, \varepsilon)$ rounds.

New Distributed Algorithm

Theorem ([Becker/Karrenbauer/K/Lenzen arXiv'16])

There is a deterministic algorithm for computing $(1+\varepsilon)$ approximate SSSP in $(\sqrt{n}+$ Diam $)$ poly $(\log n, \varepsilon)$ rounds.

Key insight: Solve more general problem

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to sinks along the edges of a graph as specified by demands on nodes.

New Distributed Algorithm

Theorem ([Becker/Karrenbauer/K/Lenzen arXiv'16])

There is a deterministic algorithm for computing $(1+\varepsilon)$ approximate SSSP in $(\sqrt{n}+$ Diam $)$ poly $(\log n, \varepsilon)$ rounds.

Key insight: Solve more general problem

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to sinks along the edges of a graph as specified by demands on nodes.
"Uncapacitated minimum-cost flow"

New Distributed Algorithm

Theorem ([Becker/Karrenbauer/K/Lenzen arXiv'16])

There is a deterministic algorithm for computing $(1+\varepsilon)$ approximate SSSP in $(\sqrt{n}+$ Diam $)$ poly $(\log n, \varepsilon)$ rounds.

Key insight: Solve more general problem

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to sinks along the edges of a graph as specified by demands on nodes.
"Uncapacitated minimum-cost flow"
SSSP: source has demand $-(n-1)$, other nodes have demand 1

Shortest Transshipment Problem

Shortest transshipment as linear program:

$$
\operatorname{minimize}\|W x\|_{1} \quad \text { s.t. } A x=b
$$

Shortest Transshipment Problem

Shortest transshipment as linear program:

$$
\operatorname{minimize}\|W x\|_{1} \quad \text { s.t. } A x=b
$$

Dual program:

$$
\operatorname{maximize} b^{T} y \text { s.t. }\left\|W^{-1} A^{T} y\right\|_{\infty} \leq 1
$$

Shortest Transshipment Problem

Shortest transshipment as linear program:

$$
\operatorname{minimize}\|W x\|_{1} \quad \text { s.t. } A x=b
$$

Dual program:

$$
\operatorname{maximize} b^{T} y \quad \text { s.t. }\left\|W^{-1} A^{T} y\right\|_{\infty} \leq 1
$$

Equivalent:

$$
\operatorname{minimize}\left\|W^{-1} A^{T} y\right\|_{\infty} \quad \text { s.t. } b^{T} \pi=1
$$

Shortest Transshipment Problem

Shortest transshipment as linear program:

$$
\operatorname{minimize}\|W x\|_{1} \quad \text { s.t. } A x=b
$$

Dual program:

$$
\operatorname{maximize} b^{T} y \quad \text { s.t. }\left\|W^{-1} A^{T} y\right\|_{\infty} \leq 1
$$

Equivalent:

$$
\operatorname{minimize}\left\|W^{-1} A^{T} y\right\|_{\infty} \quad \text { s.t. } b^{T} \pi=1
$$

We approximate $\|\cdot\|_{\infty}$ by soft-max:

$$
\operatorname{lse}_{\beta}(x):=\frac{1}{\beta} \ln \left(\sum_{i \in[d]}\left(e^{\beta x_{i}}+e^{-\beta x_{i}}\right)\right)
$$

Gradient Descent

Algorithm at a glance:
(1) Soft-max is differentiable \rightarrow apply gradient descent

Gradient Descent

Algorithm at a glance:
(1) Soft-max is differentiable \rightarrow apply gradient descent
(2) Each iteration: solve transshipment problem with different demand vector b^{\prime} depending on current gradient

Gradient Descent

Algorithm at a glance:
(1) Soft-max is differentiable \rightarrow apply gradient descent
(2) Each iteration: solve transshipment problem with different demand vector b^{\prime} depending on current gradient
(3) Key observation: For b^{\prime}, bad approximation is sufficient

Gradient Descent

Algorithm at a glance:
(1) Soft-max is differentiable \rightarrow apply gradient descent
(2) Each iteration: solve transshipment problem with different demand vector b^{\prime} depending on current gradient
(3) Key observation: For b^{\prime}, bad approximation is sufficient
(9) Compute spanner on overlay network and solving transshipment on overlay spanner Spanner has stretch $O(\log n)$ and size $\tilde{O}(n)$

Gradient Descent

Algorithm at a glance:
(1) Soft-max is differentiable \rightarrow apply gradient descent
(2) Each iteration: solve transshipment problem with different demand vector b^{\prime} depending on current gradient
(3) Key observation: For b^{\prime}, bad approximation is sufficient
(1) Compute spanner on overlay network and solving transshipment on overlay spanner Spanner has stretch $O(\log n)$ and size $\tilde{O}(n)$
(6) Overall: Polylog iterations, each solving $O(\log n)$-approximate transshipment on graph of $\tilde{O}(n)$ edges

Gradient Descent

Algorithm at a glance:
(1) Soft-max is differentiable \rightarrow apply gradient descent
(2) Each iteration: solve transshipment problem with different demand vector b^{\prime} depending on current gradient
Congested Clique: Compute gradient in $O(1)$ rounds
(3) Key observation: For b^{\prime}, bad approximation is sufficient
(1) Compute spanner on overlay network and solving transshipment on overlay spanner Spanner has stretch $O(\log n)$ and size $\tilde{O}(n)$
(6) Overall: Polylog iterations, each solving $O(\log n)$-approximate transshipment on graph of $\tilde{O}(n)$ edges

Gradient Descent

Algorithm at a glance:
(1) Soft-max is differentiable \rightarrow apply gradient descent
(2) Each iteration: solve transshipment problem with different demand vector b^{\prime} depending on current gradient
Congested Clique: Compute gradient in $O(1)$ rounds
(3) Key observation: For b^{\prime}, bad approximation is sufficient
(1) Compute spanner on overlay network and solving transshipment on overlay spanner
Spanner has stretch $O(\log n)$ and size $\tilde{O}(n)$
Congested Clique: Spanner can be computed in $O(\log n)$ rounds [Baswana/Sen '03]
(6) Overall: Polylog iterations, each solving $O(\log n)$-approximate transshipment on graph of $\tilde{O}(n)$ edges

Technical Details

(1) Black-box reduction from SSSP to shortest transshipment only for exact solutions

Technical Details

(1) Black-box reduction from SSSP to shortest transshipment only for exact solutions
(2) Transshipment will only guarantee $(1+\varepsilon)$-approximation on average

Technical Details

(1) Black-box reduction from SSSP to shortest transshipment only for exact solutions
(2) Transshipment will only guarantee $(1+\varepsilon)$-approximation on average
(3) How to obtain per-node guarantee:

- Solve with increased precision
- Inspect gradient to identify "good nodes"
- Repeat transshipment for "bad" nodes only
- Analysis: Total "mass" reduced by constant fraction in each run

Technical Details

(1) Black-box reduction from SSSP to shortest transshipment only for exact solutions
(2) Transshipment will only guarantee $(1+\varepsilon)$-approximation on average
(3) How to obtain per-node guarantee:

- Solve with increased precision
- Inspect gradient to identify "good nodes"
- Repeat transshipment for "bad" nodes only
- Analysis: Total "mass" reduced by constant fraction in each run

Independent work: Approximate transshipment [Sherman '16]

Technical Details

(1) Black-box reduction from SSSP to shortest transshipment only for exact solutions
(2) Transshipment will only guarantee $(1+\varepsilon)$-approximation on average
(3) How to obtain per-node guarantee:

- Solve with increased precision
- Inspect gradient to identify "good nodes"
- Repeat transshipment for "bad" nodes only
- Analysis: Total "mass" reduced by constant fraction in each run

Independent work: Approximate transshipment [Sherman '16]

- More general solvers based on generalized preconditioning

Technical Details

(1) Black-box reduction from SSSP to shortest transshipment only for exact solutions
(2) Transshipment will only guarantee $(1+\varepsilon)$-approximation on average
(3) How to obtain per-node guarantee:

- Solve with increased precision
- Inspect gradient to identify "good nodes"
- Repeat transshipment for "bad" nodes only
- Analysis: Total "mass" reduced by constant fraction in each run

Independent work: Approximate transshipment [Sherman '16]

- More general solvers based on generalized preconditioning
- Linear preconditioner based on metric embeddings

Technical Details

(1) Black-box reduction from SSSP to shortest transshipment only for exact solutions
(2) Transshipment will only guarantee $(1+\varepsilon)$-approximation on average
(3) How to obtain per-node guarantee:

- Solve with increased precision
- Inspect gradient to identify "good nodes"
- Repeat transshipment for "bad" nodes only
- Analysis: Total "mass" reduced by constant fraction in each run

Independent work: Approximate transshipment [Sherman '16]

- More general solvers based on generalized preconditioning
- Linear preconditioner based on metric embeddings
- With additional analysis: spanner-based oracle as non-linear preconditioner

Technical Details

(1) Black-box reduction from SSSP to shortest transshipment only for exact solutions
(2) Transshipment will only guarantee $(1+\varepsilon)$-approximation on average
(3) How to obtain per-node guarantee:

- Solve with increased precision
- Inspect gradient to identify "good nodes"
- Repeat transshipment for "bad" nodes only
- Analysis: Total "mass" reduced by constant fraction in each run

Independent work: Approximate transshipment [Sherman '16]

- More general solvers based on generalized preconditioning
- Linear preconditioner based on metric embeddings
- With additional analysis: spanner-based oracle as non-linear preconditioner
- No straightforward way of obtaining per-node guarantee

Conclusion

Main contributions:

- Two almost tight algorithms in distributed and streaming models
- Combinatorial and continuous tools

Conclusion

Main contributions:

- Two almost tight algorithms in distributed and streaming models
- Combinatorial and continuous tools

Open problems:

- PRAM: improve Cohen's $m^{1+o(1)}$ work with polylog depth?
- Deterministic decremental SSSP algorithm

Tight and Tighter

