Near-Optimal Approximate Shortest Paths and Transshipment in Distributed and Streaming Models

Sebastian Krinninger

University of Vienna \rightarrow University of Salzburg

joint work with

Ruben Becker MPI Saarbrücken

Andreas Karrenbauer MPI Saarbrücken

Christoph Lenzen MPI Saarbrücken

Our $(1 + \varepsilon)$ -**approx CONGEST** $(\sqrt{n} + D) \cdot poly(\log n, \varepsilon)$ rounds

1 2 3

Our
$$(1 + \varepsilon)$$
-approxPrevious bestCONGEST $(\sqrt{n} + D) \cdot poly(\log n, \varepsilon)$ $(\sqrt{n} + D) \cdot 2^{O(\sqrt{\log n \log (\varepsilon^{-1} \log n)})}$
roundsroundsrounds^1

Comments:

- Undirected graphs with weights $\in \{1, 2, \dots, poly(n)\}$
- *D* = Diameter, *n* = #nodes
- CONGEST lower bound: $\tilde{\Omega}(\sqrt{n} + Diam)$ rounds [Das Sarma et al '11]

3

¹[Henzinger/K/Nanongkai '16]

	Our $(1 + \varepsilon)$ -approx	Previous best
CONGEST	$(\sqrt{n} + D) \cdot poly(\log n, \varepsilon)$	$(\sqrt{n} + D) \cdot 2^{O(\sqrt{\log n \log (\varepsilon^{-1} \log n)})}$
	rounds	rounds ¹
Cong. Clique	$poly(\log n, \varepsilon)$	$2^{O(\sqrt{\log n \log (\varepsilon^{-1} \log n)})}$
	rounds	rounds ²

Comments:

- Undirected graphs with weights $\in \{1, 2, \dots, poly(n)\}$
- D = Diameter, n = #nodes
- CONGEST lower bound: $\tilde{\Omega}(\sqrt{n} + Diam)$ rounds [Das Sarma et al '11]

¹[Henzinger/K/Nanongkai '16]

²[Henzinger/K/Nanongkai '16]

	Our $(1 + \varepsilon)$ -approx	Previous best
CONGEST	$(\sqrt{n} + D) \cdot poly(\log n, \varepsilon)$	$(\sqrt{n} + D) \cdot 2^{O(\sqrt{\log n \log (\varepsilon^{-1} \log n)})}$
	rounds	rounds ¹
Cong. Clique	$poly(\log n, \varepsilon)$	$2^{O(\sqrt{\log n \log (\varepsilon^{-1} \log n)})}$
	rounds	rounds ²
Streaming	$poly(\log n, \varepsilon)$ passes	$(2+1/\varepsilon)^{O(\sqrt{\log n \log \log n})}$ passes
	$O(n \log n)$ space	$O(n \log^2 n)$ space ³

Comments:

- Undirected graphs with weights $\in \{1, 2, \dots, poly(n)\}$
- D = Diameter, n = # nodes
- CONGEST lower bound: $\tilde{\Omega}(\sqrt{n} + Diam)$ rounds [Das Sarma et al '11]

¹[Henzinger/K/Nanongkai '16]

²[Henzinger/K/Nanongkai '16]

^{3[[]}Lin (Nationan 216]

³[Elkin/Neiman '16]

	Our $(1 + \varepsilon)$ -approx	Exact computation
CONGEST	$(\sqrt{n} + D) \cdot poly(\log n, \varepsilon)$	$n^{5/6} + D^{1/3} (n \log n)^{2/3}$
	rounds	rounds ¹
Cong. Clique	$poly(\log n, \varepsilon)$	$O(n^{0.158})$
	rounds	rounds ²
Streaming	$poly(\log n, \varepsilon)$ passes	$O(\frac{n}{k})$ passes
	$O(n \log n)$ space	O(nk) space ³

Comments:

- Undirected graphs with weights $\in \{1, 2, \dots, poly(n)\}$
- D = Diameter, n = # nodes
- CONGEST lower bound: $\tilde{\Omega}(\sqrt{n} + Diam)$ rounds [Das Sarma et al '11]

¹[Elkin '17] ²[Censor-Hillel et al. '15] ³[Elkin '17]

Broadcast Congested Clique

Model:

- Network topology: clique on *n* nodes
- Synchronous rounds (global clock)
- In each round, every node sends one message to all other nodes
- Message size $O(\log n)$
- Local computation is free

Problem Statement

- Initially: Every node knows weight of its incident edges and whether it is the source or not
- Finally: Every node knows its approximate distance to the source

Problem Statement

- Initially: Every node knows weight of its incident edges and whether it is the source or not
- Finally: Every node knows its approximate distance to the source
- Desirable addon: Implicit tree; every node knows next edge on approximate shortest path to source

Problem Statement

- Initially: Every node knows weight of its incident edges and whether it is the source or not
- Finally: Every node knows its approximate distance to the source
- Desirable addon: Implicit tree; every node knows next edge on approximate shortest path to source

Simulation: Skeleton as congested clique [Henzinger/K/Nanongkai '16] *t* rounds in Broadcast Congested Clique model $\rightarrow \tilde{O}(t \cdot (\sqrt{n} + Diam))$ rounds in CONGEST model

Combinatorial Approach

Definition

A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v, $dist_H(u, v) \le k \cdot dist_G(u, v).$

Definition

A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v, $dist_H(u, v) \le k \cdot dist_G(u, v).$

Definition

A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v, $dist_H(u, v) \le k \cdot dist_G(u, v).$

Definition

A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v, $dist_H(u, v) \le k \cdot dist_G(u, v).$

Fact: Every graph has a (2k - 1)-spanner of size $n^{1+1/k}$ **Application:** Running time $T(m, n) \Rightarrow T(n^{1+1/k}, n)$

Definition

An (h, ε) -hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with **at most** h **edges** of weight at most $(1 + \varepsilon)dist(u, v)$.

Definition

An (h, ε) -hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with **at most** h **edges** of weight at most $(1 + \varepsilon)dist(u, v)$.

Definition

An (h, ε) -hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with **at most** h **edges** of weight at most $(1 + \varepsilon)dist(u, v)$.

Definition

An (h, ε) -hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with **at most** h **edges** of weight at most $(1 + \varepsilon)dist(u, v)$.

Fact: Every graph has a $(n^{o(1)}, \varepsilon)$ -hop set of size $n^{1+o(1)}$ [Cohen '94] (for $\varepsilon \ge 1/polylogn$)

Definition

An (h, ε) -hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with **at most** h **edges** of weight at most $(1 + \varepsilon)dist(u, v)$.

Application to approximate SSSP

Almost tight algorithms for Bellman-Ford-like approaches:

- Parallel: $m^{1+o(1)}$ work with $n^{o(1)}$ depth [Cohen '94]
- Congested Clique: n^{o(1)} rounds [Henzinger/K/Nanongkai '16]
- Streaming: $n^{o(1)}$ passes with $n^{1+o(1)}$ space [HKN '16, Elkin/Neiman '16]
- Incremental/Decremental m^{1+o(1)} total time [Henzinger/K/Nanongkai '14]

Definition

An (h, ε) -hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with **at most** h **edges** of weight at most $(1 + \varepsilon)dist(u, v)$.

Application to approximate SSSP

Almost tight algorithms for Bellman-Ford-like approaches:

- Parallel: $m^{1+o(1)}$ work with $n^{o(1)}$ depth [Cohen '94]
- Congested Clique: n^{o(1)} rounds [Henzinger/K/Nanongkai '16]
- Streaming: $n^{o(1)}$ passes with $n^{1+o(1)}$ space [HKN '16, Elkin/Neiman '16]
- Incremental/Decremental m^{1+o(1)} total time [Henzinger/K/Nanongkai '14]

Challenge: Compute/maintain hop set

Definition

An (h, ε) -hop set is a set of weighted edges F such that, for all pairs of nodes u and v, in the 'shortcut graph' $G \cup F$ there is a path from u to v with **at most** h **edges** of weight at most $(1 + \varepsilon)dist(u, v)$.

Application to approximate SSSP

Almost tight algorithms for Bellman-Ford-like approaches:

- Parallel: $m^{1+o(1)}$ work with $n^{o(1)}$ depth [Cohen '94]
- Congested Clique: n^{o(1)} rounds [Henzinger/K/Nanongkai '16]
- Streaming: $n^{o(1)}$ passes with $n^{1+o(1)}$ space [HKN '16, Elkin/Neiman '16]
- Incremental/Decremental m^{1+o(1)} total time [Henzinger/K/Nanongkai '14]

Challenge: Compute/maintain hop set

Authors	Stretch α	Hopbound h	Size
[Baseline]	1	1	$O(n^2)$

Authors	Stretch α	Hopbound h	Size
[Baseline]	1	1	$O(n^2)$
[Klein/Subramanian '97]	1	$O(\frac{n\log n}{t})$	$O(t^2)$
[Shi/Spencer '99]	1	$O(\frac{n}{t})$	O(nt)

Authors	Stretch α	Hopbound h	Size
[Baseline]	1	1	$O(n^2)$
[Klein/Subramanian '97]	1	$O(\frac{n\log n}{t})$	$O(t^2)$
[Shi/Spencer '99]	1	$O(\frac{n}{t})$	O(nt)
[Cohen'94]	1 + <i>ε</i>	$(\frac{\log n}{\varepsilon})^{O(\log k)}$	$O(n^{1+\frac{1}{k}}\log n)$
[Bernstein'09]	1 + <i>ε</i>	$O(\frac{3}{\varepsilon})^k \log n$	$O(kn^{1+\frac{1}{k}})$
[Elkin/Neiman'16]	1 + <i>ε</i>	$(\frac{\log k}{\varepsilon})^{O(\log k)}$	$O(n^{1+\frac{1}{k}}\log n\log k)$
[Elkin/Neiman'17]	1 + <i>ε</i>	$O(\frac{k+1}{\varepsilon})^{k+1}$	$O(n^{1+\frac{1}{2^{k+1}-1}})$
[Huang/Pettie'17]	1 + <i>ε</i>	$O(\frac{k}{\varepsilon})^k$	$O(n^{1+\frac{1}{2^{k+1}-1}})$

Authors	Stretch α	Hopbound h	Size
[Baseline]	1	1	$O(n^2)$
[Klein/Subramanian '97]	1	$O(\frac{n\log n}{t})$	$O(t^2)$
[Shi/Spencer '99]	1	$O(\frac{n}{t})$	O(nt)
[Cohen'94]	1 + <i>ε</i>	$(\frac{\log n}{\varepsilon})^{O(\log k)}$	$O(n^{1+\frac{1}{k}}\log n)$
[Bernstein'09]	1 + <i>ε</i>	$O(\frac{3}{\varepsilon})^k \log n$	$O(kn^{1+\frac{1}{k}})$
[Elkin/Neiman'16]	1 + <i>ε</i>	$(\frac{\log k}{\varepsilon})^{O(\log k)}$	$O(n^{1+\frac{1}{k}}\log n\log k)$
[Elkin/Neiman'17]	1 + <i>ε</i>	$O(\frac{k+1}{\varepsilon})^{k+1}$	$O(n^{1+\frac{1}{2^{k+1}-1}})$
[Huang/Pettie'17]	1 + <i>ε</i>	$O(\frac{k}{\varepsilon})^k$	$O(n^{1+\frac{1}{2^{k+1}-1}})$

Hopset analysis of spanner/emulator in [Thorup/Zwick '06]

Authors	Stretch α	Hopbound h	Size
[Baseline]	1	1	$O(n^2)$
[Klein/Subramanian '97]	1	$O(\frac{n\log n}{t})$	$O(t^2)$
[Shi/Spencer '99]	1	$O(\frac{n}{t})$	O(nt)
[Cohen'94]	1 + <i>ε</i>	$(\frac{\log n}{\varepsilon})^{O(\log k)}$	$O(n^{1+\frac{1}{k}}\log n)$
[Bernstein'09]	$1 + \varepsilon$	$O(\frac{3}{\varepsilon})^k \log n$	$O(kn^{1+\frac{1}{k}})$
[Elkin/Neiman'16]	1 + <i>ε</i>	$(\frac{\log k}{\varepsilon})^{O(\log k)}$	$O(n^{1+\frac{1}{k}}\log n\log k)$
[Elkin/Neiman'17]	1 + <i>ε</i>	$O(\frac{k+1}{\varepsilon})^{k+1}$	$O(n^{1+\frac{1}{2^{k+1}-1}})$
[Huang/Pettie'17]	$1 + \varepsilon$	$O(\frac{k}{\varepsilon})^k$	$O(n^{1+\frac{1}{2^{k+1}-1}})$
[Abboud/Bodwin/Pettie'16]	$1 + \varepsilon$	$\Omega_k(\frac{1}{\varepsilon})^k$	$n^{1+\frac{1}{2^k-1}-\delta}$

Authors	Stretch α	Hopbound h	Size
[Baseline]	1	1	$O(n^2)$
[Klein/Subramanian '97]	1	$O(\frac{n\log n}{t})$	$O(t^2)$
[Shi/Spencer '99]	1	$O(\frac{n}{t})$	O(nt)
[Cohen'94]	$1 + \varepsilon$	$(\frac{\log n}{\varepsilon})^{O(\log k)}$	$O(n^{1+\frac{1}{k}} \log n)$
[Bernstein'09]	1 + <i>ε</i>	$O(\frac{3}{\varepsilon})^k \log n$	$O(kn^{1+\frac{1}{k}})$
[Elkin/Neiman'16]	$1 + \varepsilon$	$(\frac{\log k}{\varepsilon})^{O(\log k)}$	$O(n^{1+\frac{1}{k}}\log n\log k)$
[Elkin/Neiman'17]	1 + <i>ε</i>	$O(\frac{k+1}{\varepsilon})^{k+1}$	$O(n^{1+\frac{1}{2^{k+1}-1}})$
[Huang/Pettie'17]	1 + <i>ε</i>	$O(\frac{k}{\varepsilon})^k$	$O(n^{1+\frac{1}{2^{k+1}-1}})$
[Abboud/Bodwin/Pettie'16]	1 + <i>ε</i>	$\Omega_k(\frac{1}{\varepsilon})^k$	$n^{1+\frac{1}{2^k-1}-\delta}$

 \Rightarrow Cannot have $\alpha = 1 + \varepsilon$, $h = poly(1/\varepsilon)$ and size $n \cdot polylog(n)$.

No further (significant) algorithmic improvements by better hop sets :(

It was too good to be true...

Beyond Hop Sets

Our Approach

Our Approach

Gradient Descent

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to sinks along the edges of a graph as specified by demands on nodes.

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to sinks along the edges of a graph as specified by demands on nodes.

"Uncapacitated minimum-cost flow"

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to sinks along the edges of a graph as specified by demands on nodes.

"Uncapacitated minimum-cost flow"

Flow View

Given demand b(v) for each node v, find a flow x(e) that:

• meets the demands: $\sum_{e=(u,v)\in E} x(e) = b(v) + \sum_{e=(v,u)\in E} x(e)$ for every node v

• and minimizes $\sum_{e \in F} w(e) \cdot x(e)$.

Undirected graphs: arbitrary orientation of edges.

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to sinks along the edges of a graph as specified by demands on nodes.

"Uncapacitated minimum-cost flow"

Flow View

Given demand b(v) for each node v, find a flow x(e) that:

• meets the demands: $\sum_{e=(u,v)\in E} x(e) = b(v) + \sum_{e=(v,u)\in E} x(e)$ for every node v

• and minimizes
$$\sum_{e \in E} w(e) \cdot x(e)$$
.

Undirected graphs: arbitrary orientation of edges.

LP Formulation: minimize $||Wx||_1$ s.t. Ax = b

Problem Formulation

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to sinks along the edges of a graph as specified by demands on nodes.

"Uncapacitated minimum-cost flow"

Flow View

Given demand b(v) for each node v, find a flow x(e) that:

• meets the demands: $\sum_{e=(u,v)\in E} x(e) = b(v) + \sum_{e=(v,u)\in E} x(e)$ for every node v

• and minimizes
$$\sum_{e \in E} w(e) \cdot x(e)$$
.

Undirected graphs: arbitrary orientation of edges.

LP Formulation: minimize $||Wx||_1$ s.t. Ax = b

SSSP: source has demand -(n-1), other nodes have demand 1

LP Formulation

Primal:minimize
$$||Wx||_1$$
s.t. $Ax = b$ Dual:maximize $b^T y$ s.t. $||W^{-1}A^T y||_{\infty} \le 1$

LP Formulation

Primal: minimize $||Wx||_1$ s.t. Ax = b**Dual:** maximize $b^T y$ s.t. $||W^{-1}A^Ty||_{\infty} \le 1$

Maximize node potentials restricting stretch: $|y(u) - y(v)|/w(e) \le 1$ for every edge e = (u, v)SSSP: potentials = distances to source

LP Formulation

Primal: minimize $||Wx||_1$ s.t. Ax = b**Dual:** maximize $b^T y$ s.t. $||W^{-1}A^Ty||_{\infty} \le 1$

Maximize node potentials restricting stretch: $|y(u) - y(v)|/w(e) \le 1$ for every edge e = (u, v)SSSP: potentials = distances to source

Equivalent:

minimize
$$\left\| \mathbf{W}^{-1} \mathbf{A}^T \pi \right\|_{\infty}$$
 s.t. $\mathbf{b}^T \pi = 1$

LP Formulation

Primal: minimize $||Wx||_1$ s.t. Ax = b**Dual:** maximize $b^T y$ s.t. $||W^{-1}A^Ty||_{\infty} \le 1$

Maximize node potentials restricting stretch: $|y(u) - y(v)|/w(e) \le 1$ for every edge e = (u, v)SSSP: potentials = distances to source

Equivalent:

minimize
$$\left\| \mathbf{W}^{-1} \mathbf{A}^T \pi \right\|_{\infty}$$
 s.t. $\mathbf{b}^T \pi = 1$

We approximate $\|\cdot\|_{\infty}$ by soft-max:

$$\mathsf{lse}_{\beta}(x) := \frac{1}{\beta} \ln \left(\sum_{1 \le i \le n} \left(e^{\beta x_i} + e^{-\beta x_i} \right) \right)$$

LP Formulation

Primal:minimize $||Wx||_1$ s.t. Ax = bDual:maximize $b^T y$ s.t. $||W^{-1}A^T y||_{\infty} \le 1$

Maximize node potentials restricting stretch: $|y(u) - y(v)|/w(e) \le 1$ for every edge e = (u, v)SSSP: potentials = distances to source

Equivalent:

minimize
$$\left\| \mathbf{W}^{-1} \mathbf{A}^T \pi \right\|_{\infty}$$
 s.t. $\mathbf{b}^T \pi = 1$

We approximate $\|\cdot\|_{\infty}$ by soft-max:

$$\mathsf{lse}_{\beta}(x) := \frac{1}{\beta} \ln \left(\sum_{1 \le i \le n} \left(e^{\beta x_i} + e^{-\beta x_i} \right) \right)$$

Goal: minimize $\Phi_{\beta}(\pi) := \text{lse}_{\beta}(\boldsymbol{W}^{-1}\boldsymbol{A}^{T}\pi)$ s.t. $\boldsymbol{b}^{T}\pi = 1$

 $||x||_{\infty}$ (where $v \in \mathbb{R}^n$)

 $\mathsf{lse}_{\beta}(x) := \frac{1}{\beta} \ln \left(\sum_{1 \le i \le n} \left(e^{\beta x_i} + e^{-\beta x_i} \right) \right)$

 $||x||_{\infty}$ (where $v \in \mathbb{R}^n$)

 $\mathsf{lse}_{\beta}(x) := \frac{1}{\beta} \ln \left(\sum_{1 \le i \le n} \left(e^{\beta x_i} + e^{-\beta x_i} \right) \right)$

Additive approximation:

$$\|x\|_{\infty} \le \operatorname{lse}_{\beta}(x) \le \|x\|_{\infty} + \frac{\ln n}{\beta}$$

 $||x||_{\infty}$ (where $v \in \mathbb{R}^n$)

 $\operatorname{lse}_{\beta}(x) := \frac{1}{\beta} \ln \left(\sum_{1 < i < n} \left(e^{\beta x_i} + e^{-\beta x_i} \right) \right)$

Additive approximation:

$$\|x\|_{\infty} \le \operatorname{lse}_{\beta}(x) \le \|x\|_{\infty} + \frac{\ln n}{\beta}$$

Lipschitz smoothness:

$$\left\| \nabla \operatorname{lse}_{\beta}(x) - \nabla \operatorname{lse}_{\beta}(y) \right\|_{1} \leq \beta \left\| x - y \right\|_{\infty}$$

 $||x||_{\infty}$ (where $v \in \mathbb{R}^n$)

 $\operatorname{lse}_{\beta}(x) := \frac{1}{\beta} \ln \left(\sum_{1 \le i \le n} \left(e^{\beta x_i} + e^{-\beta x_i} \right) \right)$

Additive approximation:

$$\|x\|_{\infty} \le \operatorname{lse}_{\beta}(x) \le \|x\|_{\infty} + \frac{\ln n}{\beta}$$

Lipschitz smoothness:

$$\left\|
abla \, \mathrm{lse}_{eta}(x) -
abla \, \mathrm{lse}_{eta}(y)
ight\|_{1} \leq eta \, \|x - y\|_{\infty}$$

Intuition: Trade off quality of approximation and smoothness

Bounding improvement in objective for generic update $\pi' = \pi - h$:

 $\Phi_{\beta}(\pi) - \Phi_{\beta}(\pi - h)$ $\geq \nabla \Phi_{\beta}(\pi - h)^{T} h$ **Convexity:** $f(y) \geq f(x) + \nabla f(x)^{T} (y - x)$

$$\begin{split} \Phi_{\beta}(\pi) &- \Phi_{\beta}(\pi - h) \\ &\geq \nabla \Phi_{\beta}(\pi - h)^{T} h \\ &= \nabla \Phi_{\beta}(\pi)^{T} h - \left(\nabla \Phi_{\beta}(\pi)^{T} h - \nabla \Phi_{\beta}(\pi - h)^{T} h \right) \end{split}$$

$$\Phi_{\beta}(\pi) - \Phi_{\beta}(\pi - h)$$

$$\geq \nabla \Phi_{\beta}(\pi - h)^{T} h$$

$$= \nabla \Phi_{\beta}(\pi)^{T} h - \left(\nabla \Phi_{\beta}(\pi)^{T} h - \nabla \Phi_{\beta}(\pi - h)^{T} h \right)$$

$$= \nabla \Phi_{\beta}(\pi)^{T} h - \left(\nabla \operatorname{lse}_{\beta}(W^{-1}A^{T}\pi) - \nabla \operatorname{lse}_{\beta}(W^{-1}A^{T}(\pi - h)) \right)^{T} W^{-1}A^{T} h$$

$$\begin{split} \Phi_{\beta}(\pi) &- \Phi_{\beta}(\pi - h) \\ &\geq \nabla \Phi_{\beta}(\pi - h)^{T} h \\ &= \nabla \Phi_{\beta}(\pi)^{T} h - \left(\nabla \Phi_{\beta}(\pi)^{T} h - \nabla \Phi_{\beta}(\pi - h)^{T} h \right) \\ &= \nabla \Phi_{\beta}(\pi)^{T} h - \left(\nabla \operatorname{lse}_{\beta}(W^{-1}A^{T}\pi) - \nabla \operatorname{lse}_{\beta}(W^{-1}A^{T}(\pi - h)) \right)^{T} W^{-1}A^{T} h \\ &\geq \nabla \Phi_{\beta}(\pi)^{T} h - \left\| \nabla \operatorname{lse}_{\beta}(W^{-1}A^{T}\pi) - \nabla \operatorname{lse}_{\beta}(W^{-1}A^{T}(\pi - h)) \right\|_{1} \| W^{-1}A^{T} h \|_{\infty} \end{split}$$

$$\begin{split} \Phi_{\beta}(\pi) &- \Phi_{\beta}(\pi - h) \\ &\geq \nabla \Phi_{\beta}(\pi - h)^{T} h \end{split} \\ &= \nabla \Phi_{\beta}(\pi)^{T} h - \left(\nabla \Phi_{\beta}(\pi)^{T} h - \nabla \Phi_{\beta}(\pi - h)^{T} h \right) \\ &= \nabla \Phi_{\beta}(\pi)^{T} h - \left(\nabla \operatorname{lse}_{\beta}(W^{-1}A^{T}\pi) - \nabla \operatorname{lse}_{\beta}(W^{-1}A^{T}(\pi - h)) \right)^{T} W^{-1}A^{T} h \\ &\geq \nabla \Phi_{\beta}(\pi)^{T} h - \left\| \nabla \operatorname{lse}_{\beta}(W^{-1}A^{T}\pi) - \nabla \operatorname{lse}_{\beta}(W^{-1}A^{T}(\pi - h)) \right\|_{1} \|W^{-1}A^{T}h\|_{\infty} \\ &\geq \nabla \Phi_{\beta}(\pi)^{T} h - \beta \|W^{-1}A^{T}h\|_{\infty}^{2} \end{split}$$

Bounding improvement in objective for generic update $\pi' = \pi - h$:

$$\begin{split} \Phi_{\beta}(\pi) &- \Phi_{\beta}(\pi - h) \\ &\geq \nabla \Phi_{\beta}(\pi - h)^{T} h \\ &= \nabla \Phi_{\beta}(\pi)^{T} h - \left(\nabla \Phi_{\beta}(\pi)^{T} h - \nabla \Phi_{\beta}(\pi - h)^{T} h \right) \\ &= \nabla \Phi_{\beta}(\pi)^{T} h - \left(\nabla \operatorname{lse}_{\beta}(\boldsymbol{W}^{-1}\boldsymbol{A}^{T}\pi) - \nabla \operatorname{lse}_{\beta}(\boldsymbol{W}^{-1}\boldsymbol{A}^{T}(\pi - h)) \right)^{T} \boldsymbol{W}^{-1}\boldsymbol{A}^{T} h \\ &\geq \nabla \Phi_{\beta}(\pi)^{T} h - \left\| \nabla \operatorname{lse}_{\beta}(\boldsymbol{W}^{-1}\boldsymbol{A}^{T}\pi) - \nabla \operatorname{lse}_{\beta}(\boldsymbol{W}^{-1}\boldsymbol{A}^{T}(\pi - h)) \right\|_{1} \left\| \boldsymbol{W}^{-1}\boldsymbol{A}^{T} h \right\|_{\infty} \\ &\geq \nabla \Phi_{\beta}(\pi)^{T} h - \beta \left\| \boldsymbol{W}^{-1}\boldsymbol{A}^{T} h \right\|_{\infty}^{2} \end{split}$$

• Suggests to compute *h* by solving

$$\max\{\nabla \Phi_{\beta}(\pi)^{T}h: \left\| \boldsymbol{W}^{-1}\boldsymbol{A}^{T}h \right\|_{\infty} \leq 1\}$$

Bounding improvement in objective for generic update $\pi' = \pi - h$:

$$\begin{split} \Phi_{\beta}(\pi) &- \Phi_{\beta}(\pi - h) \\ &\geq \nabla \Phi_{\beta}(\pi - h)^{T} h \\ &= \nabla \Phi_{\beta}(\pi)^{T} h - \left(\nabla \Phi_{\beta}(\pi)^{T} h - \nabla \Phi_{\beta}(\pi - h)^{T} h \right) \\ &= \nabla \Phi_{\beta}(\pi)^{T} h - \left(\nabla \operatorname{lse}_{\beta}(\boldsymbol{W}^{-1}\boldsymbol{A}^{T}\pi) - \nabla \operatorname{lse}_{\beta}(\boldsymbol{W}^{-1}\boldsymbol{A}^{T}(\pi - h)) \right)^{T} \boldsymbol{W}^{-1}\boldsymbol{A}^{T} h \\ &\geq \nabla \Phi_{\beta}(\pi)^{T} h - \left\| \nabla \operatorname{lse}_{\beta}(\boldsymbol{W}^{-1}\boldsymbol{A}^{T}\pi) - \nabla \operatorname{lse}_{\beta}(\boldsymbol{W}^{-1}\boldsymbol{A}^{T}(\pi - h)) \right\|_{1} \left\| \boldsymbol{W}^{-1}\boldsymbol{A}^{T} h \right\|_{\infty} \\ &\geq \nabla \Phi_{\beta}(\pi)^{T} h - \beta \left\| \boldsymbol{W}^{-1}\boldsymbol{A}^{T} h \right\|_{\infty}^{2} \end{split}$$

• Suggests to compute *h* by solving

$$\max\{\nabla \Phi_{\beta}(\pi)^{T}h: \left\| \boldsymbol{W}^{-1}\boldsymbol{A}^{T}h \right\|_{\infty} \leq 1\}$$

• Another transshipment problem with demand vector $\nabla \Phi_{\beta}(\pi)$.

Bounding improvement in objective for generic update $\pi' = \pi - h$:

$$\begin{split} \Phi_{\beta}(\pi) &- \Phi_{\beta}(\pi - h) \\ &\geq \nabla \Phi_{\beta}(\pi - h)^{T} h \\ &= \nabla \Phi_{\beta}(\pi)^{T} h - \left(\nabla \Phi_{\beta}(\pi)^{T} h - \nabla \Phi_{\beta}(\pi - h)^{T} h \right) \\ &= \nabla \Phi_{\beta}(\pi)^{T} h - \left(\nabla \operatorname{lse}_{\beta}(\boldsymbol{W}^{-1}\boldsymbol{A}^{T}\pi) - \nabla \operatorname{lse}_{\beta}(\boldsymbol{W}^{-1}\boldsymbol{A}^{T}(\pi - h)) \right)^{T} \boldsymbol{W}^{-1}\boldsymbol{A}^{T} h \\ &\geq \nabla \Phi_{\beta}(\pi)^{T} h - \left\| \nabla \operatorname{lse}_{\beta}(\boldsymbol{W}^{-1}\boldsymbol{A}^{T}\pi) - \nabla \operatorname{lse}_{\beta}(\boldsymbol{W}^{-1}\boldsymbol{A}^{T}(\pi - h)) \right\|_{1} \left\| \boldsymbol{W}^{-1}\boldsymbol{A}^{T} h \right\|_{\infty} \\ &\geq \nabla \Phi_{\beta}(\pi)^{T} h - \beta \left\| \boldsymbol{W}^{-1}\boldsymbol{A}^{T} h \right\|_{\infty}^{2} \end{split}$$

• Suggests to compute *h* by solving

$$\max\{\nabla\Phi_{\beta}(\pi)^{T}h: \left\|\boldsymbol{W}^{-1}\boldsymbol{A}^{T}\boldsymbol{h}\right\|_{\infty} \leq 1\}$$

- Another transshipment problem with demand vector $\nabla \Phi_{\beta}(\pi)$.
- **Key insight:** α -approximation with $\alpha = O(\log n)$ is good enough

Bounding improvement in objective for generic update $\pi' = \pi - h$:

$$\begin{split} \Phi_{\beta}(\pi) &- \Phi_{\beta}(\pi - h) \\ &\geq \nabla \Phi_{\beta}(\pi - h)^{T} h \\ &= \nabla \Phi_{\beta}(\pi)^{T} h - \left(\nabla \Phi_{\beta}(\pi)^{T} h - \nabla \Phi_{\beta}(\pi - h)^{T} h \right) \\ &= \nabla \Phi_{\beta}(\pi)^{T} h - \left(\nabla \operatorname{lse}_{\beta}(\boldsymbol{W}^{-1}\boldsymbol{A}^{T}\pi) - \nabla \operatorname{lse}_{\beta}(\boldsymbol{W}^{-1}\boldsymbol{A}^{T}(\pi - h)) \right)^{T} \boldsymbol{W}^{-1}\boldsymbol{A}^{T} h \\ &\geq \nabla \Phi_{\beta}(\pi)^{T} h - \left\| \nabla \operatorname{lse}_{\beta}(\boldsymbol{W}^{-1}\boldsymbol{A}^{T}\pi) - \nabla \operatorname{lse}_{\beta}(\boldsymbol{W}^{-1}\boldsymbol{A}^{T}(\pi - h)) \right\|_{1} \left\| \boldsymbol{W}^{-1}\boldsymbol{A}^{T} h \right\|_{\infty} \\ &\geq \nabla \Phi_{\beta}(\pi)^{T} h - \beta \left\| \boldsymbol{W}^{-1}\boldsymbol{A}^{T} h \right\|_{\infty}^{2} \end{split}$$

• Suggests to compute *h* by solving

$$\max\{\nabla\Phi_{\beta}(\pi)^{T}h: \left\|\boldsymbol{W}^{-1}\boldsymbol{A}^{T}\boldsymbol{h}\right\|_{\infty} \leq 1\}$$

- Another transshipment problem with demand vector $\nabla \Phi_{\beta}(\pi)$.
- **Key insight:** α -approximation with $\alpha = O(\log n)$ is good enough
- \Rightarrow Solve on spanner with stretch $\alpha = \log n$ of size $O(n \log n)$ ("oracle")

Gradient Descent Algorithm

$$\begin{aligned} \mathbf{repeat} \\ \mathbf{while} \ & \frac{4\ln(4m)}{\varepsilon\beta} \geq \Phi_{\beta}(\pi) \ \mathbf{do} \ \beta \leftarrow \frac{5}{4}\beta. \\ & \tilde{b} \leftarrow P^{T} \nabla \Phi_{\beta}(\pi), \text{ where } P \leftarrow I - \pi b^{T} \\ & \tilde{h} \leftarrow \alpha \text{-approximation of } \max\{\tilde{b}^{T}h : \left\| \mathbf{W}^{-1}A^{T}h \right\|_{\infty} \leq 1 \} \\ & \delta \leftarrow \frac{\tilde{b}^{T}\tilde{h}}{\left\| \mathbf{W}^{-1}A^{T}P\tilde{h} \right\|_{\infty}} \\ & \text{ if } \delta > \frac{\varepsilon}{8\alpha} \ \mathbf{then} \ \pi \leftarrow \pi - \frac{\delta}{2\beta \left\| \mathbf{W}^{-1}A^{T}P\tilde{h} \right\|_{\infty}} P\tilde{h}. \end{aligned}$$
$$\mathbf{until } \delta \leq \frac{\varepsilon}{8\alpha} \end{aligned}$$

Gradient Descent Algorithm

repeat
while
$$\frac{4\ln(4m)}{\epsilon\beta} \ge \Phi_{\beta}(\pi)$$
 do $\beta \leftarrow \frac{5}{4}\beta$.
 $\tilde{b} \leftarrow P^{T} \nabla \Phi_{\beta}(\pi)$, where $P \leftarrow I - \pi b^{T}$
 $\tilde{h} \leftarrow \alpha$ -approximation of max{ $\tilde{b}^{T}h : \| W^{-1}A^{T}h \|_{\infty} \le 1$ }
 $\delta \leftarrow \frac{\tilde{b}^{T}\tilde{h}}{\| W^{-1}A^{T}P\tilde{h} \|_{\infty}}$
if $\delta > \frac{\epsilon}{8\alpha}$ then $\pi \leftarrow \pi - \frac{\delta}{2\beta \| W^{-1}A^{T}P\tilde{h} \|_{\infty}}P\tilde{h}$.
until $\delta \le \frac{\epsilon}{8\alpha}$

Details:

- π must stay feasible (projection onto $b^T \pi = 1$)
- β needs to be in the right range

Gradient Descent Algorithm

repeat while $\frac{4\ln(4m)}{\epsilon\beta} \ge \Phi_{\beta}(\pi)$ do $\beta \leftarrow \frac{5}{4}\beta$. $\tilde{b} \leftarrow P^{T} \nabla \Phi_{\beta}(\pi)$, where $P \leftarrow I - \pi b^{T}$ $\tilde{h} \leftarrow \alpha$ -approximation of max{ $\tilde{b}^{T}h : ||W^{-1}A^{T}h||_{\infty} \le 1$ } $\delta \leftarrow \frac{\tilde{b}^{T}\tilde{h}}{||W^{-1}A^{T}P\tilde{h}||_{\infty}}$ if $\delta > \frac{\epsilon}{8\alpha}$ then $\pi \leftarrow \pi - \frac{\delta}{2\beta ||W^{-1}A^{T}P\tilde{h}||_{\infty}}P\tilde{h}$. until $\delta \le \frac{\epsilon}{8\alpha}$

Details:

- π must stay feasible (projection onto $b^T \pi = 1$)
- β needs to be in the right range

Theorem

Given an α -approximate shortest transshipment oracle, one can compute primal solution x and dual solution y such that $\|Wx\|_1 \le (1 + \varepsilon)b^T y$ with $(\varepsilon^{-3}\alpha^2 \log n \log \alpha)$ oracle calls.

Implementation in Brodcast Congested Clique

Evaluate Gradient:

- Evaluate $(\nabla \Phi_{\beta}(\pi))_{v}$ locally at each node v
- $(\nabla \Phi_{\beta}(\pi))_{\nu}$ is a function of π and weight of edges incident to ν ("edge stretches under current node potentials")
- Constant #rounds: Make π and $(\nabla \Phi_{\beta}(\pi))$ global knowledge

Implementation in Brodcast Congested Clique

Evaluate Gradient:

- Evaluate $(\nabla \Phi_{\beta}(\pi))_{v}$ locally at each node v
- $(\nabla \Phi_{\beta}(\pi))_{\nu}$ is a function of π and weight of edges incident to ν ("edge stretches under current node potentials")
- Constant #rounds: Make π and $(\nabla \Phi_{\beta}(\pi))$ global knowledge

Oracle call:

- Initially compute spanner in O(log n) rounds [Baswana/Sen '03]
- Spanner then is global knowledge (size O(n log n))
- At oracle call, make gradient global knowledge (size O(n))
- Each node can internally compute solution on spanner

Are we done?

Black-box reduction from SSSP to shortest transshipment only for exact solutions

- Black-box reduction from SSSP to shortest transshipment only for exact solutions
- **②** Transshipment will only guarantee $(1 + \varepsilon)$ -approximation on average

- Black-box reduction from SSSP to shortest transshipment only for exact solutions
- **2** Transshipment will only guarantee $(1 + \varepsilon)$ -approximation on average
- Itow to obtain per-node guarantee:
 - Solve with increased precision
 - Inspect gradient to identify close-to-optimal nodes
 - Repeat transshipment for "bad" nodes only
 - Analysis: Total "mass" reduced by constant fraction in each run

- Black-box reduction from SSSP to shortest transshipment only for exact solutions
- **2** Transshipment will only guarantee $(1 + \varepsilon)$ -approximation on average
- How to obtain per-node guarantee:
 - Solve with increased precision
 - Inspect gradient to identify close-to-optimal nodes
 - Repeat transshipment for "bad" nodes only
 - Analysis: Total "mass" reduced by constant fraction in each run

Theorem

We can compute $a(1 + \varepsilon)$ -approximate distance estimate for each node in the SSSP problem with $polylog(n, ||w||_{\infty})$ calls to our gradient descent algorithm with precision $\varepsilon' = \Omega(\varepsilon^3/(\alpha^2 \log n))$.

Both papers solve $(1 + \varepsilon)$ -approximate shortest transshipment

Both papers solve $(1 + \varepsilon)$ -approximate shortest transshipment

Our approach

 specialized to shortest transshipment

- Sherman '17
- general norm-minimization framework

Both papers solve $(1 + \varepsilon)$ -approximate shortest transshipment

Our approach

- specialized to shortest transshipment
- oracle calls

Sherman '17

- general norm-minimization framework
- generalized preconditioning

Both papers solve $(1 + \varepsilon)$ -approximate shortest transshipment

Our approach

- specialized to shortest transshipment
- oracle calls
- oracle of stretch $O(\log n)$ based on spanner

Sherman '17

- general norm-minimization framework
- generalized preconditioning
- preconditioner of stretch n^{o(1)}
 based on metric embedding

Both papers solve $(1 + \varepsilon)$ -approximate shortest transshipment

Our approach

- specialized to shortest transshipment
- oracle calls
- oracle of stretch *O*(log *n*) based on spanner
- Sequential RAM model: time $O(n^2 \varepsilon^{-3} polylog(n))$ time

Sherman '17

- general norm-minimization framework
- generalized preconditioning
- preconditioner of stretch n^{o(1)}
 based on metric embedding
- Sequential RAM model: time $m^{1+o(1)}\varepsilon^{-2}$

Both papers solve $(1 + \varepsilon)$ -approximate shortest transshipment

Our approach

- specialized to shortest transshipment
- oracle calls
- oracle of stretch *O*(log *n*) based on spanner
- Sequential RAM model: time $O(n^2 \varepsilon^{-3} polylog(n))$ time
- (deterministic) extension to approximate SSSP

Sherman '17

- general norm-minimization framework
- generalized preconditioning
- preconditioner of stretch n^{o(1)}
 based on metric embedding
- Sequential RAM model: time $m^{1+o(1)}\varepsilon^{-2}$

??

Both papers solve $(1 + \varepsilon)$ -approximate shortest transshipment

Our approach

- specialized to shortest transshipment
- oracle calls
- oracle of stretch *O*(log *n*) based on spanner
- Sequential RAM model: time $O(n^2 \varepsilon^{-3} polylog(n))$ time
- (deterministic) extension to approximate SSSP
- randomized tree solution

Sherman '17

- general norm-minimization framework
- generalized preconditioning
- preconditioner of stretch n^{o(1)}
 based on metric embedding
- Sequential RAM model: time $m^{1+o(1)}\varepsilon^{-2}$
- ??

??

Both papers solve $(1 + \varepsilon)$ -approximate shortest transshipment

Our approach

- specialized to shortest transshipment
- oracle calls
- oracle of stretch *O*(log *n*) based on spanner
- Sequential RAM model: time $O(n^2 \varepsilon^{-3} polylog(n))$ time
- (deterministic) extension to approximate SSSP
- randomized tree solution
 ⇒ nearly tight approximate SSSP
 in distributed and streaming
 models

Sherman '17

- general norm-minimization framework
- generalized preconditioning
- preconditioner of stretch n^{o(1)}
 based on metric embedding
- Sequential RAM model: time $m^{1+o(1)}\varepsilon^{-2}$
- ??

??

Conclusion

Contributions

- New approach tailored to efficient implementation in distributed models
- Oradient descent for shortest transshipment based on oracle calls
- Additional refinement gives per-node guarantee for approximate SSSP

Conclusion

Contributions

- New approach tailored to efficient implementation in distributed models
- In Gradient descent for shortest transshipment based on oracle calls
- Additional refinement gives per-node guarantee for approximate SSSP

Open Problems

- Oistributed Model: Faster exact SSSP?
- Parallel Model: Approximate SSSP with *m* · *poly*(log *n*, ε) work and *poly*(log *n*, ε) depth?
- RAM Model: Approximate shortest transshipment in time m · poly(log n, ε)?

Conclusion

Contributions

- New approach tailored to efficient implementation in distributed models
- In Gradient descent for shortest transshipment based on oracle calls
- Additional refinement gives per-node guarantee for approximate SSSP

Open Problems

- Oistributed Model: Faster exact SSSP?
- Parallel Model: Approximate SSSP with *m* · *poly*(log *n*, ε) work and *poly*(log *n*, ε) depth?
- RAM Model: Approximate shortest transshipment in time m · poly(log n, ε)?

Thank you!