Near-Optimal Approximate Shortest Paths and Transshipment in Distributed and Streaming Models

Sebastian Krinninger

University of Vienna → University of Salzburg

joint work with

Ruben Becker
MPI Saarbrücken

Andreas Karrenbauer
MPI Saarbrücken

Christoph Lenzen
MPI Saarbrücken
Approximate Single-Source Shortest Paths

Our \((1 + \varepsilon)\)-approx

\text{CONGEST} \quad (\sqrt{n} + D) \cdot \text{poly}(\log n, \varepsilon)

rounds
Approximate Single-Source Shortest Paths

<table>
<thead>
<tr>
<th></th>
<th>Our ((1 + \varepsilon))-approx</th>
<th>Previous best</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONGEST</td>
<td>((\sqrt{n} + D) \cdot \text{poly}(\log n, \varepsilon)) rounds</td>
<td>((\sqrt{n} + D) \cdot 2^{O(\sqrt{\log n \log (\varepsilon^{-1} \log n)})}) rounds(^1)</td>
</tr>
</tbody>
</table>

Comments:
- Undirected graphs with weights \(\in \{1, 2, \ldots, \text{poly}(n)\}\)
- \(D = \text{Diameter}, n = \#\text{nodes}\)
- CONGEST lower bound: \(\tilde{\Omega}(\sqrt{n} + Diam)\) rounds [Das Sarma et al ’11]

\(^1\)[Henzinger/K/Nanongkai ’16]
Approximate Single-Source Shortest Paths

<table>
<thead>
<tr>
<th></th>
<th>Our ((1 + \varepsilon))-approx</th>
<th>Previous best</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONGEST</td>
<td>((\sqrt{n} + D) \cdot \text{poly}(\log n, \varepsilon)) rounds</td>
<td>((\sqrt{n} + D) \cdot 2^{O(\sqrt{\log n \log (\varepsilon^{-1} \log n)})}) rounds (^1)</td>
</tr>
<tr>
<td>Cong. Clique</td>
<td>(\text{poly}(\log n, \varepsilon)) rounds</td>
<td>(2^{O(\sqrt{\log n \log (\varepsilon^{-1} \log n)})}) rounds (^2)</td>
</tr>
</tbody>
</table>

Comments:
- Undirected graphs with weights \(\in \{1, 2, \ldots, \text{poly}(n)\}\)
- \(D = \text{Diameter}, n = \#\text{nodes}\)
- CONGEST lower bound: \(\tilde{\Omega}(\sqrt{n} + \text{Diam})\) rounds \([\text{Das Sarma et al '11}]\)

\(^1\)\([\text{Henzinger/K/Nanongkai '16}]\)
\(^2\)\([\text{Henzinger/K/Nanongkai '16}]\)
\(^3\)
Approximate Single-Source Shortest Paths

<table>
<thead>
<tr>
<th></th>
<th>Our ((1 + \varepsilon))-approx</th>
<th>Previous best</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONGEST</td>
<td>((\sqrt{n} + D) \cdot \text{poly}(\log n, \varepsilon)) rounds</td>
<td>((\sqrt{n} + D) \cdot 2^{O(\sqrt{\log n \log (\varepsilon^{-1} \log n)})}) rounds(^1)</td>
</tr>
<tr>
<td>Cong. Clique</td>
<td>(\text{poly}(\log n, \varepsilon)) rounds</td>
<td>(2^{O(\sqrt{\log n \log (\varepsilon^{-1} \log n)})}) rounds(^2)</td>
</tr>
<tr>
<td>Streaming</td>
<td>(\text{poly}(\log n, \varepsilon)) passes (O(n \log n)) space</td>
<td>((2 + 1/\varepsilon)^{O(\sqrt{\log n \log \log n})}) passes (O(n \log^2 n)) space(^3)</td>
</tr>
</tbody>
</table>

Comments:

- Undirected graphs with weights \(\in \{1, 2, \ldots, \text{poly}(n)\}\)
- \(D = \text{Diameter}, n = \#\text{nodes}\)
- CONGEST lower bound: \(\tilde{\Omega}(\sqrt{n} + \text{Diam})\) rounds [Das Sarma et al ’11]

\(^1\)[Henzinger/K/Nanongkai ’16]
\(^2\)[Henzinger/K/Nanongkai ’16]
\(^3\)[Elkin/Neiman ’16]
Approximate Single-Source Shortest Paths

<table>
<thead>
<tr>
<th></th>
<th>Our $(1 + \varepsilon)$-approx</th>
<th>Exact computation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONGEST</td>
<td>$(\sqrt{n} + D) \cdot poly(\log n, \varepsilon)$ rounds</td>
<td>$n^{5/6} + D^{1/3} (n \log n)^{2/3}$ rounds(^1)</td>
</tr>
<tr>
<td>Cong. Clique</td>
<td>$poly(\log n, \varepsilon)$ rounds</td>
<td>$O(n^{0.158})$ rounds(^2)</td>
</tr>
<tr>
<td>Streaming</td>
<td>$poly(\log n, \varepsilon)$ passes $O(n \log n)$ space</td>
<td>$O(\frac{n}{k})$ passes $O(nk)$ space(^3)</td>
</tr>
</tbody>
</table>

Comments:

- Undirected graphs with weights $\in \{1, 2, \ldots, poly(n)\}$
- $D = \text{Diameter}, n = \#\text{nodes}$
- CONGEST lower bound: $\tilde{\Omega}(\sqrt{n} + \text{Diam})$ rounds [Das Sarma et al. ’11]

\(^1\)[Elkin ’17]
\(^2\)[Censor-Hillel et al. ’15]
\(^3\)[Elkin ’17]
Broadcast Congested Clique

Model:
- Network topology: clique on n nodes
- Synchronous rounds (global clock)
- In each round, every node sends one message to all other nodes
- Message size $O(\log n)$
- Local computation is free
Problem Statement

- Initially: Every node knows weight of its incident edges and whether it is the source or not
- Finally: Every node knows its approximate distance to the source

Desirable addon: Implicit tree; every node knows next edge on approximate shortest path to source

Simulation: Skeleton as congested clique

\[t \] rounds in Broadcast Congested Clique model

\[\tilde{O}(t \cdot (\sqrt{n} + \text{Diam})) \] rounds in CONGEST model
Problem Statement

- Initially: Every node knows weight of its incident edges and whether it is the source or not
- Finally: Every node knows its approximate distance to the source
- Desirable addon: Implicit tree; every node knows next edge on approximate shortest path to source
Problem Statement

- Initially: Every node knows weight of its incident edges and whether it is the source or not
- Finally: Every node knows its approximate distance to the source
- Desirable addon: Implicit tree; every node knows next edge on approximate shortest path to source

Simulation: Skeleton as congested clique [Henzinger/K/Nanongkai ’16]

t rounds in Broadcast Congested Clique model $\rightarrow \tilde{O}(t \cdot (\sqrt{n} + Diam))$ rounds in CONGEST model
Combinatorial Approach
Sparsification I: Spanners

Definition

A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v, $\text{dist}_H(u, v) \leq k \cdot \text{dist}_G(u, v)$.
Sparsification I: Spanners

Definition

A \(k\)-spanner is a subgraph \(H\) of \(G\) such that, for all pairs of nodes \(u\) and \(v\),
\[
dist_H(u, v) \leq k \cdot dist_G(u, v).
\]
Sparsification I: Spanners

Definition

A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v, $\text{dist}_H(u, v) \leq k \cdot \text{dist}_G(u, v)$.
Sparsification I: Spanners

Definition
A k-spanner is a subgraph H of G such that, for all pairs of nodes u and v, $\text{dist}_H(u, v) \leq k \cdot \text{dist}_G(u, v)$.

Fact: Every graph has a $(2k - 1)$-spanner of size $n^{1+1/k}$

Application: Running time $T(m, n) \Rightarrow T(n^{1+1/k}, n)$
Sparsification II: Hop Sets

Definition

An \((h, \varepsilon)\)-hop set is a set of weighted edges \(F\) such that, for all pairs of nodes \(u\) and \(v\), in the ‘shortcut graph’ \(G \cup F\) there is a path from \(u\) to \(v\) with at most \(h\) edges of weight at most \((1 + \varepsilon) \text{dist}(u, v)\).
Definition
An \((h, \varepsilon)\)-hop set is a set of weighted edges \(F\) such that, for all pairs of nodes \(u\) and \(v\), in the ‘shortcut graph’ \(G \cup F\) there is a path from \(u\) to \(v\) with at most \(h\) edges of weight at most \((1 + \varepsilon)dist(u, v)\).
Sparsification II: Hop Sets

Definition

An \((h, \varepsilon)\)-hop set is a set of weighted edges \(F\) such that, for all pairs of nodes \(u\) and \(v\), in the ‘shortcut graph’ \(G \cup F\) there is a path from \(u\) to \(v\) with at most \(h\) edges of weight at most \((1 + \varepsilon)\text{dist}(u, v)\).
Definition

An \((h, \varepsilon)\)-hop set is a set of weighted edges \(F\) such that, for all pairs of nodes \(u\) and \(v\), in the ‘shortcut graph’ \(G \cup F\) there is a path from \(u\) to \(v\) with at most \(h\) edges of weight at most \((1 + \varepsilon)\)dist\((u, v)\).

Fact: Every graph has a \((n^{o(1)}, \varepsilon)\)-hop set of size \(n^{1+o(1)}\) [Cohen ’94] (for \(\varepsilon \geq 1/polylog n\))
Sparsification II: Hop Sets

Definition

An \((h, \varepsilon)\)-hop set is a set of weighted edges \(F\) such that, for all pairs of nodes \(u\) and \(v\), in the ‘shortcut graph’ \(G \cup F\) there is a path from \(u\) to \(v\) with at most \(h\) edges of weight at most \((1 + \varepsilon)\text{dist}(u, v)\).

Application to approximate SSSP

Almost tight algorithms for Bellman-Ford-like approaches:

- Parallel: \(m^{1+o(1)}\) work with \(n^{o(1)}\) depth [Cohen ’94]
- Congested Clique: \(n^{o(1)}\) rounds [Henzinger/K/Nanongkai ’16]
- Streaming: \(n^{o(1)}\) passes with \(n^{1+o(1)}\) space [HKN ’16, Elkin/Neiman ’16]
- Incremental/Decremental \(m^{1+o(1)}\) total time [Henzinger/K/Nanongkai ’14]
Sparsification II: Hop Sets

Definition

An \((h, \varepsilon)\)-hop set is a set of weighted edges \(F\) such that, for all pairs of nodes \(u\) and \(v\), in the ‘shortcut graph’ \(G \cup F\) there is a path from \(u\) to \(v\) with at most \(h\) edges of weight at most \((1 + \varepsilon)\text{dist}(u, v)\).

Application to approximate SSSP

Almost tight algorithms for Bellman-Ford-like approaches:

- Parallel: \(m^{1+o(1)}\) work with \(n^{o(1)}\) depth [Cohen ’94]
- Congested Clique: \(n^{o(1)}\) rounds [Henzinger/K/Nanongkai ’16]
- Streaming: \(n^{o(1)}\) passes with \(n^{1+o(1)}\) space [HKN ’16, Elkin/Neiman ’16]
- Incremental/Decremental \(m^{1+o(1)}\) total time [Henzinger/K/Nanongkai ’14]

Challenge: Compute/maintain hop set
Sparsification II: Hop Sets

Definition
An \((h, \varepsilon)\)-hop set is a set of weighted edges \(F\) such that, for all pairs of nodes \(u\) and \(v\), in the ‘shortcut graph’ \(G \cup F\) there is a path from \(u\) to \(v\) with at most \(h\) edges of weight at most \((1 + \varepsilon)\text{dist}(u, v)\).

Application to approximate SSSP
Almost tight algorithms for Bellman-Ford-like approaches:
- Parallel: \(m^{1+o(1)}\) work with \(n^{o(1)}\) depth [Cohen ’94]
- Congested Clique: \(n^{o(1)}\) rounds [Henzinger/K/Nanongkai ’16]
- Streaming: \(n^{o(1)}\) passes with \(n^{1+o(1)}\) space [HKN ’16, Elkin/Neiman ’16]
- Incremental/Decremental \(m^{1+o(1)}\) total time [Henzinger/K/Nanongkai ’14]

Challenge: Compute/maintain hop set
Hop Sets: Approaching Optimality

<table>
<thead>
<tr>
<th>Authors</th>
<th>Stretch α</th>
<th>Hopbound h</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Baseline]</td>
<td>1</td>
<td>1</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>
Hop Sets: Approaching Optimality

<table>
<thead>
<tr>
<th>Authors</th>
<th>Stretch α</th>
<th>Hopbound h</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Baseline]</td>
<td>1</td>
<td>1</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>[Klein/Subramanian ’97]</td>
<td>1</td>
<td>$O\left(\frac{n \log n}{t}\right)$</td>
<td>$O(t^2)$</td>
</tr>
<tr>
<td>[Shi/Spencer ’99]</td>
<td>1</td>
<td>$O\left(\frac{n}{t}\right)$</td>
<td>$O(nt)$</td>
</tr>
</tbody>
</table>

[Abboud/Bodwin/Pe/t_tie’16]

[Elkin/Neiman’16]

[Elkin/Neiman’17]

[Huang/Pe/t_tie’17]

[Cohen’94]

[Klein/Subramanian’97]

[Shi/Spencer’99]
Hop Sets: Approaching Optimality

<table>
<thead>
<tr>
<th>Authors</th>
<th>Stretch α</th>
<th>Hopbound h</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Baseline]</td>
<td>1</td>
<td>1</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>[Klein/Subramanian ’97]</td>
<td>1</td>
<td>$O\left(\frac{n \log n}{t}\right)$</td>
<td>$O(t^2)$</td>
</tr>
<tr>
<td>[Shi/Spencer ’99]</td>
<td>1</td>
<td>$O\left(\frac{n}{t}\right)$</td>
<td>$O(nt)$</td>
</tr>
<tr>
<td>[Cohen’94]</td>
<td>$1 + \varepsilon$</td>
<td>$\left(\frac{\log n}{\varepsilon}\right)O(\log k)$</td>
<td>$O(n^{1+\frac{1}{k}} \log n)$</td>
</tr>
<tr>
<td>[Bernstein’09]</td>
<td>$1 + \varepsilon$</td>
<td>$O\left(\frac{3}{\varepsilon}\right)^k \log n$</td>
<td>$O(kn^{1+\frac{1}{k}})$</td>
</tr>
<tr>
<td>[Elkin/Neiman’16]</td>
<td>$1 + \varepsilon$</td>
<td>$\left(\frac{\log k}{\varepsilon}\right)O(\log k)$</td>
<td>$O(n^{1+\frac{1}{k}} \log n \log k)$</td>
</tr>
<tr>
<td>[Elkin/Neiman’17]</td>
<td>$1 + \varepsilon$</td>
<td>$O\left(\frac{k+1}{\varepsilon}\right)^{k+1}$</td>
<td>$O\left(n^{1+\frac{1}{2k+1-1}}\right)$</td>
</tr>
<tr>
<td>[Huang/Pettie’17]</td>
<td>$1 + \varepsilon$</td>
<td>$O\left(\frac{k}{\varepsilon}\right)^k$</td>
<td>$O\left(n^{1+\frac{1}{2k+1-1}}\right)$</td>
</tr>
</tbody>
</table>
Hop Sets: Approaching Optimality

<table>
<thead>
<tr>
<th>Authors</th>
<th>Stretch α</th>
<th>Hopbound h</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Baseline]</td>
<td>1</td>
<td>1</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>[Klein/Subramanian ’97]</td>
<td>1</td>
<td>$O\left(\frac{n \log n}{t}\right)$</td>
<td>$O(t^2)$</td>
</tr>
<tr>
<td>[Shi/Spencer ’99]</td>
<td>1</td>
<td>$O\left(\frac{n}{t}\right)$</td>
<td>$O(nt)$</td>
</tr>
<tr>
<td>[Cohen’94]</td>
<td>$1 + \varepsilon$</td>
<td>$(\frac{\log n}{\varepsilon})O(\log k)$</td>
<td>$O(n^{1+\frac{1}{k}} \log n)$</td>
</tr>
<tr>
<td>[Bernstein’09]</td>
<td>$1 + \varepsilon$</td>
<td>$O\left(\frac{3}{\varepsilon}\right)^k \log n$</td>
<td>$O(kn^{1+\frac{1}{k}})$</td>
</tr>
<tr>
<td>[Elkin/Neiman’16]</td>
<td>$1 + \varepsilon$</td>
<td>$(\frac{\log k}{\varepsilon})O(\log k)$</td>
<td>$O(n^{1+\frac{1}{k}} \log n \log k)$</td>
</tr>
<tr>
<td>[Elkin/Neiman’17]</td>
<td>$1 + \varepsilon$</td>
<td>$O\left(\frac{k+1}{\varepsilon}\right)^{k+1}$</td>
<td>$O(n^{1+\frac{1}{2^{k+1}-1}})$</td>
</tr>
<tr>
<td>[Huang/Pettie’17]</td>
<td>$1 + \varepsilon$</td>
<td>$O\left(\frac{k}{\varepsilon}\right)^k$</td>
<td>$O(n^{1+\frac{1}{2^{k+1}-1}})$</td>
</tr>
</tbody>
</table>

Hopset analysis of spanner/emulator in [Thorup/Zwick ’06]
Hop Sets: Approaching Optimality

<table>
<thead>
<tr>
<th>Authors</th>
<th>Stretch α</th>
<th>Hopbound h</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Baseline]</td>
<td>1</td>
<td>1</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>[Klein/Subramanian ’97]</td>
<td>1</td>
<td>$O\left(\frac{n \log n}{t}\right)$</td>
<td>$O(t^2)$</td>
</tr>
<tr>
<td>[Shi/Spencer ’99]</td>
<td>1</td>
<td>$O\left(\frac{n}{t}\right)$</td>
<td>$O(nt)$</td>
</tr>
<tr>
<td>[Cohen’94]</td>
<td>$1 + \epsilon$</td>
<td>$(\frac{\log n}{\epsilon}) O(\log k)$</td>
<td>$O(n^{1+\frac{1}{k}} \log n)$</td>
</tr>
<tr>
<td>[Bernstein’09]</td>
<td>$1 + \epsilon$</td>
<td>$O\left(\frac{3}{\epsilon}\right)^k \log n$</td>
<td>$O(k n^{1+\frac{1}{k}})$</td>
</tr>
<tr>
<td>[Elkin/Neiman’16]</td>
<td>$1 + \epsilon$</td>
<td>$(\frac{\log k}{\epsilon}) O(\log k)$</td>
<td>$O(n^{1+\frac{1}{k}} \log n \log k)$</td>
</tr>
<tr>
<td>[Elkin/Neiman’17]</td>
<td>$1 + \epsilon$</td>
<td>$O\left(\frac{k+1}{\epsilon}\right)^{k+1}$</td>
<td>$O(n^{1+\frac{1}{2k+1-1}})$</td>
</tr>
<tr>
<td>[Huang/Pettie’17]</td>
<td>$1 + \epsilon$</td>
<td>$O\left(\frac{k}{\epsilon}\right)^k$</td>
<td>$O(n^{1+\frac{1}{2k+1-1}})$</td>
</tr>
<tr>
<td>[Abboud/Bodwin/Pettie’16]</td>
<td>$1 + \epsilon$</td>
<td>$\Omega_k\left(\frac{1}{\epsilon}\right)^k$</td>
<td>$n^{1+\frac{1}{2k-1}-\delta}$</td>
</tr>
</tbody>
</table>
Hop Sets: Approaching Optimality

<table>
<thead>
<tr>
<th>Authors</th>
<th>Stretch α</th>
<th>Hopbound h</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Baseline]</td>
<td>1</td>
<td>1</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>[Klein/Subramanian '97]</td>
<td>1</td>
<td>$O(\frac{n \log n}{t})$</td>
<td>$O(t^2)$</td>
</tr>
<tr>
<td>[Shi/Spencer '99]</td>
<td>1</td>
<td>$O(\frac{n}{t})$</td>
<td>$O(nt)$</td>
</tr>
<tr>
<td>[Cohen'94]</td>
<td>$1 + \varepsilon$</td>
<td>$(\frac{\log n}{\varepsilon})O(\log k)$</td>
<td>$O(n^{1 + \frac{1}{k}} \log n)$</td>
</tr>
<tr>
<td>[Bernstein’09]</td>
<td>$1 + \varepsilon$</td>
<td>$O(\frac{3}{\varepsilon})^k \log n$</td>
<td>$O(kn^{1 + \frac{1}{k}})$</td>
</tr>
<tr>
<td>[Elkin/Neiman’16]</td>
<td>$1 + \varepsilon$</td>
<td>$(\frac{\log k}{\varepsilon})O(\log k)$</td>
<td>$O(n^{1 + \frac{1}{k}} \log n \log k)$</td>
</tr>
<tr>
<td>[Elkin/Neiman’17]</td>
<td>$1 + \varepsilon$</td>
<td>$O(\frac{k+1}{\varepsilon})^{k+1}$</td>
<td>$O(n^{1 + \frac{1}{2^{k+1}-1}})$</td>
</tr>
<tr>
<td>[Huang/Pettie’17]</td>
<td>$1 + \varepsilon$</td>
<td>$O(\frac{k}{\varepsilon})^k$</td>
<td>$O(n^{1 + \frac{1}{2^{k+1}-1}})$</td>
</tr>
<tr>
<td>[Abboud/Bodwin/Pettie’16]</td>
<td>$1 + \varepsilon$</td>
<td>$\Omega_k(\frac{1}{\varepsilon})^k$</td>
<td>$n^{1 + \frac{1}{2^k-1} - \delta}$</td>
</tr>
</tbody>
</table>

⇒ Cannot have $\alpha = 1 + \varepsilon$, $h = \text{poly}(1/\varepsilon)$ and size $n \cdot \text{polylog}(n)$.

No further (significant) algorithmic improvements by better hop sets :(
It was too good to be true...
Beyond Hop Sets
Our Approach
Our Approach

Gradient Descent
Problem Formulation

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to sinks along the edges of a graph as specified by demands on nodes.
Problem Formulation

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to sinks along the edges of a graph as specified by demands on nodes.

“Uncapacitated minimum-cost flow”
Problem Formulation

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to sinks along the edges of a graph as specified by demands on nodes.

“Uncapacitated minimum-cost flow”

Flow View

Given demand $b(v)$ for each node v, find a flow $x(e)$ that:

- meets the demands: $\sum_{e=(u,v)\in E} x(e) = b(v) + \sum_{e=(v,u)\in E} x(e)$ for every node v

- and minimizes $\sum_{e\in E} w(e) \cdot x(e)$.

Undirected graphs: arbitrary orientation of edges.
Problem Formulation

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to sinks along the edges of a graph as specified by demands on nodes.

“Uncapacitated minimum-cost flow”

Flow View

Given demand $b(v)$ for each node v, find a flow $x(e)$ that:

- meets the demands:
 \[
 \sum_{e=(u,v) \in E} x(e) = b(v) + \sum_{e=(v,u) \in E} x(e) \text{ for every node } v
 \]

- and minimizes \[
 \sum_{e \in E} w(e) \cdot x(e).
 \]

Undirected graphs: arbitrary orientation of edges.

LP Formulation: minimize $\|Wx\|_1$ s.t. $Ax = b$
Problem Formulation

Shortest Transshipment Problem

Find the cheapest route for sending units of a single good from sources to sinks along the edges of a graph as specified by demands on nodes.

“Uncapacitated minimum-cost flow”

Flow View

Given demand $b(v)$ for each node v, find a flow $x(e)$ that:

- meets the demands: $\sum_{e=(u, v)\in E} x(e) = b(v) + \sum_{e=(v, u)\in E} x(e)$ for every node v
- and minimizes $\sum_{e\in E} w(e) \cdot x(e)$.

Undirected graphs: arbitrary orientation of edges.

LP Formulation: minimize $\|Wx\|_1$ s.t. $Ax = b$

SSSP: source has demand $-(n - 1)$, other nodes have demand 1
Reformulation

LP Formulation

Primal: minimize $\|Wx\|_1$ s.t. $Ax = b$

Dual: maximize b^Ty s.t. $\|W^{-1}A^Ty\|_\infty \leq 1$
Reformulation

LP Formulation

<table>
<thead>
<tr>
<th></th>
<th>Primal: minimize $|Wx|_1$ s.t. $Ax = b$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dual: maximize $b^T y$ s.t. $|W^{-1}A^T y|_\infty \leq 1$</td>
</tr>
</tbody>
</table>

Maximize node potentials restricting stretch: $|y(u) - y(v)|/w(e) \leq 1$ for every edge $e = (u, v)$

SSSP: potentials = distances to source
Reformulation

LP Formulation

| **Primal:** | minimize $\| Wx \|_1$ | s.t. $Ax = b$ |
| **Dual:** | maximize $b^T y$ | s.t. $\| W^{-1} A^T y \|_\infty \leq 1$ |

Maximize node potentials restricting stretch:
$|y(u) - y(v)| / w(e) \leq 1$ for every edge $e = (u, v)$
SSSP: potentials = distances to source

Equivalent:

minimize $\| W^{-1} A^T \pi \|_\infty$ \hspace{1cm} s.t. $b^T \pi = 1$
Reformulation

LP Formulation

Primal: minimize $\| Wx \|_1$ s.t. $Ax = b$

Dual: maximize $b^T y$ s.t. $\| W^{-1} A^T y \|_\infty \leq 1$

Maximize node potentials restricting stretch:

$|y(u) - y(v)| / w(e) \leq 1$ for every edge $e = (u, v)$

SSSP: potentials = distances to source

Equivalent:

$$\text{minimize } \| W^{-1} A^T \pi \|_\infty \text{ s.t. } b^T \pi = 1$$

We approximate $\| \cdot \|_\infty$ by soft-max:

$$\text{lse}_\beta(x) := \frac{1}{\beta} \ln \left(\sum_{1 \leq i \leq n} (e^{\beta x_i} + e^{-\beta x_i}) \right)$$
Reformulation

LP Formulation

<table>
<thead>
<tr>
<th>Primal:</th>
<th>minimize $|WX|_1$</th>
<th>s.t. $AX = b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual:</td>
<td>maximize $b^T y$</td>
<td>s.t. $|W^{-1}A^T y|_\infty \leq 1$</td>
</tr>
</tbody>
</table>

Maximize node potentials restricting stretch: $\left|y(u) - y(v)\right|/w(e) \leq 1$ for every edge $e = (u, v)$

SSSP: potentials = distances to source

Equivalent:

$$\text{minimize} \ \left\| W^{-1} A^T \pi \right\|_\infty \quad \text{s.t.} \quad b^T \pi = 1$$

We approximate $\| \cdot \|_\infty$ by soft-max:

$$\text{lse}_\beta(x) := \frac{1}{\beta} \ln \left(\sum_{1 \leq i \leq n} (e^{\beta x_i} + e^{-\beta x_i}) \right)$$

Goal: minimize $\Phi_\beta(\pi) := \text{lse}_\beta(W^{-1} A^T \pi) \quad \text{s.t.} \quad b^T \pi = 1$
Soft-max approximation

\[\|x\|_\infty \ (\text{where } v \in \mathbb{R}^n) \]

\[\text{lse}_\beta(x) := \frac{1}{\beta} \ln \left(\sum_{1 \leq i \leq n} (e^{\beta x_i} + e^{-\beta x_i}) \right) \]
Soft-max approximation

\[\|x\|_\infty \quad (\text{where } v \in \mathbb{R}^n) \]

Additive approximation:

\[\|x\|_\infty \leq \text{lse}_\beta(x) \leq \|x\|_\infty + \frac{\ln n}{\beta} \]

\[\text{lse}_\beta(x) := \frac{1}{\beta} \ln \left(\sum_{1 \leq i \leq n} \left(e^{\beta x_i} + e^{-\beta x_i} \right) \right) \]
Soft-max approximation

\[\|x\|_\infty \quad (\text{where} \ v \in \mathbb{R}^n) \]

Additive approximation:

\[\|x\|_\infty \leq \text{lse}_\beta(x) \leq \|x\|_\infty + \frac{\ln n}{\beta} \]

Lipschitz smoothness:

\[\|\nabla \text{lse}_\beta(x) - \nabla \text{lse}_\beta(y)\|_1 \leq \beta \|x - y\|_\infty \]
Soft-max approximation

\[\|x\|_{\infty} \text{ (where } v \in \mathbb{R}^n) \]

Additive approximation:

\[\|x\|_{\infty} \leq \text{lse}_\beta(x) \leq \|x\|_{\infty} + \frac{\ln n}{\beta} \]

Lipschitz smoothness:

\[\|\nabla \text{lse}_\beta(x) - \nabla \text{lse}_\beta(y)\|_1 \leq \beta \|x - y\|_{\infty} \]

Intuition: Trade off quality of approximation and smoothness
Generic Update Step

Bounding improvement in objective for generic update $\pi' = \pi - h$:

$$
\Phi_\beta(\pi') - \Phi_\beta(\pi - h) \geq \nabla \Phi_\beta(\pi - h)^T h = \nabla \Phi_\beta(\pi)^T h - \nabla \text{lse}_\beta(W - 1A^T \pi) - \nabla \text{lse}_\beta(W - 1A^T (\pi - h)) \geq \nabla \Phi_\beta(\pi)^T h - \beta W^{-1} A^T h \geq \nabla \Phi_\beta(\pi)^T h - \beta W^{-1} A^T h \infty.$$

Suggests to compute h by solving

$$\max\{\nabla \Phi_\beta(\pi)^T h : W^{-1} A^T h \leq 1\}.$$

Another transshipment problem with demand vector $\nabla \Phi_\beta(\pi)^T$.

Key insight: α-approximation with $\alpha = O(\log n)$ is good enough \Rightarrow Solve on spanner with stretch $\alpha = \log n$ of size $O(n \log n)$ ("oracle").
Generic Update Step

Bounding improvement in objective for generic update $\pi’ = \pi - h$:

$$\Phi_\beta(\pi) - \Phi_\beta(\pi - h) \geq \nabla \Phi_\beta(\pi - h)^T h$$

Convexity: $f(y) \geq f(x) + \nabla f(x)^T (y - x)$
Generic Update Step

Bounding improvement in objective for generic update $\pi' = \pi - h$:

$$
\Phi_\beta(\pi) - \Phi_\beta(\pi - h)
\geq \nabla \Phi_\beta(\pi - h)^T h
= \nabla \Phi_\beta(\pi)^T h - \left(\nabla \Phi_\beta(\pi)^T h - \nabla \Phi_\beta(\pi - h)^T h\right)
$$
Generic Update Step

Bounding improvement in objective for generic update $\pi' = \pi - h$:

\[
\Phi_\beta(\pi) - \Phi_\beta(\pi - h) \geq \nabla \Phi_\beta(\pi - h)^T h
\]

\[
= \nabla \Phi_\beta(\pi)^T h - \left(\nabla \Phi_\beta(\pi)^T h - \nabla \Phi_\beta(\pi - h)^T h \right)
\]

\[
= \nabla \Phi_\beta(\pi)^T h - \left(\nabla \text{lse}_\beta(W^{-1}A^T\pi) - \nabla \text{lse}_\beta(W^{-1}A^T(\pi - h)) \right)^T W^{-1}A^T h
\]

Chain rule: $\nabla \Phi_\beta(\pi) = AW^{-1}\nabla \text{lse}_\beta(W^{-1}A^T\pi)$

Suggests to compute h by solving

\[
\max \{ \nabla \Phi_\beta(\pi)^T h : \|W^{-1}A^T h\|_\infty \leq 1 \}
\]

Another transshipment problem with demand vector $\nabla \Phi_\beta(\pi)$.

Key insight: α-approximation with $\alpha = O(\log n)$ is good enough \Rightarrow Solve on spanner with stretch $\alpha = \log n$ of size $O(n \log n)$ ("oracle")
Generic Update Step

Bounding improvement in objective for generic update $\pi' = \pi - h$:

$$
\Phi_\beta(\pi) - \Phi_\beta(\pi - h) \\
\geq \nabla \Phi_\beta(\pi - h)^T h \\
= \nabla \Phi_\beta(\pi)^T h - \left(\nabla \Phi_\beta(\pi)^T h - \nabla \Phi_\beta(\pi - h)^T h \right) \\
= \nabla \Phi_\beta(\pi)^T h - \left(\nabla \text{lse}_\beta(W^{-1}A^T\pi) - \nabla \text{lse}_\beta(W^{-1}A^T(\pi - h)) \right)^T W^{-1}A^T h \\
\geq \nabla \Phi_\beta(\pi)^T h - \left\| \nabla \text{lse}_\beta(W^{-1}A^T\pi) - \nabla \text{lse}_\beta(W^{-1}A^T(\pi - h)) \right\|_1 \left\| W^{-1}A^T h \right\|_\infty
$$

Hölder: $x^T y \leq \|x\|_p \|y\|_q$ for $\frac{1}{p} + \frac{1}{q} = 1$
Generic Update Step

Bounding improvement in objective for generic update $\pi' = \pi - h$:

$$
\Phi_\beta(\pi) - \Phi_\beta(\pi - h) \\
\geq \nabla \Phi_\beta(\pi - h)^T h \\
= \nabla \Phi_\beta(\pi)^T h - \left(\nabla \Phi_\beta(\pi)^T h - \nabla \Phi_\beta(\pi - h)^T h \right) \\
= \nabla \Phi_\beta(\pi)^T h - \left(\nabla \text{lse}_\beta(W^{-1}A^T \pi) - \nabla \text{lse}_\beta(W^{-1}A^T (\pi - h)) \right)^T W^{-1}A^T h \\
\geq \nabla \Phi_\beta(\pi)^T h - \|\nabla \text{lse}_\beta(W^{-1}A^T \pi) - \nabla \text{lse}_\beta(W^{-1}A^T (\pi - h))\|_1 \|W^{-1}A^T h\|_\infty \\
\geq \nabla \Phi_\beta(\pi)^T h - \beta \|W^{-1}A^T h\|_\infty
$$

Lipschitz: $\|\nabla \text{lse}_\beta(x) - \nabla \text{lse}_\beta(y)\|_1 \leq \beta \|x - y\|_\infty$
Generic Update Step

Bounding improvement in objective for generic update $\pi' = \pi - h$:

$$\Phi_\beta(\pi) - \Phi_\beta(\pi - h) \geq \nabla \Phi_\beta(\pi - h)^T h$$

$$= \nabla \Phi_\beta(\pi)^T h - \left(\nabla \Phi_\beta(\pi)^T h - \nabla \Phi_\beta(\pi - h)^T h \right)$$

$$= \nabla \Phi_\beta(\pi)^T h - \left(\nabla \text{lse}_\beta(W^{-1}A^T\pi) - \nabla \text{lse}_\beta(W^{-1}A^T(\pi - h)) \right)^T W^{-1}A^T h$$

$$\geq \nabla \Phi_\beta(\pi)^T h - \left\| \nabla \text{lse}_\beta(W^{-1}A^T\pi) - \nabla \text{lse}_\beta(W^{-1}A^T(\pi - h)) \right\|_1 \right\| W^{-1}A^T h \right\|_\infty$$

$$\geq \nabla \Phi_\beta(\pi)^T h - \beta \right\| W^{-1}A^T h \right\|_\infty^2$$

- Suggests to compute h by solving

$$\max\{\nabla \Phi_\beta(\pi)^T h : \left\| W^{-1}A^T h \right\|_\infty \leq 1\}$$
Generic Update Step

Bounding improvement in objective for generic update $\pi' = \pi - h$:

$$
\Phi_\beta(\pi) - \Phi_\beta(\pi - h) \\
\geq \nabla \Phi_\beta(\pi - h)^T h \\
= \nabla \Phi_\beta(\pi)^T h - \left(\nabla \Phi_\beta(\pi)^T h - \nabla \Phi_\beta(\pi - h)^T h \right) \\
= \nabla \Phi_\beta(\pi)^T h - \left(\nabla \text{lse}_\beta(W^{-1}A^T\pi) - \nabla \text{lse}_\beta(W^{-1}A^T(\pi - h)) \right)^T W^{-1}A^T h \\
\geq \nabla \Phi_\beta(\pi)^T h - \| \nabla \text{lse}_\beta(W^{-1}A^T\pi) - \nabla \text{lse}_\beta(W^{-1}A^T(\pi - h)) \|_1 \| W^{-1}A^T h \|_\infty \\
\geq \nabla \Phi_\beta(\pi)^T h - \beta \| W^{-1}A^T h \|_\infty^2
$$

- Suggests to compute h by solving
 $$
 \max\{ \nabla \Phi_\beta(\pi)^T h : \| W^{-1}A^T h \|_\infty \leq 1 \}
 $$
- **Another transshipment problem** with demand vector $\nabla \Phi_\beta(\pi)$.
Generic Update Step

Bounding improvement in objective for generic update $\pi' = \pi - h$:

$$
\Phi_{\beta}(\pi) - \Phi_{\beta}(\pi - h) \\
\geq \nabla \Phi_{\beta}(\pi - h)^T h \\
= \nabla \Phi_{\beta}(\pi)^T h - \left(\nabla \Phi_{\beta}(\pi)^T h - \nabla \Phi_{\beta}(\pi - h)^T h \right) \\
= \nabla \Phi_{\beta}(\pi)^T h - \left(\nabla \text{lse}_{\beta}(W^{-1}A^T\pi) - \nabla \text{lse}_{\beta}(W^{-1}A^T(\pi - h)) \right)^T W^{-1}A^T h \\
\geq \nabla \Phi_{\beta}(\pi)^T h - \|\nabla \text{lse}_{\beta}(W^{-1}A^T\pi) - \nabla \text{lse}_{\beta}(W^{-1}A^T(\pi - h))\|_1 \|W^{-1}A^T h\|_\infty \\
\geq \nabla \Phi_{\beta}(\pi)^T h - \beta \|W^{-1}A^T h\|_\infty^2
$$

- Suggests to compute h by solving
 $$
 \max \{ \nabla \Phi_{\beta}(\pi)^T h : \|W^{-1}A^T h\|_\infty \leq 1 \}
 $$

- Another transshipment problem with demand vector $\nabla \Phi_{\beta}(\pi)$.

- Key insight: α-approximation with $\alpha = O(\log n)$ is good enough
Generic Update Step

Bounding improvement in objective for generic update $\pi' = \pi - h$:

$\Phi_\beta(\pi) - \Phi_\beta(\pi - h) \geq \nabla \Phi_\beta(\pi - h)^T h$

$= \nabla \Phi_\beta(\pi)^T h - \left(\nabla \Phi_\beta(\pi)^T h - \nabla \Phi_\beta(\pi - h)^T h \right)$

$= \nabla \Phi_\beta(\pi)^T h - \left(\nabla \text{lse}_\beta(W^{-1}A^T \pi) - \nabla \text{lse}_\beta(W^{-1}A^T(\pi - h)) \right)^T W^{-1}A^T h$

$\geq \nabla \Phi_\beta(\pi)^T h - \| \nabla \text{lse}_\beta(W^{-1}A^T \pi) - \nabla \text{lse}_\beta(W^{-1}A^T(\pi - h)) \|_1 \| W^{-1}A^T h \|_\infty$

$\geq \nabla \Phi_\beta(\pi)^T h - \beta \| W^{-1}A^T h \|_\infty^2$

- Suggests to compute h by solving
 $$\max\{\nabla \Phi_\beta(\pi)^T h : \| W^{-1}A^T h \|_\infty \leq 1\}$$

- Another transshipment problem with demand vector $\nabla \Phi_\beta(\pi)$.

- **Key insight:** α-approximation with $\alpha = O(\log n)$ is good enough

 \Rightarrow Solve on spanner with stretch $\alpha = \log n$ of size $O(n \log n)$ (“oracle”)
Gradient Descent Algorithm

repeat

while \(\frac{4\ln(4m)}{\varepsilon \beta} \geq \Phi_\beta(\pi) \) do \(\beta \leftarrow \frac{5}{4} \beta \).

\(\tilde{b} \leftarrow P^T \nabla \Phi_\beta(\pi) \), where \(P \leftarrow I - \pi b^T \).

\(\tilde{h} \leftarrow \alpha\)-approximation of \(\max\{\tilde{b}^T h : \|W^{-1}A^T h\|_\infty \leq 1\} \)

\(\delta \leftarrow \frac{\tilde{b}^T \tilde{h}}{\|W^{-1}A^T \tilde{h}\|_\infty} \)

if \(\delta > \frac{\varepsilon}{8\alpha} \) then \(\pi \leftarrow \pi - \frac{\delta}{2\beta \|W^{-1}A^T \tilde{h}\|_\infty} P\tilde{h} \).

until \(\delta \leq \frac{\varepsilon}{8\alpha} \)
Gradient Descent Algorithm

repeat

while \(\frac{4 \ln(4m)}{\varepsilon \beta} \geq \Phi_\beta(\pi) \) do \(\beta \leftarrow \frac{5}{4} \beta \).

\(\tilde{b} \leftarrow P^T \nabla \Phi_\beta(\pi) \), where \(P \leftarrow I - \pi b^T \)

\(\tilde{h} \leftarrow \alpha\)-approximation of \(\max\{\tilde{b}^T h : \|W^{-1}A^T h\|_\infty \leq 1\} \)

\(\delta \leftarrow \frac{\tilde{b}^T \tilde{h}}{\|W^{-1}A^T \tilde{h}\|_\infty} \)

if \(\delta > \frac{\varepsilon}{8\alpha} \) then \(\pi \leftarrow \pi - \frac{\delta}{2\beta \|W^{-1}A^T \tilde{h}\|_\infty} P\tilde{h} \).

until \(\delta \leq \frac{\varepsilon}{8\alpha} \)

Details:
- \(\pi \) must stay feasible (projection onto \(b^T \pi = 1 \))
- \(\beta \) needs to be in the right range
Gradient Descent Algorithm

repeat
 while \(\frac{4 \ln(4m)}{\epsilon \beta} \geq \Phi_{\beta}(\pi) \) do
 \(\beta \leftarrow \frac{5}{4} \beta \).
 \(\tilde{b} \leftarrow P^T \nabla \Phi_{\beta}(\pi) \), where \(P \leftarrow I - \pi b^T \).
 \(\tilde{h} \leftarrow \alpha\)-approximation of \(\max\{ \tilde{b}^T h : \| W^{-1} A^T h \|_\infty \leq 1 \} \).
 \(\delta \leftarrow \frac{\tilde{b}^T \tilde{h}}{\| W^{-1} A^T P \tilde{h} \|_\infty} \).
 if \(\delta > \frac{\epsilon}{8\alpha} \) then
 \(\pi \leftarrow \pi - \frac{\delta}{2\beta \| W^{-1} A^T P \tilde{h} \|_\infty} P \tilde{h} \).
until \(\delta \leq \frac{\epsilon}{8\alpha} \)

Details:
- \(\pi \) must stay feasible (projection onto \(b^T \pi = 1 \))
- \(\beta \) needs to be in the right range

Theorem

Given an \(\alpha \)-approximate shortest transshipment oracle, one can compute primal solution \(x \) and dual solution \(y \) such that \(\| W x \|_1 \leq (1 + \epsilon)b^T y \) with \((\epsilon^{-3} \alpha^2 \log n \log \alpha) \) oracle calls.
Implementation in Broadcast Congested Clique

Evaluate Gradient:

1. Evaluate \((\nabla \Phi_\beta(\pi))_v\) locally at each node \(v\)
2. \((\nabla \Phi_\beta(\pi))_v\) is a function of \(\pi\) and weight of edges incident to \(v\) (“edge stretches under current node potentials”)
3. Constant #rounds: Make \(\pi\) and \((\nabla \Phi_\beta(\pi))\) global knowledge
Implementation in Broadcast Congested Clique

1. Evaluate Gradient:
 ▶ Evaluate $(\nabla \Phi_\beta(\pi))_\nu$ locally at each node ν
 ▶ $(\nabla \Phi_\beta(\pi))_\nu$ is a function of π and weight of edges incident to ν ("edge stretches under current node potentials")
 ▶ Constant #rounds: Make π and $(\nabla \Phi_\beta(\pi))$ global knowledge

2. Oracle call:
 ▶ Initially compute spanner in $O(\log n)$ rounds [Baswana/Sen ’03]
 ▶ Spanner then is global knowledge (size $O(n \log n)$)
 ▶ At oracle call, make gradient global knowledge (size $O(n)$)
 ▶ Each node can internally compute solution on spanner
Are we done?
Approximate SSSP

- Black-box reduction from SSSP to shortest transshipment only for **exact** solutions
Approximate SSSP

1. Black-box reduction from SSSP to shortest transshipment only for exact solutions
2. Transshipment will only guarantee \((1 + \epsilon)\)-approximation on average
Approximate SSSP

1. Black-box reduction from SSSP to shortest transshipment only for exact solutions
2. Transshipment will only guarantee \((1 + \varepsilon)\)-approximation on average
3. How to obtain per-node guarantee:
 - Solve with increased precision
 - Inspect gradient to identify close-to-optimal nodes
 - Repeat transshipment for “bad” nodes only
 - Analysis: Total “mass” reduced by constant fraction in each run

Theorem
We can compute a \((1 + \varepsilon)\)-approximate distance estimate for each node in the SSSP problem with polylog \((n, \|w\|_\infty)\) calls to our gradient descent algorithm with precision \(\varepsilon' = \Omega(\varepsilon^3 / (\alpha^2 \log n))\).
Approximate SSSP

1. Black-box reduction from SSSP to shortest transshipment only for exact solutions
2. Transshipment will only guarantee $(1 + \varepsilon)$-approximation on average
3. How to obtain per-node guarantee:
 - Solve with increased precision
 - Inspect gradient to identify close-to-optimal nodes
 - Repeat transshipment for “bad” nodes only
 - Analysis: Total “mass” reduced by constant fraction in each run

Theorem

We can compute a $(1 + \varepsilon)$-approximate distance estimate for each node in the SSSP problem with $\text{polylog}(n, \|w\|_\infty)$ calls to our gradient descent algorithm with precision $\varepsilon' = \Omega(\varepsilon^3/(\alpha^2 \log n))$.
Comparison to [Sherman SODA’17]

Both papers solve \((1 + \epsilon)\)-approximate shortest transshipment
Comparison to [Sherman SODA’17]

Both papers solve $(1 + \varepsilon)$-approximate shortest transshipment

Our approach
- specialized to shortest transshipment

Sherman ’17
- general norm-minimization framework
Comparison to [Sherman SODA’17]

Both papers solve $(1 + \varepsilon)$-approximate shortest transshipment

Our approach
- specialized to shortest transshipment
- oracle calls

Sherman ’17
- general norm-minimization framework
- generalized preconditioning
Both papers solve \((1 + \varepsilon)\)-approximate shortest transshipment

Our approach
- specialized to shortest transshipment
- oracle calls
- oracle of stretch \(O(\log n)\) based on spanner

Sherman ’17
- general norm-minimization framework
- generalized preconditioning
- preconditioner of stretch \(n^{o(1)}\) based on metric embedding
Comparison to [Sherman SODA’17]

Both papers solve \((1 + \varepsilon)\)-approximate shortest transshipment

Our approach
- specialized to shortest transshipment
- oracle calls
- oracle of stretch \(O(\log n)\) based on spanner
- Sequential RAM model: time \(O(n^2 \varepsilon^{-3} \text{polylog}(n))\) time

Sherman ’17
- general norm-minimization framework
- generalized preconditioning
- preconditioner of stretch \(n^{o(1)}\) based on metric embedding
- Sequential RAM model: time \(m^{1+o(1)} \varepsilon^{-2}\)
Comparison to [Sherman SODA’17]

Both papers solve \((1 + \varepsilon)\)-approximate shortest transshipment

Our approach
- specialized to shortest transshipment
- oracle calls
- oracle of stretch \(O(\log n)\) based on spanner
- Sequential RAM model: time \(O(n^2 \varepsilon^{-3} \text{polylog}(n))\) time
- (deterministic) extension to approximate SSSP

Sherman ’17
- general norm-minimization framework
- generalized preconditioning
- preconditioner of stretch \(n^{o(1)}\) based on metric embedding
- Sequential RAM model: time \(m^{1+o(1)} \varepsilon^{-2}\)
- ??
Comparison to [Sherman SODA’17]

Both papers solve \((1 + \varepsilon)\)-approximate shortest transshipment

Our approach
- specialized to shortest transshipment
- oracle calls
- oracle of stretch \(O(\log n)\) based on spanner
- Sequential RAM model: time \(O(n^2\varepsilon^{-3}\text{polylog}(n))\) time
- (deterministic) extension to approximate SSSP
- randomized tree solution

Sherman ’17
- general norm-minimization framework
- generalized preconditioning
- preconditioner of stretch \(n^{o(1)}\) based on metric embedding
- Sequential RAM model: time \(m^{1+o(1)}\varepsilon^{-2}\)
- ??
- ??
Comparison to [Sherman SODA’17]

Both papers solve \((1 + \varepsilon)\)-approximate shortest transshipment

Our approach
- specialized to shortest transshipment
- oracle calls
- oracle of stretch \(O(\log n)\) based on spanner
- Sequential RAM model: time \(O(n^2 \varepsilon^{-3} \text{polylog}(n))\) time
- (deterministic) extension to approximate SSSP
- randomized tree solution
 \(\Rightarrow\) nearly tight approximate SSSP in distributed and streaming models

Sherman ’17
- general norm-minimization framework
- generalized preconditioning
- preconditioner of stretch \(n^{o(1)}\) based on metric embedding
- Sequential RAM model: time \(m^{1+o(1)} \varepsilon^{-2}\)
- ??
- ??
Conclusion

Contributions

1. New approach tailored to efficient implementation in distributed models
2. Gradient descent for shortest transshipment based on oracle calls
3. Additional refinement gives per-node guarantee for approximate SSSP

Open Problems

1. Distributed Model: Faster exact SSSP?
2. Parallel Model: Approximate SSSP with $m \cdot \text{poly}(\log n, \epsilon)$ work and $\text{poly}(\log n, \epsilon)$ depth?
3. RAM Model: Approximate shortest transshipment in time $m \cdot \text{poly}(\log n, \epsilon)$?
Conclusion

Contributions

1. New approach tailored to efficient implementation in distributed models
2. Gradient descent for shortest transshipment based on oracle calls
3. Additional refinement gives per-node guarantee for approximate SSSP

Open Problems

1. **Distributed Model:** Faster exact SSSP?
2. **Parallel Model:** Approximate SSSP with \(m \cdot \text{poly}(\log n, \varepsilon) \) work and \(\text{poly}(\log n, \varepsilon) \) depth?
3. **RAM Model:** Approximate shortest transshipment in time \(m \cdot \text{poly}(\log n, \varepsilon) \)?
Conclusion

Contributions

1. New approach tailored to efficient implementation in distributed models
2. Gradient descent for shortest transshipment based on oracle calls
3. Additional refinement gives per-node guarantee for approximate SSSP

Open Problems

1. **Distributed Model:** Faster exact SSSP?
2. **Parallel Model:** Approximate SSSP with $m \cdot \text{poly}(\log n, \varepsilon)$ work and $\text{poly}(\log n, \varepsilon)$ depth?
3. **RAM Model:** Approximate shortest transshipment in time $m \cdot \text{poly}(\log n, \varepsilon)$?

Thank you!