Computing and Testing Small Connectivity in Near-Linear Time and Queries via Fast Local Cut Algorithms [SODA '20] Reading Group Algorithms

Sebastian Forster

joint work with Danupon Nanongkai, Thatchaphol Saranurak, Liu Yang, and Sorrachai Yingchareonthawornchai

Universität Salzburg

18.11.2019

G = (V, E)

Definitions

Definition

A (directed) graph G is called (strongly) connected if for every pair of vertices $s, t \in V$ there is a path from s to t in G.

Definitions

Definition

A (directed) graph G is called (strongly) connected if for every pair of vertices $s, t \in V$ there is a path from s to t in G.

Definition

An edge cut *F* is a subset of edges $F \subseteq E$ that disconnects the graph, i.e., the graph $G' = (V, E \setminus F)$ is not (strongly) connected.

Definitions

Definition

A (directed) graph G is called (strongly) connected if for every pair of vertices $s, t \in V$ there is a path from s to t in G.

Definition

An edge cut *F* is a subset of edges $F \subseteq E$ that disconnects the graph, i.e., the graph $G' = (V, E \setminus F)$ is not (strongly) connected.

Definition

A vertex cut *U* is a subset of vertices $U \subseteq V$ that disconnects the graph, i.e., the graph $G' = (V \setminus U, E \setminus (V \times U \cup U \times V))$ is not (strongly) connected.

Observation

For every edge cut *F*, there is an induced partition (L, R) such that $L \cap R = \emptyset$, $L \cup R = V$, and there *F* is the set of edges from *L* to *R*.

Observation

For every edge cut *F*, there is an induced partition (L, R) such that $L \cap R = \emptyset$, $L \cup R = V$, and there *F* is the set of edges from *L* to *R*.

Observation

For every vertex cut U, there is a partition (L, U, R) such that L, M, R are pairwise disjoint, $L \cup U \cup R = V$, and there are no edges from L to R.

Observation

For every edge cut *F*, there is an induced partition (L, R) such that $L \cap R = \emptyset$, $L \cup R = V$, and there *F* is the set of edges from *L* to *R*.

Observation

For every vertex cut U, there is a partition (L, U, R) such that L, M, R are pairwise disjoint, $L \cup U \cup R = V$, and there are no edges from L to R.

Definition

The edge connectivity λ of a graph is the size of its smallest edge cut and the vertex connectivity κ is the size of its smallest vertex cut.

Observation

For every edge cut *F*, there is an induced partition (L, R) such that $L \cap R = \emptyset$, $L \cup R = V$, and there *F* is the set of edges from *L* to *R*.

Observation

For every vertex cut U, there is a partition (L, U, R) such that L, M, R are pairwise disjoint, $L \cup U \cup R = V$, and there are no edges from L to R.

Definition

The edge connectivity λ of a graph is the size of its smallest edge cut and the vertex connectivity κ is the size of its smallest vertex cut.

Attention: Common definitions disagree on corner cases

Observation

For every edge cut *F*, there is an induced partition (L, R) such that $L \cap R = \emptyset$, $L \cup R = V$, and there *F* is the set of edges from *L* to *R*.

Observation

For every vertex cut U, there is a partition (L, U, R) such that L, M, R are pairwise disjoint, $L \cup U \cup R = V$, and there are no edges from L to R.

Definition

The edge connectivity λ of a graph is the size of its smallest edge cut and the vertex connectivity κ is the size of its smallest vertex cut.

Attention: Common definitions disagree on corner cases

Motivation for computing higher connectivity:

- Reliability analysis
- Community detection

Vertex connectivity in directed graphs:				
Running time	Deterministic	Reference		
$\tilde{O}(n^{2.373} + n\kappa^{2.373})$	no	[Cheriyan/Reif '92]		
$\tilde{O}(mn)$	no	[Henzinger et al. '96]		
$O(mn + \kappa m \cdot \min\{n^{3/4}, \kappa^{3/2}\})$	yes	[Gabow '00]		
$ ilde{O}(\kappa \cdot \min\{m^{4/3},m^{2/3}n\})$	no	[Nanongkai et al. '19]		
$\tilde{O}(\kappa \cdot \min\{\kappa m, \kappa^{1/2}m^{1/2}n + \kappa^2 n\})$	no	Our result		

Vertex connectivity in directed graphs: Deterministic Reference **Running time** $\tilde{O}(n^{2.373} + n\kappa^{2.373})$ [Cheriyan/Reif '92] no $\tilde{O}(mn)$ [Henzinger et al. '96] no $O(mn + \kappa m \cdot \min\{n^{3/4}, \kappa^{3/2}\})$ [Gabow '00] yes $\tilde{O}(\kappa \cdot \min\{m^{4/3}, m^{2/3}n\})$ [Nanongkai et al. '19] no $\tilde{O}(\kappa \cdot \min{\{\kappa m, \kappa^{1/2} m^{1/2} n + \kappa^2 n\}})$ Our result no

Undirected graphs: $m \rightarrow n\kappa$ [Nagamochi/Ibaraki '92]

Vertex connectivity in directed graphs:

Running time	Deterministic	Reference
$\tilde{O}(n^{2.373} + n\kappa^{2.373})$	no	[Cheriyan/Reif '92]
$ ilde{O}(mn)$	no	[Henzinger et al. '96]
$O(mn + \kappa m \cdot \min\{n^{3/4}, \kappa^{3/2}\})$	yes	[Gabow '00]
$ ilde{O}(\kappa \cdot \min\{m^{4/3},m^{2/3}n\})$	no	[Nanongkai et al. '19]
$\tilde{O}(\kappa \cdot \min\{\kappa m, \kappa^{1/2}m^{1/2}n + \kappa^2n\})$	no	Our result

Undirected graphs: $m \rightarrow n\kappa$ [Nagamochi/Ibaraki '92]

Plan for today:

Theorem

There is an algorithm to compute the edge connectivity λ of a directed graph in time $O(\lambda^2 m \log n)$ with success probability 1/2.

Vertex connectivity in directed graphs:

Running time	Deterministic	Reference
$\tilde{O}(n^{2.373} + n\kappa^{2.373})$	no	[Cheriyan/Reif '92]
$\tilde{O}(mn)$	no	[Henzinger et al. '96]
$O(mn + \kappa m \cdot \min\{n^{3/4}, \kappa^{3/2}\})$	yes	[Gabow '00]
$ ilde{O}(\kappa \cdot \min\{m^{4/3},m^{2/3}n\})$	no	[Nanongkai et al. '19]
$\tilde{O}(\kappa \cdot \min\{\kappa m, \kappa^{1/2}m^{1/2}n + \kappa^2n\})$	no	Our result

Undirected graphs: $m \rightarrow n\kappa$ [Nagamochi/Ibaraki '92]

Plan for today:

Theorem

There is an algorithm to compute the edge connectivity λ of a directed graph in time $O(\lambda^2 m \log n)$ with success probability 1/2.

- Covers main technique, extension to vertex connectivity is a technicality
- In general: $O(\lambda^2 m \log n \log \frac{1}{p})$ with success probability p
- State of the art for directed edge connectivity: $O(\lambda m \log n)$ [Gabow '91]

Definition

An *s*-*t* edge cut is a cut with induced partition (L, R) such that $s \in L$ and $t \in R$.

Definition

An *s*-*t* edge cut is a cut with induced partition (L, R) such that $s \in L$ and $t \in R$.

Observation

The edge connectivity λ is the minimum size of any *s*-*t* edge cut among all pairs of vertices *s* and *t*.

Definition

An *s*-*t* edge cut is a cut with induced partition (L, R) such that $s \in L$ and $t \in R$.

Observation

The edge connectivity λ is the minimum size of any *s*-*t* edge cut among all pairs of vertices *s* and *t*.

Algorithm:

- For every pair of vertices *s* and *t* compute the minimum *s*-*t* cut
- Return minimum-size cut among all returned cuts

Definition

An *s*-*t* edge cut is a cut with induced partition (L, R) such that $s \in L$ and $t \in R$.

Observation

The edge connectivity λ is the minimum size of any *s*-*t* edge cut among all pairs of vertices *s* and *t*.

Algorithm:

- For every pair of vertices *s* and *t* compute the minimum *s*-*t* cut
- Return minimum-size cut among all returned cuts

By "max *s*-*t* flow = min *s*-*t* cut", the minimum *s*-*t* cut can be computed with the Ford-Fulkerson algorithm in time O(mn).

Definition

An *s*-*t* edge cut is a cut with induced partition (L, R) such that $s \in L$ and $t \in R$.

Observation

The edge connectivity λ is the minimum size of any *s*-*t* edge cut among all pairs of vertices *s* and *t*.

Algorithm:

- For every pair of vertices *s* and *t* compute the minimum *s*-*t* cut
- Return minimum-size cut among all returned cuts

By "max *s*-*t* flow = min *s*-*t* cut", the minimum *s*-*t* cut can be computed with the Ford-Fulkerson algorithm in time O(mn).

Running time of algorithm above: $O(n^3m)$

Ford-Fulkerson algorithm with parameters s, t, k

The algorithm runs in time O(km) and if $k \ge \lambda$, then the algorithm returns the minimum *s*-*t* cut; otherwise it returns \perp .

Ford-Fulkerson algorithm with parameters s, t, k

The algorithm runs in time O(km) and if $k \ge \lambda$, then the algorithm returns the minimum *s*-*t* cut; otherwise it returns \perp .

Algorithm:

- For i = 1 to $r = \lceil \log n \rceil$
 - Set $k_i = 2^i$
 - ► For every pair of vertices *s* and *t*: run the Ford-Fulkerson algorithm with parameters *s*, *t*, and *k*_i
 - If one of the Ford-Fulkerson instances returns a cut, then return the minimum-size cut among all returned cuts

Ford-Fulkerson algorithm with parameters s, t, k

The algorithm runs in time O(km) and if $k \ge \lambda$, then the algorithm returns the minimum *s*-*t* cut; otherwise it returns \perp .

Algorithm:

- For i = 1 to $r = \lceil \log n \rceil$
 - Set $k_i = 2^i$
 - ► For every pair of vertices *s* and *t*: run the Ford-Fulkerson algorithm with parameters *s*, *t*, and *k*_i
 - If one of the Ford-Fulkerson instances returns a cut, then return the minimum-size cut among all returned cuts

Running time: $\sum_{i=1}^{r} O(n^2 k_i m) = O(\lambda n^2 m)$

Ford-Fulkerson algorithm with parameters s, t, k

The algorithm runs in time O(km) and if $k \ge \lambda$, then the algorithm returns the minimum *s*-*t* cut; otherwise it returns \perp .

Algorithm:

- For i = 1 to $r = \lceil \log n \rceil$
 - Set $k_i = 2^i$
 - ► For every pair of vertices *s* and *t*: run the Ford-Fulkerson algorithm with parameters *s*, *t*, and *k*_i
 - If one of the Ford-Fulkerson instances returns a cut, then return the minimum-size cut among all returned cuts

Running time: $\sum_{i=1}^{r} O(n^2 k_i m) = O(\lambda n^2 m)$

Observation

It suffices to design an algorithm that returns a global minimum cut if parameter $k \ge \lambda$.

Idea: The problem is easy if the partition induced by the minimum cut is somewhat *balanced*.

Idea: The problem is easy if the partition induced by the minimum cut is somewhat *balanced*.

Definition

The *volume* vol(U) of a set of vertices U is the sum of the outgoing edges of vertices in U.

Idea: The problem is easy if the partition induced by the minimum cut is somewhat *balanced*.

Definition

The *volume* vol(U) of a set of vertices U is the sum of the outgoing edges of vertices in U.

Volume = interior edges + leaving edges

Idea: The problem is easy if the partition induced by the minimum cut is somewhat *balanced*.

Definition

The *volume* vol(U) of a set of vertices U is the sum of the outgoing edges of vertices in U.

Volume = interior edges + leaving edges

Definition

An edge cut *F* is balanced if for its induced partition (L, R) both $vol(L) \ge \frac{m}{14k}$ and $vol(R) \ge \frac{m}{14k}$.

Idea: The problem is easy if the partition induced by the minimum cut is somewhat *balanced*.

Definition

The *volume* vol(U) of a set of vertices U is the sum of the outgoing edges of vertices in U.

Volume = interior edges + leaving edges

Definition

An edge cut *F* is balanced if for its induced partition (L, R) both $vol(L) \ge \frac{m}{14k}$ and $vol(R) \ge \frac{m}{14k}$.

Lemma

For any edge (u, v) chosen from E uniformly at random, the tail u is contained in L with probability $\frac{\operatorname{vol}(L)}{m} \geq \frac{1}{14k}$ (same with R).

Case 1: Minimum Cut is Balanced [Nanongkai et al. '19]

Algorithm:

- Repeat 28k times:
 - Sample two edges *e* and *f* uniformly at random
 - Let *s* be the tail of *e* and let *t* be the tail of *f*
 - ▶ Run Ford-Fulkerson algorithm with parameters *s*, *t*, and *k*
- Return minimum-size cut among all returned cuts

Case 1: Minimum Cut is Balanced [Nanongkai et al. '19]

Algorithm:

- Repeat 28k times:
 - Sample two edges *e* and *f* uniformly at random
 - Let *s* be the tail of *e* and let *t* be the tail of *f*
 - ▶ Run Ford-Fulkerson algorithm with parameters *s*, *t*, and *k*
- Return minimum-size cut among all returned cuts

Lemma

If $k \ge \lambda$ and the minimum cut is balanced, then the algorithm above runs in time $O(k^2m)$ and finds a cut of size λ with probability at least $\frac{1}{2}$.

Assumption: $\operatorname{vol}(L) < \frac{m}{14k}$ or $\operatorname{vol}(R) < \frac{m}{14k}$

Assumption: $vol(L) < \frac{m}{14k}$ or $vol(R) < \frac{m}{14k}$

Idea: Detect smaller side of partition time proportional to its volume

Assumption: $vol(L) < \frac{m}{14k}$ or $vol(R) < \frac{m}{14k}$

Idea: Detect smaller side of partition time proportional to its volume

Definition

A *k*-out component $U \subseteq V$ has at most *k* edges going from U to $V \setminus U$.

Assumption: $\operatorname{vol}(L) < \frac{m}{14k}$ or $\operatorname{vol}(R) < \frac{m}{14k}$

Idea: Detect smaller side of partition time proportional to its volume

Definition

A *k*-out component $U \subseteq V$ has at most *k* edges going from U to $V \setminus U$.

Lemma

There is a local procedure that, given a seed vertex s, a target cut size k and a target volume Δ runs in time $O(k^2 \Delta)$, and returns as follows:

- If s is contained in an ℓ -out component of volume $\leq \Delta$ for $\ell \leq k$, then it returns an ℓ -out component of volume $\leq 7k\Delta$ with probability at least $\frac{5}{6}$ (and \perp with probability at most $\frac{1}{6}$).
- ② Otherwise, it might return a k-out-component or \perp

Assumption: $\operatorname{vol}(L) < \frac{m}{14k}$ or $\operatorname{vol}(R) < \frac{m}{14k}$

Idea: Detect smaller side of partition time proportional to its volume

Definition

A *k*-out component $U \subseteq V$ has at most *k* edges going from *U* to $V \setminus U$.

Lemma

There is a local procedure that, given a seed vertex s, a target cut size k and a target volume Δ runs in time $O(k^2 \Delta)$, and returns as follows:

- If *s* is contained in an ℓ -out component of volume $\leq \Delta$ for $\ell \leq k$, then it returns an ℓ -out component of volume $\leq 7k\Delta$ with probability at least $\frac{5}{6}$ (and \perp with probability at most $\frac{1}{6}$).
- **2** Otherwise, it might return a k-out-component or \perp

Note: $k^2 \Delta$ may be much smaller than *m*. **Sublinear running time!**

Case 2: Minimum cut is not Balanced (ctd.) Assumption: $vol(L) < \frac{m}{14k}$ or $vol(R) < \frac{m}{14k}$

Assumption: $\operatorname{vol}(L) < \frac{m}{14k}$ or $\operatorname{vol}(R) < \frac{m}{14k}$

Algorithm:

- For i = 1 to $r = \lfloor \log \frac{m}{7k} \rfloor$
 - Repeat $\lceil \frac{m}{2^{i-1}} \rceil$ times
 - * Sample an edge *e* uniformly at random and let *s* be its tail
 - ★ Try to find a *k*-out-component using the local procedure with parameters *s*, *k* and $\Delta_i = 2^i 1$
 - ★ Try to find a *k*-in-component using the local procedure on the reverse graph with parameters *s*, *k* and $\Delta_i = 2^i 1$
- Return the minimum-size cut among all found cuts

Assumption: $\operatorname{vol}(L) < \frac{m}{14k}$ or $\operatorname{vol}(R) < \frac{m}{14k}$

Algorithm:

• For
$$i = 1$$
 to $r = \lfloor \log \frac{m}{7k} \rfloor$

- Repeat $\lceil \frac{m}{2^{i-1}} \rceil$ times
 - * Sample an edge *e* uniformly at random and let *s* be its tail
 - ★ Try to find a *k*-out-component using the local procedure with parameters *s*, *k* and $\Delta_i = 2^i 1$
 - ★ Try to find a *k*-in-component using the local procedure on the reverse graph with parameters *s*, *k* and $\Delta_i = 2^i 1$
- Return the minimum-size cut among all found cuts

Running time: $\sum_{i=1}^{r} \frac{m}{2^{i-1}} \cdot O(k^2 2^i) = O(k^2 m \log n)$

Assumption: $\operatorname{vol}(L) < \frac{m}{14k}$ or $\operatorname{vol}(R) < \frac{m}{14k}$

Algorithm:

• For
$$i = 1$$
 to $r = \lfloor \log \frac{m}{7k} \rfloor$

- Repeat $\lceil \frac{m}{2^{i-1}} \rceil$ times
 - * Sample an edge *e* uniformly at random and let *s* be its tail
 - ★ Try to find a *k*-out-component using the local procedure with parameters *s*, *k* and $\Delta_i = 2^i 1$
 - ★ Try to find a *k*-in-component using the local procedure on the reverse graph with parameters *s*, *k* and $\Delta_i = 2^i 1$
- Return the minimum-size cut among all found cuts

Running time: $\sum_{i=1}^{r} \frac{m}{2^{i-1}} \cdot O(k^2 2^i) = O(k^2 m \log n)$

Lemma

If the minimum cut is not balanced, then the algorithm above returns a proper λ -out-component $L' \subset V$ or a proper λ -out-component $R' \subset V$ (inducing a minimum cut) with probability at least $\frac{1}{2}$.

Assumption: $\operatorname{vol}(L) < \frac{m}{14k}$ or $\operatorname{vol}(R) < \frac{m}{14k}$

Algorithm:

• For
$$i = 1$$
 to $r = \lfloor \log \frac{m}{7k} \rfloor$

- ▶ Repeat [^m/_{2ⁱ⁻¹}] times
 - * Sample an edge *e* uniformly at random and let *s* be its tail
 - ★ Try to find a *k*-out-component using the local procedure with parameters *s*, *k* and $\Delta_i = 2^i 1$
 - ★ Try to find a *k*-in-component using the local procedure on the reverse graph with parameters *s*, *k* and $\Delta_i = 2^i 1$
- Return the minimum-size cut among all found cuts

Running time: $\sum_{i=1}^{r} \frac{m}{2^{i-1}} \cdot O(k^2 2^i) = O(k^2 m \log n)$

Lemma

If the minimum cut is not balanced, then the algorithm above returns a proper λ -out-component $L' \subset V$ or a proper λ -out-component $R' \subset V$ (inducing a minimum cut) with probability at least $\frac{1}{2}$.

Note: Parameter choice ensures that vol(L') < m or vol(R') < m

Seed vertex *s*, target cut size $\leq k$, target volume $\leq \Delta$

Seed vertex *s*, target cut size $\leq k$, target volume $\leq \Delta$

Algorithm: (with sampling idea of [Nanongkai et al. '19])

- Repeat k + 1 times:
 - Perform a depth-first-search from *s* processing up to $6k\Delta$ many edges
 - If DFS processes less than $6k\Delta$ edges, return set of visited vertices
 - Sample one of the edges processed in the DFS uniformly at random
 - Let *t* be the tail of the sampled edge (ignoring reversal of edge)
 - Reverse the edges on the DFS path from s to t

Return ⊥

Seed vertex *s*, target cut size $\leq k$, target volume $\leq \Delta$

Algorithm: (with sampling idea of [Nanongkai et al. '19])

- Repeat k + 1 times:
 - Perform a depth-first-search from *s* processing up to $6k\Delta$ many edges
 - If DFS processes less than $6k\Delta$ edges, return set of visited vertices
 - Sample one of the edges processed in the DFS uniformly at random
 - Let *t* be the tail of the sampled edge (ignoring reversal of edge)
 - Reverse the edges on the DFS path from s to t
- Return ⊥

Running time: $O(k^2\Delta)$

Seed vertex *s*, target cut size $\leq k$, target volume $\leq \Delta$

Algorithm: (with sampling idea of [Nanongkai et al. '19])

- Repeat k + 1 times:
 - Perform a depth-first-search from s processing up to $6k\Delta$ many edges
 - If DFS processes less than $6k\Delta$ edges, return set of visited vertices
 - Sample one of the edges processed in the DFS uniformly at random
 - Let *t* be the tail of the sampled edge (ignoring reversal of edge)
 - Reverse the edges on the DFS path from s to t
- Return ⊥

Running time: $O(k^2\Delta)$

Claim 1

Let $U \subseteq V$ contain *s*, let $t \in V$, and reverse the edges on a path from *s* to *t*.

- If $t \in V \setminus U$, then the number of edges from U to $V \setminus U$ is reduced by one by the reversing the edges.
- Otherwise, the number of edges from U to $V \setminus U$ stays the same.

Seed vertex *s*, target cut size $\leq k$, target volume $\leq \Delta$

Algorithm: (with sampling idea of [Nanongkai et al. '19])

- Repeat k + 1 times:
 - Perform a depth-first-search from *s* processing up to $6k\Delta$ many edges
 - If DFS processes less than $6k\Delta$ edges, return set of visited vertices
 - Sample one of the edges processed in the DFS uniformly at random
 - Let *t* be the tail of the sampled edge (ignoring reversal of edge)
 - Reverse the edges on the DFS path from s to t
- Return ⊥

Running time: $O(k^2\Delta)$

Claim 1

Let $U \subseteq V$ contain *s*, let $t \in V$, and reverse the edges on a path from *s* to *t*.

- If $t \in V \setminus U$, then the number of edges from U to $V \setminus U$ is reduced by one by the reversing the edges.
- Otherwise, the number of edges from U to $V \setminus U$ stays the same.

Idea: Odd or even number of crossings

Claim 2

If the procedure returns a set of vertices *U* in iteration $\ell + 1$, then *U* is an ℓ -out-component with $vol(U) \le 6k\Delta + \ell \le 7k\Delta$.

Claim 2

If the procedure returns a set of vertices *U* in iteration $\ell + 1$, then *U* is an ℓ -out-component with $vol(U) \le 6k\Delta + \ell \le 7k\Delta$.

Idea: For component found by DFS, number of out-edges reduces by at most one in each iteration

Claim 2

If the procedure returns a set of vertices U in iteration $\ell + 1$, then U is an ℓ -out-component with $vol(U) \le 6k\Delta + \ell \le 7k\Delta$.

Idea: For component found by DFS, number of out-edges reduces by at most one in each iteration

Claim 3

If there is an ℓ -out-component of volume $\leq \Delta$ containing *s* for $\ell \leq k$, then the procedure returns an ℓ -out-component with probability $\geq \frac{5}{6}$.

Claim 2

If the procedure returns a set of vertices U in iteration $\ell + 1$, then U is an ℓ -out-component with $vol(U) \le 6k\Delta + \ell \le 7k\Delta$.

Idea: For component found by DFS, number of out-edges reduces by at most one in each iteration

Claim 3

If there is an ℓ -out-component of volume $\leq \Delta$ containing *s* for $\ell \leq k$, then the procedure returns an ℓ -out-component with probability $\geq \frac{5}{6}$.

Idea: Each sampled *t* will lie inside of component with probability $\leq \frac{1}{6k}$

Questions?

Summary

- Significant progress for a fundamental graph problem
- Local procedure was pivotal to faster algorithm
 Exponential improvement over O(2^{O(k)}Δ) by [Chechik et al. '17]

Summary

- Significant progress for a fundamental graph problem
- Local procedure was pivotal to faster algorithm Exponential improvement over $O(2^{O(k)}\Delta)$ by [Chechik et al. '17]
- Local procedure has further implications to property testing algorithms
- Local computation algorithms are a current trend in algorithm design

Thesis Opportunities

Theory:

- Distributed algorithms
- Dynamic algorithms
- Local computation algorithms

Thesis Opportunities

Theory:

- Distributed algorithms
- Dynamic algorithms
- Local computation algorithms

Algorithm Engineering:

- Experimental analysis of cut sparsification algorithms
- Practical algorithm for computing the vertex connectivity

Thank you!