
Computing and Testing Small Connectivity in
Near-Linear Time and �eries via Fast Local Cut

Algorithms [SODA ’20]
Reading Group Algorithms

Sebastian Forster

joint work with Danupon Nanongkai, Thatchaphol Saranurak, Liu Yang, and
Sorrachai Yingchareonthawornchai

Universität Salzburg

18.11.2019

1 / 17



G = (V ,E)

2 / 17



Definitions

Definition
A (directed) graph G is called (strongly) connected if for every pair of vertices
s, t ∈ V there is a path from s to t in G.

Definition
An edge cut F is a subset of edges F ⊆ E that disconnects the graph, i.e., the
graph G ′ = (V ,E \ F ) is not (strongly) connected.

Definition
A vertex cut U is a subset of vertices U ⊆ V that disconnects the graph, i.e.,
the graph G ′ = (V \U ,E \ (V ×U ∪U ×V )) is not (strongly) connected.

3 / 17



Definitions

Definition
A (directed) graph G is called (strongly) connected if for every pair of vertices
s, t ∈ V there is a path from s to t in G.

Definition
An edge cut F is a subset of edges F ⊆ E that disconnects the graph, i.e., the
graph G ′ = (V ,E \ F ) is not (strongly) connected.

Definition
A vertex cut U is a subset of vertices U ⊆ V that disconnects the graph, i.e.,
the graph G ′ = (V \U ,E \ (V ×U ∪U ×V )) is not (strongly) connected.

3 / 17



Definitions

Definition
A (directed) graph G is called (strongly) connected if for every pair of vertices
s, t ∈ V there is a path from s to t in G.

Definition
An edge cut F is a subset of edges F ⊆ E that disconnects the graph, i.e., the
graph G ′ = (V ,E \ F ) is not (strongly) connected.

Definition
A vertex cut U is a subset of vertices U ⊆ V that disconnects the graph, i.e.,
the graph G ′ = (V \U ,E \ (V ×U ∪U ×V )) is not (strongly) connected.

3 / 17



Cuts and Partitions
Observation
For every edge cut F , there is an induced partition (L,R) such that L ∩ R = ∅,
L ∪ R = V , and there F is the set of edges from L to R.

Observation
For every vertex cut U , there is a partition (L,U ,R) such that L,M,R are
pairwise disjoint, L ∪U ∪ R = V , and there are no edges from L to R.

Definition
The edge connectivity λ of a graph is the size of its smallest edge cut and the
vertex connectivity κ is the size of its smallest vertex cut.

A�ention: Common definitions disagree on corner cases

Motivation for computing higher connectivity:
Reliability analysis
Community detection

4 / 17



Cuts and Partitions
Observation
For every edge cut F , there is an induced partition (L,R) such that L ∩ R = ∅,
L ∪ R = V , and there F is the set of edges from L to R.

Observation
For every vertex cut U , there is a partition (L,U ,R) such that L,M,R are
pairwise disjoint, L ∪U ∪ R = V , and there are no edges from L to R.

Definition
The edge connectivity λ of a graph is the size of its smallest edge cut and the
vertex connectivity κ is the size of its smallest vertex cut.

A�ention: Common definitions disagree on corner cases

Motivation for computing higher connectivity:
Reliability analysis
Community detection

4 / 17



Cuts and Partitions
Observation
For every edge cut F , there is an induced partition (L,R) such that L ∩ R = ∅,
L ∪ R = V , and there F is the set of edges from L to R.

Observation
For every vertex cut U , there is a partition (L,U ,R) such that L,M,R are
pairwise disjoint, L ∪U ∪ R = V , and there are no edges from L to R.

Definition
The edge connectivity λ of a graph is the size of its smallest edge cut and the
vertex connectivity κ is the size of its smallest vertex cut.

A�ention: Common definitions disagree on corner cases

Motivation for computing higher connectivity:
Reliability analysis
Community detection

4 / 17



Cuts and Partitions
Observation
For every edge cut F , there is an induced partition (L,R) such that L ∩ R = ∅,
L ∪ R = V , and there F is the set of edges from L to R.

Observation
For every vertex cut U , there is a partition (L,U ,R) such that L,M,R are
pairwise disjoint, L ∪U ∪ R = V , and there are no edges from L to R.

Definition
The edge connectivity λ of a graph is the size of its smallest edge cut and the
vertex connectivity κ is the size of its smallest vertex cut.

A�ention: Common definitions disagree on corner cases

Motivation for computing higher connectivity:
Reliability analysis
Community detection

4 / 17



Cuts and Partitions
Observation
For every edge cut F , there is an induced partition (L,R) such that L ∩ R = ∅,
L ∪ R = V , and there F is the set of edges from L to R.

Observation
For every vertex cut U , there is a partition (L,U ,R) such that L,M,R are
pairwise disjoint, L ∪U ∪ R = V , and there are no edges from L to R.

Definition
The edge connectivity λ of a graph is the size of its smallest edge cut and the
vertex connectivity κ is the size of its smallest vertex cut.

A�ention: Common definitions disagree on corner cases

Motivation for computing higher connectivity:
Reliability analysis
Community detection

4 / 17



State of the Art
Vertex connectivity in directed graphs:

Running time Deterministic Reference
Õ(n2.373 + nκ2.373) no [Cheriyan/Reif ’92]

Õ(mn) no [Henzinger et al. ’96]
O(mn + κm ·min{n3/4,κ3/2}) yes [Gabow ’00]

Õ(κ ·min{m4/3,m2/3n}) no [Nanongkai et al. ’19]
Õ(κ ·min{κm,κ1/2m1/2n + κ2n}) no Our result

Undirected graphs:m → nκ [Nagamochi/Ibaraki ’92]

Plan for today:

Theorem
There is an algorithm to compute the edge connectivity λ of a directed graph in
time O(λ2m logn) with success probability 1/2.

Covers main technique, extension to vertex connectivity is a technicality
In general: O(λ2m logn log 1

p ) with success probability p

State of the art for directed edge connectivity: O(λm logn) [Gabow ’91]

5 / 17



State of the Art
Vertex connectivity in directed graphs:

Running time Deterministic Reference
Õ(n2.373 + nκ2.373) no [Cheriyan/Reif ’92]

Õ(mn) no [Henzinger et al. ’96]
O(mn + κm ·min{n3/4,κ3/2}) yes [Gabow ’00]

Õ(κ ·min{m4/3,m2/3n}) no [Nanongkai et al. ’19]
Õ(κ ·min{κm,κ1/2m1/2n + κ2n}) no Our result

Undirected graphs:m → nκ [Nagamochi/Ibaraki ’92]

Plan for today:

Theorem
There is an algorithm to compute the edge connectivity λ of a directed graph in
time O(λ2m logn) with success probability 1/2.

Covers main technique, extension to vertex connectivity is a technicality
In general: O(λ2m logn log 1

p ) with success probability p

State of the art for directed edge connectivity: O(λm logn) [Gabow ’91]

5 / 17



State of the Art
Vertex connectivity in directed graphs:

Running time Deterministic Reference
Õ(n2.373 + nκ2.373) no [Cheriyan/Reif ’92]

Õ(mn) no [Henzinger et al. ’96]
O(mn + κm ·min{n3/4,κ3/2}) yes [Gabow ’00]

Õ(κ ·min{m4/3,m2/3n}) no [Nanongkai et al. ’19]
Õ(κ ·min{κm,κ1/2m1/2n + κ2n}) no Our result

Undirected graphs:m → nκ [Nagamochi/Ibaraki ’92]

Plan for today:

Theorem
There is an algorithm to compute the edge connectivity λ of a directed graph in
time O(λ2m logn) with success probability 1/2.

Covers main technique, extension to vertex connectivity is a technicality
In general: O(λ2m logn log 1

p ) with success probability p

State of the art for directed edge connectivity: O(λm logn) [Gabow ’91]

5 / 17



State of the Art
Vertex connectivity in directed graphs:

Running time Deterministic Reference
Õ(n2.373 + nκ2.373) no [Cheriyan/Reif ’92]

Õ(mn) no [Henzinger et al. ’96]
O(mn + κm ·min{n3/4,κ3/2}) yes [Gabow ’00]

Õ(κ ·min{m4/3,m2/3n}) no [Nanongkai et al. ’19]
Õ(κ ·min{κm,κ1/2m1/2n + κ2n}) no Our result

Undirected graphs:m → nκ [Nagamochi/Ibaraki ’92]

Plan for today:

Theorem
There is an algorithm to compute the edge connectivity λ of a directed graph in
time O(λ2m logn) with success probability 1/2.

Covers main technique, extension to vertex connectivity is a technicality
In general: O(λ2m logn log 1

p ) with success probability p

State of the art for directed edge connectivity: O(λm logn) [Gabow ’91]
5 / 17



Review of Naive Algorithm

Definition
An s-t edge cut is a cut with induced partition (L,R) such that s ∈ L and t ∈ R.

Observation
The edge connectivity λ is the minimum size of any s-t edge cut among all
pairs of vertices s and t .

Algorithm:
For every pair of vertices s and t compute the minimum s-t cut

Return minimum-size cut among all returned cuts

By “max s-t flow = min s-t cut”, the minimum s-t cut can be computed with
the Ford-Fulkerson algorithm in time O(mn).

Running time of algorithm above: O(n3m)

6 / 17



Review of Naive Algorithm

Definition
An s-t edge cut is a cut with induced partition (L,R) such that s ∈ L and t ∈ R.

Observation
The edge connectivity λ is the minimum size of any s-t edge cut among all
pairs of vertices s and t .

Algorithm:
For every pair of vertices s and t compute the minimum s-t cut

Return minimum-size cut among all returned cuts

By “max s-t flow = min s-t cut”, the minimum s-t cut can be computed with
the Ford-Fulkerson algorithm in time O(mn).

Running time of algorithm above: O(n3m)

6 / 17



Review of Naive Algorithm

Definition
An s-t edge cut is a cut with induced partition (L,R) such that s ∈ L and t ∈ R.

Observation
The edge connectivity λ is the minimum size of any s-t edge cut among all
pairs of vertices s and t .

Algorithm:
For every pair of vertices s and t compute the minimum s-t cut

Return minimum-size cut among all returned cuts

By “max s-t flow = min s-t cut”, the minimum s-t cut can be computed with
the Ford-Fulkerson algorithm in time O(mn).

Running time of algorithm above: O(n3m)

6 / 17



Review of Naive Algorithm

Definition
An s-t edge cut is a cut with induced partition (L,R) such that s ∈ L and t ∈ R.

Observation
The edge connectivity λ is the minimum size of any s-t edge cut among all
pairs of vertices s and t .

Algorithm:
For every pair of vertices s and t compute the minimum s-t cut

Return minimum-size cut among all returned cuts

By “max s-t flow = min s-t cut”, the minimum s-t cut can be computed with
the Ford-Fulkerson algorithm in time O(mn).

Running time of algorithm above: O(n3m)

6 / 17



Review of Naive Algorithm

Definition
An s-t edge cut is a cut with induced partition (L,R) such that s ∈ L and t ∈ R.

Observation
The edge connectivity λ is the minimum size of any s-t edge cut among all
pairs of vertices s and t .

Algorithm:
For every pair of vertices s and t compute the minimum s-t cut

Return minimum-size cut among all returned cuts

By “max s-t flow = min s-t cut”, the minimum s-t cut can be computed with
the Ford-Fulkerson algorithm in time O(mn).

Running time of algorithm above: O(n3m)

6 / 17



Naive Algorithm – Doubling Approach

Ford-Fulkerson algorithm with parameters s , t , k
The algorithm runs in time O(km) and if k ≥ λ, then the algorithm returns
the minimum s-t cut; otherwise it returns ⊥.

Algorithm:
For i = 1 to r = dlogne
I Set ki = 2i
I For every pair of vertices s and t : run the Ford-Fulkerson algorithm with

parameters s , t , and ki
I If one of the Ford-Fulkerson instances returns a cut, then return the

minimum-size cut among all returned cuts

Running time:
∑r

i=1O(n
2kim) = O(λn

2m)

Observation
It su�ices to design an algorithm that returns a global minimum cut if
parameter k ≥ λ.

7 / 17



Naive Algorithm – Doubling Approach

Ford-Fulkerson algorithm with parameters s , t , k
The algorithm runs in time O(km) and if k ≥ λ, then the algorithm returns
the minimum s-t cut; otherwise it returns ⊥.

Algorithm:
For i = 1 to r = dlogne
I Set ki = 2i
I For every pair of vertices s and t : run the Ford-Fulkerson algorithm with

parameters s , t , and ki
I If one of the Ford-Fulkerson instances returns a cut, then return the

minimum-size cut among all returned cuts

Running time:
∑r

i=1O(n
2kim) = O(λn

2m)

Observation
It su�ices to design an algorithm that returns a global minimum cut if
parameter k ≥ λ.

7 / 17



Naive Algorithm – Doubling Approach

Ford-Fulkerson algorithm with parameters s , t , k
The algorithm runs in time O(km) and if k ≥ λ, then the algorithm returns
the minimum s-t cut; otherwise it returns ⊥.

Algorithm:
For i = 1 to r = dlogne
I Set ki = 2i
I For every pair of vertices s and t : run the Ford-Fulkerson algorithm with

parameters s , t , and ki
I If one of the Ford-Fulkerson instances returns a cut, then return the

minimum-size cut among all returned cuts

Running time:
∑r

i=1O(n
2kim) = O(λn

2m)

Observation
It su�ices to design an algorithm that returns a global minimum cut if
parameter k ≥ λ.

7 / 17



Naive Algorithm – Doubling Approach

Ford-Fulkerson algorithm with parameters s , t , k
The algorithm runs in time O(km) and if k ≥ λ, then the algorithm returns
the minimum s-t cut; otherwise it returns ⊥.

Algorithm:
For i = 1 to r = dlogne
I Set ki = 2i
I For every pair of vertices s and t : run the Ford-Fulkerson algorithm with

parameters s , t , and ki
I If one of the Ford-Fulkerson instances returns a cut, then return the

minimum-size cut among all returned cuts

Running time:
∑r

i=1O(n
2kim) = O(λn

2m)

Observation
It su�ices to design an algorithm that returns a global minimum cut if
parameter k ≥ λ.

7 / 17



Sampling Approach

Idea: The problem is easy if the partition induced by the minimum cut is
somewhat balanced.

Definition
The volume vol(U ) of a set of vertices U is the sum of the outgoing edges of
vertices in U .

Volume = interior edges + leaving edges

Definition
An edge cut F is balanced if for its induced partition (L,R) both vol(L) ≥ m

14k
and vol(R) ≥ m

14k .

Lemma
For any edge (u,v) chosen from E uniformly at random, the tail u is contained
in L with probability vol(L)

m ≥ 1
14k (same with R).

8 / 17



Sampling Approach

Idea: The problem is easy if the partition induced by the minimum cut is
somewhat balanced.

Definition
The volume vol(U ) of a set of vertices U is the sum of the outgoing edges of
vertices in U .

Volume = interior edges + leaving edges

Definition
An edge cut F is balanced if for its induced partition (L,R) both vol(L) ≥ m

14k
and vol(R) ≥ m

14k .

Lemma
For any edge (u,v) chosen from E uniformly at random, the tail u is contained
in L with probability vol(L)

m ≥ 1
14k (same with R).

8 / 17



Sampling Approach

Idea: The problem is easy if the partition induced by the minimum cut is
somewhat balanced.

Definition
The volume vol(U ) of a set of vertices U is the sum of the outgoing edges of
vertices in U .

Volume = interior edges + leaving edges

Definition
An edge cut F is balanced if for its induced partition (L,R) both vol(L) ≥ m

14k
and vol(R) ≥ m

14k .

Lemma
For any edge (u,v) chosen from E uniformly at random, the tail u is contained
in L with probability vol(L)

m ≥ 1
14k (same with R).

8 / 17



Sampling Approach

Idea: The problem is easy if the partition induced by the minimum cut is
somewhat balanced.

Definition
The volume vol(U ) of a set of vertices U is the sum of the outgoing edges of
vertices in U .

Volume = interior edges + leaving edges

Definition
An edge cut F is balanced if for its induced partition (L,R) both vol(L) ≥ m

14k
and vol(R) ≥ m

14k .

Lemma
For any edge (u,v) chosen from E uniformly at random, the tail u is contained
in L with probability vol(L)

m ≥ 1
14k (same with R).

8 / 17



Sampling Approach

Idea: The problem is easy if the partition induced by the minimum cut is
somewhat balanced.

Definition
The volume vol(U ) of a set of vertices U is the sum of the outgoing edges of
vertices in U .

Volume = interior edges + leaving edges

Definition
An edge cut F is balanced if for its induced partition (L,R) both vol(L) ≥ m

14k
and vol(R) ≥ m

14k .

Lemma
For any edge (u,v) chosen from E uniformly at random, the tail u is contained
in L with probability vol(L)

m ≥ 1
14k (same with R).

8 / 17



Case 1: Minimum Cut is Balanced [Nanongkai et al. ’19]

Algorithm:
Repeat 28k times:
I Sample two edges e and f uniformly at random
I Let s be the tail of e and let t be the tail of f
I Run Ford-Fulkerson algorithm with parameters s , t , and k

Return minimum-size cut among all returned cuts

Lemma
If k ≥ λ and the minimum cut is balanced, then the algorithm above runs in time
O(k2m) and finds a cut of size λ with probability at least 1

2 .

9 / 17



Case 1: Minimum Cut is Balanced [Nanongkai et al. ’19]

Algorithm:
Repeat 28k times:
I Sample two edges e and f uniformly at random
I Let s be the tail of e and let t be the tail of f
I Run Ford-Fulkerson algorithm with parameters s , t , and k

Return minimum-size cut among all returned cuts

Lemma
If k ≥ λ and the minimum cut is balanced, then the algorithm above runs in time
O(k2m) and finds a cut of size λ with probability at least 1

2 .

9 / 17



Case 2: Minimum cut is not Balanced
Assumption: vol(L) < m

14k or vol(R) < m
14k

Idea: Detect smaller side of partition time proportional to its volume

Definition
A k-out component U ⊆ V has at most k edges going from U to V \U .

Lemma
There is a local procedure that, given a seed vertex s , a target cut size k and a
target volume ∆ runs in time O(k2∆), and returns as follows:

1 If s is contained in an `-out component of volume ≤ ∆ for ` ≤ k , then it
returns an `-out component of volume ≤ 7k∆ with probability at least 5

6
(and ⊥ with probability at most 1

6 ).
2 Otherwise, it might return a k-out-component or ⊥

Note: k2∆ may be much smaller thanm. Sublinear running time!

10 / 17



Case 2: Minimum cut is not Balanced
Assumption: vol(L) < m

14k or vol(R) < m
14k

Idea: Detect smaller side of partition time proportional to its volume

Definition
A k-out component U ⊆ V has at most k edges going from U to V \U .

Lemma
There is a local procedure that, given a seed vertex s , a target cut size k and a
target volume ∆ runs in time O(k2∆), and returns as follows:

1 If s is contained in an `-out component of volume ≤ ∆ for ` ≤ k , then it
returns an `-out component of volume ≤ 7k∆ with probability at least 5

6
(and ⊥ with probability at most 1

6 ).
2 Otherwise, it might return a k-out-component or ⊥

Note: k2∆ may be much smaller thanm. Sublinear running time!

10 / 17



Case 2: Minimum cut is not Balanced
Assumption: vol(L) < m

14k or vol(R) < m
14k

Idea: Detect smaller side of partition time proportional to its volume

Definition
A k-out component U ⊆ V has at most k edges going from U to V \U .

Lemma
There is a local procedure that, given a seed vertex s , a target cut size k and a
target volume ∆ runs in time O(k2∆), and returns as follows:

1 If s is contained in an `-out component of volume ≤ ∆ for ` ≤ k , then it
returns an `-out component of volume ≤ 7k∆ with probability at least 5

6
(and ⊥ with probability at most 1

6 ).
2 Otherwise, it might return a k-out-component or ⊥

Note: k2∆ may be much smaller thanm. Sublinear running time!

10 / 17



Case 2: Minimum cut is not Balanced
Assumption: vol(L) < m

14k or vol(R) < m
14k

Idea: Detect smaller side of partition time proportional to its volume

Definition
A k-out component U ⊆ V has at most k edges going from U to V \U .

Lemma
There is a local procedure that, given a seed vertex s , a target cut size k and a
target volume ∆ runs in time O(k2∆), and returns as follows:

1 If s is contained in an `-out component of volume ≤ ∆ for ` ≤ k , then it
returns an `-out component of volume ≤ 7k∆ with probability at least 5

6
(and ⊥ with probability at most 1

6 ).
2 Otherwise, it might return a k-out-component or ⊥

Note: k2∆ may be much smaller thanm. Sublinear running time!

10 / 17



Case 2: Minimum cut is not Balanced
Assumption: vol(L) < m

14k or vol(R) < m
14k

Idea: Detect smaller side of partition time proportional to its volume

Definition
A k-out component U ⊆ V has at most k edges going from U to V \U .

Lemma
There is a local procedure that, given a seed vertex s , a target cut size k and a
target volume ∆ runs in time O(k2∆), and returns as follows:

1 If s is contained in an `-out component of volume ≤ ∆ for ` ≤ k , then it
returns an `-out component of volume ≤ 7k∆ with probability at least 5

6
(and ⊥ with probability at most 1

6 ).
2 Otherwise, it might return a k-out-component or ⊥

Note: k2∆ may be much smaller thanm. Sublinear running time!

10 / 17



Case 2: Minimum cut is not Balanced (ctd.)
Assumption: vol(L) < m

14k or vol(R) < m
14k

Algorithm:
For i = 1 to r = blog m

7k c
I Repeat d m

2i−1 e times
F Sample an edge e uniformly at random and let s be its tail
F Try to find a k-out-component using the local procedure with parameters s ,

k and ∆i = 2i − 1
F Try to find a k-in-component using the local procedure on the reverse graph

with parameters s , k and ∆i = 2i − 1

Return the minimum-size cut among all found cuts
Running time:

∑r
i=1

m
2i−1 ·O(k

22i ) = O(k2m logn)

Lemma
If the minimum cut is not balanced, then the algorithm above returns a proper
λ-out-component L′ ⊂ V or a proper λ-out-component R′ ⊂ V (inducing a
minimum cut) with probability at least 1

2 .

Note: Parameter choice ensures that vol(L′) < m or vol(R′) < m

11 / 17



Case 2: Minimum cut is not Balanced (ctd.)
Assumption: vol(L) < m

14k or vol(R) < m
14k

Algorithm:
For i = 1 to r = blog m

7k c
I Repeat d m

2i−1 e times
F Sample an edge e uniformly at random and let s be its tail
F Try to find a k-out-component using the local procedure with parameters s ,

k and ∆i = 2i − 1
F Try to find a k-in-component using the local procedure on the reverse graph

with parameters s , k and ∆i = 2i − 1

Return the minimum-size cut among all found cuts

Running time:
∑r

i=1
m
2i−1 ·O(k

22i ) = O(k2m logn)

Lemma
If the minimum cut is not balanced, then the algorithm above returns a proper
λ-out-component L′ ⊂ V or a proper λ-out-component R′ ⊂ V (inducing a
minimum cut) with probability at least 1

2 .

Note: Parameter choice ensures that vol(L′) < m or vol(R′) < m

11 / 17



Case 2: Minimum cut is not Balanced (ctd.)
Assumption: vol(L) < m

14k or vol(R) < m
14k

Algorithm:
For i = 1 to r = blog m

7k c
I Repeat d m

2i−1 e times
F Sample an edge e uniformly at random and let s be its tail
F Try to find a k-out-component using the local procedure with parameters s ,

k and ∆i = 2i − 1
F Try to find a k-in-component using the local procedure on the reverse graph

with parameters s , k and ∆i = 2i − 1

Return the minimum-size cut among all found cuts
Running time:

∑r
i=1

m
2i−1 ·O(k

22i ) = O(k2m logn)

Lemma
If the minimum cut is not balanced, then the algorithm above returns a proper
λ-out-component L′ ⊂ V or a proper λ-out-component R′ ⊂ V (inducing a
minimum cut) with probability at least 1

2 .

Note: Parameter choice ensures that vol(L′) < m or vol(R′) < m

11 / 17



Case 2: Minimum cut is not Balanced (ctd.)
Assumption: vol(L) < m

14k or vol(R) < m
14k

Algorithm:
For i = 1 to r = blog m

7k c
I Repeat d m

2i−1 e times
F Sample an edge e uniformly at random and let s be its tail
F Try to find a k-out-component using the local procedure with parameters s ,

k and ∆i = 2i − 1
F Try to find a k-in-component using the local procedure on the reverse graph

with parameters s , k and ∆i = 2i − 1

Return the minimum-size cut among all found cuts
Running time:

∑r
i=1

m
2i−1 ·O(k

22i ) = O(k2m logn)

Lemma
If the minimum cut is not balanced, then the algorithm above returns a proper
λ-out-component L′ ⊂ V or a proper λ-out-component R′ ⊂ V (inducing a
minimum cut) with probability at least 1

2 .

Note: Parameter choice ensures that vol(L′) < m or vol(R′) < m

11 / 17



Case 2: Minimum cut is not Balanced (ctd.)
Assumption: vol(L) < m

14k or vol(R) < m
14k

Algorithm:
For i = 1 to r = blog m

7k c
I Repeat d m

2i−1 e times
F Sample an edge e uniformly at random and let s be its tail
F Try to find a k-out-component using the local procedure with parameters s ,

k and ∆i = 2i − 1
F Try to find a k-in-component using the local procedure on the reverse graph

with parameters s , k and ∆i = 2i − 1

Return the minimum-size cut among all found cuts
Running time:

∑r
i=1

m
2i−1 ·O(k

22i ) = O(k2m logn)

Lemma
If the minimum cut is not balanced, then the algorithm above returns a proper
λ-out-component L′ ⊂ V or a proper λ-out-component R′ ⊂ V (inducing a
minimum cut) with probability at least 1

2 .

Note: Parameter choice ensures that vol(L′) < m or vol(R′) < m
11 / 17



Local Procedure
Seed vertex s , target cut size ≤ k , target volume ≤ ∆

Algorithm: (with sampling idea of [Nanongkai et al. ’19])
Repeat k + 1 times:
I Perform a depth-first-search from s processing up to 6k∆ many edges
I If DFS processes less than 6k∆ edges, return set of visited vertices
I Sample one of the edges processed in the DFS uniformly at random
I Let t be the tail of the sampled edge (ignoring reversal of edge)
I Reverse the edges on the DFS path from s to t

Return ⊥
Running time: O(k2∆)

Claim 1
Let U ⊆ V contain s , let t ∈ V , and reverse the edges on a path from s to t .

If t ∈ V \U , then the number of edges from U to V \U is reduced by
one by the reversing the edges.

Otherwise, the number of edges from U to V \U stays the same.

Idea: Odd or even number of crossings

12 / 17



Local Procedure
Seed vertex s , target cut size ≤ k , target volume ≤ ∆
Algorithm: (with sampling idea of [Nanongkai et al. ’19])

Repeat k + 1 times:
I Perform a depth-first-search from s processing up to 6k∆ many edges
I If DFS processes less than 6k∆ edges, return set of visited vertices
I Sample one of the edges processed in the DFS uniformly at random
I Let t be the tail of the sampled edge (ignoring reversal of edge)
I Reverse the edges on the DFS path from s to t

Return ⊥

Running time: O(k2∆)

Claim 1
Let U ⊆ V contain s , let t ∈ V , and reverse the edges on a path from s to t .

If t ∈ V \U , then the number of edges from U to V \U is reduced by
one by the reversing the edges.

Otherwise, the number of edges from U to V \U stays the same.

Idea: Odd or even number of crossings

12 / 17



Local Procedure
Seed vertex s , target cut size ≤ k , target volume ≤ ∆
Algorithm: (with sampling idea of [Nanongkai et al. ’19])

Repeat k + 1 times:
I Perform a depth-first-search from s processing up to 6k∆ many edges
I If DFS processes less than 6k∆ edges, return set of visited vertices
I Sample one of the edges processed in the DFS uniformly at random
I Let t be the tail of the sampled edge (ignoring reversal of edge)
I Reverse the edges on the DFS path from s to t

Return ⊥
Running time: O(k2∆)

Claim 1
Let U ⊆ V contain s , let t ∈ V , and reverse the edges on a path from s to t .

If t ∈ V \U , then the number of edges from U to V \U is reduced by
one by the reversing the edges.

Otherwise, the number of edges from U to V \U stays the same.

Idea: Odd or even number of crossings

12 / 17



Local Procedure
Seed vertex s , target cut size ≤ k , target volume ≤ ∆
Algorithm: (with sampling idea of [Nanongkai et al. ’19])

Repeat k + 1 times:
I Perform a depth-first-search from s processing up to 6k∆ many edges
I If DFS processes less than 6k∆ edges, return set of visited vertices
I Sample one of the edges processed in the DFS uniformly at random
I Let t be the tail of the sampled edge (ignoring reversal of edge)
I Reverse the edges on the DFS path from s to t

Return ⊥
Running time: O(k2∆)

Claim 1
Let U ⊆ V contain s , let t ∈ V , and reverse the edges on a path from s to t .

If t ∈ V \U , then the number of edges from U to V \U is reduced by
one by the reversing the edges.

Otherwise, the number of edges from U to V \U stays the same.

Idea: Odd or even number of crossings

12 / 17



Local Procedure
Seed vertex s , target cut size ≤ k , target volume ≤ ∆
Algorithm: (with sampling idea of [Nanongkai et al. ’19])

Repeat k + 1 times:
I Perform a depth-first-search from s processing up to 6k∆ many edges
I If DFS processes less than 6k∆ edges, return set of visited vertices
I Sample one of the edges processed in the DFS uniformly at random
I Let t be the tail of the sampled edge (ignoring reversal of edge)
I Reverse the edges on the DFS path from s to t

Return ⊥
Running time: O(k2∆)

Claim 1
Let U ⊆ V contain s , let t ∈ V , and reverse the edges on a path from s to t .

If t ∈ V \U , then the number of edges from U to V \U is reduced by
one by the reversing the edges.

Otherwise, the number of edges from U to V \U stays the same.

Idea: Odd or even number of crossings
12 / 17



Correctness Proof

Claim 2
If the procedure returns a set of vertices U in iteration ` + 1, then U is an
`-out-component with vol(U ) ≤ 6k∆ + ` ≤ 7k∆.

Idea: For component found by DFS, number of out-edges reduces by at most
one in each iteration

Claim 3
If there is an `-out-component of volume ≤ ∆ containing s for ` ≤ k , then the
procedure returns an `-out-component with probability ≥ 5

6 .

Idea: Each sampled t will lie inside of component with probability ≤ 1
6k

13 / 17



Correctness Proof

Claim 2
If the procedure returns a set of vertices U in iteration ` + 1, then U is an
`-out-component with vol(U ) ≤ 6k∆ + ` ≤ 7k∆.

Idea: For component found by DFS, number of out-edges reduces by at most
one in each iteration

Claim 3
If there is an `-out-component of volume ≤ ∆ containing s for ` ≤ k , then the
procedure returns an `-out-component with probability ≥ 5

6 .

Idea: Each sampled t will lie inside of component with probability ≤ 1
6k

13 / 17



Correctness Proof

Claim 2
If the procedure returns a set of vertices U in iteration ` + 1, then U is an
`-out-component with vol(U ) ≤ 6k∆ + ` ≤ 7k∆.

Idea: For component found by DFS, number of out-edges reduces by at most
one in each iteration

Claim 3
If there is an `-out-component of volume ≤ ∆ containing s for ` ≤ k , then the
procedure returns an `-out-component with probability ≥ 5

6 .

Idea: Each sampled t will lie inside of component with probability ≤ 1
6k

13 / 17



Correctness Proof

Claim 2
If the procedure returns a set of vertices U in iteration ` + 1, then U is an
`-out-component with vol(U ) ≤ 6k∆ + ` ≤ 7k∆.

Idea: For component found by DFS, number of out-edges reduces by at most
one in each iteration

Claim 3
If there is an `-out-component of volume ≤ ∆ containing s for ` ≤ k , then the
procedure returns an `-out-component with probability ≥ 5

6 .

Idea: Each sampled t will lie inside of component with probability ≤ 1
6k

13 / 17



�estions?

14 / 17



Summary

Significant progress for a fundamental graph problem

Local procedure was pivotal to faster algorithm
Exponential improvement over O(2O (k )∆) by [Chechik et al. ’17]

Local procedure has further implications to property testing algorithms

Local computation algorithms are a current trend in algorithm design

15 / 17



Summary

Significant progress for a fundamental graph problem

Local procedure was pivotal to faster algorithm
Exponential improvement over O(2O (k )∆) by [Chechik et al. ’17]

Local procedure has further implications to property testing algorithms

Local computation algorithms are a current trend in algorithm design

15 / 17



Thesis Opportunities

Theory:
Distributed algorithms

Dynamic algorithms

Local computation algorithms

Algorithm Engineering:
Experimental analysis of cut sparsification algorithms

Practical algorithm for computing the vertex connectivity

16 / 17



Thesis Opportunities

Theory:
Distributed algorithms

Dynamic algorithms

Local computation algorithms

Algorithm Engineering:
Experimental analysis of cut sparsification algorithms

Practical algorithm for computing the vertex connectivity

16 / 17



Thank you!

17 / 17


