Computing and Testing Small Connectivity in
 Near-Linear Time and Queries via Fast Local Cut Algorithms [SODA '20]
 Reading Group Algorithms

Sebastian Forster
joint work with Danupon Nanongkai, Thatchaphol Saranurak, Liu Yang, and Sorrachai Yingchareonthawornchai

Universität Salzburg
18.11.2019

$G=(V, E)$

Definitions

Definition

A (directed) graph G is called (strongly) connected if for every pair of vertices $s, t \in V$ there is a path from s to t in G.

Definitions

Definition

A (directed) graph G is called (strongly) connected if for every pair of vertices $s, t \in V$ there is a path from s to t in G.

Definition

An edge cut F is a subset of edges $F \subseteq E$ that disconnects the graph, i.e., the graph $G^{\prime}=(V, E \backslash F)$ is not (strongly) connected.

Definitions

Definition

A (directed) graph G is called (strongly) connected if for every pair of vertices $s, t \in V$ there is a path from s to t in G.

Definition

An edge cut F is a subset of edges $F \subseteq E$ that disconnects the graph, i.e., the graph $G^{\prime}=(V, E \backslash F)$ is not (strongly) connected.

Definition

A vertex cut U is a subset of vertices $U \subseteq V$ that disconnects the graph, i.e., the graph $G^{\prime}=(V \backslash U, E \backslash(V \times U \cup U \times V))$ is not (strongly) connected.

Cuts and Partitions

Observation

For every edge cut F, there is an induced partition (L, R) such that $L \cap R=\emptyset$, $L \cup R=V$, and there F is the set of edges from L to R.

Cuts and Partitions

Observation

For every edge cut F, there is an induced partition (L, R) such that $L \cap R=\emptyset$, $L \cup R=V$, and there F is the set of edges from L to R.

Observation

For every vertex cut U, there is a partition (L, U, R) such that L, M, R are pairwise disjoint, $L \cup U \cup R=V$, and there are no edges from L to R.

Cuts and Partitions

Observation

For every edge cut F, there is an induced partition (L, R) such that $L \cap R=\emptyset$, $L \cup R=V$, and there F is the set of edges from L to R.

Observation

For every vertex cut U, there is a partition (L, U, R) such that L, M, R are pairwise disjoint, $L \cup U \cup R=V$, and there are no edges from L to R.

Definition

The edge connectivity λ of a graph is the size of its smallest edge cut and the vertex connectivity κ is the size of its smallest vertex cut.

Cuts and Partitions

Observation

For every edge cut F, there is an induced partition (L, R) such that $L \cap R=\emptyset$, $L \cup R=V$, and there F is the set of edges from L to R.

Observation

For every vertex cut U, there is a partition (L, U, R) such that L, M, R are pairwise disjoint, $L \cup U \cup R=V$, and there are no edges from L to R.

Definition

The edge connectivity λ of a graph is the size of its smallest edge cut and the vertex connectivity κ is the size of its smallest vertex cut.

Attention: Common definitions disagree on corner cases

Cuts and Partitions

Observation

For every edge cut F, there is an induced partition (L, R) such that $L \cap R=\emptyset$, $L \cup R=V$, and there F is the set of edges from L to R.

Observation

For every vertex cut U, there is a partition (L, U, R) such that L, M, R are pairwise disjoint, $L \cup U \cup R=V$, and there are no edges from L to R.

Definition

The edge connectivity λ of a graph is the size of its smallest edge cut and the vertex connectivity κ is the size of its smallest vertex cut.

Attention: Common definitions disagree on corner cases
Motivation for computing higher connectivity:

- Reliability analysis
- Community detection

State of the Art

Vertex connectivity in directed graphs:

Running time
$\tilde{O}\left(n^{2.373}+n \kappa^{2.373}\right)$
$\tilde{O}(m n) \quad$ no
$O\left(m n+\kappa m \cdot \min \left\{n^{3 / 4}, \kappa^{3 / 2}\right\}\right) \quad$ yes
$\tilde{O}\left(\kappa \cdot \min \left\{m^{4 / 3}, m^{2 / 3} n\right\}\right) \quad$ no
$\tilde{O}\left(\kappa \cdot \min \left\{\kappa m, \kappa^{1 / 2} m^{1 / 2} n+\kappa^{2} n\right\}\right)$

Deterministic
no
no

Reference
[Cheriyan/Reif '92]
[Henzinger et al. '96]
[Gabow '00]
[Nanongkai et al. '19]
Our result

State of the Art

Vertex connectivity in directed graphs:

Running time
$\tilde{O}\left(n^{2.373}+n \kappa^{2.373}\right)$
$\tilde{O}(m n) \quad$ no
$O\left(m n+\kappa m \cdot \min \left\{n^{3 / 4}, \kappa^{3 / 2}\right\}\right) \quad$ yes
$\tilde{O}\left(\kappa \cdot \min \left\{m^{4 / 3}, m^{2 / 3} n\right\}\right)$ no
$\tilde{O}\left(\kappa \cdot \min \left\{\kappa m, \kappa^{1 / 2} m^{1 / 2} n+\kappa^{2} n\right\}\right)$

Deterministic
no
no

Reference
[Cheriyan/Reif '92]
[Henzinger et al. '96]
[Gabow '00]
[Nanongkai et al. '19]
Our result

Undirected graphs: $m \rightarrow n \kappa$ [Nagamochi/Ibaraki '92]

State of the Art

Vertex connectivity in directed graphs:

Running time
$\tilde{O}\left(n^{2.373}+n \kappa^{2.373}\right)$
$\tilde{O}(m n) \quad$ no
$O\left(m n+\kappa m \cdot \min \left\{n^{3 / 4}, \kappa^{3 / 2}\right\}\right) \quad$ yes
$\tilde{O}\left(\kappa \cdot \min \left\{m^{4 / 3}, m^{2 / 3} n\right\}\right)$
$\tilde{O}\left(\kappa \cdot \min \left\{\kappa m, \kappa^{1 / 2} m^{1 / 2} n+\kappa^{2} n\right\}\right)$

Deterministic
no
no
no

Reference
[Cheriyan/Reif '92]
[Henzinger et al. '96]
[Gabow '00]
[Nanongkai et al. '19]
Our result

Undirected graphs: $m \rightarrow n \kappa$ [Nagamochi/Ibaraki '92]
Plan for today:

Theorem

There is an algorithm to compute the edge connectivity λ of a directed graph in time $O\left(\lambda^{2} m \log n\right)$ with success probability $1 / 2$.

State of the Art

Vertex connectivity in directed graphs:

Running time
$\tilde{O}\left(n^{2.373}+n \kappa^{2.373}\right)$
$\tilde{O}(m n) \quad$ no
$O\left(m n+\kappa m \cdot \min \left\{n^{3 / 4}, \kappa^{3 / 2}\right\}\right) \quad$ yes
$\tilde{O}\left(\kappa \cdot \min \left\{m^{4 / 3}, m^{2 / 3} n\right\}\right)$
$\tilde{O}\left(\kappa \cdot \min \left\{\kappa m, \kappa^{1 / 2} m^{1 / 2} n+\kappa^{2} n\right\}\right)$

Deterministic
no
no
no

Reference

[Cheriyan/Reif '92]
[Henzinger et al. '96]
[Gabow '00]
[Nanongkai et al. '19]
Our result

Undirected graphs: $m \rightarrow n \kappa$ [Nagamochi/Ibaraki '92]
Plan for today:

Theorem

There is an algorithm to compute the edge connectivity λ of a directed graph in time $O\left(\lambda^{2} m \log n\right)$ with success probability $1 / 2$.

- Covers main technique, extension to vertex connectivity is a technicality
- In general: $O\left(\lambda^{2} m \log n \log \frac{1}{p}\right)$ with success probability p
- State of the art for directed edge connectivity: $O(\lambda m \log n)$ [Gabow '91]

Review of Naive Algorithm

Definition

An s - t edge cut is a cut with induced partition (L, R) such that $s \in L$ and $t \in R$.

Review of Naive Algorithm

Definition

An s - t edge cut is a cut with induced partition (L, R) such that $s \in L$ and $t \in R$.

Observation

The edge connectivity λ is the minimum size of any $s-t$ edge cut among all pairs of vertices s and t.

Review of Naive Algorithm

Definition

An $s-t$ edge cut is a cut with induced partition (L, R) such that $s \in L$ and $t \in R$.

Observation

The edge connectivity λ is the minimum size of any $s-t$ edge cut among all pairs of vertices s and t.

Algorithm:

- For every pair of vertices s and t compute the minimum s - t cut
- Return minimum-size cut among all returned cuts

Review of Naive Algorithm

Definition

An $s-t$ edge cut is a cut with induced partition (L, R) such that $s \in L$ and $t \in R$.

Observation

The edge connectivity λ is the minimum size of any s - t edge cut among all pairs of vertices s and t.

Algorithm:

- For every pair of vertices s and t compute the minimum $s-t$ cut
- Return minimum-size cut among all returned cuts

By "max $s-t$ flow = min $s-t$ cut", the minimum $s-t$ cut can be computed with the Ford-Fulkerson algorithm in time $O(m n)$.

Review of Naive Algorithm

Definition

An $s-t$ edge cut is a cut with induced partition (L, R) such that $s \in L$ and $t \in R$.

Observation

The edge connectivity λ is the minimum size of any $s-t$ edge cut among all pairs of vertices s and t.

Algorithm:

- For every pair of vertices s and t compute the minimum $s-t$ cut
- Return minimum-size cut among all returned cuts

By "max $s-t$ flow = min $s-t$ cut", the minimum $s-t$ cut can be computed with the Ford-Fulkerson algorithm in time $O(m n)$.

Running time of algorithm above: $O\left(n^{3} m\right)$

Naive Algorithm - Doubling Approach

Ford-Fulkerson algorithm with parameters s, t, k
The algorithm runs in time $O(\mathrm{~km})$ and if $k \geq \lambda$, then the algorithm returns the minimum s - t cut; otherwise it returns \perp.

Naive Algorithm - Doubling Approach

Ford-Fulkerson algorithm with parameters s, t, k

The algorithm runs in time $O(k m)$ and if $k \geq \lambda$, then the algorithm returns the minimum s - t cut; otherwise it returns \perp.

Algorithm:

- For $i=1$ to $r=\lceil\log n\rceil$
- Set $k_{i}=2^{i}$
- For every pair of vertices s and t : run the Ford-Fulkerson algorithm with parameters s, t, and k_{i}
- If one of the Ford-Fulkerson instances returns a cut, then return the minimum-size cut among all returned cuts

Naive Algorithm - Doubling Approach

Ford-Fulkerson algorithm with parameters s, t, k

The algorithm runs in time $O(k m)$ and if $k \geq \lambda$, then the algorithm returns the minimum s - t cut; otherwise it returns \perp.

Algorithm:

- For $i=1$ to $r=\lceil\log n\rceil$
- Set $k_{i}=2^{i}$
- For every pair of vertices s and t : run the Ford-Fulkerson algorithm with parameters s, t, and k_{i}
- If one of the Ford-Fulkerson instances returns a cut, then return the minimum-size cut among all returned cuts
Running time: $\sum_{i=1}^{r} O\left(n^{2} k_{i} m\right)=O\left(\lambda n^{2} m\right)$

Naive Algorithm - Doubling Approach

Ford-Fulkerson algorithm with parameters s, t, k

The algorithm runs in time $O(\mathrm{~km})$ and if $k \geq \lambda$, then the algorithm returns the minimum s - t cut; otherwise it returns \perp.

Algorithm:

- For $i=1$ to $r=\lceil\log n\rceil$
- Set $k_{i}=2^{i}$
- For every pair of vertices s and t : run the Ford-Fulkerson algorithm with parameters s, t, and k_{i}
- If one of the Ford-Fulkerson instances returns a cut, then return the minimum-size cut among all returned cuts
Running time: $\sum_{i=1}^{r} O\left(n^{2} k_{i} m\right)=O\left(\lambda n^{2} m\right)$

Observation

It suffices to design an algorithm that returns a global minimum cut if parameter $k \geq \lambda$.

Sampling Approach

Idea: The problem is easy if the partition induced by the minimum cut is somewhat balanced.

Sampling Approach

Idea: The problem is easy if the partition induced by the minimum cut is somewhat balanced.

Definition

The volume $\operatorname{vol}(U)$ of a set of vertices U is the sum of the outgoing edges of vertices in U.

Sampling Approach

Idea: The problem is easy if the partition induced by the minimum cut is somewhat balanced.

Definition

The volume $\operatorname{vol}(U)$ of a set of vertices U is the sum of the outgoing edges of vertices in U.

Volume $=$ interior edges + leaving edges

Sampling Approach

Idea: The problem is easy if the partition induced by the minimum cut is somewhat balanced.

Definition

The volume $\operatorname{vol}(U)$ of a set of vertices U is the sum of the outgoing edges of vertices in U.

Volume = interior edges + leaving edges

Definition

An edge cut F is balanced if for its induced partition (L, R) both $\operatorname{vol}(L) \geq \frac{m}{14 k}$ and $\operatorname{vol}(R) \geq \frac{m}{14 k}$.

Sampling Approach

Idea: The problem is easy if the partition induced by the minimum cut is somewhat balanced.

Definition

The volume $\operatorname{vol}(U)$ of a set of vertices U is the sum of the outgoing edges of vertices in U.

Volume = interior edges + leaving edges

Definition

An edge cut F is balanced if for its induced partition (L, R) both $\operatorname{vol}(L) \geq \frac{m}{14 k}$ and $\operatorname{vol}(R) \geq \frac{m}{14 k}$.

Lemma

For any edge (u, v) chosen from E uniformly at random, the tail u is contained in L with probability $\frac{\operatorname{vol}(L)}{m} \geq \frac{1}{14 k}$ (same with R).

Case 1: Minimum Cut is Balanced [Nanongkai et al. '19]

Algorithm:

- Repeat $28 k$ times:
- Sample two edges e and f uniformly at random
- Let s be the tail of e and let t be the tail of f
- Run Ford-Fulkerson algorithm with parameters s, t, and k
- Return minimum-size cut among all returned cuts

Case 1: Minimum Cut is Balanced [Nanongkai et al. '19]

Algorithm:

- Repeat $28 k$ times:
- Sample two edges e and f uniformly at random
- Let s be the tail of e and let t be the tail of f
- Run Ford-Fulkerson algorithm with parameters s, t, and k
- Return minimum-size cut among all returned cuts

Lemma

If $k \geq \lambda$ and the minimum cut is balanced, then the algorithm above runs in time $O\left(k^{2} m\right)$ and finds a cut of size λ with probability at least $\frac{1}{2}$.

Case 2: Minimum cut is not Balanced

Assumption: $\operatorname{vol}(L)<\frac{m}{14 k}$ or $\operatorname{vol}(R)<\frac{m}{14 k}$

Case 2: Minimum cut is not Balanced

Assumption: $\operatorname{vol}(L)<\frac{m}{14 k}$ or $\operatorname{vol}(R)<\frac{m}{14 k}$
Idea: Detect smaller side of partition time proportional to its volume

Case 2: Minimum cut is not Balanced

Assumption: $\operatorname{vol}(L)<\frac{m}{14 k}$ or $\operatorname{vol}(R)<\frac{m}{14 k}$
Idea: Detect smaller side of partition time proportional to its volume

Definition

A k-out component $U \subseteq V$ has at most k edges going from U to $V \backslash U$.

Case 2: Minimum cut is not Balanced

Assumption: $\operatorname{vol}(L)<\frac{m}{14 k}$ or $\operatorname{vol}(R)<\frac{m}{14 k}$
Idea: Detect smaller side of partition time proportional to its volume

Definition

A k-out component $U \subseteq V$ has at most k edges going from U to $V \backslash U$.

Lemma

There is a local procedure that, given a seed vertex s, a target cut size k and a target volume Δ runs in time $O\left(k^{2} \Delta\right)$, and returns as follows:
(1) If s is contained in an ℓ-out component of volume $\leq \Delta$ for $\ell \leq k$, then it returns an ℓ-out component of volume $\leq 7 k \Delta$ with probability at least $\frac{5}{6}$ (and \perp with probability at most $\frac{1}{6}$).
(2) Otherwise, it might return a k-out-component or \perp

Case 2: Minimum cut is not Balanced

Assumption: $\operatorname{vol}(L)<\frac{m}{14 k}$ or $\operatorname{vol}(R)<\frac{m}{14 k}$
Idea: Detect smaller side of partition time proportional to its volume

Definition

A k-out component $U \subseteq V$ has at most k edges going from U to $V \backslash U$.

Lemma

There is a local procedure that, given a seed vertex s, a target cut size k and a target volume Δ runs in time $O\left(k^{2} \Delta\right)$, and returns as follows:
(1) If s is contained in an ℓ-out component of volume $\leq \Delta$ for $\ell \leq k$, then it returns an ℓ-out component of volume $\leq 7 k \Delta$ with probability at least $\frac{5}{6}$ (and \perp with probability at most $\frac{1}{6}$).
(2) Otherwise, it might return a k-out-component or \perp

Note: $k^{2} \Delta$ may be much smaller than m. Sublinear running time!

Case 2: Minimum cut is not Balanced (ctd.)

Assumption: $\operatorname{vol}(L)<\frac{m}{14 k}$ or $\operatorname{vol}(R)<\frac{m}{14 k}$

Case 2: Minimum cut is not Balanced (ctd.)

Assumption: $\operatorname{vol}(L)<\frac{m}{14 k}$ or $\operatorname{vol}(R)<\frac{m}{14 k}$

Algorithm:

- For $i=1$ to $r=\left\lfloor\log \frac{m}{7 k}\right\rfloor$
- Repeat $\left\lceil\frac{m}{2^{i-1}}\right\rceil$ times
* Sample an edge e uniformly at random and let s be its tail
\star Try to find a k-out-component using the local procedure with parameters s, k and $\Delta_{i}=2^{i}-1$
\star Try to find a k-in-component using the local procedure on the reverse graph with parameters s, k and $\Delta_{i}=2^{i}-1$
- Return the minimum-size cut among all found cuts

Case 2: Minimum cut is not Balanced (ctd.)

Assumption: $\operatorname{vol}(L)<\frac{m}{14 k}$ or $\operatorname{vol}(R)<\frac{m}{14 k}$

Algorithm:

- For $i=1$ to $r=\left\lfloor\log \frac{m}{7 k}\right\rfloor$
- Repeat $\left\lceil\frac{m}{2^{i-1}}\right\rceil$ times
* Sample an edge e uniformly at random and let s be its tail
\star Try to find a k-out-component using the local procedure with parameters s, k and $\Delta_{i}=2^{i}-1$
\star Try to find a k-in-component using the local procedure on the reverse graph with parameters s, k and $\Delta_{i}=2^{i}-1$
- Return the minimum-size cut among all found cuts

Running time: $\sum_{i=1}^{r} \frac{m}{2^{i-1}} \cdot O\left(k^{2} 2^{i}\right)=O\left(k^{2} m \log n\right)$

Case 2: Minimum cut is not Balanced (ctd.)

Assumption: $\operatorname{vol}(L)<\frac{m}{14 k}$ or $\operatorname{vol}(R)<\frac{m}{14 k}$

Algorithm:

- For $i=1$ to $r=\left\lfloor\log \frac{m}{7 k}\right\rfloor$
- Repeat $\left\lceil\frac{m}{2^{i-1}}\right\rceil$ times
\star Sample an edge e uniformly at random and let s be its tail
\star Try to find a k-out-component using the local procedure with parameters s, k and $\Delta_{i}=2^{i}-1$
\star Try to find a k-in-component using the local procedure on the reverse graph with parameters s, k and $\Delta_{i}=2^{i}-1$
- Return the minimum-size cut among all found cuts

Running time: $\sum_{i=1}^{r} \frac{m}{2^{i-1}} \cdot O\left(k^{2} 2^{i}\right)=O\left(k^{2} m \log n\right)$

Lemma

If the minimum cut is not balanced, then the algorithm above returns a proper λ-out-component $L^{\prime} \subset V$ or a proper λ-out-component $R^{\prime} \subset V$ (inducing a minimum cut) with probability at least $\frac{1}{2}$.

Case 2: Minimum cut is not Balanced (ctd.)

Assumption: $\operatorname{vol}(L)<\frac{m}{14 k}$ or $\operatorname{vol}(R)<\frac{m}{14 k}$

Algorithm:

- For $i=1$ to $r=\left\lfloor\log \frac{m}{7 k}\right\rfloor$
- Repeat $\left\lceil\frac{m}{2^{i-1}}\right\rceil$ times
\star Sample an edge e uniformly at random and let s be its tail
\star Try to find a k-out-component using the local procedure with parameters s, k and $\Delta_{i}=2^{i}-1$
\star Try to find a k-in-component using the local procedure on the reverse graph with parameters s, k and $\Delta_{i}=2^{i}-1$
- Return the minimum-size cut among all found cuts

Running time: $\sum_{i=1}^{r} \frac{m}{2^{i-1}} \cdot O\left(k^{2} 2^{i}\right)=O\left(k^{2} m \log n\right)$

Lemma

If the minimum cut is not balanced, then the algorithm above returns a proper λ-out-component $L^{\prime} \subset V$ or a proper λ-out-component $R^{\prime} \subset V$ (inducing a minimum cut) with probability at least $\frac{1}{2}$.

Note: Parameter choice ensures that $\operatorname{vol}\left(L^{\prime}\right)<m$ or $\operatorname{vol}\left(R^{\prime}\right)<m$

Local Procedure

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$

Local Procedure

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$
Algorithm: (with sampling idea of [Nanongkai et al. '19])

- Repeat $k+1$ times:
- Perform a depth-first-search from s processing up to $6 k \Delta$ many edges
- If DFS processes less than $6 k \Delta$ edges, return set of visited vertices
- Sample one of the edges processed in the DFS uniformly at random
- Let t be the tail of the sampled edge (ignoring reversal of edge)
- Reverse the edges on the DFS path from s to t
- Return \perp

Local Procedure

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$
Algorithm: (with sampling idea of [Nanongkai et al. '19])

- Repeat $k+1$ times:
- Perform a depth-first-search from s processing up to $6 k \Delta$ many edges
- If DFS processes less than $6 k \Delta$ edges, return set of visited vertices
- Sample one of the edges processed in the DFS uniformly at random
- Let t be the tail of the sampled edge (ignoring reversal of edge)
- Reverse the edges on the DFS path from s to t
- Return \perp

Running time: $O\left(k^{2} \Delta\right)$

Local Procedure

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$
Algorithm: (with sampling idea of [Nanongkai et al. '19])

- Repeat $k+1$ times:
- Perform a depth-first-search from s processing up to $6 k \Delta$ many edges
- If DFS processes less than $6 k \Delta$ edges, return set of visited vertices
- Sample one of the edges processed in the DFS uniformly at random
- Let t be the tail of the sampled edge (ignoring reversal of edge)
- Reverse the edges on the DFS path from s to t
- Return \perp

Running time: $O\left(k^{2} \Delta\right)$

Claim 1

Let $U \subseteq V$ contain s, let $t \in V$, and reverse the edges on a path from s to t.

- If $t \in V \backslash U$, then the number of edges from U to $V \backslash U$ is reduced by one by the reversing the edges.
- Otherwise, the number of edges from U to $V \backslash U$ stays the same.

Local Procedure

Seed vertex s, target cut size $\leq k$, target volume $\leq \Delta$
Algorithm: (with sampling idea of [Nanongkai et al. '19])

- Repeat $k+1$ times:
- Perform a depth-first-search from s processing up to $6 k \Delta$ many edges
- If DFS processes less than $6 k \Delta$ edges, return set of visited vertices
- Sample one of the edges processed in the DFS uniformly at random
- Let t be the tail of the sampled edge (ignoring reversal of edge)
- Reverse the edges on the DFS path from s to t
- Return \perp

Running time: $O\left(k^{2} \Delta\right)$

Claim 1

Let $U \subseteq V$ contain s, let $t \in V$, and reverse the edges on a path from s to t.

- If $t \in V \backslash U$, then the number of edges from U to $V \backslash U$ is reduced by one by the reversing the edges.
- Otherwise, the number of edges from U to $V \backslash U$ stays the same.

Idea: Odd or even number of crossings

Correctness Proof

Claim 2

If the procedure returns a set of vertices U in iteration $\ell+1$, then U is an ℓ-out-component with $\operatorname{vol}(U) \leq 6 k \Delta+\ell \leq 7 k \Delta$.

Correctness Proof

Claim 2

If the procedure returns a set of vertices U in iteration $\ell+1$, then U is an ℓ-out-component with $\operatorname{vol}(U) \leq 6 k \Delta+\ell \leq 7 k \Delta$.

Idea: For component found by DFS, number of out-edges reduces by at most one in each iteration

Correctness Proof

Claim 2

If the procedure returns a set of vertices U in iteration $\ell+1$, then U is an ℓ-out-component with $\operatorname{vol}(U) \leq 6 k \Delta+\ell \leq 7 k \Delta$.

Idea: For component found by DFS, number of out-edges reduces by at most one in each iteration

Claim 3

If there is an ℓ-out-component of volume $\leq \Delta$ containing s for $\ell \leq k$, then the procedure returns an ℓ-out-component with probability $\geq \frac{5}{6}$.

Correctness Proof

Claim 2
 If the procedure returns a set of vertices U in iteration $\ell+1$, then U is an ℓ-out-component with $\operatorname{vol}(U) \leq 6 k \Delta+\ell \leq 7 k \Delta$.

Idea: For component found by DFS, number of out-edges reduces by at most one in each iteration

Claim 3

If there is an ℓ-out-component of volume $\leq \Delta$ containing s for $\ell \leq k$, then the procedure returns an ℓ-out-component with probability $\geq \frac{5}{6}$.

Idea: Each sampled t will lie inside of component with probability $\leq \frac{1}{6 k}$

Questions?

Summary

- Significant progress for a fundamental graph problem
- Local procedure was pivotal to faster algorithm Exponential improvement over $O\left(2^{O(k)} \Delta\right)$ by [Chechik et al. '17]

Summary

- Significant progress for a fundamental graph problem
- Local procedure was pivotal to faster algorithm Exponential improvement over $O\left(2^{O(k)} \Delta\right)$ by [Chechik et al. '17]
- Local procedure has further implications to property testing algorithms
- Local computation algorithms are a current trend in algorithm design

Thesis Opportunities

Theory:

- Distributed algorithms
- Dynamic algorithms
- Local computation algorithms

Thesis Opportunities

Theory:

- Distributed algorithms
- Dynamic algorithms
- Local computation algorithms

Algorithm Engineering:

- Experimental analysis of cut sparsification algorithms
- Practical algorithm for computing the vertex connectivity

Thank you!

