Local Fast Rerouting with Low Congestion: A Randomized Approach

Gregor Bankhamer ¹ Robert Elsässer ¹ Stefan Schmid ²

¹Department of Computer Sciences University of Salzburg Austria

²Faculty of Computer Science University of Vienna Austria

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $+\,$ Mission-critical networks require fast reaction to link failures

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- + Fast rerouting mechanisms executing in the data plane
- + First line of defense

- $+\,$ Mission-critical networks require fast reaction to link failures
- + Fast rerouting mechanisms executing in the data plane
- + First line of defense

Concept

- $+\,$ Mission-critical networks require fast reaction to link failures
- + Fast rerouting mechanisms executing in the data plane
- + First line of defense

Concept

1. Incorporate failover paths (alternate paths) into forwarding table

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- $+\,$ Mission-critical networks require fast reaction to link failures
- + Fast rerouting mechanisms executing in the data plane
- + First line of defense

Concept

1. Incorporate failover paths (alternate paths) into forwarding table

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

2. Fast reaction in case of failures

- $+\,$ Mission-critical networks require fast reaction to link failures
- + Fast rerouting mechanisms executing in the data plane
- + First line of defense

Concept

- 1. Incorporate failover paths (alternate paths) into forwarding table
- 2. Fast reaction in case of failures
- 3. Re-configure tables via control plane later on

- $+\,$ Mission-critical networks require fast reaction to link failures
- + Fast rerouting mechanisms executing in the data plane
- + First line of defense

Concept

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- 1. Incorporate failover paths (alternate paths) into forwarding table
- 2. Fast reaction in case of failures
- 3. Re-configure tables via control plane later on

Local Failover Routing - Description

Routing Problem

 $+\,$ Network of routers/switches. Deliver packets from source to destination

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ◆○◆

+ Desired: Low amount of required hops and congestion

Local Failover Routing - Description

Routing Problem

- + Network of routers/switches. Deliver packets from source to destination
- + Desired: Low amount of required hops and congestion

Local Failover Protocol

+ For each node v with neighborhood $\Gamma(v)$ pre-computable function

$$f_v: (2^{\Gamma(v)} \times \mathcal{P}) \to \Gamma(v) \longrightarrow$$
 Next hop

Set of unreachable neighbors

Packet header information (e.g. dest address)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Local Failover Routing - Description

Routing Problem

- + Network of routers/switches. Deliver packets from source to destination
- + Desired: Low amount of required hops and congestion

Local Failover Protocol

+ For each node v with neighborhood $\Gamma(v)$ pre-computable function

$$f_v: (2^{\Gamma(v)} \times \mathcal{P}) \to \Gamma(v) \longrightarrow$$
 Next hop

Set of unreachable neighbors

Packet header information (e.g. dest address)

Challenges

- $+\,$ Fast forwarding ruleset ; depending on local information only
- + Low congestion hard (or impossible) to achieve under multiple link failures

Related Work

Existing Local Failover Protocols

- + Multiple deterministic approaches
- + Randomized protocol [Chiesa et al., ICALP 2016]
 - + *k*-connected networks, arborescence cover, packet-based communication

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ◆○◆

Related Work

Existing Local Failover Protocols

- + Multiple deterministic approaches
- + Randomized protocol [Chiesa et al., ICALP 2016]
 - + k-connected networks, arborescence cover, packet-based communication

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

+ Existing results either do not account for load or are deterministic

Related Work

Existing Local Failover Protocols

- + Multiple deterministic approaches
- + Randomized protocol [Chiesa et al., ICALP 2016]
 - + *k*-connected networks, arborescence cover, packet-based communication
- + Existing results either do not account for load or are deterministic

Negative Result

+ Congestion lower bound for deterministic local failover protocols [Borokhovich and Schmid, OPODIS 2013]

Model and Setting

Environment

- + Complete undirected Graph G = (V, E) with |V| = n.
 - + May be generalized with arborescences or embedding

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ◆○◆

+ High degree and low diameter

Model and Setting

Environment

- + Complete undirected Graph G = (V, E) with |V| = n.
 - $\ + \$ May be generalized with arborescences or embedding
 - + High degree and low diameter

Communication Model

- + Flow-based communication
- + Consecutive stream of packets sent by source $s \in V$ to destination $d \in V$.

Model and Setting

Environment

- + Complete undirected Graph G = (V, E) with |V| = n.
 - + May be generalized with arborescences or embedding
 - + High degree and low diameter

Communication Model

- + Flow-based communication
- + Consecutive stream of packets sent by source $s \in V$ to destination $d \in V$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Challenging Communication Pattern - All-to-one Routing

- + Some destination node d
- + Each node $V \setminus \{d\}$ sends out one flow targeted at d
- + Commonly used in related work

Model and Setting ctd.

Powerful Adversary

- + Knows employed failover strategy
- + Knows destination d
- + Allowed to fail a high amount of edges up to $\Omega(n)$.

Deterministic Case Lower Bound

Theorem (Borokhovich and Schmid, OPODIS 2013)

Consider any local destination-based failover scheme in a clique graph. There exists a set of φ (edge) failures ($0 < \varphi < n$) that results in a link load of at least φ .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Deterministic Case Lower Bound

Theorem (Borokhovich and Schmid, OPODIS 2013)

Consider any local destination-based failover scheme in a clique graph. There exists a set of φ (edge) failures ($0 < \varphi < n$) that results in a link load of at least φ .

Different Rulesets

 $+\,$ Borokhovich and Schmid also give a $\sqrt{\varphi}$ lower bound if ruleset includes source adress.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- $+\,$ Can be extended to also account for $hop\mbox{-}count$
- + Adversary can create a load of $\Omega(\sqrt{n})$ by destroying $\mathcal{O}(n)$ links.

Our Solution - Randomization

Goal: Break this bound and reduce the possible congestion significantly Randomization

+ **Observation:** Each failover protocol has bad failure scenarios (due *locality*)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

- + Idea: Make these scenarios unlikely to occur!
- + Results achieved with high probability (w.h.p.; at least prob. $1 n^{-1}$)

Our Solution - Randomization

Goal: Break this bound and reduce the possible congestion significantly Randomization

- + **Observation:** Each failover protocol has bad failure scenarios (due *locality*)
- + Idea: Make these scenarios unlikely to occur!
- + Results achieved with high probability (w.h.p.; at least prob. $1 n^{-1}$)

Adapted (oblivious) Adversary

- + May still know the protocol and *all-to-one* routing target *d*
- + <u>Cannot</u> know the nodes generated random bits or measure the network load

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Our Results - Overview

	3-Permutations	Intervals	Shared-Permutations
Rule Set	Destination $+$ Hop	Destination	Destination + Hop 1
Resilience	$\Theta(n)$	$\Theta(n/\log n)$	$\Theta(n)$
Congestion	$\mathcal{O}(\log^2 n \cdot \log \log n)$	$\mathcal{O}(\log n \cdot \log \log n)$	$\mathcal{O}(\sqrt{\log n})$
Hops	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
Bits	$\mathcal{O}(\log^2 n)$	$\mathcal{O}(\log^2 n)$	$\mathcal{O}(\log^3 n)$
Shared Data	×	×	\checkmark

- + Congestion: Maximum number of flows crossing any node $v \in V \setminus \{d\}$
- + Number of failed edges up to resilience
- + Deterministic protocols would allow the adversary to induce a load of $\Omega(n/\log n)$ or $\Omega(\sqrt{n})$ respectively.

¹may be raised to some arbitrary value of $\mathcal{O}(\log \log n)$ bits

Baseline Idea - Permutation Based Failover Routing

- + Domain of failover function f_v grows exponentially with $|\Gamma(v)|$
- + Equip v with permutation π_v of neighbors $\Gamma(v) \setminus \{d\}$

Baseline Idea - Permutation Based Failover Routing

- + Domain of failover function f_{ν} grows exponentially with $|\Gamma(\nu)|$
- + Equip v with permutation π_v of neighbors $\Gamma(v) \setminus \{d\}$

Basic Permutation-Based Protocol (POV of node v)

Input: A packet *p* with destination *d*

- 1: if (v, d) is intact then forward p to d and return \triangleright Default route
- 2: else forward p over edge with smallest i s.t. $(v, \pi_v(i))$ is not failed

Permutation Based Routing - Observation

+ Randomized approach: Select π_v uniformly at random at each node v

Permutation Based Routing - Observation

+ Randomized approach: Select π_v uniformly at random at each node v

Bad News: Forwarding Loops

Permutation Based Routing - Observation

+ Randomized approach: Select π_v uniformly at random at each node v

Bad News: Forwarding Loops

Good News: All-to-one Routing

If adversary fails $\alpha \cdot n$ edges (for constant $0 < \alpha < 1$), then w.h.p.

- + All nodes *not* involved in a forwarding loop receive $O(\log n \cdot \log \log n)$ flows
- + Packets not stuck in a loop reach d in $\mathcal{O}(\log n)$ hops

+ Assume only edges of the form (v, d) are failed (up to $\alpha \cdot n$)

- + Assume only edges of the form (v, d) are failed (up to $\alpha \cdot n$)
- + **Remember:** If (v, d) failed first forwarding alternative $(v, \pi_v(1))$

- + Assume only edges of the form (v, d) are failed (up to $\alpha \cdot n$)
- + **Remember:** If (v, d) failed first forwarding alternative $(v, \pi_v(1))$
- + Di-Graph P = (V', E') with $V' = V \setminus \{d\}$ and $E' = \{(v, \pi_v(1)) \mid v \in V_B\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- + Assume only edges of the form (v, d) are failed (up to $\alpha \cdot n$)
- + **Remember:** If (v, d) failed first forwarding alternative $(v, \pi_v(1))$
- + Di-Graph P = (V', E') with $V' = V \setminus \{d\}$ and $E' = \{(v, \pi_v(1)) \mid v \in V_B\}$

- + Assume only edges of the form (v, d) are failed (up to $\alpha \cdot n$)
- + **Remember:** If (v, d) failed first forwarding alternative $(v, \pi_v(1))$
- + Di-Graph P = (V', E') with $V' = V \setminus \{d\}$ and $E' = \{(v, \pi_v(1)) \mid v \in V_B\}$

- + Assume only edges of the form (v, d) are failed (up to $\alpha \cdot n$)
- + **Remember:** If (v, d) failed first forwarding alternative $(v, \pi_v(1))$
- + Di-Graph P = (V', E') with $V' = V \setminus \{d\}$ and $E' = \{(v, \pi_v(1)) \mid v \in V_B\}$

Analysis – Tree Size

+ Size of the tree corresponds to received flows at root!

Analysis – Tree Size

- + Size of the tree corresponds to received flows at root!
- + Look at one root $r \in V_G$ in isolation. Edges not drawn yet
- + Tree is constructed layer-by-layer: Each $v \in V_B$ selects $\pi_v(1)$ u.a.r.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Analysis – Tree Size

- + Size of the tree corresponds to received flows at root!
- + Look at one root $r \in V_G$ in isolation. Edges not drawn yet
- + Tree is constructed layer-by-layer: Each $v \in V_B$ selects $\pi_v(1)$ u.a.r.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $r\in V_G$

•

 $X_0 = 1$
Analysis – Tree Size

- + Size of the tree corresponds to received flows at root!
- + Look at one root $r \in V_G$ in isolation. Edges not drawn yet
- + Tree is constructed layer-by-layer: Each $v \in V_B$ selects $\pi_v(1)$ u.a.r.

Analysis – Tree Size

- + Size of the tree corresponds to received flows at root!
- + Look at one root $r \in V_G$ in isolation. Edges not drawn yet
- + Tree is constructed layer-by-layer: Each $v \in V_B$ selects $\pi_v(1)$ u.a.r.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Analysis – Tree Size

- + Size of the tree corresponds to received flows at root!
- + Look at one root $r \in V_G$ in isolation. Edges not drawn yet
- + Tree is constructed layer-by-layer: Each $v \in V_B$ selects $\pi_v(1)$ u.a.r.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

For a fixed tree, we know:

1. $X_i \sim \text{Binomial distribution}$. Depending on previously uncovered layers

2.
$$\operatorname{Exp}[X_i] = n_i \cdot p_i \approx |V_B| \cdot \frac{X_{i-1}}{|V|} \leq \alpha \cdot X_{i-1}$$

For a fixed tree, we know:

- 1. $X_i \sim$ Binomial distribution. Depending on previously uncovered layers
- 2. $\operatorname{Exp}[X_i] = n_i \cdot p_i \approx |V_B| \cdot \frac{X_{i-1}}{|V|} \leq \alpha \cdot X_{i-1}$
- + Sequence $\{X_i\}$ can be seen as Markov Chain or Random Walk
- + Drifts towards 0 and does not exceed $O(\log n)$ w.h.p.

For a fixed tree, we know:

- 1. $X_i \sim \text{Binomial distribution}$. Depending on previously uncovered layers 2. $\text{Exp}[X_i] = n_i \cdot p_i \approx |V_B| \cdot \frac{X_{i-1}}{|V|} \leq \alpha \cdot X_{i-1}$
- + Sequence $\{X_i\}$ can be seen as Markov Chain or Random Walk
- + Drifts towards 0 and does not exceed $\mathcal{O}(\log n)$ w.h.p.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

For a fixed tree, we know:

1. $X_i \sim$ Binomial distribution. Depending on previously uncovered layers

2.
$$\operatorname{Exp}[X_i] = n_i \cdot p_i \approx |V_B| \cdot \frac{X_{i-1}}{|V|} \leq \alpha \cdot X_{i-1}$$

+ Sequence $\{X_i\}$ can be seen as Markov Chain or Random Walk

+ Drifts towards 0 and does not exceed $\mathcal{O}(\log n)$ w.h.p.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

For a fixed tree, we know:

1. $X_i \sim$ Binomial distribution. Depending on previously uncovered layers

2.
$$\operatorname{Exp}[X_i] = n_i \cdot p_i \approx |V_B| \cdot \frac{X_{i-1}}{|V|} \leq \alpha \cdot X_{i-1}$$

+ Sequence $\{X_i\}$ can be seen as Markov Chain or Random Walk

+ Drifts towards 0 and does not exceed $O(\log n)$ w.h.p.

For a fixed tree, we know:

1. $X_i \sim$ Binomial distribution. Depending on previously uncovered layers

2.
$$\operatorname{Exp}[X_i] = n_i \cdot p_i \approx |V_B| \cdot \frac{X_{i-1}}{|V|} \leq \alpha \cdot X_{i-1}$$

+ Sequence $\{X_i\}$ can be seen as Markov Chain or Random Walk

+ Drifts towards 0 and does not exceed $\mathcal{O}(\log n)$ w.h.p.

For a fixed tree, we know:

1. $X_i \sim$ Binomial distribution. Depending on previously uncovered layers

2.
$$\operatorname{Exp}[X_i] = n_i \cdot p_i \approx |V_B| \cdot \frac{X_{i-1}}{|V|} \leq \alpha \cdot X_{i-1}$$

+ Sequence $\{X_i\}$ can be seen as Markov Chain or Random Walk

+ Drifts towards 0 and does not exceed $\mathcal{O}(\log n)$ w.h.p.

For a fixed tree, we know:

1. $X_i \sim$ Binomial distribution. Depending on previously uncovered layers

2.
$$\operatorname{Exp}[X_i] = n_i \cdot p_i \approx |V_B| \cdot \frac{X_{i-1}}{|V|} \leq \alpha \cdot X_{i-1}$$

+ Sequence $\{X_i\}$ can be seen as Markov Chain or Random Walk

+ Drifts towards 0 and does not exceed $\mathcal{O}(\log n)$ w.h.p.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

For a fixed tree, we know:

1. $X_i \sim$ Binomial distribution. Depending on previously uncovered layers

2.
$$\operatorname{Exp}[X_i] = n_i \cdot p_i \approx |V_B| \cdot \frac{X_{i-1}}{|V|} \leq \alpha \cdot X_{i-1}$$

+ Sequence $\{X_i\}$ can be seen as Markov Chain or Random Walk

+ Drifts towards 0 and does not exceed $\mathcal{O}(\log n)$ w.h.p.

For a fixed tree, we know:

1. $X_i \sim$ Binomial distribution. Depending on previously uncovered layers

- 2. $\operatorname{Exp}[X_i] = n_i \cdot p_i \approx |V_B| \cdot \frac{X_{i-1}}{|V|} \leq \alpha \cdot X_{i-1}$
- + Sequence $\{X_i\}$ can be seen as Markov Chain or Random Walk
- + Drifts towards 0 and does not exceed $\mathcal{O}(\log n)$ w.h.p.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

For a fixed tree, we know:

- 1. $X_i \sim \text{Binomial distribution}$. Depending on previously uncovered layers 2. $\text{Exp}[X_i] = n_i \cdot p_i \approx |V_B| \cdot \frac{X_{i-1}}{|V|} \leq \alpha \cdot X_{i-1}$
- + Sequence $\{X_i\}$ can be seen as Markov Chain or Random Walk
- + Drifts towards 0 and does not exceed $\mathcal{O}(\log n)$ w.h.p.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

For a fixed tree, we know:

- 1. $X_i \sim \text{Binomial distribution}$. Depending on previously uncovered layers 2. $\text{Exp}[X_i] = n_i \cdot p_i \approx |V_B| \cdot \frac{X_{i-1}}{|V|} \leq \alpha \cdot X_{i-1}$
- + Sequence $\{X_i\}$ can be seen as Markov Chain or Random Walk
- + Drifts towards 0 and does not exceed $\mathcal{O}(\log n)$ w.h.p.

+
$$X_{i^*}$$
 hits 0 for $i^* < C_1 \log n$

+ Technical Result: $\sum_{i=0}^{i^*} X_i = \mathcal{O}(\log n \cdot \log \log n)$ w.h.p.

- + Until now: Neglected failed edges of the form $(\nu, \pi_{\nu}(1))$
- + Modify the graph *P* into *P_m* as follows

- + Until now: Neglected failed edges of the form $(\nu, \pi_{\nu}(1))$
- + Modify the graph *P* into *P_m* as follows

- + Until now: Neglected failed edges of the form $(\nu, \pi_{\nu}(1))$
- + Modify the graph *P* into *P_m* as follows

- + Until now: Neglected failed edges of the form $(\nu, \pi_{\nu}(1))$
- + Modify the graph P into P_m as follows

- $+\,$ Adversary does not know which edges are at pole-position of the permutations
- + $\mathcal{O}(\log n)$ subtrees are relocated w.h.p. ($\mathcal{O}(1)$ to the same component)
- + Height and size of trees does <u>not</u> change asymptotically

Analysis – Summary

 $+ P_m$ describes packets' routes after $\alpha \cdot n$ edges are failed

- $+\,$ Extend the simple permutation based approach
- $+\,$ Deal with forwarding loops

- $+\,$ Extend the simple permutation based approach
- + Deal with forwarding loops

- $+\,$ Extend the simple permutation based approach
- + Deal with forwarding loops

- $+\,$ Extend the simple permutation based approach
- + Deal with forwarding loops

- $+\,$ Extend the simple permutation based approach
- + Deal with forwarding loops

- $+\,$ Extend the simple permutation based approach
- + Deal with forwarding loops

- + Extend the simple permutation based approach
- + Deal with forwarding loops

- $+\,$ Extend the simple permutation based approach
- + Deal with forwarding loops

- + We know: Hop larger $C_1 \log n$ implies trapped in loop w.h.p.
- + **Caveat:** Flows travel in the cycle for $\mathcal{O}(\log n)$ hops and accumulate load

3-Permutations Protocol (POV of node v)

Input: A packet with destination d and hop count h

- 1: if (v, d) is intact then forward p to d and return
- 2: else if $h \leq C_1 \log n$ then send p to first reachable node in $\pi_v^{(1)}$
- 3: else if $h \le 2 \cdot C_1 \log n$ then send p to first reachable node in $\pi_v^{(2)}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 4: else send p to first reachable node in $\pi_v^{(3)}$
- 5: increase $h \neq = 1$

3-Permutations Protocol (POV of node v)

Input: A packet with destination d and hop count h

- 1: if (v, d) is intact then forward p to d and return
- 2: else if $h \leq C_1 \log n$ then send p to first reachable node in $\pi_v^{(1)}$
- 3: else if $h \le 2 \cdot C_1 \log n$ then send p to first reachable node in $\pi_v^{(2)}$
- 4: else send p to first reachable node in $\pi_v^{(3)}$
- 5: increase $h \neq 1$

Result (3-Permutations)

- $+\,$ Adversary fails up to $\alpha \cdot \textit{n}$ edges (any constant 0 $< \alpha <$ 1)
- + All-to-one routing to any destination d.
- 1. $\mathcal{O}(\log n)$ hops per packet
- 2. $\mathcal{O}(\log \log \log n)$ load at all but $\mathcal{O}(\log^2 n)$ nodes
- 3. $\mathcal{O}(\log^2 \cdot \log \log n)$ load at remaining nodes w.h.p.

3-Permutations – Analysis Sketch

- + For packets with $< C_1 \log n$ hops: Behavior same as Simple Permutation Based
- + Graph P_m based on $\pi_v^{(1)}$ describes first $C_1 \log n$ hops

3-Permutations – Analysis Sketch

- + For packets with $< C_1 \log n$ hops: Behavior same as Simple Permutation Based
- + Graph P_m based on $\pi_v^{(1)}$ describes first $C_1 \log n$ hops

3-Permutations – Analysis Sketch

- + For packets with $< C_1 \log n$ hops: Behavior same as Simple Permutation Based
- + Graph P_m based on $\pi_v^{(1)}$ describes first $C_1 \log n$ hops

3-Permutations – Analysis Sketch ctd.

- 1. No packet stuck in loop in all 3 graphs \Rightarrow 3 Permutations suffice
- 2. Every packet travels $< 3 \cdot C_1 \log n$ hops w.h.p.
- 3. Each node not on a cycle in any graph receives $\mathcal{O}(\log n \cdot \log \log n)$ load
- 4. Flow might spin $\Theta(\log n)$ times before "leaving" the loop \Rightarrow $O(\log n)$ factor load amplification

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Intervals Protocol

- $+\,$ Again extend upon simple permutation-based approach
- + Avoid temporary cycles w.h.p.
- $+\,$ Only relies on destination address

Intervals Protocol

- $+\,$ Again extend upon simple permutation-based approach
- + Avoid temporary cycles w.h.p.
- + Only relies on destination address

Concept

- + Partition the nodes V into $k=\mathcal{O}(\log n)$ sets $R_0,...,R_{k-1}\subseteq V$
- + Each $|R_i| \approx n/(4 \log_{1/\alpha} n) = O(n/\log n)$ for constant $0 < \alpha < 1$.
- + (Random) failover permutation π_v of $v \in R_i$ consists nodes in $R_{(i+1) \mod k}$ only

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $+\,$ Basic Permutation Routing Protocol using this set of permutations $\pi_{\nu}.$
Intervals Protocol - Avoiding Temporary Cycles

+ Assume adversary may destroy $\alpha \cdot |R_i| = O(n/\log n)$ edges per partition

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Intervals Protocol - Avoiding Temporary Cycles

+ Assume adversary may destroy $\alpha \cdot |R_i| = O(n/\log n)$ edges per partition

Intervals Protocol - Avoiding Temporary Cycles

+ Assume adversary may destroy $\alpha \cdot |R_i| = O(n/\log n)$ edges per partition

+ Packet moves to k consecutive "bad" nodes with probability $\alpha^k \ll \mathcal{O}(1/n)$

Intervals Protocol (POV of node v)

Input: A packet *p* with destination *d*

- 1: if (v, d) is intact then forward p to d and return
- 2: else send p to first directly reachable node in π_v

Intervals Protocol (POV of node v)

Input: A packet p with destination d

- 1: if (v, d) is intact then forward p to d and return
- 2: else send p to first directly reachable node in π_v

Result (Intervals)

+ Adversary fails up to $\alpha \cdot |R_i|$ edges in each partition R_i (const. 0 < α < 1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- + All-to-one-routing to any destination d
- 1. $\mathcal{O}(\log n)$ hops
- 2. $\mathcal{O}(\log n \cdot \log \log n)$ load on all nodes w.h.p.

+ Maximum resilience of $(1/e) \cdot (n/\ln n)$ for $\alpha = 1/e$

+ We know: Forwarding loops are avoided by construction w.h.p.

+ We know: Forwarding loops are avoided by construction w.h.p.

+ We know: Forwarding loops are avoided by construction w.h.p.

Nodes in V_B

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

+ We know: Forwarding loops are avoided by construction w.h.p.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Nodes in V_B

- + Size of tree $\mathcal{O}(\log n \cdot \log \log n)$
- + Height $\mathcal{O}(\log n)$

Shared-Permutations Protocol

- + Goal: Further decrease maximum load
- $+ \,$ Introduce additional type of permutation

Shared-Permutations Protocol

- + Goal: Further decrease maximum load
- + Introduce additional type of permutation

Concept

- + Globally shared (random) permutations π_i^G of all nodes $V \setminus \{d\}$ $(0 \le i \le C_2 \log n)$
 - **Input:** A packet with destination d and hop h arriving at v1: **if** (v, d) is intact **then** forward p to d and **return** 2: **else** forward p to the successor w of v in π_h^G

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Shared-Permutations Protocol

- + Goal: Further decrease maximum load
- + Introduce additional type of permutation

Concept

- + Globally shared (random) permutations π_i^G of all nodes $V \setminus \{d\}$ $(0 \le i \le C_2 \log n)$
 - **Input:** A packet with destination d and hop h arriving at v1: **if** (v, d) is intact **then** forward p to d and **return** 2: **else** forward p to the successor w of v in π_h^G
- + What if the edge (v, w) is failed?
- + Raise hop count to $E_1 > C_2 \log n + 1$ and use different routing strategy for p.
- + **Assumption:** Adversary does not know the π_i^G .

+ Assume $\alpha \cdot n$ failed edges of the form (v, d) for constant $0 < \alpha < 1$

+ **Invariant:** Any node $v \in V \setminus \{d\}$ receives flow from at most 1 source per hop value.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

+ Assume $\alpha \cdot n$ failed edges of the form (v, d) for constant $0 < \alpha < 1$

+ **Invariant:** Any node $v \in V \setminus \{d\}$ receives flow from at most 1 source per hop value.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- + Fraction of flows that *do not* reach *d* with *h* hops is roughly α^h
- + Results in a congestion of $\mathcal{O}(\sqrt{\log n})$ w.h.p.

Result (Shared-Permutations)

+ Adversary fails up to $\alpha \cdot n$ (const. $0 < \alpha < 1$)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- + All-to-one-routing to any destination d
- 1. $\mathcal{O}(\log n)$ hops
- 2. $\mathcal{O}(\sqrt{\log n})$ load on all nodes *w.h.p.*

Further Remarks

Empowered Adversary

- + Allow adversary to measure load
- + Eventually even local permutations can be inferred
- + Solution: Periodically regenerate random bits
- + 3-Permutations and Intervals: Re-compute the failover table locally and quickly.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Further Remarks

Empowered Adversary

- + Allow adversary to measure load
- + Eventually even local permutations can be inferred
- + Solution: Periodically regenerate random bits
- + 3-Permutations and Intervals: Re-compute the failover table locally and quickly.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

+ Also: recover from bad low probability events

Further Remarks

Empowered Adversary

- + Allow adversary to measure load
- + Eventually even local permutations can be inferred
- + Solution: Periodically regenerate random bits
- + 3-Permutations and Intervals: Re-compute the failover table locally and quickly.
- + Also: recover from bad low probability events

Reduced Amount of Failures

At most $n^{1-\delta}$ edge failures (any constant $\delta > 0$)

	3-Permutations	Intervals	Shared-Permutations
Load	$\mathcal{O}(1) \sim \mathcal{O}(\log n)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
Hops	$\mathcal{O}(1) \sim \mathcal{O}(\log n)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$

Empirical Results - Average Maximum Load

Setup

- + Complete graphs of increasing size
- + All-to-one routing to random destination d
- + Fail $[0.5 \cdot n]$ edges of the form (v, d)

Results

- + On average, no protocol induced load above $\log n \cdot \log \log n$
- + *Shared-Permutation* load below 7 in all experiments
- + 3-Permutations lower than expected

・ ロ ト ・ 西 ト ・ 日 ト ・ 日 ト

3

Outlook – Possible Future Work

Improved Model

- + Generalization to more realistic network models
- + Data-centers have constant diameter, implying high degree

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

+ Results should extend if degree at least polynomial in n

Simulations

- + More in-depth simulations
- + Different communication pattern
- + Data-center topologies
- + Comparison to deterministic schemes

Thank you very much for your attention!

	3-Permutations	Intervals	Shared-Permutations
Rule Set	Destination + Hop	Destination	Destination + Hop
Resilience	$\Theta(n)$	$\Theta(n/\log n)$	$\Theta(n)$
Congestion	$\mathcal{O}(\log^2 n \cdot \log \log n)$	$\mathcal{O}(\log n \cdot \log \log n)$	$\mathcal{O}(\sqrt{\log n})$
Hops	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
Bits	$\mathcal{O}(\log^2 n)$	$\mathcal{O}(\log^2 n)$	$\mathcal{O}(\log^3 n)$
Shared Data	×	×	\checkmark