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Local Failover Routing - Description

Routing Problem

+ Network of routers/switches. Deliver packets from source to destination

+ Desired: Low amount of required hops and congestion

Local Failover Protocol

+ For each node v with neighborhood Γ(v) pre-computable function

fv : (2Γ(v) × P)→ Γ(v)

Packet header information (e.g. dest address)

Next hop

Set of unreachable neighbors

Challenges

+ Fast forwarding ruleset ; depending on local information only

+ Low congestion hard (or impossible) to achieve under multiple link failures
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Existing Local Failover Protocols

+ Multiple deterministic approaches

+ Randomized protocol [Chiesa et al., ICALP 2016]

+ k-connected networks, arborescence cover, packet-based communication

+ Existing results either do not account for load or are deterministic

Negative Result

+ Congestion lower bound for deterministic local failover protocols [Borokhovich and
Schmid, OPODIS 2013]
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Model and Setting

Environment

+ Complete undirected Graph G = (V ,E ) with |V | = n.

+ May be generalized with arborescences or embedding
+ High degree and low diameter

Communication Model

+ Flow-based communication

+ Consecutive stream of packets sent by source s ∈ V to destination d ∈ V .

Challenging Communication Pattern - All-to-one Routing

+ Some destination node d

+ Each node V \ {d} sends out one flow targeted at d
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Model and Setting ctd.

Powerful Adversary

+ Knows employed failover strategy

+ Knows destination d

+ Allowed to fail a high amount of edges – up to Ω(n).



Deterministic Case Lower Bound

Theorem (Borokhovich and Schmid, OPODIS 2013)

Consider any local destination-based failover scheme in a clique graph. There exists a
set of ϕ (edge) failures (0 < ϕ < n) that results in a link load of at least ϕ.

Different Rulesets

+ Borokhovich and Schmid also give a
√
ϕ lower bound if ruleset includes source

adress.

+ Can be extended to also account for hop-count

+ Adversary can create a load of Ω(
√
n) by destroying O(n) links.
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Our Solution - Randomization

Goal: Break this bound and reduce the possible congestion significantly

Randomization

+ Observation: Each failover protocol has bad failure scenarios (due locality)

+ Idea: Make these scenarios unlikely to occur!

+ Results achieved with high probability (w.h.p.; at least prob. 1− n−1)

Adapted (oblivious) Adversary

+ May still know the protocol and all-to-one routing target d

+ Cannot know the nodes generated random bits or measure the network load
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Our Results - Overview

3-Permutations Intervals Shared-Permutations

Rule Set Destination + Hop Destination Destination + Hop 1

Resilience Θ(n) Θ(n/ log n) Θ(n)
Congestion O(log2 n · log log n) O(log n · log log n) O(

√
log n)

Hops O(log n) O(log n) O(log n)
Bits O(log2 n) O(log2 n) O(log3 n)

Shared Data 5 5 X

+ Congestion: Maximum number of flows crossing any node v ∈ V \ {d}
+ Number of failed edges up to resilience

+ Deterministic protocols would allow the adversary to induce a load of Ω(n/ log n)
or Ω(

√
n) respectively.

1may be raised to some arbitrary value of O(log log n) bits



Baseline Idea - Permutation Based Failover Routing

+ Domain of failover function fv grows exponentially with |Γ(v)|
+ Equip v with permutation πv of neighbors Γ(v) \ {d}

v

Γ(v) \ {d}
πv(1) πv(2)πv(3)

d

πv(4) πv(5)

Basic Permutation-Based Protocol (POV of node v)

Input: A packet p with destination d
1: if (v , d) is intact then forward p to d and return . Default route
2: else forward p over edge with smallest i s.t. (v , πv (i)) is not failed
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Permutation Based Routing - Observation

+ Randomized approach: Select πv uniformly at random at each node v

Bad News: Forwarding Loops

d

v

v′

πv(1) = v′πv′(1) = v

Good News: All-to-one Routing

If adversary fails α · n edges (for constant 0 < α < 1), then w.h.p.

+ All nodes not involved in a forwarding loop receive O(log n · log log n) flows

+ Packets not stuck in a loop reach d in O(log n) hops
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+ Assume only edges of the form (v , d) are failed (up to α · n)

+ Remember: If (v , d) failed first forwarding alternative (v , πv (1))

+ Di-Graph P = (V ′,E ′) with V ′ = V \ {d} and E ′ = { (v , πv (1)) | v ∈ VB}
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Analysis – Tree Size

+ Size of the tree corresponds to received flows at root!

+ Look at one root r ∈ VG in isolation. Edges not drawn yet

+ Tree is constructed layer-by-layer: Each v ∈ VB selects πv (1) u.a.r.
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Analysis – Tree Size
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Analysis – Tree Size ctd.

For a fixed tree, we know:

1. Xi ∼ Binomial distribution. Depending on previously uncovered layers

2. Exp[Xi ] = ni · pi ≈ |VB | · Xi−1

|V | ≤ α · Xi−1

+ Sequence {Xi} can be seen as Markov Chain or Random Walk

+ Drifts towards 0 and does not exceed O(log n) w.h.p.
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Analysis – Tree Size ctd.

For a fixed tree, we know:

1. Xi ∼ Binomial distribution. Depending on previously uncovered layers

2. Exp[Xi ] = ni · pi ≈ |VB | · Xi−1

|V | ≤ α · Xi−1

+ Sequence {Xi} can be seen as Markov Chain or Random Walk

+ Drifts towards 0 and does not exceed O(log n) w.h.p.

0 O(log n)

X8 = Xi∗

+ Xi∗ hits 0 for i∗ < C1 log n

+ Technical Result:
∑i∗

i=0 Xi = O(log n · log log n) w.h.p.
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Analysis – Accounting For All Failed Edges

+ Until now: Neglected failed edges of the form (v , πv (1))

+ Modify the graph P into Pm as follows

+ Adversary does not know which edges are at pole-position of the permutations

+ O(log n) subtrees are relocated w.h.p. (O(1) to the same component)

+ Height and size of trees does not change asymptotically



Analysis – Summary

+ Pm describes packets’ routes after α · n edges are failed

C1 · log n

size O (log n · log log n)

O(log n) many

length O(log n)
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3-Permutations Protocol

+ Extend the simple permutation based approach

+ Deal with forwarding loops

πv(i) = v′

πv′(i′) = v

π
(2)
v′ (i′) = v′′

C1 log n+ 1

d

v v′

v′′



3-Permutations Protocol

+ Extend the simple permutation based approach

+ Deal with forwarding loops

πv(i) = v′

πv′(i′) = v

π
(2)
v′ (i′) = v′′

d

v v′

v′′

+ We know: Hop larger C1 log n implies trapped in loop w.h.p.

+ Caveat: Flows travel in the cycle for O(log n) hops and accumulate load



3-Permutations Protocol (POV of node v)

Input: A packet with destination d and hop count h
1: if (v , d) is intact then forward p to d and return

2: else if h ≤ C1 log n then send p to first reachable node in π
(1)
v

3: else if h ≤ 2 · C1 log n then send p to first reachable node in π
(2)
v

4: else send p to first reachable node in π
(3)
v

5: increase h += 1

Result (3-Permutations)

+ Adversary fails up to α · n edges (any constant 0 < α < 1)

+ All-to-one routing to any destination d .

1. O(log n) hops per packet

2. O(log · log log n) load at all but O(log2 n) nodes

3. O(log2 · log log n) load at remaining nodes w.h.p.
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3-Permutations – Analysis Sketch ctd.

Pm

P
(3)
m

P
(2)
m

h > C1 log n

h > 2C1 log n

1. No packet stuck in loop in all 3
graphs ⇒ 3 Permutations suffice

2. Every packet travels < 3 · C1 log n
hops w.h.p.

3. Each node not on a cycle in any
graph receives O(log n · log log n)
load

4. Flow might spin Θ(log n) times
before “leaving” the loop ⇒
O(log n) factor load amplification



Intervals Protocol

+ Again extend upon simple permutation-based approach

+ Avoid temporary cycles w.h.p.

+ Only relies on destination address

Concept

+ Partition the nodes V into k = O(log n) sets R0, ...,Rk−1 ⊆ V

+ Each |Ri | ≈ n/(4 log1/α n) = O(n/ log n) for constant 0 < α < 1.

+ (Random) failover permutation πv of v ∈ Ri consists nodes in R(i+1) mod k only

+ Basic Permutation Routing Protocol using this set of permutations πv .
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Intervals Protocol - Avoiding Temporary Cycles

+ Assume adversary may destroy α · |Ri | = O(n/ log n) edges per partition

R0 R1 R2 Rk−1

Nodes v with failed link (v, d)

+ Packet moves to k consecutive “bad” nodes with probability αk � O(1/n)



Intervals Protocol (POV of node v)

Input: A packet p with destination d
1: if (v , d) is intact then forward p to d and return
2: else send p to first directly reachable node in πv

Result (Intervals)

+ Adversary fails up to α · |Ri | edges in each partition Ri (const. 0 < α < 1)

+ All-to-one-routing to any destination d

1. O(log n) hops

2. O(log n · log log n) load on all nodes w.h.p.

+ Maximum resilience of (1/e) · (n/ ln n) for α = 1/e
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Intervals Protocol – Analysis overview

+ We know: Forwarding loops are avoided by construction w.h.p.
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Intervals Protocol – Analysis overview

+ We know: Forwarding loops are avoided by construction w.h.p.

Nodes in VB

RiRi−1Ri−2

r ∈ VG

+ Size of tree O(log n · log log n)

+ Height O(log n)



Shared-Permutations Protocol

+ Goal: Further decrease maximum load

+ Introduce additional type of permutation

Concept

+ Globally shared (random) permutations πGi of all nodes V \ {d}
(0 ≤ i ≤ C2 log n)

Input: A packet with destination d and hop h arriving at v
1: if (v , d) is intact then forward p to d and return
2: else forward p to the successor w of v in πGh

+ What if the edge (v ,w) is failed?

+ Raise hop count to E1 > C2 log n + 1 and use different routing strategy for p.

+ Assumption: Adversary does not know the πGi .
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Shared-Permutations Protocol

+ Goal: Further decrease maximum load

+ Introduce additional type of permutation

Concept

+ Globally shared (random) permutations πGi of all nodes V \ {d}
(0 ≤ i ≤ C2 log n)

Input: A packet with destination d and hop h arriving at v
1: if (v , d) is intact then forward p to d and return
2: else forward p to the successor w of v in πGh

+ What if the edge (v ,w) is failed?

+ Raise hop count to E1 > C2 log n + 1 and use different routing strategy for p.

+ Assumption: Adversary does not know the πGi .
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+ Assume α · n failed edges of the form (v , d) for constant 0 < α < 1
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+ Invariant: Any node v ∈ V \ {d} receives flow from at most 1 source per hop
value.



Shared-Permutations - Key Concept

+ Assume α · n failed edges of the form (v , d) for constant 0 < α < 1

πG
1

Link to d failedv5 v6 v1 v4 v2 v3

2

+ Invariant: Any node v ∈ V \ {d} receives flow from at most 1 source per hop
value.

+ Fraction of flows that do not reach d with h hops is roughly αh

+ Results in a congestion of O(
√

log n) w.h.p.



Result (Shared-Permutations)

+ Adversary fails up to α · n (const. 0 < α < 1)

+ All-to-one-routing to any destination d

1. O(log n) hops

2. O(
√

log n) load on all nodes w.h.p.



Further Remarks

Empowered Adversary

+ Allow adversary to measure load

+ Eventually even local permutations can be inferred

+ Solution: Periodically regenerate random bits

+ 3-Permutations and Intervals: Re-compute the failover table locally and quickly.

+ Also: recover from bad low probability events

Reduced Amount of Failures

At most n1−δ edge failures (any constant δ > 0)

3-Permutations Intervals Shared-Permutations

Load O(1) ∼ O(log n) O(1) O(1)
Hops O(1) ∼ O(log n) O(1) O(1)
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Empirical Results - Average Maximum Load
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Setup

+ Complete graphs of increasing size

+ All-to-one routing to random
destination d

+ Fail d0.5 · ne edges of the form (v , d)

Results

+ On average, no protocol induced load
above log n · log log n

+ Shared-Permutation load below 7 in
all experiments

+ 3-Permutations lower than expected



Outlook – Possible Future Work

Improved Model

+ Generalization to more realistic network models

+ Data-centers have constant diameter, implying high degree

+ Results should extend if degree at least polynomial in n

Simulations

+ More in-depth simulations

+ Different communication pattern

+ Data-center topologies

+ Comparison to deterministic schemes



Thank you very much for your attention!

3-Permutations Intervals Shared-Permutations

Rule Set Destination + Hop Destination Destination + Hop

Resilience Θ(n) Θ(n/ log n) Θ(n)

Congestion O(log2 n · log log n) O(log n · log log n) O(
√

log n)

Hops O(log n) O(log n) O(log n)

Bits O(log2 n) O(log2 n) O(log3 n)

Shared Data 5 5 X
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