Maintaining Triangle Queries under Updates

Ahmet Kara, Milos Nikolic, Hung Q. Ngo, Dan Olteanu, Haozhe Zhang

Daniel Schmitt January 12, 2022

Motivation

Motivation

- Graphs as models for, e.g., social networks, the internet,...
- Triangles often appear in social networks
- Triangle counts: community detection, local clustering coefficient (Δ₁), transitivity ratio (Δ₀),...
- Social networks are dynamic

2/29

Outline

Motivation

Introduction

 IVM^{ϵ} for $\Delta_0()$

```
IVM<sup>\epsilon</sup> for \Delta_3(a, b, c) (sketch)
```

Rebalancing and Amortized Analysis (sketch)

Optimality (sketch)

Conclusion

Introduction

Database

Definition (Schema)

A schema $\mathbf{X} = (X_1, \dots, X_n)$ is a tuple of variables with discrete domain $Dom(\mathbf{X}) = Dom(X_1) \times \dots \times Dom(X_n)$.

Definition (Relation)

A relation K is a function $K : Dom(\mathbf{X}) \mapsto \mathbb{Z}$.

•
$$x \in K \iff K(x) \neq 0$$

• $|K| = |\{x \mid x \in K\}|$

Definition (Database)

A database D is a set of relations. $|D| = \sum_{K \in D} |K|$

Definition (Projection)

 π_{FX} is the projection of x onto the variables in the tuple F.

Definition (Selection) $\sigma_{F=t}K = \{x \in K \mid \pi_F x = t\}$

Queries

Relations R[A, B], S[B, C], T[C, A].

Ternary triangle query:

$$\Delta_3(a,b,c) = R(a,b) \cdot S(b,c) \cdot T(c,a)$$

Binary:
$$\Delta_2(a, b) = \sum_{c \in Dom(C)} R(a, b) \cdot S(b, c) \cdot T(c, a)$$

Unary: $\Delta_1(a) = \sum_{b \in Dom(B)} \sum_{c \in Dom(C)} R(a, b) \cdot S(b, c) \cdot T(c, a)$
Nullary:
 $\Delta_0() = \sum_{a \in Dom(A)} \sum_{b \in Dom(B)} \sum_{c \in Dom(C)} R(a, b) \cdot S(b, c) \cdot T(c, a)$
Result: $\Delta_{...}(...)$ for all free variables (if $\neq 0$)

Example Queries (R = S = T)

7/29

Incremental View Maintenance (for Δ_0)

For a single-tuple update $\delta R = \{(\alpha, \beta) \mapsto m\} \ (m \in \mathbb{Z}^*)$:

$$\Delta_0()+\delta\Delta_0()=\Delta_0()+\delta R(\alpha,\beta)\cdot \sum_{c\in Dom(C)}S(\beta,c)\cdot$$

 $\mathcal{O}(|D|)$ if linear #C values, could be precomputed

 $T(c, \alpha)$

Precompute auxiliary view

$$V_{ST}(b,a) = \sum_{c \in Dom(C)} S(b,c) \cdot T(c,a)$$

- $\mathcal{O}(1)$ delta query computation
- $\mathcal{O}(|D|)$ view maintenance
- $\mathcal{O}(|D|^2)$ space for V_{ST}

Key idea: Partiton relation s.t. #C-values is sublinear

IVM^{ϵ} for $\Delta_0()$

Definition (Partition)

For relation K over **X**, X in **X**, threshold θ , K is partitioned in K^H, K^L , if

union $K(x) = K^{H}(x) + K^{L}(x), x \in Dom(\mathbf{X})$ domain partiton $\pi_{X}K^{H} \cap \pi_{X}K^{L} = \emptyset$ heavy part for any X-value: $|\sigma_{X=x}K^{H}| \ge \frac{1}{2}\theta$ light part for any X-value: $|\sigma_{X=x}K^{L}| < \frac{3}{2}\theta$

Maintaining Δ_0

We want to maintain

$$\Delta_0() = \sum_{a,b,c} R(a,b) \cdot S(b,c) \cdot T(c,a)$$

=
$$\sum_{r,s,t \in \{H,L\}} \sum_{a,b,c} R^r(a,b) \cdot S^s(b,c) \cdot T^t(c,a)$$

=
$$\sum_{r,s,t \in \{H,L\}} \Delta_0^{rst}()$$

where $R[\mathbf{A}, B], S[\mathbf{B}, C], T[\mathbf{C}, A]$ are partitioned on A, B, C.

Maintain Δ_0^{rst} using different strategies:

- Compute $\delta \Delta_0^{rst}$ directly
- Compute $\delta \Delta_0^{\textit{rst}}$ using auxiliary materialized views

Definition (IVM^{ϵ} **State)** For $D = \{R, S, T\}$, $\epsilon \in [0, 1]$, an IVM^{ϵ} state is (ϵ, N, P, V) with:

1.
$$\frac{1}{4}N \le |D| < N \ (N = \Theta(|D|))$$

- 2. *P*: set of partitions of *R*, *S*, *T* with $\theta = N^{\epsilon}$
- 3. V: set of materialized views

Insight

- At most $\frac{N}{\frac{1}{2}N^{\epsilon}} = 2N^{1-\epsilon}$ distinct A-values can exist in R^{H}
- Any A-value in R^L appears less than $\frac{3}{2}N^{\epsilon}$ times

Maintaining $\delta \Delta_0^{rst}$

Update $\delta R^r = \{(\alpha, \beta) \mapsto m\}$ affects either R^H or R^L , i.e., only four partitions $\Delta_0^{rHH}, \Delta_0^{rHL}, \Delta_0^{rLH}, \Delta_0^{rLL}$ are maintained.

$$\delta \Delta_0^{rHH} = m \cdot \sum_c S^H(\beta, c) \cdot T^H(c, \alpha) \qquad \delta \Delta_0^{rLL} = m \cdot \sum_c S^L(\beta, c) \cdot T^L(c, \alpha)$$

 $\leq 2N^{1-\epsilon}$ distinct *C*-values, summing takes $\mathcal{O}(N^{1-\epsilon}) = \mathcal{O}(|D|^{1-\epsilon})$

 $<rac{3}{2}N^{\epsilon}$ tuples have given β , summing takes $\mathcal{O}(N^{\epsilon}) = \mathcal{O}(|D|^{\epsilon})$

 $\delta \Delta_0^{rLH}$: like $\delta \Delta_0^{rHH}$ or $\delta \Delta_0^{rLL}$, i.e., $\mathcal{O}(|D|^{\min\{\epsilon,1-\epsilon\}})$

Problem: Number of C-values could be linear in |D| for $\delta \Delta_0^{rHL}$ Solution:

• Materialized view $V_{ST}(b, a) = \sum_{c} S^{H}(b, c) \cdot T^{L}(c, a)$

•
$$\delta \Delta_0^{rHL} = m \cdot V_{ST}(\beta, \alpha)$$
 in $\mathcal{O}(1)$

 $\delta S^H = \{(\beta, \gamma) \mapsto m\}$ and $\delta T^L = \{(\gamma, \alpha) \mapsto m\}$ require view maintenance

Visualization of $\delta \Delta_0^{rHL}$ maintenance

Table 1: Update $\delta S^H = \{(\beta, \gamma) \mapsto m\}$

 δS^H : fixed γ , at most $\frac{3}{2}N^\epsilon$ tuples have $C = \gamma$ in T^L

Visualization of $\delta \Delta_0^{rHL}$ maintenance

Table 2: Update $\delta T^L = \{(\gamma, \alpha) \mapsto m\}$

 δT^L : fixed γ , at most $2N^{1-\epsilon}$ distinct *B*-values in S^H

Space Complexity for IVM^{ϵ} state (ϵ, N, P, V)

Obviously, $\epsilon, N = \mathcal{O}(1), |P| = |D|$

Three auxiliary materialized views are used:

1.
$$V_{ST}(b, a) = \sum_{c} S^{H}(b, c) \cdot T^{L}(c, a)$$

2. $V_{RS}(a, c) = \dots$
3. $V_{TR}(c, b) = \dots$

For V_{ST} :

$$\begin{aligned} |V_{ST}| &\leq \min\{N \cdot \frac{3}{2}N^{\epsilon}, N \cdot 2N^{1-\epsilon}\} \\ &= \mathcal{O}(|D|^{1+\min\{\epsilon, 1-\epsilon\}}) \end{aligned}$$

Theorem

For a database D, $\epsilon \in [0, 1]$, IVM^{ϵ} maintains Δ_0 for single-tuple updates with:

preprocessing $\mathcal{O}(|D|^{\frac{3}{2}})$ [2, 3, 4] update time $\mathcal{O}(|D|^{\max\{\epsilon,1-\epsilon\}})$ space $\mathcal{O}(|D|^{1+\min\{\epsilon,1-\epsilon\}})$ enumeration delay $\mathcal{O}(1)$

IVM^{ϵ} for $\Delta_3(a, b, c)$ (sketch)

We want to maintain

$$\begin{split} \Delta_3(a,b,c) &= R(a,b) \cdot S(b,c) \cdot T(c,a) \\ &= \Delta_3^{HHH}(a,b,c) + \Delta_3^{LLL}(a,b,c) \\ &+ \Delta_3^{\Box HL}(a,b,c) + \Delta_3^{H \Box L}(a,b,c) \\ &+ \Delta_3^{HL \Box}(a,b,c) \end{split}$$

We focus on Δ_3^{HHH} and $\Delta_3^{\boxminus HL}$.

Maintaining Δ^{HHH}

 Δ^{HHH} is materialized.

Α	В	С	Δ_3
α	β	<i>c</i> 1	
α	β	<i>c</i> ₂	
α	β		
α	β	C _k	

Update $\delta R^{H} = \{(\alpha, \beta) \mapsto m\}$ for $\Delta_{3}^{HHH}(a, b, c) = R^{H}(a, b) \cdot S^{H}(b, c) \cdot T^{H}(c, a)$ For fixed α , T^{H} has at most $\frac{3}{2}N^{1-\epsilon}$ C-values, i.e., $\mathcal{O}(|D|^{1-\epsilon})$ Space complexity: $\mathcal{O}(|D|^{\frac{3}{2}})$ Update $\delta R^{H} = \{(\alpha, \beta) \mapsto m\}$ for $\Delta_{3}^{\boxminus HL}(a, b, c) = \sum_{r \in \{H, L\}} R^{r}(a, b) \cdot S^{H}(b, c) \cdot T^{L}(c, a)$ *Direct Computation:* Possibly $\mathcal{O}(|D|)$ affected rows. *Auxiliary View:* $V_{ST}(b, c, a) = S^{H}(b, c) \cdot T^{L}(c, a)$ does not help *Solution:* factorized evaluation

Maintaining $\Delta^{\Box HL}$ using hierarchical views

 $V^{|}$

$$V_{ST}(b, c, a) = S^{H}(b, c) \cdot T^{L}(c, a)$$

$$\hat{V}_{ST}(b, a) = \sum_{c} V_{ST}(b, c, a)$$

$$\exists H^{L}(a, b) = \sum_{r \in \{H, L\}} R^{r}(a, b) \cdot \hat{V}_{ST}(b, a)$$

Enumeration: For all $(a, b) \in V^{\boxminus HL}$, find c in V_{ST} , $\mathcal{O}(1)$ delay Maintenance: $\mathcal{O}(|D|^{\max\{\epsilon,1-\epsilon\}})$ (like $\Delta_0()$) Space: $\mathcal{O}(|D|^{1+\min\{\epsilon,1-\epsilon\}})$ (like $\Delta_0()$)

Theorem

For a database D, $\epsilon \in [0, 1]$, IVM^{ϵ} maintains Δ_0 and Δ_3 for single-tuple updates with $\mathcal{O}(|D|^{\frac{3}{2}})$ preprocessing time, $\mathcal{O}(|D|^{\max\{\epsilon, 1-\epsilon\}})$ update time, $\mathcal{O}(1)$ enumeration delay, and space

$$\begin{array}{ll} \Delta_0 \ \mathcal{O}(|D|^{1+\min\{\epsilon,1-\epsilon\}}) \\ \Delta_3 \ \mathcal{O}(|D|^{\frac{3}{2}}) \end{array}$$

Results for Δ_1 , Δ_2 are similar.

Rebalancing and Amortized Analysis (sketch)

Major Rebalancing

Reminder

For $D = \{R, S, T\}$, $\epsilon \in [0, 1]$, an IVM^{ϵ} state is (ϵ, N, P, V) with:

1.
$$\frac{1}{4}N \leq |D| < N \ (N = \Theta(|D|))$$

2. *P*: a set of partitions of *R*, *S*, *T* with $\theta = N^{\epsilon}$
3. ...

Updates might change |D|; repartitioning and preprocessing takes $\mathcal{O}(|D|^{\frac{3}{2}})$.

Halving and doubling trick: major rebalancing at most every $\approx \frac{1}{4}N = \Theta(|D|)$ updates.

"
$$rac{\mathcal{O}(|D|^{rac{3}{2}})}{\Theta(|D|)} = \mathcal{O}(|D|^{rac{1}{2}})$$
" amortized update time

Minor Rebalancing

Reminder

For relation K over **X**, X in **X**, threshold $\theta = N^{\epsilon}$, K is partitioned in K^{H}, K^{L} , if

heavy part for any $x \in \pi_X \mathcal{K}^H$: $|\sigma_{X=x} \mathcal{K}^H| \ge \frac{1}{2}\theta$ light part for any $x \in \pi_X \mathcal{K}^L$: $|\sigma_{X=x} \mathcal{K}^L| < \frac{3}{2}\theta$

- Updates might change $|\sigma_{X=x}K^H|$ and $|\sigma_{X=x}K^L|$
- Rebalance: $\mathcal{O}(|D|^{\epsilon})$ tuples are deleted/reinserted
- Each update takes $\mathcal{O}(|D|^{\max\{\epsilon,1-\epsilon\}})$
- At least $\frac{1}{2}\theta = \Theta(|D|^{\epsilon})$ updates between rebalances

$$"\frac{\mathcal{O}(|D|^{\epsilon+\max\{\epsilon,1-\epsilon\}})}{\Theta(|D|^{\epsilon})} = \mathcal{O}(|D|^{\max\{\epsilon,1-\epsilon\}})" \text{ amortized update time}$$

Optimality (sketch)

Optimality

Online Vector-Matrix-Vector Multiplication Conjecture [1]

Given *n* pairs of *n*-dimensional boolean vectors (u_k, v_k) and a $n \times n$ matrix M, $(u_k)^T M v_k$ can not be computed one after the other in $\mathcal{O}(n^{3-\gamma})$ $(\gamma > 0)$

$$(u_i)^T M v_i = 1 \Leftrightarrow \exists i, j : u_k(i) = M(i, j) = v_k(j) = 1$$

Optimality

$$(u_i)^T M v_i = 1 \Leftrightarrow \exists i, j : u_k(i) = M(i, j) = v_k(j) = 1$$
$$\Leftrightarrow \exists i, j : R(a, i) \cdot S(i, j) \cdot T(j, a) = 1$$

Unless OMv fails, there is no algorithm that maintains Δ_{\dots} with $\mathcal{O}(|D|^{\frac{1}{2}-\gamma})$ update time and $\mathcal{O}(|D|^{1-\gamma})$ enumeration delay $(\gamma > 0)$.

26/29

Conclusion

Theorem

For a database D, $\epsilon \in [0, 1]$, IVM^{ϵ} maintains Δ_0 and Δ_3 with $\mathcal{O}(|D|^{\frac{3}{2}})$ preprocessing time, $\mathcal{O}(|D|^{\max\{\epsilon, 1-\epsilon\}})$ amortized update time, $\mathcal{O}(1)$ enumeration delay, and space

 $\begin{array}{l} \Delta_0 \ \mathcal{O}(|D|^{1+\min\{\epsilon,1-\epsilon\}}) \\ \Delta_3 \ \mathcal{O}(|D|^{\frac{3}{2}}) \end{array}$

Furthermore, IVM^{ϵ} is Pareto worst-case optimal for $\epsilon = \frac{1}{2}$, unless OMv fails.

References

- [1] Monika Henzinger et al. "Unifying and Strengthening Hardness for Dynamic Problems via the Online Matrix-Vector Multiplication Conjecture". In: *Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing*. STOC '15. Portland, Oregon, USA: Association for Computing Machinery, 2015, pp. 21–30. ISBN: 9781450335362. DOI: 10.1145/2746539.2746609. URL: https://doi.org/10.1145/2746539.2746609.
- [2] Hung Q Ngo et al. "Worst-case optimal join algorithms". In: Journal of the ACM (JACM) 65.3 (2018), pp. 1–40.

- [3] Todd L Veldhuizen. "Leapfrog triejoin: A simple, worst-case optimal join algorithm". In: arXiv preprint arXiv:1210.0481 (2012).
- [4] Todd L. Veldhuizen. "Triejoin: A Simple, Worst-Case Optimal Join Algorithm". In: *ICDT*. 2014.