Quantum graph algorithms

Joran van Apeldoorn

October 13, 2021

Basics

Quantum states

- A bit is 0 or 1 , a qubit is in a superposition of $|0\rangle$ and $|1\rangle$:

$$
|\psi\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle
$$

■ If we measure then we get one outcome. The probability of measuring $|0\rangle$ is $\left|\alpha_{0}\right|^{2}$. The probability of measuring $|1\rangle$ is $\left|\alpha_{1}\right|^{2}$.
■ Quantum states are normalized complex vectors, the classical states $|0\rangle,|1\rangle,|2\rangle, \ldots$ form a basis.

- For a qubit:

$$
|0\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad|1\rangle=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

- We combine qubits to create bigger states via tensor products.

Quantum gates

- We can change states by applying unitaries, since they keep vectors normalized.

Quantum gates

- We can change states by applying unitaries, since they keep vectors normalized.
- Unitaries on only a few qubits are called gates.

Quantum gates

- We can change states by applying unitaries, since they keep vectors normalized.
- Unitaries on only a few qubits are called gates.

$$
\begin{aligned}
I:=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad X:=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
Z:=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad H:=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] .
\end{aligned}
$$

Quantum gates

- We can change states by applying unitaries, since they keep vectors normalized.
- Unitaries on only a few qubits are called gates.

$$
\begin{aligned}
I:=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad X:=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
Z:=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad H:=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] .
\end{aligned}
$$

■ I does nothing.

Quantum gates

- We can change states by applying unitaries, since they keep vectors normalized.
- Unitaries on only a few qubits are called gates.

$$
\begin{aligned}
I:=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad X:=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
Z:=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad H:=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] .
\end{aligned}
$$

- I does nothing.
- X changes $|0\rangle$ into $|1\rangle$ and vice versa.

Quantum gates

- We can change states by applying unitaries, since they keep vectors normalized.
- Unitaries on only a few qubits are called gates.

$$
\begin{aligned}
I:=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad X:=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
Z:=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad H:=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] .
\end{aligned}
$$

- I does nothing.

■ X changes $|0\rangle$ into $|1\rangle$ and vice versa.
■ Z adds a -1 in front of $|1\rangle$.

Quantum gates

- We can change states by applying unitaries, since they keep vectors normalized.
- Unitaries on only a few qubits are called gates.

$$
\begin{aligned}
I:=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad X:=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
Z:=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad H:=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] .
\end{aligned}
$$

■ I does nothing.
■ X changes $|0\rangle$ into $|1\rangle$ and vice versa.

- Z adds a -1 in front of $|1\rangle$.
- H changes $|0\rangle$ and $|1\rangle$ into $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$ and $\frac{|0\rangle-|1\rangle}{\sqrt{2}}$.

Changing the basis

Claim: H is a basis transform

Changing the basis

Claim: H is a basis transform

Changing the basis

Claim: H is a basis transform

Changing the basis

Claim: H is a basis transform

A first circuit

What does this circuit do? We only need to try a basis (Why?).

A first circuit

What does this circuit do? We only need to try a basis (Why?). ■ On $|0\rangle$:

$$
|0\rangle \mapsto \frac{|0\rangle+|1\rangle}{\sqrt{2}}
$$

A first circuit

What does this circuit do? We only need to try a basis (Why?). ■ On $|0\rangle$:

$$
|0\rangle \mapsto \frac{|0\rangle+|1\rangle}{\sqrt{2}} \mapsto \frac{|0\rangle-|1\rangle}{\sqrt{2}}
$$

A first circuit

What does this circuit do? We only need to try a basis (Why?).

- On $|0\rangle$:

$$
|0\rangle \mapsto \frac{|0\rangle+|1\rangle}{\sqrt{2}} \mapsto \frac{|0\rangle-|1\rangle}{\sqrt{2}} \mapsto \frac{1}{2}(|0\rangle+|1\rangle-(|0\rangle-|1\rangle))
$$

A first circuit

What does this circuit do? We only need to try a basis (Why?).

- On $|0\rangle$:

$$
|0\rangle \mapsto \frac{|0\rangle+|1\rangle}{\sqrt{2}} \mapsto \frac{|0\rangle-|1\rangle}{\sqrt{2}} \mapsto \frac{1}{2}(|0\rangle+|1\rangle-(|0\rangle-|1\rangle))=|1\rangle
$$

A first circuit

What does this circuit do? We only need to try a basis (Why?).

- On $|0\rangle$:

$$
|0\rangle \mapsto \frac{|0\rangle+|1\rangle}{\sqrt{2}} \mapsto \frac{|0\rangle-|1\rangle}{\sqrt{2}} \mapsto \frac{1}{2}(|0\rangle+|1\rangle-(|0\rangle-|1\rangle))=|1\rangle
$$

- On $|1\rangle$:

$$
|1\rangle \mapsto \frac{|0\rangle-|1\rangle}{\sqrt{2}}
$$

A first circuit

What does this circuit do? We only need to try a basis (Why?).

- On $|0\rangle$:

$$
|0\rangle \mapsto \frac{|0\rangle+|1\rangle}{\sqrt{2}} \mapsto \frac{|0\rangle-|1\rangle}{\sqrt{2}} \mapsto \frac{1}{2}(|0\rangle+|1\rangle-(|0\rangle-|1\rangle))=|1\rangle
$$

- On $|1\rangle$:

$$
|1\rangle \mapsto \frac{|0\rangle-|1\rangle}{\sqrt{2}} \mapsto \frac{|0\rangle+|1\rangle}{\sqrt{2}}
$$

A first circuit

What does this circuit do? We only need to try a basis (Why?).

- On $|0\rangle$:

$$
|0\rangle \mapsto \frac{|0\rangle+|1\rangle}{\sqrt{2}} \mapsto \frac{|0\rangle-|1\rangle}{\sqrt{2}} \mapsto \frac{1}{2}(|0\rangle+|1\rangle-(|0\rangle-|1\rangle))=|1\rangle
$$

- On $|1\rangle$:

$$
|1\rangle \mapsto \frac{|0\rangle-|1\rangle}{\sqrt{2}} \mapsto \frac{|0\rangle+|1\rangle}{\sqrt{2}} \mapsto \frac{1}{2}(|0\rangle+|1\rangle+|0\rangle-|1\rangle)
$$

A first circuit

What does this circuit do? We only need to try a basis (Why?).

- On $|0\rangle$:

$$
|0\rangle \mapsto \frac{|0\rangle+|1\rangle}{\sqrt{2}} \mapsto \frac{|0\rangle-|1\rangle}{\sqrt{2}} \mapsto \frac{1}{2}(|0\rangle+|1\rangle-(|0\rangle-|1\rangle))=|1\rangle
$$

- On $|1\rangle$:

$$
|1\rangle \mapsto \frac{|0\rangle-|1\rangle}{\sqrt{2}} \mapsto \frac{|0\rangle+|1\rangle}{\sqrt{2}} \mapsto \frac{1}{2}(|0\rangle+|1\rangle+|0\rangle-|1\rangle)=|0\rangle
$$

This is a X gate!

A first circuit

What does this circuit do? We only need to try a basis (Why?).

- On $|0\rangle$:

$$
|0\rangle \mapsto \frac{|0\rangle+|1\rangle}{\sqrt{2}} \mapsto \frac{|0\rangle-|1\rangle}{\sqrt{2}} \mapsto \frac{1}{2}(|0\rangle+|1\rangle-(|0\rangle-|1\rangle))=|1\rangle
$$

- On $|1\rangle$:

$$
|1\rangle \mapsto \frac{|0\rangle-|1\rangle}{\sqrt{2}} \mapsto \frac{|0\rangle+|1\rangle}{\sqrt{2}} \mapsto \frac{1}{2}(|0\rangle+|1\rangle+|0\rangle-|1\rangle)=|0\rangle
$$

This is a X gate! Z is just X in the $\{|+\rangle,|-\rangle\}$ basis (and vice versa).

Reflections

We can also see this in our image.

Reflections

We can also see this in our image.
Z is a reflection through the $|0\rangle$ state.

Reflections

We can also see this in our image.
X is a reflection through the $|+\rangle$ state.

More gates

- We can also make gates controlled:

More gates

- We can also make gates controlled:

More gates

- We can also make gates controlled:

■ Classical algorithms make calls to the memory to get the input.

More gates

- We can also make gates controlled:

■ Classical algorithms make calls to the memory to get the input.
■ Quantum algorithms get an oracle that mimics this.

More gates

- We can also make gates controlled:

■ Classical algorithms make calls to the memory to get the input.

- Quantum algorithms get an oracle that mimics this.
- A binary oracle for an input $x \in\{0,1\}^{n}$ is a unitary

$$
O_{x}|i\rangle|b\rangle=|i\rangle\left|b \oplus x_{i}\right\rangle
$$

where \oplus is addition modulo 2 (or the XOR)

More gates

- We can also make gates controlled:

■ Classical algorithms make calls to the memory to get the input.

- Quantum algorithms get an oracle that mimics this.
- A binary oracle for an input $x \in\{0,1\}^{n}$ is a unitary

$$
O_{x}|i\rangle|b\rangle=|i\rangle\left|b \oplus x_{i}\right\rangle
$$

where \oplus is addition modulo 2 (or the XOR)

- Unitaries always have an inverse
\Rightarrow quantum circuits are always reversible.

Randomized algorithms

Let us get back to classical computing for a while:

Randomized algorithms

Let us get back to classical computing for a while:
■ Maybe our randomized algorithm does not always work, it has a success probability p.

Randomized algorithms

Let us get back to classical computing for a while:
■ Maybe our randomized algorithm does not always work, it has a success probability p.
■ Formally, The algorithm outputs:

Randomized algorithms

Let us get back to classical computing for a while:
■ Maybe our randomized algorithm does not always work, it has a success probability p.
■ Formally, The algorithm outputs:

- a 1 and a good solution with probability p, or

Randomized algorithms

Let us get back to classical computing for a while:
■ Maybe our randomized algorithm does not always work, it has a success probability p.
■ Formally, The algorithm outputs:

- a 1 and a good solution with probability p, or
- a 0 and a bad solution with probability $1-p$.
- An algorithm works with high probability if $p \geqslant 2 / 3$.

Randomized algorithms

Let us get back to classical computing for a while:
■ Maybe our randomized algorithm does not always work, it has a success probability p.
■ Formally, The algorithm outputs:

- a 1 and a good solution with probability p, or
- a 0 and a bad solution with probability $1-p$.
- An algorithm works with high probability if $p \geqslant 2 / 3$.
- What can we do if p is small?

Randomized algorithms

Let us get back to classical computing for a while:
■ Maybe our randomized algorithm does not always work, it has a success probability p.
■ Formally, The algorithm outputs:

- a 1 and a good solution with probability p, or
- a 0 and a bad solution with probability $1-p$.
- An algorithm works with high probability if $p \geqslant 2 / 3$.
- What can we do if p is small?
- Repeat

$$
\mathcal{O}\left(\frac{1}{p}\right)
$$

times.

Quantum algorithms \& small success probability

Back to quantum:

Quantum algorithms \& small success probability

Back to quantum:

- Quantum algorithms are inherently random.

Quantum algorithms \& small success probability

Back to quantum:

- Quantum algorithms are inherently random.
- A Hadamard gate can be used to flip a coin:

$$
H|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)
$$

Quantum algorithms \& small success probability

Back to quantum:

- Quantum algorithms are inherently random.
- A Hadamard gate can be used to flip a coin:

$$
H|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)
$$

■ A quantum algorithm might produce the state

$$
U|0\rangle=\alpha_{G}|G\rangle|1\rangle+\alpha_{B}|B\rangle|0\rangle
$$

Quantum algorithms \& small success probability

Back to quantum:

- Quantum algorithms are inherently random.
- A Hadamard gate can be used to flip a coin:

$$
H|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)
$$

■ A quantum algorithm might produce the state

$$
U|0\rangle=\alpha_{G}|G\rangle|1\rangle+\alpha_{B}|B\rangle|0\rangle
$$

■ $|G\rangle|1\rangle$ is the "Good" part of the state, $|B\rangle|0\rangle$ is the "Bad" part.

Quantum algorithms \& small success probability

Back to quantum:

- Quantum algorithms are inherently random.
- A Hadamard gate can be used to flip a coin:

$$
H|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)
$$

- A quantum algorithm might produce the state

$$
U|0\rangle=\alpha_{G}|G\rangle|1\rangle+\alpha_{B}|B\rangle|0\rangle
$$

- $|G\rangle|1\rangle$ is the "Good" part of the state, $|B\rangle|0\rangle$ is the "Bad" part.
- Is we just measure then the success probability is $p=\left|\alpha_{G}\right|^{2}$.

Three states

Let us write $|\psi\rangle:=\alpha_{G}|G\rangle|1\rangle+\alpha_{B}|B\rangle|0\rangle$

Three states

Let us write $|\psi\rangle:=\alpha_{G}|G\rangle|1\rangle+\alpha_{B}|B\rangle|0\rangle$

- What is the inner product between the good and the bad part?

Three states

Let us write $|\psi\rangle:=\alpha_{G}|G\rangle|1\rangle+\alpha_{B}|B\rangle|0\rangle$

- What is the inner product between the good and the bad part?

$$
\langle G \mid B\rangle\langle 1 \mid 0\rangle=\langle G \mid B\rangle \cdot 0=0
$$

Let us write $|\psi\rangle:=\alpha_{G}|G\rangle|1\rangle+\alpha_{B}|B\rangle|0\rangle$

- What is the inner product between the good and the bad part?

$$
\langle G \mid B\rangle\langle 1 \mid 0\rangle=\langle G \mid B\rangle \cdot 0=0
$$

■ So these two states are orthogonal!

Let us write $|\psi\rangle:=\alpha_{G}|G\rangle|1\rangle+\alpha_{B}|B\rangle|0\rangle$

- What is the inner product between the good and the bad part?

$$
\langle G \mid B\rangle\langle 1 \mid 0\rangle=\langle G \mid B\rangle \cdot 0=0
$$

■ So these two states are orthogonal!

- $|\psi\rangle$ is written in the $\{|G\rangle|1\rangle,|B\rangle|0\rangle\}$ basis.

Let us write $|\psi\rangle:=\alpha_{G}|G\rangle|1\rangle+\alpha_{B}|B\rangle|0\rangle$

- What is the inner product between the good and the bad part?

$$
\langle G \mid B\rangle\langle 1 \mid 0\rangle=\langle G \mid B\rangle \cdot 0=0
$$

■ So these two states are orthogonal!

- $|\psi\rangle$ is written in the $\{|G\rangle|1\rangle,|B\rangle|0\rangle\}$ basis.
- Everything is in a 2-dimensional subspace.

Three states - a picture

Three states - a picture

Amplitude amplification

■ Two reflections: through $|B\rangle|0\rangle$ and $|\psi\rangle$.

Amplitude amplification

- Two reflections: through $|B\rangle|0\rangle$ and $|\psi\rangle$.
- The product is a rotation \mathcal{A}, with angle 2θ.

Amplitude amplification

- Two reflections: through $|B\rangle|0\rangle$ and $|\psi\rangle$.
- The product is a rotation \mathcal{A}, with angle 2θ.
- After k iterations of \mathcal{A} we get

$$
\sin ((2 k+1) \theta)|G\rangle|1\rangle+\cos ((2 k+1))|B\rangle|0\rangle
$$

Amplitude amplification

- Two reflections: through $|B\rangle|0\rangle$ and $|\psi\rangle$.
- The product is a rotation \mathcal{A}, with angle 2θ.

■ After k iterations of \mathcal{A} we get

$$
\sin ((2 k+1) \theta)|G\rangle|1\rangle+\cos ((2 k+1))|B\rangle|0\rangle
$$

- If $(2 k+1) \theta \approx \pi / 2$ then $|\sin ((2 k+1) \theta)|^{2} \approx 1$.

Amplitude amplification

- Two reflections: through $|B\rangle|0\rangle$ and $|\psi\rangle$.
- The product is a rotation \mathcal{A}, with angle 2θ.

■ After k iterations of \mathcal{A} we get

$$
\sin ((2 k+1) \theta)|G\rangle|1\rangle+\cos ((2 k+1))|B\rangle|0\rangle
$$

- If $(2 k+1) \theta \approx \pi / 2$ then $|\sin ((2 k+1) \theta)|^{2} \approx 1$.
- Since $\theta=\arcsin \alpha_{G}$ we want

$$
k \approx\left(\frac{\pi}{2 \arcsin \alpha_{G}}-1\right) / 2
$$

Amplitude amplification

- Two reflections: through $|B\rangle|0\rangle$ and $|\psi\rangle$.
- The product is a rotation \mathcal{A}, with angle 2θ.
- After k iterations of \mathcal{A} we get

$$
\sin ((2 k+1) \theta)|G\rangle|1\rangle+\cos ((2 k+1))|B\rangle|0\rangle
$$

- If $(2 k+1) \theta \approx \pi / 2$ then $|\sin ((2 k+1) \theta)|^{2} \approx 1$.
- Since $\theta=\arcsin \alpha_{G}$ we want

$$
k \approx\left(\frac{\pi}{2 \arcsin \alpha_{G}}-1\right) / 2=\mathcal{O}\left(\frac{1}{\left|\alpha_{G}\right|}\right)
$$

Amplitude amplification

- Two reflections: through $|B\rangle|0\rangle$ and $|\psi\rangle$.
- The product is a rotation \mathcal{A}, with angle 2θ.
- After k iterations of \mathcal{A} we get

$$
\sin ((2 k+1) \theta)|G\rangle|1\rangle+\cos ((2 k+1))|B\rangle|0\rangle
$$

- If $(2 k+1) \theta \approx \pi / 2$ then $|\sin ((2 k+1) \theta)|^{2} \approx 1$.
- Since $\theta=\arcsin \alpha_{G}$ we want

$$
k \approx\left(\frac{\pi}{2 \arcsin \alpha_{G}}-1\right) / 2=\mathcal{O}\left(\frac{1}{\left|\alpha_{G}\right|}\right)=\mathcal{O}\left(\frac{1}{\sqrt{p}}\right)
$$

Amplitude amplification

- Two reflections: through $|B\rangle|0\rangle$ and $|\psi\rangle$.
- The product is a rotation \mathcal{A}, with angle 2θ.
- After k iterations of \mathcal{A} we get

$$
\sin ((2 k+1) \theta)|G\rangle|1\rangle+\cos ((2 k+1))|B\rangle|0\rangle
$$

- If $(2 k+1) \theta \approx \pi / 2$ then $|\sin ((2 k+1) \theta)|^{2} \approx 1$.
- Since $\theta=\arcsin \alpha_{G}$ we want

$$
k \approx\left(\frac{\pi}{2 \arcsin \alpha_{G}}-1\right) / 2=\mathcal{O}\left(\frac{1}{\left|\alpha_{G}\right|}\right)=\mathcal{O}\left(\frac{1}{\sqrt{p}}\right)
$$

■ Nice, but can we actually implement these reflections?

Implementing the reflections

The reflection through $|B\rangle|0\rangle$:

Implementing the reflections

The reflection through $|B\rangle|0\rangle$:

- Do nothing to the bad state.
- Add a -1 to the good state.

Implementing the reflections

The reflection through $|B\rangle|0\rangle$:

- Do nothing to the bad state.

■ Add a -1 to the good state.
Apply a Z gate to the last bit.

Implementing the reflections

The reflection through $|B\rangle|0\rangle$:

- Do nothing to the bad state.
- Add a -1 to the good state.

Apply a Z gate to the last bit.
The reflection through $|\psi\rangle$:

Implementing the reflections

The reflection through $|B\rangle|0\rangle$:

- Do nothing to the bad state.
- Add a -1 to the good state.

Apply a Z gate to the last bit.
The reflection through $|\psi\rangle$:

- Do nothing to $|\psi\rangle$.

■ Add a -1 to states orthogonal to it.

Implementing the reflections

The reflection through $|B\rangle|0\rangle$:

- Do nothing to the bad state.
- Add a -1 to the good state.

Apply a Z gate to the last bit.
The reflection through $|\psi\rangle$:

- Do nothing to $|\psi\rangle$.

■ Add a -1 to states orthogonal to it.
Use that $|\psi\rangle=U|0\rangle$:

1. Apply U^{-1} to map $|\psi\rangle$ to $|0\rangle$.
2. Reflect through $|0\rangle$.
3. Apply U to map $|0\rangle$ to back to $|\psi\rangle$.

Example: the search problem

Before amplitude amplification there was Grover ('96).

Example: the search problem

Before amplitude amplification there was Grover ('96).

Search problem

Input: $x \in\{0,1\}^{N}$ with k ones.
Goal: Find an i such that $x_{i}=1$ with few queries.

Example: the search problem

Before amplitude amplification there was Grover ('96).

Search problem

Input: $x \in\{0,1\}^{N}$ with k ones.
Goal: Find an i such that $x_{i}=1$ with few queries.
How can we do this classically?

Example: the search problem

Before amplitude amplification there was Grover ('96).
Search problem
Input: $x \in\{0,1\}^{N}$ with k ones.
Goal: Find an i such that $x_{i}=1$ with few queries.
How can we do this classically?
■ Go over the bits: $\mathcal{O}(N)$ queries.

Example: the search problem

Before amplitude amplification there was Grover ('96).

Search problem

Input: $x \in\{0,1\}^{N}$ with k ones.
Goal: Find an i such that $x_{i}=1$ with few queries.
How can we do this classically?
■ Go over the bits: $\mathcal{O}(N)$ queries.
■ Randomly pick an i and repeat: $\mathcal{O}(N / k)$ queries.

Example: the search problem

Before amplitude amplification there was Grover ('96).

Search problem

Input: $x \in\{0,1\}^{N}$ with k ones.
Goal: Find an i such that $x_{i}=1$ with few queries.
How can we do this classically?
■ Go over the bits: $\mathcal{O}(N)$ queries.
■ Randomly pick an i and repeat: $\mathcal{O}(N / k)$ queries.
Using amplitude amplification:

- Superposition over i, x_{i} and amplify: $\mathcal{O}(\sqrt{N / k})$ queries.

Example: the search problem

Before amplitude amplification there was Grover ('96).

Search problem

Input: $x \in\{0,1\}^{N}$ with k ones.
Goal: Find an i such that $x_{i}=1$ with few queries.
How can we do this classically?
■ Go over the bits: $\mathcal{O}(N)$ queries.

- Randomly pick an i and repeat: $\mathcal{O}(N / k)$ queries.

Using amplitude amplification:

- Superposition over i, x_{i} and amplify: $\mathcal{O}(\sqrt{N / k})$ queries.

To find all: $O(\sqrt{N k})$

Graphs

Building a spanning tree

Goal: given adjacency matrix queries for a connected graph, find a spanning tree.

Building a spanning tree

Goal: given adjacency matrix queries for a connected graph, find a spanning tree.

- Start with an empty tree and $c=n$ components.

Building a spanning tree

Goal: given adjacency matrix queries for a connected graph, find a spanning tree.

- Start with an empty tree and $c=n$ components.
- There are at least $c-1$ edges that connect two components, out of n^{2} possible edges.

Building a spanning tree

Goal: given adjacency matrix queries for a connected graph, find a spanning tree.

- Start with an empty tree and $c=n$ components.
- There are at least $c-1$ edges that connect two components, out of n^{2} possible edges.
■ Grover search using $O\left(\sqrt{n^{2} /(c-1)}\right)$ queries to find such edge.

Building a spanning tree

Goal: given adjacency matrix queries for a connected graph, find a spanning tree.

■ Start with an empty tree and $c=n$ components.
■ There are at least $c-1$ edges that connect two components, out of n^{2} possible edges.

- Grover search using $O\left(\sqrt{n^{2} /(c-1)}\right)$ queries to find such edge.
- Repeat n times:

Building a spanning tree

Goal: given adjacency matrix queries for a connected graph, find a spanning tree.

- Start with an empty tree and $c=n$ components.
- There are at least $c-1$ edges that connect two components, out of n^{2} possible edges.
■ Grover search using $O\left(\sqrt{n^{2} /(c-1)}\right)$ queries to find such edge.
- Repeat n times:

$$
\sum_{c=2}^{n} n \sqrt{1 /(c-1)} \leqslant n \int_{0}^{n} c^{-1 / 2} d c=O\left(n^{1.5}\right)
$$

Goal: given adjacency list queries, perform a breadth-first search.

Goal: given adjacency list queries, perform a breadth-first search.

- In BFS for each node we do:

Goal: given adjacency list queries, perform a breadth-first search.

- In BFS for each node we do:
- Check all outgoing edges for unvisited nodes.

Goal: given adjacency list queries, perform a breadth-first search.

- In BFS for each node we do:
- Check all outgoing edges for unvisited nodes.
- Add those nodes to the queue

Goal: given adjacency list queries, perform a breadth-first search.

- In BFS for each node we do:
- Check all outgoing edges for unvisited nodes.
- Add those nodes to the queue

■ Classically we check each edge twice: $O(E)$ queries/time.

Goal: given adjacency list queries, perform a breadth-first search.

- In BFS for each node we do:
- Check all outgoing edges for unvisited nodes.
- Add those nodes to the queue

■ Classically we check each edge twice: $O(E)$ queries/time.

- Quantumly we may use Grover's search:

Goal: given adjacency list queries, perform a breadth-first search.

- In BFS for each node we do:
- Check all outgoing edges for unvisited nodes.
- Add those nodes to the queue

■ Classically we check each edge twice: $O(E)$ queries/time.
■ Quantumly we may use Grover's search:

- Say node v_{j} has d_{j} neighbors, t_{j} not visited.

Goal: given adjacency list queries, perform a breadth-first search.

- In BFS for each node we do:
- Check all outgoing edges for unvisited nodes.
- Add those nodes to the queue

■ Classically we check each edge twice: $O(E)$ queries/time.
■ Quantumly we may use Grover's search:

- Say node v_{j} has d_{j} neighbors, t_{j} not visited.
- We know $\sum_{j} d_{j}=2 m, \sum_{j} t_{j}=n$.

BFS

Goal: given adjacency list queries, perform a breadth-first search.

- In BFS for each node we do:
- Check all outgoing edges for unvisited nodes.
- Add those nodes to the queue

■ Classically we check each edge twice: $O(E)$ queries/time.
■ Quantumly we may use Grover's search:

- Say node v_{j} has d_{j} neighbors, t_{j} not visited.
- We know $\sum_{j} d_{j}=2 m, \sum_{j} t_{j}=n$.

$$
\sum_{j=1}^{n} \sqrt{d_{j} t_{j}} \leqslant \sqrt{\sum_{j=1}^{n} d_{j} \sum_{j=1}^{n} t_{j}}=O(\sqrt{n m})
$$

BFS

Goal: given adjacency list queries, perform a breadth-first search.

- In BFS for each node we do:
- Check all outgoing edges for unvisited nodes.
- Add those nodes to the queue

■ Classically we check each edge twice: $O(E)$ queries/time.
■ Quantumly we may use Grover's search:

- Say node v_{j} has d_{j} neighbors, t_{j} not visited.
- We know $\sum_{j} d_{j}=2 m, \sum_{j} t_{j}=n$.

$$
\sum_{j=1}^{n} \sqrt{d_{j} t_{j}} \leqslant \sqrt{\sum_{j=1}^{n} d_{j} \sum_{j=1}^{n} t_{j}=O(\sqrt{n m}) .}
$$

Application: Matching in $O(V \sqrt{E})$

That was it!

