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Quantum states

m A bitis 0 or 1, a qubit is in a superposition of |0) and |1):
) = a0 |0) + a1 |1)

m If we measure then we get one outcome.
The probability of measuring [0) is |avo|?.
The probability of measuring [1) is | |°.

m Quantum states are normalized complex vectors, the classical
states [0),]1),2),... form a basis.

m For a qubit:
oo w-[d

m We combine qubits to create bigger states via tensor products.
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Quantum gates

m We can change states by applying unitaries, since they keep
vectors normalized.

m Unitaries on only a few qubits are called gates.

10 01
loal =]
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| does nothing.

X changes |0) into |1) and vice versa.
Z adds a —1 in front of |1).

H changes |0) and |1) into |O>\J}2‘l> and |0>\;§‘1>.




Changing the basis

Claim: H is a basis transform



Changing the basis

Claim: H is a basis transform

0+ D
V2

-

|+) 7

=)




Changing the basis

Claim: H is a basis transform

0+ D
V2

-

|+) 7

=)

L

0)



Changing the basis

Claim: H is a basis transform

0+ D
V2

+):

L




A first circuit
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A first circuit

(Hf—{z}—{H]
What does this circuit do? We only need to try a basis (Why?).

m On |0):
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A first circuit

(Hf—{z}—{H]
What does this circuit do? We only need to try a basis (Why?).

= On [0):

o OER L D2 S o - (00— 1)) =
a On [1):

- D2 IR 2040+ 0 - 1) = [0y

This is a X gate! Zis just X in the {|+),|—)} basis (and vice versa).

4/15
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We can also see this in our image.

X is a reflection through the |+) state.
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m We can also make gates controlled:

1 00O
e 0100
0 001
0 01O
BRI

m Classical algorithms make calls to the memory to get the input.
m Quantum algorithms get an oracle that mimics this.

m A binary oracle for an input x € {0,1}" is a unitary
O« |i)]b) = |D[b® xi)

where @ is addition modulo 2 (or the XOR)
m Unitaries always have an inverse
= quantum circuits are always reversible.




Amplitude amplification
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Randomized algorithms

Let us get back to classical computing for a while:
m Maybe our randomized algorithm does not always work, it has a
success probability p.
m Formally, The algorithm outputs:

» a 1 and a good solution with probability p, or
> a 0 and a bad solution with probability 1 — p.

m An algorithm works with high probability if p > 2/3.

m What can we do if p is small?

m Repeat

times.

7/15



Quantum algorithms & small success probability

Back to quantum:



Quantum algorithms & small success probability

Back to quantum:

m Quantum algorithms are inherently random.



Quantum algorithms & small success probability

Back to quantum:
m Quantum algorithms are inherently random.

m A Hadamard gate can be used to flip a coin:

H10) = \f(|0>+ 1))



Quantum algorithms & small success probability

Back to quantum:
m Quantum algorithms are inherently random.

m A Hadamard gate can be used to flip a coin:

H10) = \f(|0>+ 1))

m A quantum algorithm might produce the state

Ul0) = ag|G)[1) + a5 |B)|0)



Quantum algorithms & small success probability

Back to quantum:
m Quantum algorithms are inherently random.

m A Hadamard gate can be used to flip a coin:

H10) = \f(|0>+ 1))

m A quantum algorithm might produce the state

Ul0) = ag|G)[1) + a5 |B)|0)

m |G)|1) is the “Good" part of the state, |B)|0) is the "Bad” part.



Quantum algorithms & small success probability

Back to quantum:
m Quantum algorithms are inherently random.

m A Hadamard gate can be used to flip a coin:

H10) = \f(|0>+ 1))

m A quantum algorithm might produce the state

Ul0) = ag|G)[1) + a5 |B)|0)

m |G)|1) is the “Good" part of the state, |B)|0) is the "Bad” part.

m Is we just measure then the success probability is p = |ag\2.
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Three states

Let us write [¢) := ag |G)|1) + ag|B)|0)
m What is the inner product between the good and the bad part?

(G|B)(1]0) = (G|B)-0 =0

m So these two states are orthogonall!
m [¢)) is written in the {|G)|1),|B)|0)} basis.

m Everything is in a 2-dimensional subspace.
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Amplitude amplification

m Two reflections: through |B)|0) and |)).
m The product is a rotation A, with angle 26.

m After k iterations of A we get

sin ((2k + 1)0) |GY|1) + cos ((2k + 1)) | BY|0)

If (2k + 1)0 ~ 7/2 then |sin ((2k + 1)0)[* ~ 1.

Since 6 = arcsin arg we want

e~ (zamae 1) 2= (juar) :OQE)

m Nice, but can we actually implement these reflections?
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Implementing the reflections

The reflection through |B)(0):
m Do nothing to the bad state.
m Add a —1 to the good state.
Apply a Z gate to the last bit.

The reflection through |1)):

m Do nothing to |¢).

m Add a —1 to states orthogonal to it.
Use that [¢)) = U |0):

1. Apply U™t to map [¢) to |0).

2. Reflect through |0).

3. Apply U to map |0) to back to [t)).

12/ 15
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Before amplitude amplification there was Grover ('96).

Search problem

Input: x € {0, 1}V with k ones.
Goal: Find an j such that x; = 1 with few queries.

How can we do this classically?

m Go over the bits: O (N) queries.

m Randomly pick an i and repeat: O (N/k) queries.
Using amplitude amplification:

m Superposition over 7, x; and amplify: O ( N/k) queries.
To find all: O(v/Nk)

13/ 15
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Goal: given adjacency matrix queries for a connected graph, find a
spanning tree.

m Start with an empty tree and ¢ = n components.

m There are at least ¢ — 1 edges that connect two components, out
of n? possible edges.

m Grover search using O(1/n?/(c — 1)) queries to find such edge.
m Repeat n times:

Z m/1/(c—1)<n| ¢ 2dc = O(n'?)
c=2 0
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BFS

Goal: given adjacency list queries, perform a breadth-first search.
m In BFS for each node we do:
> Check all outgoing edges for unvisited nodes.
> Add those nodes to the queue
m Classically we check each edge twice: O(E) queries/time.
m Quantumly we may use Grover's search:

> Say node v; has d; neighbors, t; not visited.
> We know > . dj =2m, > t; = n.

Application: Matching in O(V+/E)
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That was it!
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