
Quantum graph algorithms

Joran van Apeldoorn

October 13, 2021



Basics



Quantum states

A bit is 0 or 1, a qubit is in a superposition of |0y and |1y:

|ψy “ α0 |0y ` α1 |1y

If we measure then we get one outcome.
The probability of measuring |0y is |α0|

2.
The probability of measuring |1y is |α1|

2.

Quantum states are normalized complex vectors, the classical
states |0y , |1y , |2y , . . . form a basis.

For a qubit:

|0y “

„

1
0



|1y “

„

0
1



We combine qubits to create bigger states via tensor products.

1 / 15



Quantum gates

We can change states by applying unitaries, since they keep
vectors normalized.

Unitaries on only a few qubits are called gates.

I :“

„

1 0
0 1



, X :“

„

0 1
1 0



,

Z :“

„

1 0
0 ´1



, H :“
1
?

2

„

1 1
1 ´1



.

I does nothing.

X changes |0y into |1y and vice versa.

Z adds a ´1 in front of |1y.

H changes |0y and |1y into |0y`|1y
?
2

and |0y´|1y
?
2

.

2 / 15



Quantum gates

We can change states by applying unitaries, since they keep
vectors normalized.

Unitaries on only a few qubits are called gates.

I :“

„

1 0
0 1



, X :“

„

0 1
1 0



,

Z :“

„

1 0
0 ´1



, H :“
1
?

2

„

1 1
1 ´1



.

I does nothing.

X changes |0y into |1y and vice versa.

Z adds a ´1 in front of |1y.

H changes |0y and |1y into |0y`|1y
?
2

and |0y´|1y
?
2

.

2 / 15



Quantum gates

We can change states by applying unitaries, since they keep
vectors normalized.

Unitaries on only a few qubits are called gates.

I :“

„

1 0
0 1



, X :“

„

0 1
1 0



,

Z :“

„

1 0
0 ´1



, H :“
1
?

2

„

1 1
1 ´1



.

I does nothing.

X changes |0y into |1y and vice versa.

Z adds a ´1 in front of |1y.

H changes |0y and |1y into |0y`|1y
?
2

and |0y´|1y
?
2

.

2 / 15



Quantum gates

We can change states by applying unitaries, since they keep
vectors normalized.

Unitaries on only a few qubits are called gates.

I :“

„

1 0
0 1



, X :“

„

0 1
1 0



,

Z :“

„

1 0
0 ´1



, H :“
1
?

2

„

1 1
1 ´1



.

I does nothing.

X changes |0y into |1y and vice versa.

Z adds a ´1 in front of |1y.

H changes |0y and |1y into |0y`|1y
?
2

and |0y´|1y
?
2

.

2 / 15



Quantum gates

We can change states by applying unitaries, since they keep
vectors normalized.

Unitaries on only a few qubits are called gates.

I :“

„

1 0
0 1



, X :“

„

0 1
1 0



,

Z :“

„

1 0
0 ´1



, H :“
1
?

2

„

1 1
1 ´1



.

I does nothing.

X changes |0y into |1y and vice versa.

Z adds a ´1 in front of |1y.

H changes |0y and |1y into |0y`|1y
?
2

and |0y´|1y
?
2

.

2 / 15



Quantum gates

We can change states by applying unitaries, since they keep
vectors normalized.

Unitaries on only a few qubits are called gates.

I :“

„

1 0
0 1



, X :“

„

0 1
1 0



,

Z :“

„

1 0
0 ´1



, H :“
1
?

2

„

1 1
1 ´1



.

I does nothing.

X changes |0y into |1y and vice versa.

Z adds a ´1 in front of |1y.

H changes |0y and |1y into |0y`|1y
?
2

and |0y´|1y
?
2

.

2 / 15



Quantum gates

We can change states by applying unitaries, since they keep
vectors normalized.

Unitaries on only a few qubits are called gates.

I :“

„

1 0
0 1



, X :“

„

0 1
1 0



,

Z :“

„

1 0
0 ´1



, H :“
1
?

2

„

1 1
1 ´1



.

I does nothing.

X changes |0y into |1y and vice versa.

Z adds a ´1 in front of |1y.

H changes |0y and |1y into |0y`|1y
?
2

and |0y´|1y
?
2

.

2 / 15



Changing the basis

Claim: H is a basis transform

|`y :“
|0y ` |1y
?

2
|´y :“

|0y ´ |1y
?

2

|0y

|1y

|`y

|´y

3 / 15



Changing the basis

Claim: H is a basis transform

|`y :“
|0y ` |1y
?

2
|´y :“

|0y ´ |1y
?

2

|0y

|1y

|`y

|´y

3 / 15



Changing the basis

Claim: H is a basis transform

|`y :“
|0y ` |1y
?

2
|´y :“

|0y ´ |1y
?

2

|0y

|1y

|`y

|´y

3 / 15



Changing the basis

Claim: H is a basis transform

|`y :“
|0y ` |1y
?

2
|´y :“

|0y ´ |1y
?

2

|0y

|1y

|`y

|´y

3 / 15



A first circuit

H Z H

What does this circuit do? We only need to try a basis (Why?).

On |0y:

|0y ÞÑ
|0y ` |1y
?

2
ÞÑ
|0y ´ |1y
?

2
ÞÑ

1

2
p|0y ` |1y ´ p|0y ´ |1yqq “ |1y

On |1y:

|1y ÞÑ
|0y ´ |1y
?

2
ÞÑ
|0y ` |1y
?

2
ÞÑ

1

2
p|0y ` |1y ` |0y ´ |1yq “ |0y

This is a X gate! Z is just X in the t|`y , |´yu basis (and vice versa).

4 / 15



A first circuit

H Z H

What does this circuit do? We only need to try a basis (Why?).

On |0y:

|0y ÞÑ
|0y ` |1y
?

2

ÞÑ
|0y ´ |1y
?

2
ÞÑ

1

2
p|0y ` |1y ´ p|0y ´ |1yqq “ |1y

On |1y:

|1y ÞÑ
|0y ´ |1y
?

2
ÞÑ
|0y ` |1y
?

2
ÞÑ

1

2
p|0y ` |1y ` |0y ´ |1yq “ |0y

This is a X gate! Z is just X in the t|`y , |´yu basis (and vice versa).

4 / 15



A first circuit

H Z H

What does this circuit do? We only need to try a basis (Why?).

On |0y:

|0y ÞÑ
|0y ` |1y
?

2
ÞÑ
|0y ´ |1y
?

2

ÞÑ
1

2
p|0y ` |1y ´ p|0y ´ |1yqq “ |1y

On |1y:

|1y ÞÑ
|0y ´ |1y
?

2
ÞÑ
|0y ` |1y
?

2
ÞÑ

1

2
p|0y ` |1y ` |0y ´ |1yq “ |0y

This is a X gate! Z is just X in the t|`y , |´yu basis (and vice versa).

4 / 15



A first circuit

H Z H

What does this circuit do? We only need to try a basis (Why?).

On |0y:

|0y ÞÑ
|0y ` |1y
?

2
ÞÑ
|0y ´ |1y
?

2
ÞÑ

1

2
p|0y ` |1y ´ p|0y ´ |1yqq

“ |1y

On |1y:

|1y ÞÑ
|0y ´ |1y
?

2
ÞÑ
|0y ` |1y
?

2
ÞÑ

1

2
p|0y ` |1y ` |0y ´ |1yq “ |0y

This is a X gate! Z is just X in the t|`y , |´yu basis (and vice versa).

4 / 15



A first circuit

H Z H

What does this circuit do? We only need to try a basis (Why?).

On |0y:

|0y ÞÑ
|0y ` |1y
?

2
ÞÑ
|0y ´ |1y
?

2
ÞÑ

1

2
p|0y ` |1y ´ p|0y ´ |1yqq “ |1y

On |1y:

|1y ÞÑ
|0y ´ |1y
?

2
ÞÑ
|0y ` |1y
?

2
ÞÑ

1

2
p|0y ` |1y ` |0y ´ |1yq “ |0y

This is a X gate! Z is just X in the t|`y , |´yu basis (and vice versa).

4 / 15



A first circuit

H Z H

What does this circuit do? We only need to try a basis (Why?).

On |0y:

|0y ÞÑ
|0y ` |1y
?

2
ÞÑ
|0y ´ |1y
?

2
ÞÑ

1

2
p|0y ` |1y ´ p|0y ´ |1yqq “ |1y

On |1y:

|1y ÞÑ
|0y ´ |1y
?

2

ÞÑ
|0y ` |1y
?

2
ÞÑ

1

2
p|0y ` |1y ` |0y ´ |1yq “ |0y

This is a X gate! Z is just X in the t|`y , |´yu basis (and vice versa).

4 / 15



A first circuit

H Z H

What does this circuit do? We only need to try a basis (Why?).

On |0y:

|0y ÞÑ
|0y ` |1y
?

2
ÞÑ
|0y ´ |1y
?

2
ÞÑ

1

2
p|0y ` |1y ´ p|0y ´ |1yqq “ |1y

On |1y:

|1y ÞÑ
|0y ´ |1y
?

2
ÞÑ
|0y ` |1y
?

2

ÞÑ
1

2
p|0y ` |1y ` |0y ´ |1yq “ |0y

This is a X gate! Z is just X in the t|`y , |´yu basis (and vice versa).

4 / 15



A first circuit

H Z H

What does this circuit do? We only need to try a basis (Why?).

On |0y:

|0y ÞÑ
|0y ` |1y
?

2
ÞÑ
|0y ´ |1y
?

2
ÞÑ

1

2
p|0y ` |1y ´ p|0y ´ |1yqq “ |1y

On |1y:

|1y ÞÑ
|0y ´ |1y
?

2
ÞÑ
|0y ` |1y
?

2
ÞÑ

1

2
p|0y ` |1y ` |0y ´ |1yq

“ |0y

This is a X gate! Z is just X in the t|`y , |´yu basis (and vice versa).

4 / 15



A first circuit

H Z H

What does this circuit do? We only need to try a basis (Why?).

On |0y:

|0y ÞÑ
|0y ` |1y
?

2
ÞÑ
|0y ´ |1y
?

2
ÞÑ

1

2
p|0y ` |1y ´ p|0y ´ |1yqq “ |1y

On |1y:

|1y ÞÑ
|0y ´ |1y
?

2
ÞÑ
|0y ` |1y
?

2
ÞÑ

1

2
p|0y ` |1y ` |0y ´ |1yq “ |0y

This is a X gate!

Z is just X in the t|`y , |´yu basis (and vice versa).

4 / 15



A first circuit

H Z H

What does this circuit do? We only need to try a basis (Why?).

On |0y:

|0y ÞÑ
|0y ` |1y
?

2
ÞÑ
|0y ´ |1y
?

2
ÞÑ

1

2
p|0y ` |1y ´ p|0y ´ |1yqq “ |1y

On |1y:

|1y ÞÑ
|0y ´ |1y
?

2
ÞÑ
|0y ` |1y
?

2
ÞÑ

1

2
p|0y ` |1y ` |0y ´ |1yq “ |0y

This is a X gate! Z is just X in the t|`y , |´yu basis (and vice versa).

4 / 15



Reflections

We can also see this in our image.

Z is a reflection through the |0y state.
X is a reflection through the |`y state.

|0y

|1y

|`y

|´y

5 / 15



Reflections

We can also see this in our image.
Z is a reflection through the |0y state.

X is a reflection through the |`y state.

|0y

|1y

|`y

|´y

5 / 15



Reflections

We can also see this in our image.

Z is a reflection through the |0y state.

X is a reflection through the |`y state.

|0y

|1y

|`y

|´y

5 / 15



More gates

We can also make gates controlled:

‚

X

“

‚ “

»

—

—

–

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

fi

ffi

ffi

fl

Classical algorithms make calls to the memory to get the input.

Quantum algorithms get an oracle that mimics this.

A binary oracle for an input x P t0, 1un is a unitary

Ox |iy|by “ |iy|b ‘ xiy

where ‘ is addition modulo 2 (or the XOR)

Unitaries always have an inverse
ñ quantum circuits are always reversible.

6 / 15



More gates

We can also make gates controlled:

‚

X

“ ‚ “

»

—

—

–

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

fi

ffi

ffi

fl

Classical algorithms make calls to the memory to get the input.

Quantum algorithms get an oracle that mimics this.

A binary oracle for an input x P t0, 1un is a unitary

Ox |iy|by “ |iy|b ‘ xiy

where ‘ is addition modulo 2 (or the XOR)

Unitaries always have an inverse
ñ quantum circuits are always reversible.

6 / 15



More gates

We can also make gates controlled:

‚

X

“ ‚ “

»

—

—

–

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

fi

ffi

ffi

fl

Classical algorithms make calls to the memory to get the input.

Quantum algorithms get an oracle that mimics this.

A binary oracle for an input x P t0, 1un is a unitary

Ox |iy|by “ |iy|b ‘ xiy

where ‘ is addition modulo 2 (or the XOR)

Unitaries always have an inverse
ñ quantum circuits are always reversible.

6 / 15



More gates

We can also make gates controlled:

‚

X

“ ‚ “

»

—

—

–

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

fi

ffi

ffi

fl

Classical algorithms make calls to the memory to get the input.

Quantum algorithms get an oracle that mimics this.

A binary oracle for an input x P t0, 1un is a unitary

Ox |iy|by “ |iy|b ‘ xiy

where ‘ is addition modulo 2 (or the XOR)

Unitaries always have an inverse
ñ quantum circuits are always reversible.

6 / 15



More gates

We can also make gates controlled:

‚

X

“ ‚ “

»

—

—

–

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

fi

ffi

ffi

fl

Classical algorithms make calls to the memory to get the input.

Quantum algorithms get an oracle that mimics this.

A binary oracle for an input x P t0, 1un is a unitary

Ox |iy|by “ |iy|b ‘ xiy

where ‘ is addition modulo 2 (or the XOR)

Unitaries always have an inverse
ñ quantum circuits are always reversible.

6 / 15



More gates

We can also make gates controlled:

‚

X

“ ‚ “

»

—

—

–

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

fi

ffi

ffi

fl

Classical algorithms make calls to the memory to get the input.

Quantum algorithms get an oracle that mimics this.

A binary oracle for an input x P t0, 1un is a unitary

Ox |iy|by “ |iy|b ‘ xiy

where ‘ is addition modulo 2 (or the XOR)

Unitaries always have an inverse
ñ quantum circuits are always reversible.

6 / 15



Amplitude amplification



Randomized algorithms

Let us get back to classical computing for a while:

Maybe our randomized algorithm does not always work, it has a
success probability p.

Formally, The algorithm outputs:
§ a 1 and a good solution with probability p, or
§ a 0 and a bad solution with probability 1´ p.

An algorithm works with high probability if p ě 2{3.

What can we do if p is small?

Repeat

O
ˆ

1

p

˙

times.

7 / 15



Randomized algorithms

Let us get back to classical computing for a while:

Maybe our randomized algorithm does not always work, it has a
success probability p.

Formally, The algorithm outputs:
§ a 1 and a good solution with probability p, or
§ a 0 and a bad solution with probability 1´ p.

An algorithm works with high probability if p ě 2{3.

What can we do if p is small?

Repeat

O
ˆ

1

p

˙

times.

7 / 15



Randomized algorithms

Let us get back to classical computing for a while:

Maybe our randomized algorithm does not always work, it has a
success probability p.

Formally, The algorithm outputs:

§ a 1 and a good solution with probability p, or
§ a 0 and a bad solution with probability 1´ p.

An algorithm works with high probability if p ě 2{3.

What can we do if p is small?

Repeat

O
ˆ

1

p

˙

times.

7 / 15



Randomized algorithms

Let us get back to classical computing for a while:

Maybe our randomized algorithm does not always work, it has a
success probability p.

Formally, The algorithm outputs:
§ a 1 and a good solution with probability p, or

§ a 0 and a bad solution with probability 1´ p.

An algorithm works with high probability if p ě 2{3.

What can we do if p is small?

Repeat

O
ˆ

1

p

˙

times.

7 / 15



Randomized algorithms

Let us get back to classical computing for a while:

Maybe our randomized algorithm does not always work, it has a
success probability p.

Formally, The algorithm outputs:
§ a 1 and a good solution with probability p, or
§ a 0 and a bad solution with probability 1´ p.

An algorithm works with high probability if p ě 2{3.

What can we do if p is small?

Repeat

O
ˆ

1

p

˙

times.

7 / 15



Randomized algorithms

Let us get back to classical computing for a while:

Maybe our randomized algorithm does not always work, it has a
success probability p.

Formally, The algorithm outputs:
§ a 1 and a good solution with probability p, or
§ a 0 and a bad solution with probability 1´ p.

An algorithm works with high probability if p ě 2{3.

What can we do if p is small?

Repeat

O
ˆ

1

p

˙

times.

7 / 15



Randomized algorithms

Let us get back to classical computing for a while:

Maybe our randomized algorithm does not always work, it has a
success probability p.

Formally, The algorithm outputs:
§ a 1 and a good solution with probability p, or
§ a 0 and a bad solution with probability 1´ p.

An algorithm works with high probability if p ě 2{3.

What can we do if p is small?

Repeat

O
ˆ

1

p

˙

times.

7 / 15



Quantum algorithms & small success probability

Back to quantum:

Quantum algorithms are inherently random.

A Hadamard gate can be used to flip a coin:

H |0y “
1
?

2
p|0y ` |1yq

A quantum algorithm might produce the state

U |0y “ αG |Gy |1y ` αB |By |0y

|Gy |1y is the “Good” part of the state, |By |0y is the “Bad” part.

Is we just measure then the success probability is p “ |αG |
2.

8 / 15



Quantum algorithms & small success probability

Back to quantum:

Quantum algorithms are inherently random.

A Hadamard gate can be used to flip a coin:

H |0y “
1
?

2
p|0y ` |1yq

A quantum algorithm might produce the state

U |0y “ αG |Gy |1y ` αB |By |0y

|Gy |1y is the “Good” part of the state, |By |0y is the “Bad” part.

Is we just measure then the success probability is p “ |αG |
2.

8 / 15



Quantum algorithms & small success probability

Back to quantum:

Quantum algorithms are inherently random.

A Hadamard gate can be used to flip a coin:

H |0y “
1
?

2
p|0y ` |1yq

A quantum algorithm might produce the state

U |0y “ αG |Gy |1y ` αB |By |0y

|Gy |1y is the “Good” part of the state, |By |0y is the “Bad” part.

Is we just measure then the success probability is p “ |αG |
2.

8 / 15



Quantum algorithms & small success probability

Back to quantum:

Quantum algorithms are inherently random.

A Hadamard gate can be used to flip a coin:

H |0y “
1
?

2
p|0y ` |1yq

A quantum algorithm might produce the state

U |0y “ αG |Gy |1y ` αB |By |0y

|Gy |1y is the “Good” part of the state, |By |0y is the “Bad” part.

Is we just measure then the success probability is p “ |αG |
2.

8 / 15



Quantum algorithms & small success probability

Back to quantum:

Quantum algorithms are inherently random.

A Hadamard gate can be used to flip a coin:

H |0y “
1
?

2
p|0y ` |1yq

A quantum algorithm might produce the state

U |0y “ αG |Gy |1y ` αB |By |0y

|Gy |1y is the “Good” part of the state, |By |0y is the “Bad” part.

Is we just measure then the success probability is p “ |αG |
2.

8 / 15



Quantum algorithms & small success probability

Back to quantum:

Quantum algorithms are inherently random.

A Hadamard gate can be used to flip a coin:

H |0y “
1
?

2
p|0y ` |1yq

A quantum algorithm might produce the state

U |0y “ αG |Gy |1y ` αB |By |0y

|Gy |1y is the “Good” part of the state, |By |0y is the “Bad” part.

Is we just measure then the success probability is p “ |αG |
2.

8 / 15



Three states

Let us write |ψy :“ αG |Gy |1y ` αB |By |0y

What is the inner product between the good and the bad part?

xG |By x1|0y “ xG |By ¨ 0 “ 0

So these two states are orthogonal!

|ψy is written in the t|Gy|1y , |By|0yu basis.

Everything is in a 2-dimensional subspace.

9 / 15



Three states

Let us write |ψy :“ αG |Gy |1y ` αB |By |0y

What is the inner product between the good and the bad part?

xG |By x1|0y “ xG |By ¨ 0 “ 0

So these two states are orthogonal!

|ψy is written in the t|Gy|1y , |By|0yu basis.

Everything is in a 2-dimensional subspace.

9 / 15



Three states

Let us write |ψy :“ αG |Gy |1y ` αB |By |0y

What is the inner product between the good and the bad part?

xG |By x1|0y “ xG |By ¨ 0 “ 0

So these two states are orthogonal!

|ψy is written in the t|Gy|1y , |By|0yu basis.

Everything is in a 2-dimensional subspace.

9 / 15



Three states

Let us write |ψy :“ αG |Gy |1y ` αB |By |0y

What is the inner product between the good and the bad part?

xG |By x1|0y “ xG |By ¨ 0 “ 0

So these two states are orthogonal!

|ψy is written in the t|Gy|1y , |By|0yu basis.

Everything is in a 2-dimensional subspace.

9 / 15



Three states

Let us write |ψy :“ αG |Gy |1y ` αB |By |0y

What is the inner product between the good and the bad part?

xG |By x1|0y “ xG |By ¨ 0 “ 0

So these two states are orthogonal!

|ψy is written in the t|Gy|1y , |By|0yu basis.

Everything is in a 2-dimensional subspace.

9 / 15



Three states

Let us write |ψy :“ αG |Gy |1y ` αB |By |0y

What is the inner product between the good and the bad part?

xG |By x1|0y “ xG |By ¨ 0 “ 0

So these two states are orthogonal!

|ψy is written in the t|Gy|1y , |By|0yu basis.

Everything is in a 2-dimensional subspace.

9 / 15



Three states - a picture

|By|0y

|Gy|1y

|ψy
θ

|ψ1y
θ

|ψ2y

2θ

|ψy “

sin pθqαG

|Gy |1y `

cos pθqαB

|By |0y
ˇ

ˇψ1
D

“ ´ sin pθq |Gy |1y ` cos pθq |By |0y
ˇ

ˇψ2
D

“ sin p3θq |Gy |1y ` cos p3θq |By |0y

10 / 15



Three states - a picture

|By|0y

|Gy|1y

|ψy

θ

|ψ1y
θ

|ψ2y

2θ

|ψy “

sin pθq

αG |Gy |1y `

cos pθq

αB |By |0y

ˇ

ˇψ1
D

“ ´ sin pθq |Gy |1y ` cos pθq |By |0y
ˇ

ˇψ2
D

“ sin p3θq |Gy |1y ` cos p3θq |By |0y

10 / 15



Three states - a picture

|By|0y

|Gy|1y

|ψy

θ

|ψ1y
θ

|ψ2y

2θ

|ψy “

sin pθq

αG |Gy |1y `

cos pθq

αB |By |0y

ˇ

ˇψ1
D

“ ´ sin pθq |Gy |1y ` cos pθq |By |0y
ˇ

ˇψ2
D

“ sin p3θq |Gy |1y ` cos p3θq |By |0y

10 / 15



Three states - a picture

|By|0y

|Gy|1y

|ψy
θ

|ψ1y
θ

|ψ2y

2θ

|ψy “ sin pθq

αG

|Gy |1y ` cos pθq

αB

|By |0y

ˇ

ˇψ1
D

“ ´ sin pθq |Gy |1y ` cos pθq |By |0y
ˇ

ˇψ2
D

“ sin p3θq |Gy |1y ` cos p3θq |By |0y

10 / 15



Three states - a picture

|By|0y

|Gy|1y

|ψy
θ

|ψ1y
θ

|ψ2y

2θ

|ψy “ sin pθq

αG

|Gy |1y ` cos pθq

αB

|By |0y
ˇ

ˇψ1
D

“ ´ sin pθq |Gy |1y ` cos pθq |By |0y

ˇ

ˇψ2
D

“ sin p3θq |Gy |1y ` cos p3θq |By |0y

10 / 15



Three states - a picture

|By|0y

|Gy|1y

|ψy
θ

|ψ1y
θ

|ψ2y

2θ

|ψy “ sin pθq

αG

|Gy |1y ` cos pθq

αB

|By |0y
ˇ

ˇψ1
D

“ ´ sin pθq |Gy |1y ` cos pθq |By |0y

ˇ

ˇψ2
D

“ sin p3θq |Gy |1y ` cos p3θq |By |0y

10 / 15



Three states - a picture

|By|0y

|Gy|1y

|ψy
θ

|ψ1y
θ

|ψ2y

2θ

|ψy “ sin pθq

αG

|Gy |1y ` cos pθq

αB

|By |0y
ˇ

ˇψ1
D

“ ´ sin pθq |Gy |1y ` cos pθq |By |0y
ˇ

ˇψ2
D

“ sin p3θq |Gy |1y ` cos p3θq |By |0y

10 / 15



Three states - a picture

|By|0y

|Gy|1y

|ψy
θ

|ψ1y
θ

|ψ2y

2θ

|ψy “ sin pθq

αG

|Gy |1y ` cos pθq

αB

|By |0y
ˇ

ˇψ1
D

“ ´ sin pθq |Gy |1y ` cos pθq |By |0y
ˇ

ˇψ2
D

“ sin p3θq |Gy |1y ` cos p3θq |By |0y

10 / 15



Amplitude amplification

Two reflections: through |By|0y and |ψy.

The product is a rotation A, with angle 2θ.

After k iterations of A we get

sin pp2k ` 1qθq |Gy |1y ` cos pp2k ` 1qq |By |0y

If p2k ` 1qθ « π{2 then |sin pp2k ` 1qθq|2 « 1.

Since θ “ arcsinαG we want

k «

ˆ

π

2 arcsinαG
´ 1

˙

{2 “ O
ˆ

1

|αG |

˙

“ O
ˆ

1
?
p

˙

Nice, but can we actually implement these reflections?

11 / 15



Amplitude amplification

Two reflections: through |By|0y and |ψy.

The product is a rotation A, with angle 2θ.

After k iterations of A we get

sin pp2k ` 1qθq |Gy |1y ` cos pp2k ` 1qq |By |0y

If p2k ` 1qθ « π{2 then |sin pp2k ` 1qθq|2 « 1.

Since θ “ arcsinαG we want

k «

ˆ

π

2 arcsinαG
´ 1

˙

{2 “ O
ˆ

1

|αG |

˙

“ O
ˆ

1
?
p

˙

Nice, but can we actually implement these reflections?

11 / 15



Amplitude amplification

Two reflections: through |By|0y and |ψy.

The product is a rotation A, with angle 2θ.

After k iterations of A we get

sin pp2k ` 1qθq |Gy |1y ` cos pp2k ` 1qq |By |0y

If p2k ` 1qθ « π{2 then |sin pp2k ` 1qθq|2 « 1.

Since θ “ arcsinαG we want

k «

ˆ

π

2 arcsinαG
´ 1

˙

{2 “ O
ˆ

1

|αG |

˙

“ O
ˆ

1
?
p

˙

Nice, but can we actually implement these reflections?

11 / 15



Amplitude amplification

Two reflections: through |By|0y and |ψy.

The product is a rotation A, with angle 2θ.

After k iterations of A we get

sin pp2k ` 1qθq |Gy |1y ` cos pp2k ` 1qq |By |0y

If p2k ` 1qθ « π{2 then |sin pp2k ` 1qθq|2 « 1.

Since θ “ arcsinαG we want

k «

ˆ

π

2 arcsinαG
´ 1

˙

{2 “ O
ˆ

1

|αG |

˙

“ O
ˆ

1
?
p

˙

Nice, but can we actually implement these reflections?

11 / 15



Amplitude amplification

Two reflections: through |By|0y and |ψy.

The product is a rotation A, with angle 2θ.

After k iterations of A we get

sin pp2k ` 1qθq |Gy |1y ` cos pp2k ` 1qq |By |0y

If p2k ` 1qθ « π{2 then |sin pp2k ` 1qθq|2 « 1.

Since θ “ arcsinαG we want

k «

ˆ

π

2 arcsinαG
´ 1

˙

{2

“ O
ˆ

1

|αG |

˙

“ O
ˆ

1
?
p

˙

Nice, but can we actually implement these reflections?

11 / 15



Amplitude amplification

Two reflections: through |By|0y and |ψy.

The product is a rotation A, with angle 2θ.

After k iterations of A we get

sin pp2k ` 1qθq |Gy |1y ` cos pp2k ` 1qq |By |0y

If p2k ` 1qθ « π{2 then |sin pp2k ` 1qθq|2 « 1.

Since θ “ arcsinαG we want

k «

ˆ

π

2 arcsinαG
´ 1

˙

{2 “ O
ˆ

1

|αG |

˙

“ O
ˆ

1
?
p

˙

Nice, but can we actually implement these reflections?

11 / 15



Amplitude amplification

Two reflections: through |By|0y and |ψy.

The product is a rotation A, with angle 2θ.

After k iterations of A we get

sin pp2k ` 1qθq |Gy |1y ` cos pp2k ` 1qq |By |0y

If p2k ` 1qθ « π{2 then |sin pp2k ` 1qθq|2 « 1.

Since θ “ arcsinαG we want

k «

ˆ

π

2 arcsinαG
´ 1

˙

{2 “ O
ˆ

1

|αG |

˙

“ O
ˆ

1
?
p

˙

Nice, but can we actually implement these reflections?

11 / 15



Amplitude amplification

Two reflections: through |By|0y and |ψy.

The product is a rotation A, with angle 2θ.

After k iterations of A we get

sin pp2k ` 1qθq |Gy |1y ` cos pp2k ` 1qq |By |0y

If p2k ` 1qθ « π{2 then |sin pp2k ` 1qθq|2 « 1.

Since θ “ arcsinαG we want

k «

ˆ

π

2 arcsinαG
´ 1

˙

{2 “ O
ˆ

1

|αG |

˙

“ O
ˆ

1
?
p

˙

Nice, but can we actually implement these reflections?

11 / 15



Implementing the reflections

The reflection through |By|0y:

Do nothing to the bad state.

Add a ´1 to the good state.

Apply a Z gate to the last bit.

The reflection through |ψy:

Do nothing to |ψy.

Add a ´1 to states orthogonal to it.

Use that |ψy “ U |0y:

1. Apply U´1 to map |ψy to |0y.

2. Reflect through |0y.

3. Apply U to map |0y to back to |ψy.

12 / 15



Implementing the reflections

The reflection through |By|0y:

Do nothing to the bad state.

Add a ´1 to the good state.

Apply a Z gate to the last bit.

The reflection through |ψy:

Do nothing to |ψy.

Add a ´1 to states orthogonal to it.

Use that |ψy “ U |0y:

1. Apply U´1 to map |ψy to |0y.

2. Reflect through |0y.

3. Apply U to map |0y to back to |ψy.

12 / 15



Implementing the reflections

The reflection through |By|0y:

Do nothing to the bad state.

Add a ´1 to the good state.

Apply a Z gate to the last bit.

The reflection through |ψy:

Do nothing to |ψy.

Add a ´1 to states orthogonal to it.

Use that |ψy “ U |0y:

1. Apply U´1 to map |ψy to |0y.

2. Reflect through |0y.

3. Apply U to map |0y to back to |ψy.

12 / 15



Implementing the reflections

The reflection through |By|0y:

Do nothing to the bad state.

Add a ´1 to the good state.

Apply a Z gate to the last bit.

The reflection through |ψy:

Do nothing to |ψy.

Add a ´1 to states orthogonal to it.

Use that |ψy “ U |0y:

1. Apply U´1 to map |ψy to |0y.

2. Reflect through |0y.

3. Apply U to map |0y to back to |ψy.

12 / 15



Implementing the reflections

The reflection through |By|0y:

Do nothing to the bad state.

Add a ´1 to the good state.

Apply a Z gate to the last bit.

The reflection through |ψy:

Do nothing to |ψy.

Add a ´1 to states orthogonal to it.

Use that |ψy “ U |0y:

1. Apply U´1 to map |ψy to |0y.

2. Reflect through |0y.

3. Apply U to map |0y to back to |ψy.

12 / 15



Implementing the reflections

The reflection through |By|0y:

Do nothing to the bad state.

Add a ´1 to the good state.

Apply a Z gate to the last bit.

The reflection through |ψy:

Do nothing to |ψy.

Add a ´1 to states orthogonal to it.

Use that |ψy “ U |0y:

1. Apply U´1 to map |ψy to |0y.

2. Reflect through |0y.

3. Apply U to map |0y to back to |ψy.

12 / 15



Example: the search problem

Before amplitude amplification there was Grover (’96).

Search problem

Input: x P t0, 1uN with k ones.
Goal: Find an i such that xi “ 1 with few queries.

How can we do this classically?

Go over the bits: O pNq queries.

Randomly pick an i and repeat: O pN{kq queries.

Using amplitude amplification:

Superposition over i , xi and amplify: O
´

a

N{k
¯

queries.

To find all: Op
?
Nkq

13 / 15



Example: the search problem

Before amplitude amplification there was Grover (’96).

Search problem

Input: x P t0, 1uN with k ones.
Goal: Find an i such that xi “ 1 with few queries.

How can we do this classically?

Go over the bits: O pNq queries.

Randomly pick an i and repeat: O pN{kq queries.

Using amplitude amplification:

Superposition over i , xi and amplify: O
´

a

N{k
¯

queries.

To find all: Op
?
Nkq

13 / 15



Example: the search problem

Before amplitude amplification there was Grover (’96).

Search problem

Input: x P t0, 1uN with k ones.
Goal: Find an i such that xi “ 1 with few queries.

How can we do this classically?

Go over the bits: O pNq queries.

Randomly pick an i and repeat: O pN{kq queries.

Using amplitude amplification:

Superposition over i , xi and amplify: O
´

a

N{k
¯

queries.

To find all: Op
?
Nkq

13 / 15



Example: the search problem

Before amplitude amplification there was Grover (’96).

Search problem

Input: x P t0, 1uN with k ones.
Goal: Find an i such that xi “ 1 with few queries.

How can we do this classically?

Go over the bits: O pNq queries.

Randomly pick an i and repeat: O pN{kq queries.

Using amplitude amplification:

Superposition over i , xi and amplify: O
´

a

N{k
¯

queries.

To find all: Op
?
Nkq

13 / 15



Example: the search problem

Before amplitude amplification there was Grover (’96).

Search problem

Input: x P t0, 1uN with k ones.
Goal: Find an i such that xi “ 1 with few queries.

How can we do this classically?

Go over the bits: O pNq queries.

Randomly pick an i and repeat: O pN{kq queries.

Using amplitude amplification:

Superposition over i , xi and amplify: O
´

a

N{k
¯

queries.

To find all: Op
?
Nkq

13 / 15



Example: the search problem

Before amplitude amplification there was Grover (’96).

Search problem

Input: x P t0, 1uN with k ones.
Goal: Find an i such that xi “ 1 with few queries.

How can we do this classically?

Go over the bits: O pNq queries.

Randomly pick an i and repeat: O pN{kq queries.

Using amplitude amplification:

Superposition over i , xi and amplify: O
´

a

N{k
¯

queries.

To find all: Op
?
Nkq

13 / 15



Example: the search problem

Before amplitude amplification there was Grover (’96).

Search problem

Input: x P t0, 1uN with k ones.
Goal: Find an i such that xi “ 1 with few queries.

How can we do this classically?

Go over the bits: O pNq queries.

Randomly pick an i and repeat: O pN{kq queries.

Using amplitude amplification:

Superposition over i , xi and amplify: O
´

a

N{k
¯

queries.

To find all: Op
?
Nkq

13 / 15



Graphs



Building a spanning tree

Goal: given adjacency matrix queries for a connected graph, find a
spanning tree.

Start with an empty tree and c “ n components.

There are at least c ´ 1 edges that connect two components, out
of n2 possible edges.

Grover search using Op
a

n2{pc ´ 1qq queries to find such edge.

Repeat n times:
n
ÿ

c“2

n
a

1{pc ´ 1q ď n

ż n

0
c´1{2dc “ Opn1.5q

14 / 15



Building a spanning tree

Goal: given adjacency matrix queries for a connected graph, find a
spanning tree.

Start with an empty tree and c “ n components.

There are at least c ´ 1 edges that connect two components, out
of n2 possible edges.

Grover search using Op
a

n2{pc ´ 1qq queries to find such edge.

Repeat n times:
n
ÿ

c“2

n
a

1{pc ´ 1q ď n

ż n

0
c´1{2dc “ Opn1.5q

14 / 15



Building a spanning tree

Goal: given adjacency matrix queries for a connected graph, find a
spanning tree.

Start with an empty tree and c “ n components.

There are at least c ´ 1 edges that connect two components, out
of n2 possible edges.

Grover search using Op
a

n2{pc ´ 1qq queries to find such edge.

Repeat n times:
n
ÿ

c“2

n
a

1{pc ´ 1q ď n

ż n

0
c´1{2dc “ Opn1.5q

14 / 15



Building a spanning tree

Goal: given adjacency matrix queries for a connected graph, find a
spanning tree.

Start with an empty tree and c “ n components.

There are at least c ´ 1 edges that connect two components, out
of n2 possible edges.

Grover search using Op
a

n2{pc ´ 1qq queries to find such edge.

Repeat n times:
n
ÿ

c“2

n
a

1{pc ´ 1q ď n

ż n

0
c´1{2dc “ Opn1.5q

14 / 15



Building a spanning tree

Goal: given adjacency matrix queries for a connected graph, find a
spanning tree.

Start with an empty tree and c “ n components.

There are at least c ´ 1 edges that connect two components, out
of n2 possible edges.

Grover search using Op
a

n2{pc ´ 1qq queries to find such edge.

Repeat n times:

n
ÿ

c“2

n
a

1{pc ´ 1q ď n

ż n

0
c´1{2dc “ Opn1.5q

14 / 15



Building a spanning tree

Goal: given adjacency matrix queries for a connected graph, find a
spanning tree.

Start with an empty tree and c “ n components.

There are at least c ´ 1 edges that connect two components, out
of n2 possible edges.

Grover search using Op
a

n2{pc ´ 1qq queries to find such edge.

Repeat n times:
n
ÿ

c“2

n
a

1{pc ´ 1q ď n

ż n

0
c´1{2dc “ Opn1.5q

14 / 15



BFS

Goal: given adjacency list queries, perform a breadth-first search.

In BFS for each node we do:
§ Check all outgoing edges for unvisited nodes.
§ Add those nodes to the queue

Classically we check each edge twice: OpE q queries/time.

Quantumly we may use Grover’s search:
§ Say node vj has dj neighbors, tj not visited.
§ We know

ř

j dj “ 2m,
ř

j tj “ n.

n
ÿ

j“1

a

dj tj ď

g

f

f

e

n
ÿ

j“1

dj

n
ÿ

j“1

tj “ Op
?
nmq

Application: Matching in OpV
?
E q

15 / 15



BFS

Goal: given adjacency list queries, perform a breadth-first search.

In BFS for each node we do:

§ Check all outgoing edges for unvisited nodes.
§ Add those nodes to the queue

Classically we check each edge twice: OpE q queries/time.

Quantumly we may use Grover’s search:
§ Say node vj has dj neighbors, tj not visited.
§ We know

ř

j dj “ 2m,
ř

j tj “ n.

n
ÿ

j“1

a

dj tj ď

g

f

f

e

n
ÿ

j“1

dj

n
ÿ

j“1

tj “ Op
?
nmq

Application: Matching in OpV
?
E q

15 / 15



BFS

Goal: given adjacency list queries, perform a breadth-first search.

In BFS for each node we do:
§ Check all outgoing edges for unvisited nodes.

§ Add those nodes to the queue

Classically we check each edge twice: OpE q queries/time.

Quantumly we may use Grover’s search:
§ Say node vj has dj neighbors, tj not visited.
§ We know

ř

j dj “ 2m,
ř

j tj “ n.

n
ÿ

j“1

a

dj tj ď

g

f

f

e

n
ÿ

j“1

dj

n
ÿ

j“1

tj “ Op
?
nmq

Application: Matching in OpV
?
E q

15 / 15



BFS

Goal: given adjacency list queries, perform a breadth-first search.

In BFS for each node we do:
§ Check all outgoing edges for unvisited nodes.
§ Add those nodes to the queue

Classically we check each edge twice: OpE q queries/time.

Quantumly we may use Grover’s search:
§ Say node vj has dj neighbors, tj not visited.
§ We know

ř

j dj “ 2m,
ř

j tj “ n.

n
ÿ

j“1

a

dj tj ď

g

f

f

e

n
ÿ

j“1

dj

n
ÿ

j“1

tj “ Op
?
nmq

Application: Matching in OpV
?
E q

15 / 15



BFS

Goal: given adjacency list queries, perform a breadth-first search.

In BFS for each node we do:
§ Check all outgoing edges for unvisited nodes.
§ Add those nodes to the queue

Classically we check each edge twice: OpE q queries/time.

Quantumly we may use Grover’s search:
§ Say node vj has dj neighbors, tj not visited.
§ We know

ř

j dj “ 2m,
ř

j tj “ n.

n
ÿ

j“1

a

dj tj ď

g

f

f

e

n
ÿ

j“1

dj

n
ÿ

j“1

tj “ Op
?
nmq

Application: Matching in OpV
?
E q

15 / 15



BFS

Goal: given adjacency list queries, perform a breadth-first search.

In BFS for each node we do:
§ Check all outgoing edges for unvisited nodes.
§ Add those nodes to the queue

Classically we check each edge twice: OpE q queries/time.

Quantumly we may use Grover’s search:

§ Say node vj has dj neighbors, tj not visited.
§ We know

ř

j dj “ 2m,
ř

j tj “ n.

n
ÿ

j“1

a

dj tj ď

g

f

f

e

n
ÿ

j“1

dj

n
ÿ

j“1

tj “ Op
?
nmq

Application: Matching in OpV
?
E q

15 / 15



BFS

Goal: given adjacency list queries, perform a breadth-first search.

In BFS for each node we do:
§ Check all outgoing edges for unvisited nodes.
§ Add those nodes to the queue

Classically we check each edge twice: OpE q queries/time.

Quantumly we may use Grover’s search:
§ Say node vj has dj neighbors, tj not visited.

§ We know
ř

j dj “ 2m,
ř

j tj “ n.

n
ÿ

j“1

a

dj tj ď

g

f

f

e

n
ÿ

j“1

dj

n
ÿ

j“1

tj “ Op
?
nmq

Application: Matching in OpV
?
E q

15 / 15



BFS

Goal: given adjacency list queries, perform a breadth-first search.

In BFS for each node we do:
§ Check all outgoing edges for unvisited nodes.
§ Add those nodes to the queue

Classically we check each edge twice: OpE q queries/time.

Quantumly we may use Grover’s search:
§ Say node vj has dj neighbors, tj not visited.
§ We know

ř

j dj “ 2m,
ř

j tj “ n.

n
ÿ

j“1

a

dj tj ď

g

f

f

e

n
ÿ

j“1

dj

n
ÿ

j“1

tj “ Op
?
nmq

Application: Matching in OpV
?
E q

15 / 15



BFS

Goal: given adjacency list queries, perform a breadth-first search.

In BFS for each node we do:
§ Check all outgoing edges for unvisited nodes.
§ Add those nodes to the queue

Classically we check each edge twice: OpE q queries/time.

Quantumly we may use Grover’s search:
§ Say node vj has dj neighbors, tj not visited.
§ We know

ř

j dj “ 2m,
ř

j tj “ n.

n
ÿ

j“1

a

dj tj ď

g

f

f

e

n
ÿ

j“1

dj

n
ÿ

j“1

tj “ Op
?
nmq

Application: Matching in OpV
?
E q

15 / 15



BFS

Goal: given adjacency list queries, perform a breadth-first search.

In BFS for each node we do:
§ Check all outgoing edges for unvisited nodes.
§ Add those nodes to the queue

Classically we check each edge twice: OpE q queries/time.

Quantumly we may use Grover’s search:
§ Say node vj has dj neighbors, tj not visited.
§ We know

ř

j dj “ 2m,
ř

j tj “ n.

n
ÿ

j“1

a

dj tj ď

g

f

f

e

n
ÿ

j“1

dj

n
ÿ

j“1

tj “ Op
?
nmq

Application: Matching in OpV
?
E q

15 / 15



That was it!


	Basics
	Amplitude amplification
	Graphs

