Simple label-correcting algorithms for partially dynamic approximate shortest paths in directed graphs
 Adam Karczmarz, Jakub Łącki

Mara Grilnberger
University of Salzburg
Department of Computer Science

Setting

- maintaining (approximate) shortest paths in weighted, directed graph G where weights are non-negative
- partially dynamic setting
- incremental setting:
- edge can be inserted
- weight of an edge can decrease
- decremental Setting:
- edge deletions
- weight of an edge can increase

Related Work and Motivation

- many existing solutions for different settings
- main focus: APSP in decremental setting

Related Work and Motivation

- many existing solutions for different settings
- main focus: APSP in decremental setting
- best deterministic algorithm (dense graphs): using King's decremental transitive closure algorithm:
\rightarrow graphs $G^{2^{i}}$ contain edge $u v$: path u to v in G with $\leq 2^{i}$ hops \rightarrow h-SSSP algorithm (Bernstein) to maintain approximate distances
- $\mathrm{O}\left(n^{3} \log ^{3} n \log (n W) / \epsilon+\Delta\right)$ total update time $\mathrm{O}\left(n^{2} \log n \log (n W)\right)$ space

Related Work and Motivation

- many existing solutions for different settings
- main focus: APSP in decremental setting
- best deterministic algorithm (dense graphs): using King's decremental transitive closure algorithm:
\rightarrow graphs $G^{2^{i}}$ contain edge $u v$: path u to v in G with $\leq 2^{i}$ hops \rightarrow h -SSSP algorithm (Bernstein) to maintain approximate distances
- $\mathrm{O}\left(n^{3} \log ^{3} n \log (n W) / \epsilon+\Delta\right)$ total update time $\mathrm{O}\left(n^{2} \log n \log (n W)\right)$ space
- this paper: $\mathrm{O}\left(n^{3} \log n \log (n W) / \epsilon+\Delta\right)$ additional space: $\mathrm{O}\left(n^{2}\right)$

Motivation

- shortest path algorithms maintain distance estimates $\mathrm{d}: V \rightarrow \mathbb{R}$ and relaxing edges/vertices

Motivation

- shortest path algorithms maintain distance estimates $\mathrm{d}: V \rightarrow \mathbb{R}$ and relaxing edges/vertices
edge relaxation
A weighted edge $u v$ is called relaxed, if $\mathrm{d}(v) \leq \mathrm{d}(u)+\mathrm{w}(u v)$ where $\mathrm{w}(u v)$ is the weight of edge $u v$, and tense otherwise.

Motivation

- shortest path algorithms maintain distance estimates $\mathrm{d}: V \rightarrow \mathbb{R}$ and relaxing edges/vertices
edge relaxation
A weighted edge $u v$ is called relaxed, if $\mathrm{d}(v) \leq \mathrm{d}(u)+\mathrm{w}(u v)$ where $\mathrm{w}(u v)$ is the weight of edge $u v$, and tense otherwise.
- relaxing a tense edge: set $\mathrm{d}(v)=\mathrm{d}(u)+\mathrm{w}(u v)$
- also works in incremental setting

Motivation

- shortest path algorithms maintain distance estimates $\mathrm{d}: V \rightarrow \mathbb{R}$ and relaxing edges/vertices
edge relaxation
A weighted edge $u v$ is called relaxed, if $\mathrm{d}(v) \leq \mathrm{d}(u)+\mathrm{w}(u v)$ where $\mathrm{w}(u v)$ is the weight of edge $u v$, and tense otherwise.
- relaxing a tense edge: set $\mathrm{d}(v)=\mathrm{d}(u)+\mathrm{w}(u v)$
- also works in incremental setting
- decremental setting:
vertex relaxation
A vertex v is called relaxed, if $\mathrm{d}(v)<\min _{u v \in E(G)}\{\mathrm{d}(u)+\mathrm{w}(u v)\}$ and we set $\mathrm{d}(v):=\min _{u v \in E(G)}\{\mathrm{d}(u)+\mathrm{w}(u v)\}$

Approximate APSP - Idea

- each pair of vertices: maintain distance estimate $\mathrm{d}(u, v)$
- distance estimates: $(1+\epsilon)$ approximations of real distance
- relaxation operation:
- compute $\mathrm{t}(u, v)$: estimated length of shortest path from u to v
- set distance estimate to $\mathrm{t}(u, v)$

Approximate APSP - Idea

- each pair of vertices: maintain distance estimate $\mathrm{d}(u, v)$
- distance estimates: $(1+\epsilon)$ approximations of real distance
- relaxation operation:
- compute $\mathrm{t}(u, v)$: estimated length of shortest path from u to v
- set distance estimate to $\mathrm{t}(u, v)$
- when distance estimate increases
- check all possibly affected distance estimates $\mathrm{d}(w, z)$
- increase them if $\mathrm{d}(w, z)<\mathrm{t}(w, z)$

Relaxation Operation

- $M_{u, v}=\{\mathrm{d}(u, z)+\mathrm{d}(z, v): z \in V \backslash\{u, v\}\}$

$$
\mathrm{t}(u, v):=\mathrm{r}_{1+\epsilon}\left(\min \left(M_{u, v}, \mathrm{w}(u v)\right)\right)
$$

where:

$$
\mathrm{r}_{1+\epsilon}(x)=(1+\epsilon)^{\left\lceil\log _{1+\epsilon} x\right\rceil}
$$

we round the value $x>0$ up to nearest $(1+\epsilon)^{i}$ for $i \in \mathbb{N}_{0}$

Relaxation Operation

- $M_{u, v}=\{\mathrm{d}(u, z)+\mathrm{d}(z, v): z \in V \backslash\{u, v\}\}$

$$
\mathrm{t}(u, v):=\mathrm{r}_{1+\epsilon}\left(\min \left(M_{u, v}, \mathrm{w}(u v)\right)\right)
$$

where:

$$
\mathrm{r}_{1+\epsilon}(x)=(1+\epsilon)^{\left\lceil\log _{1+\epsilon} x\right\rceil}
$$

we round the value $x>0$ up to nearest $(1+\epsilon)^{i}$ for $i \in \mathbb{N}_{0}$

Relaxation Operation

- $M_{u, v}=\{\mathrm{d}(u, z)+\mathrm{d}(z, v): z \in V \backslash\{u, v\}\}$

$$
\mathrm{t}(u, v):=\mathrm{r}_{1+\epsilon}\left(\min \left(M_{u, v}, \mathrm{w}(u v)\right)\right)
$$

where:

$$
\mathrm{r}_{1+\epsilon}(x)=(1+\epsilon)^{\left\lceil\log _{1+\epsilon} x\right\rceil}
$$

we round the value $x>0$ up to nearest $(1+\epsilon)^{i}$ for $i \in \mathbb{N}_{0}$

$$
\mathrm{t}(u, v)=\mathrm{r}_{1+\epsilon}(1)=1
$$

Relaxation Operation

- $M_{u, v}=\{\mathrm{d}(u, z)+\mathrm{d}(z, v): z \in V \backslash\{u, v\}\}$

$$
\mathrm{t}(u, v):=\mathrm{r}_{1+\epsilon}\left(\min \left(M_{u, v}, \mathrm{w}(u v)\right)\right)
$$

where:

$$
\mathrm{r}_{1+\epsilon}(x)=(1+\epsilon)^{\left\lceil\log _{1+\epsilon} x\right]}
$$

we round the value $x>0$ up to nearest $(1+\epsilon)^{i}$ for $i \in \mathbb{N}_{0}$

$$
\begin{aligned}
\mathrm{t}(u, v) & =\mathrm{r}_{1+\epsilon}(1) \\
\mathrm{t}(v, w) & =\mathrm{r}_{1+\epsilon}(2)
\end{aligned}=(1+\epsilon)^{j} .
$$

Relaxation Operation

- $M_{u, v}=\{\mathrm{d}(u, z)+\mathrm{d}(z, v): z \in V \backslash\{u, v\}\}$

$$
\mathrm{t}(u, v):=\mathrm{r}_{1+\epsilon}\left(\min \left(M_{u, v}, \mathrm{w}(u v)\right)\right)
$$

where:

$$
\mathrm{r}_{1+\epsilon}(x)=(1+\epsilon)^{\left\lceil\log _{1+\epsilon} x\right]}
$$

we round the value $x>0$ up to nearest $(1+\epsilon)^{i}$ for $i \in \mathbb{N}_{0}$

$$
\begin{aligned}
\mathrm{t}(u, v) & =\mathrm{r}_{1+\epsilon}(1)=1 \\
\mathrm{w}(s v) & =3
\end{aligned}
$$

Relaxation Operation

- $M_{u, v}=\{\mathrm{d}(u, z)+\mathrm{d}(z, v): z \in V \backslash\{u, v\}\}$

$$
\mathrm{t}(u, v):=\mathrm{r}_{1+\epsilon}\left(\min \left(M_{u, v}, \mathrm{w}(u v)\right)\right)
$$

where:

$$
\mathrm{r}_{1+\epsilon}(x)=(1+\epsilon)^{\left\lceil\log _{1+\epsilon} x\right]}
$$

we round the value $x>0$ up to nearest $(1+\epsilon)^{i}$ for $i \in \mathbb{N}_{0}$

$$
\begin{aligned}
\mathrm{t}(u, v) & =\mathrm{r}_{1+\epsilon}(1)=1 \\
\mathrm{w}(s v) & =3 \\
M_{s, v} & =\{(1+1), \infty\}
\end{aligned}
$$

Relaxation Operation

- $M_{u, v}=\{\mathrm{d}(u, z)+\mathrm{d}(z, v): z \in V \backslash\{u, v\}\}$

$$
\mathrm{t}(u, v):=\mathrm{r}_{1+\epsilon}\left(\min \left(M_{u, v}, \mathrm{w}(u v)\right)\right)
$$

where:

$$
\mathrm{r}_{1+\epsilon}(x)=(1+\epsilon)^{\left\lceil\log _{1+\epsilon} x\right]}
$$

we round the value $x>0$ up to nearest $(1+\epsilon)^{i}$ for $i \in \mathbb{N}_{0}$

$$
\begin{aligned}
\mathrm{t}(u, v) & =\mathrm{r}_{1+\epsilon}(1)=1 \\
\mathrm{w}(s v) & =3 \\
M_{s, v} & =\{(1+1), \infty\} \\
\mathrm{t}(s, v) & =\mathrm{r}_{1+\epsilon}(2)
\end{aligned}
$$

Relaxation Operation

- $M_{u, v}=\{\mathrm{d}(u, z)+\mathrm{d}(z, v): z \in V \backslash\{u, v\}\}$

$$
\mathrm{t}(u, v):=\mathrm{r}_{1+\epsilon}\left(\min \left(M_{u, v}, \mathrm{w}(u v)\right)\right)
$$

where:

$$
\mathrm{r}_{1+\epsilon}(x)=(1+\epsilon)^{\left\lceil\log _{1+\epsilon} x\right\rceil}
$$

we round the value $x>0$ up to nearest $(1+\epsilon)^{i}$ for $i \in \mathbb{N}_{0}$

$$
\begin{aligned}
\mathrm{t}(u, v) & =\mathrm{r}_{1+\epsilon}(1)=1 \\
\mathrm{w}(s v) & =3 \\
M_{s, v} & =\{(1+1), \infty\} \\
\mathrm{t}(s, v) & =\mathrm{r}_{1+\epsilon}(2)=(1+\epsilon)^{j}
\end{aligned}
$$

Approximate APSP - Update

Update (u, v) :

- Calculate $\mathrm{t}(u, v)$
- If distance estimate $\mathrm{d}(u, v) \neq \mathrm{t}(u, v)$: update it
- For every $y \in V \backslash\{u, v\}$:

Update (y, v) and Update (u, y)

Approximate APSP - Update

Update (u, v) :

- Calculate $\mathrm{t}(u, v)$
- If distance estimate $\mathrm{d}(u, v) \neq \mathrm{t}(u, v)$: update it
- For every $y \in V \backslash\{u, v\}$:

Update (y, v) and Update (u, y)

	s	u	v	w
s	0	1	$r(2)$	$r(2 r(2))$
u	∞	0	1	$r(r(2)+1)$
v	∞	∞	0	$r(2)$
w	∞	∞	∞	0

Approximate APSP - Update

Update (u, v) :

- Calculate $\mathrm{t}(u, v)$
- If distance estimate $\mathrm{d}(u, v) \neq \mathrm{t}(u, v)$: update it
- For every $y \in V \backslash\{u, v\}$:

Update (y, v) and Update (u, y)

	s	u	v	w
s	0	1	$\mathrm{r}(2)$	$\mathrm{r}(2 \mathrm{r}(2))$
u	∞	0	1	$\mathrm{r}(\mathrm{r}(2)+1)$
v	∞	∞	0	$\mathrm{r}(2)$
w	∞	∞	∞	0

Approximate APSP - Update

Update (u, v) :

- Calculate $\mathrm{t}(u, v)$
- If distance estimate $\mathrm{d}(u, v) \neq \mathrm{t}(u, v)$: update it
- For every $y \in V \backslash\{u, v\}$:

Update (y, v) and Update (u, y)

	s	u	v	w
s	0	1	$r(2)$	$r(2 r(2))$
u	∞	0	1	$r(r(2)+1)$
v	∞	∞	0	$r(2)$
w	∞	∞	∞	0

Approximate APSP - Update

Update (u, v) :

- Calculate $\mathrm{t}(u, v)$
- If distance estimate $\mathrm{d}(u, v) \neq \mathrm{t}(u, v)$: update it
- For every $y \in V \backslash\{u, v\}$:

Update (y, v) and Update (u, y)

	s	u	v	w
s	0	1	$r(2)$	$r(2 r(2))$
u	∞	0	$r(3)$	$r(r(2)+1)$
v	∞	∞	0	$r(2)$
w	∞	∞	∞	0

Approximate APSP - Update

Update (u, v) :

- Calculate $\mathrm{t}(u, v)$
- If distance estimate $\mathrm{d}(u, v) \neq \mathrm{t}(u, v)$: update it
- For every $y \in V \backslash\{u, v\}$:

Update (y, v) and Update (u, y)

	s	u	v	w
s	0	1	$r(3)$	$r(2 r(2))$
u	∞	0	$r(3)$	$r(r(2)+1)$
v	∞	∞	0	$r(2)$
w	∞	∞	∞	0

Approximate APSP - Update

Update (u, v) :

- Calculate $\mathrm{t}(u, v)$
- If distance estimate $\mathrm{d}(u, v) \neq \mathrm{t}(u, v)$: update it
- For every $y \in V \backslash\{u, v\}$:

Update (y, v) and Update (u, y)

	s	u	v	w
s	0	1	$r(3)$	$r(2 r(2))$
u	∞	0	$r(3)$	$r(r(2)+1)$
v	∞	∞	0	$r(2)$
w	∞	∞	∞	0

Approximate APSP - Update

Update (u, v) :

- Calculate $\mathrm{t}(u, v)$
- If distance estimate $\mathrm{d}(u, v) \neq \mathrm{t}(u, v)$: update it
- For every $y \in V \backslash\{u, v\}$:

Update (y, v) and Update (u, y)

	s	\mathbf{u}	v	w
s	0	1	$\mathrm{r}(3)$	$\mathrm{r}(2 \mathrm{r}(2))$
u	∞	0	$\mathrm{r}(3)$	$\mathrm{r}(\mathrm{r}(2)+\mathrm{r}(3))$
v	∞	∞	0	$\mathrm{r}(2)$
w	∞	∞	∞	0

Approximate APSP - Update

Update (u, v) :

- Calculate $\mathrm{t}(u, v)$
- If distance estimate $\mathrm{d}(u, v) \neq \mathrm{t}(u, v)$: update it
- For every $y \in V \backslash\{u, v\}$:

Update (y, v) and Update (u, y)

	s	u	v	w
s	0	1	$r(3)$	$r(r(2)+r(3))$
u	∞	0	$r(3)$	$r(r(2)+r(3))$
v	∞	∞	0	$r(2)$
w	∞	∞	∞	0

Approximate APSP

- Eventually no distance estimate left to update
- invariant: $\mathrm{d}(u, v) \leq \mathrm{t}(u, v)$ at all times and $d(u, v)=\mathrm{t}(u, v)$ after Update procedure stops
- weights only increase or edges deleted: $\mathrm{t}(u, v)$ can only become larger or stay the same
- when $\mathrm{d}(u, v)$ is not (yet) reset: $\mathrm{d}(u, v) \leq \mathrm{t}(u, v)$ Update (u, v) sets $\mathrm{d}(u, v)$ to $\mathrm{t}(u, v)$
- path from y to v contains path $u \rightarrow v, \mathrm{~d}(y, v)$ is also updated and set to $\mathrm{t}(\mathrm{y}, \mathrm{v})$ Similar for a path that begins with $u \rightarrow v$

Approximation

Repeated use of $\mathrm{r}_{1+\epsilon}$: not a $(1+\epsilon)$-approximation Specifically:

Lemma 1

Let G be a non-negatively weighted directed graph.
If $\mathrm{d}: V \times V \rightarrow \mathbb{R} \cup\{\infty\}$ satisfies the following:
(1) $\mathrm{d}(v, v)=0$ for all $v \in V$
(2) $0 \leq \mathrm{d}(u, v)=\mathrm{t}(u, v)$ for all $u, v \in V$ such that $u \neq v$

Then for any $u, v \in V$ and any integer $h \geq 0$, we have $\delta_{G}(u, v) \leq \mathrm{d}(u, v) \leq(1+\epsilon)^{\left\lceil\log _{2} h\right\rceil+1} \delta_{G}^{h}(u, v)$
where $\delta_{G}^{h}(u, v)$ is the length of the shortest path from u to v with at most h edges

Approximation - Proof

For: $\delta_{G}(u, v) \leq \mathrm{d}(u, v)$
$\mathrm{d}(u, v)=\mathrm{t}(u, v)$ and $\mathrm{t}(u, v)$ cannot underestimate the actual distance
For $\mathrm{d}(u, v)<\infty$

- $\mathrm{d}(u, v)=\mathrm{r}_{1+\epsilon}(\mathrm{w}(u v)) \rightarrow$ edge $u v$ is in G
- $\mathrm{d}(u, v)=\mathrm{r}_{1+\epsilon}(\mathrm{d}(u, w)+\mathrm{d}(w, v))$ for some w
\rightarrow path P_{1} from u to w, P_{2} from w to v
\rightarrow eventually break down into edges
\rightarrow rounding only makes the values larger

Approximation - Proof

For: $\delta_{G}(u, v) \leq \mathrm{d}(u, v)$
$\mathrm{d}(u, v)=\mathrm{t}(u, v)$ and $\mathrm{t}(u, v)$ cannot underestimate the actual distance
Show that: $\mathrm{d}(u, v) \leq(1+\epsilon)^{\left\lceil\log _{2} h\right\rceil+1} \delta_{G}^{h}(u, v)$ by induction on h Assume: $\delta_{G}^{h}(u, v) \leq \infty$
$\mathrm{h}=1$:
Edge $u v$ is in G and therefore $\delta_{G}^{h}(u, v) \leq w(u v)$
By definition of $\mathrm{t}(u, v)$ and (2) we have that:

$$
\begin{aligned}
d(u, v) & \leq \mathrm{r}_{1+\epsilon}(w(u v)) \leq(1+\epsilon) w(u v) \\
& =(1+\epsilon)^{\left\lceil\log _{2} h\right\rceil+1} \delta_{G}^{h}(u, v)
\end{aligned}
$$

Approximation - Proof

Show that: $\mathrm{d}(u, v) \leq(1+\epsilon)^{\left\lceil\log _{2} h\right\rceil+1} \delta_{G}^{h}(u, v)$ by induction on h Assume: $\delta_{G}^{h}(u, v) \leq \infty$
$h \geq 2$:
Path Q with h edges:

By IH we get:

$$
\begin{aligned}
d(u, w) & \leq(1+\epsilon)^{\left\lceil\log _{2}\lceil h / 2\rceil\right\rceil+1} \delta_{G}^{\lceil h / 2\rceil}(u, v) \\
& \leq(1+\epsilon)^{\left\lceil\log _{2}\lceil h / 2\rceil\right\rceil+1} \operatorname{length}\left(Q_{1}\right)
\end{aligned}
$$

Approximation - Proof

Since $h \geq 2$:

$$
\begin{aligned}
\mathrm{d}(u, w)+\mathrm{d}(w, v) & \leq(1+\epsilon)^{\left\lceil\log _{2} h / 2\right\rceil+1}\left(\operatorname{length}\left(Q_{1}\right)+\text { length }\left(Q_{2}\right)\right) \\
& \leq(1+\epsilon)^{\left\lceil\log _{2} h\right\rceil} \operatorname{length}(Q)
\end{aligned}
$$

Also:

$$
\begin{aligned}
d(u, v) & \leq \mathrm{r}_{1+\epsilon}(\mathrm{d}(u, w)+\mathrm{d}(w, v)) \\
& \leq(1+\epsilon)(\mathrm{d}(u, w)+\mathrm{d}(w, v)) \\
& \leq(1+\epsilon)^{\left[\log _{2} h\right\rceil+1} \operatorname{length}(Q)
\end{aligned}
$$

Also holds for shortest path with at most h edges between u and v.

$$
d(u, v) \leq(1+\epsilon)^{\left\lceil\log _{2} h\right\rceil+1} \delta_{G}^{h}(u, v)
$$

$(1+\epsilon)$ - Approximation

Approximation depends on the number of hops $h \leq n$ we allow.
To get $(1+\epsilon)$-approximation:
Let $\epsilon^{\prime}=\frac{\epsilon}{2\left\lceil\left(\log _{2} n\right)\right\rceil}$

$$
\left(1+\frac{\epsilon}{2\left\lceil\left(\log _{2} n\right)\right\rceil}\right)^{\left\lceil\log _{2} n\right\rceil+1} \leq e^{\epsilon / 2}
$$

and since $\epsilon \in(0,1)$

$$
\leq 1+\epsilon
$$

Computing Minima

Recomputing $\mathrm{t}(u, v)$ every time a distance between two vertices might have changed \rightarrow Not very efficient! Instead: store an approximation $\mathrm{t}^{\prime}(u, v)$ along with an index $\beta(u, v)$

- order vertices w_{1}, \ldots, w_{n} in some way
- remember first index i for which:

$$
\mathrm{r}_{1+\epsilon}\left(\mathrm{d}\left(u, w_{i}\right)+\mathrm{d}\left(w_{i}, v\right)\right)=\mathrm{t}^{\prime}(u, v)
$$

- reevaluating $\mathrm{t}^{\prime}(u, v)$:
- if $\mathrm{r}_{1+\epsilon}(\mathrm{w}(u v))=\mathrm{t}^{\prime}(u, v) \rightarrow \mathrm{t}^{\prime}(u, v)$ stays the same
- look for alternative path that lets us keep distance $t^{\prime}(u, v)$:

Only need to look at indices $j \geq \beta(u, v)$

- if estimated length of shortest path actually changed: recompute $\mathrm{t}^{\prime}(u, v)$

Total Update Time

How often can $\mathrm{d}(u, v)$ change?

- for a $\mathrm{d}(u, v)<\infty$: $\mathrm{d}(u, v) \leq \mathrm{t}(u, v)<\left(1+\epsilon^{\prime}\right)^{\left\lceil\log _{2} n\right\rceil+2} n W$
- $\mathrm{d}(u, v)$ can only increase
- $\mathrm{d}(u, v)$ always non-negative integral power of $\left(1+\epsilon^{\prime}\right)$

Total Update Time

How often can $\mathrm{d}(u, v)$ change?

- for a $\mathrm{d}(u, v)<\infty$: $\mathrm{d}(u, v) \leq \mathrm{t}(u, v)<\left(1+\epsilon^{\prime}\right)^{\left\lceil\log _{2} n\right\rceil+2} n W$
- $\mathrm{d}(u, v)$ can only increase
- $\mathrm{d}(u, v)$ always non-negative integral power of $\left(1+\epsilon^{\prime}\right)$
- changes:

$$
\mathrm{O}\left(\log _{1+\epsilon^{\prime}}\left(1+\epsilon^{\prime}\right)^{\log _{2} n} n W\right)=\mathrm{O}\left(\log (n W) / \epsilon^{\prime}\right)
$$

Total Update Time

How often can $\mathrm{d}(u, v)$ change?

- for a $\mathrm{d}(u, v)<\infty$: $\mathrm{d}(u, v) \leq \mathrm{t}(u, v)<\left(1+\epsilon^{\prime}\right)^{\left\lceil\log _{2} n\right\rceil+2} n W$
- $\mathrm{d}(u, v)$ can only increase
- $\mathrm{d}(u, v)$ always non-negative integral power of $\left(1+\epsilon^{\prime}\right)$
- changes:

$$
\mathrm{O}\left(\log _{1+\epsilon^{\prime}}\left(1+\epsilon^{\prime}\right)^{\log _{2} n} n W\right)=\mathrm{O}\left(\log (n W) / \epsilon^{\prime}\right)
$$

- whenever $\mathrm{d}(u, v)$ changes: $<2 n$ recursive calls to Update

Total Update Time

How often can $\mathrm{d}(u, v)$ change?

- for a $\mathrm{d}(u, v)<\infty$: $\mathrm{d}(u, v) \leq \mathrm{t}(u, v)<\left(1+\epsilon^{\prime}\right)^{\left\lceil\log _{2} n\right\rceil+2} n W$
- $\mathrm{d}(u, v)$ can only increase
- $\mathrm{d}(u, v)$ always non-negative integral power of $\left(1+\epsilon^{\prime}\right)$
- changes:

$$
\mathrm{O}\left(\log _{1+\epsilon^{\prime}}\left(1+\epsilon^{\prime}\right)^{\log _{2} n} n W\right)=\mathrm{O}\left(\log (n W) / \epsilon^{\prime}\right)
$$

- whenever $\mathrm{d}(u, v)$ changes: $<2 n$ recursive calls to Update
- total update time:

$$
\mathrm{O}\left(n^{3} \log (n W) / \epsilon^{\prime}+\Delta\right)
$$

Total Update Time

How often can $\mathrm{d}(u, v)$ change?

- for a $\mathrm{d}(u, v)<\infty$: $\mathrm{d}(u, v) \leq \mathrm{t}(u, v)<\left(1+\epsilon^{\prime}\right)^{\left\lceil\log _{2} n\right\rceil+2} n W$
- $\mathrm{d}(u, v)$ can only increase
- $\mathrm{d}(u, v)$ always non-negative integral power of $\left(1+\epsilon^{\prime}\right)$
- changes:

$$
\mathrm{O}\left(\log _{1+\epsilon^{\prime}}\left(1+\epsilon^{\prime}\right)^{\log _{2} n} n W\right)=\mathrm{O}\left(\log (n W) / \epsilon^{\prime}\right)
$$

- whenever $\mathrm{d}(u, v)$ changes: $<2 n$ recursive calls to Update
- total update time:

$$
\mathrm{O}\left(n^{3} \log (n W) / \epsilon^{\prime}+\Delta\right)=\mathrm{O}\left(n^{3} \log n \log (n W) / \epsilon+\Delta\right)
$$

Computing Minima

In each call to Update (u, v) compute $t(u, v)$
3 cases:

- relevant path not affected by changes (no change to $\mathrm{t}^{\prime}(u, v)$ and $\beta(u, v))$
$\rightarrow \mathrm{O}(1)$

Computing Minima

In each call to Update (u, v) compute $t(u, v)$
3 cases:

- relevant path not affected by changes (no change to $\mathrm{t}^{\prime}(u, v)$ and $\beta(u, v))$
$\rightarrow \mathrm{O}(1)$
- alternative path can be found (only $\beta(u, v)$ increases) \rightarrow at most n times before $\mathrm{t}^{\prime}(u, v)$ also changes
- $\mathrm{t}^{\prime}(u, v)$ is updated:

Computing Minima

In each call to Update (u, v) compute $t(u, v)$
3 cases:

- relevant path not affected by changes (no change to $\mathrm{t}^{\prime}(u, v)$ and $\beta(u, v))$
$\rightarrow \mathrm{O}(1)$
- alternative path can be found (only $\beta(u, v)$ increases)
\rightarrow at most n times before $\mathrm{t}^{\prime}(u, v)$ also changes
- $\mathrm{t}^{\prime}(u, v)$ is updated:
$\rightarrow \mathrm{O}\left(\log (n W) / \epsilon^{\prime}\right)$ times
- total cost to compute $\mathrm{t}(u, v)$:

$$
\mathrm{O}\left(n \log (n W) / \epsilon^{\prime}\right)
$$

Thank you for your attention!

