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Fully Dynamic Reachability

directed graph +
sequence of operations:

edge insertions & deletions
queries s ?; t

single-source reachability: s fixed
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Query Update

m 1 static graph traversal

1 n2 [DI08, Rod08, San04]
√

n m
√

n [RZ08]

m0.43 m0.58n [RZ08]

n0.58 n1.58 [San04]

n1.495 n1.495 [San04]

n m + n log n [RZ16]

n1.407 n1.407 [vdBNS19]

Single Source:
inc. 1
dec. log4 n [BPWN19]

fully-dyn. n1.575 [San04]

Conditional lower bounds exist.
[DHZ00, WW10, AW14, HKNS15, vdBNS19]

& Times (in O) 2 Very Large Studies [FMNZ01, KZ08]

Distinctly fastest on most instances:
static graph traversal algorithms

Strongest competitors:
two SCC-maintaining algorithms

Few “real-world” graphs
All-pairs only

This Talk
Algorithms for

Single-Source Reachability

Algorithms for
Transitive Closure

(“All-Pairs Reachability”)
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Algorithm Engineering

Design

A
na

ly
si
s

Implementatio
n

Experi m
ents
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Single-Source Reachability
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SSR Algorithms

Algorithms for Single-Source Reachability

Group I : “Dynamized” static algorithms
Group II : Dynamic maintenance of a reachability tree

Group III : Dynamic maintenance of a BFS tree
( reachability tree with minimal vertex depths)

Features:
Reachability proof: Algorithms can return path (upon request)
Concentrate on deterministic or Las Vegas-style randomized
algorithms
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Algorithms: Dynamized Static Algorithms

BFS

s

DFS

s

Three flavors:
Static: Pure static algorithm, called for each

query.
Caching: Cache reachability of all vertices, recompute

entirely upon query if necessary.
Lazy: Cache only reachability of vertices

encountered during a query, resume
traversal if cache is still valid.

BFS DFS

CBFS CDFS

LBFS LDFS
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Algorithms: Maintenance of Reachability Tree T

Extended Simple Incremental algorithm (SI):

Maintain for each vertex: v treeEdge: <edge>/null

query(v)

initialize(), edgeInserted((u, v)): build/extend T via BFS

edgeDeleted(e = (u, v)):

u

v

If v .treeEdge = e:

L too large? recompute from scratch

Reconstruct use backward BFS

Optional: additionally use forward BFS

Algorithm: SI(R?/SF?/ρ)
reverse L forward BFS

threshold: |L| ≤ ρ · n
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Algorithms: Maintenance of BFS Tree

Extended Even-Shiloach trees (ES):

vMaintain for each vertex:
level: depth(v) ∨ ∞
inEdges: <list of in-edges>
treeEdge: <index in inEdges>

query(v)

minimum level, minimum index

e0 e1 e2 e3 e4 e5 e6v .inEdges:

tails’ levels > e3’s v .treeEdge

initialize(), edgeInserted((u, v)): build/update T via BFS

edgeDeleted(e = (u, v)):
If e is tree edge: FIFO queue Q = ⟨v⟩; process(Q);
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Algorithms: Maintenance of BFS Tree T

process(Q = ⟨v , . . . ⟩):
v .inEdges:

v .treeEdge

v .level += 1
re-enqueue v and children

Thresholds:
#re-enqueuings per vertex > β
total #vertices processed > ρ · n

abort update and
recompute T from scratch

Algorithm: ES(β/ρ)

Variants:
Multi-Level: Scan v .inEdges completely, re-enqueue only children.

Algorithm: MES(β/ρ)

Simplified: Abandon v .inEdges, scan in-edges in arbitrary order.
Algorithm: SES(β/ρ)
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Experiments

All algorithms implemented in C++17 as part
of the open-source algorithms library Algora.

Algora

Code available publicly on Gitlab & Github: libAlgora
libAlgora

Algorithms
▶ BFS, CBFS, LBFS, DFS, CDFS, LDFS
▶ SI with (R?/SF?/ρ) = (R/SF/.25), (R/SF/.25)
▶ ES, MES, SES with (β/ρ) = (5/.5), (100/1), (∞, ∞)
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Experiments: Instances

Random dynamic instances
ER graphs:

n = 100k and n = 10m, minit = d · n, d ∈ [1.25 . . . 50]
σ = 100k, different ratios of insertions/deletions/queries

Stochastic Kronecker graphs with random update sequences:
n ≈ 130k and n ≈ 30 . . . 130k, mavg = d · n, d = 0.7 . . . 16.5
σ± = 1.6m . . . 702m and σ± = 282k . . . 82m (updates only)

Real-world dynamic instances
. . . with real-world update sequences:

n = 100k . . . 2.2m, mavg = d · n, d = 5.4 . . . 7.8
σ± = 1.6m . . . 86.2m (updates only)

. . . with randomized update sequences:
n = 31k . . . 2.2m, mavg = d · n, d = 4.7 . . . 10.4
σ± = 1.4m . . . 76.4m (updates only)

Kathrin Hanauer Fully Dynamic Reachability – in Practice! 12



Experiments: Random Instances, n = 100k
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Experiments: Random Instances, n = 100k
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Experiments: Random Instances, n = 10m
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Experiments: Kronecker Instances, n ≈ 130k
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≥ 71% of update time spent on deletions (except email-inside, 51%)
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Experiments: Real-World Instances, n = 31k . . . 2.2m
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Which algorithm is best?

Shortest paths?

Update structure?

Size?

#Insertions?

small

random

no

SES(5/.5) SI(R/SF/.25)

yes

real-world,
long-living

edges
large

≥ 50%≤ 50%
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SSR Algorithms: Overview and Time Complexities

Algorithm Insertion Deletion Query

BFS, DFS 0 0 O(n + m)

CBFS, CDFS, LBFS, LDFS O(1) O(1) O(n + m)

SI(R?/SF?/ρ)
⌞ ρ = 0 O(n + m) O(n · m)

O(n + m) O(1)

ES(β/ρ), MES(β/ρ)
⌞ β ∈ O(1) ∨ ρ = 0 O(n + m) O(n · m)

O(n + m) O(1)

SES(β/ρ)
⌞ β ∈ O(1) ∨ ρ = 0 O(n + m) O(n · m)

O(n + m) O(1)
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