
Fully Dynamic Reachability – in Practice!

Kathrin Hanauer

joint work with Monika Henzinger and Christian Schulz

November 24, 2021

kathrin.hanauer@univie.ac.at

mailto:kathrin.hanauer@univie.ac.at
mailto:kathrin.hanauer@univie.ac.at

<main>

<object>

li
st

<object>

next

<object>

<object>

next

<object>

<object>

next

<object>

<object>

next

<object>

<object>

next

<object>

<object> <object>

cache

<object>

<object>

<object>

<object>
cur_data

<object>

next

<object><object>

<object>

<object>

Garbage!

Fully Dynamic Reachability

directed graph +
sequence of operations:

edge insertions & deletions
queries s ?; t

single-source reachability: s fixed
Kathrin Hanauer Fully Dynamic Reachability – in Practice! 2

Query Update

m 1 static graph traversal

1 n2 [DI08, Rod08, San04]
√

n m
√

n [RZ08]

m0.43 m0.58n [RZ08]

n0.58 n1.58 [San04]

n1.495 n1.495 [San04]

n m + n log n [RZ16]

n1.407 n1.407 [vdBNS19]

Single Source:
inc. 1
dec. log4 n [BPWN19]

fully-dyn. n1.575 [San04]

Conditional lower bounds exist.
[DHZ00, WW10, AW14, HKNS15, vdBNS19]

& Times (in O) 2 Very Large Studies [FMNZ01, KZ08]

Distinctly fastest on most instances:
static graph traversal algorithms

Strongest competitors:
two SCC-maintaining algorithms

Few “real-world” graphs
All-pairs only

This Talk
Algorithms for

Single-Source Reachability

Algorithms for
Transitive Closure

(“All-Pairs Reachability”)

Kathrin Hanauer Fully Dynamic Reachability – in Practice! 3

Algorithm Engineering

Design

A
na

ly
si
s

Implementatio
n

Experi m
ents

Kathrin Hanauer Fully Dynamic Reachability – in Practice! 4

Single-Source Reachability

Kathrin Hanauer Fully Dynamic Reachability – in Practice! 5

SSR Algorithms

Algorithms for Single-Source Reachability

Group I : “Dynamized” static algorithms
Group II : Dynamic maintenance of a reachability tree

Group III : Dynamic maintenance of a BFS tree
(reachability tree with minimal vertex depths)

Features:
Reachability proof: Algorithms can return path (upon request)
Concentrate on deterministic or Las Vegas-style randomized
algorithms

Kathrin Hanauer Fully Dynamic Reachability – in Practice! 6

Algorithms: Dynamized Static Algorithms

BFS

s

DFS

s

Three flavors:
Static: Pure static algorithm, called for each

query.
Caching: Cache reachability of all vertices, recompute

entirely upon query if necessary.
Lazy: Cache only reachability of vertices

encountered during a query, resume
traversal if cache is still valid.

BFS DFS

CBFS CDFS

LBFS LDFS

Kathrin Hanauer Fully Dynamic Reachability – in Practice! 7

Algorithms: Maintenance of Reachability Tree T

Extended Simple Incremental algorithm (SI):

Maintain for each vertex: v treeEdge: <edge>/null

query(v)

initialize(), edgeInserted((u, v)): build/extend T via BFS

edgeDeleted(e = (u, v)):

u

v

If v .treeEdge = e:

L too large? recompute from scratch

Reconstruct use backward BFS

Optional: additionally use forward BFS

Algorithm: SI(R?/SF?/ρ)
reverse L forward BFS

threshold: |L| ≤ ρ · n
Kathrin Hanauer Fully Dynamic Reachability – in Practice! 8

Algorithms: Maintenance of BFS Tree

Extended Even-Shiloach trees (ES):

vMaintain for each vertex:
level: depth(v) ∨ ∞
inEdges: <list of in-edges>
treeEdge: <index in inEdges>

query(v)

minimum level, minimum index

e0 e1 e2 e3 e4 e5 e6v .inEdges:

tails’ levels > e3’s v .treeEdge

initialize(), edgeInserted((u, v)): build/update T via BFS

edgeDeleted(e = (u, v)):
If e is tree edge: FIFO queue Q = ⟨v⟩; process(Q);

Kathrin Hanauer Fully Dynamic Reachability – in Practice! 9

Algorithms: Maintenance of BFS Tree T

process(Q = ⟨v , . . . ⟩):
v .inEdges:

v .treeEdge

v .level += 1
re-enqueue v and children

Thresholds:
#re-enqueuings per vertex > β
total #vertices processed > ρ · n

abort update and
recompute T from scratch

Algorithm: ES(β/ρ)

Variants:
Multi-Level: Scan v .inEdges completely, re-enqueue only children.

Algorithm: MES(β/ρ)

Simplified: Abandon v .inEdges, scan in-edges in arbitrary order.
Algorithm: SES(β/ρ)

Kathrin Hanauer Fully Dynamic Reachability – in Practice! 10

Experiments

All algorithms implemented in C++17 as part
of the open-source algorithms library Algora.

Algora

Code available publicly on Gitlab & Github: libAlgora
libAlgora

Algorithms
▶ BFS, CBFS, LBFS, DFS, CDFS, LDFS
▶ SI with (R?/SF?/ρ) = (R/SF/.25), (R/SF/.25)
▶ ES, MES, SES with (β/ρ) = (5/.5), (100/1), (∞, ∞)

Kathrin Hanauer Fully Dynamic Reachability – in Practice! 11

Experiments: Instances

Random dynamic instances
ER graphs:

n = 100k and n = 10m, minit = d · n, d ∈ [1.25 . . . 50]
σ = 100k, different ratios of insertions/deletions/queries

Stochastic Kronecker graphs with random update sequences:
n ≈ 130k and n ≈ 30 . . . 130k, mavg = d · n, d = 0.7 . . . 16.5
σ± = 1.6m . . . 702m and σ± = 282k . . . 82m (updates only)

Real-world dynamic instances
. . . with real-world update sequences:

n = 100k . . . 2.2m, mavg = d · n, d = 5.4 . . . 7.8
σ± = 1.6m . . . 86.2m (updates only)

. . . with randomized update sequences:
n = 31k . . . 2.2m, mavg = d · n, d = 4.7 . . . 10.4
σ± = 1.4m . . . 76.4m (updates only)

Kathrin Hanauer Fully Dynamic Reachability – in Practice! 12

Experiments: Random Instances, n = 100k

1.25 2.5 5 10 20 40
1

10

100

1 000

timeout

ES(5/.5)

ES(100/1)
ES(∞/∞)

MES(∞/∞)
SES(∞/∞)

MES(100/1)
MES(5/.5)

SES(100/1)
SES(5/.5)

Density d

D
el

et
io

n
tim

e,
re

la
tiv

e

1.25 2.5 5 10 20 40
1

1.2
1.5

2
2.5

3.5

5

7

10

15

24

MES(5/.5)
SES(5/.5)

SI(R/SF/.25)

SI(R/SF/.25)

Density d

D
el

et
io

n
tim

e,
re

la
tiv

e

1.25 2.5 5 10 20 40
1

1.2
1.5

2
2.5

3.5

5

7

10

15
MES(5/.5)

SES(5/.5)

SI(R/SF/.25)SI(R/SF/.25)

Density d

In
se

rt
io

n
tim

e,
re

la
tiv

e

1.25 2.5 5 10 20 40
1

1.2
1.5

2
2.5

3.5

5

7

10

15

MES(5/.5)

SES(5/.5)

SI(R/SF/.25)

SI(R/SF/.25)

Density d

U
pd

at
e

tim
e,

re
la

tiv
e

Kathrin Hanauer Fully Dynamic Reachability – in Practice! 13

Experiments: Random Instances, n = 100k

1.25 2.5 5 10 20 40
0.75

1

1.5

2
2.5

3.5

5

7

10

15

LBFS

LDFS

CBFS
CDFSSBFS

SDFS

Density d

Q
ue

ry
tim

e,
re

la
tiv

e

1.25 2.5 5 10 20 40

1

10

100

1 000

LBFS LDFS

CBFSCDFSSBFS

SDFS

SI(R/SF/.25)

SI(R/SF/.25)

ES

MES

SES

Density d

To
ta

lt
im

e
(s

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.5

1

1.5

2

2.5

MES(5/.5)
SES(5/.5)

SI(R/SF/.25)

Ratio of insertions among updates, dinit = 5

U
pd

at
e

tim
e

(µ
s)

pe
r

ed
ge

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

LBFS

LDFS
CBFS

CDFS

SES(5/.5) MES(5/.5) SI(R/SF/.25)

Ratio of queries among operations, d = 5

To
ta

lt
im

e
(s

)

Kathrin Hanauer Fully Dynamic Reachability – in Practice! 14

Experiments: Random Instances, n = 10m

1.25 2.5 5 10 20 40
1

1.5

2.5

5

10

20

40

90

200

SI(R/SF/.25)

SI(R/SF/.25)

MES(5/.5) SES(5/.5)

Density d

D
el

et
io

n
tim

e,
re

la
tiv

e

1.25 2.5 5 10 20 40
1

1.5

2.5

5

10

18

40

90

190

SI(R/SF/.25)SI(R/SF/.25)

MES(5/.5)

SES(5/.5)

Density d

In
se

rt
io

n
tim

e,
re

la
tiv

e

1.25 2.5 5 10 20 40
1

1.5

2.5

5

10

25

50

150

SI(R/SF/.25)

SI(R/SF/.25)

MES(5/.5) SES(5/.5)

Density d

U
pd

at
e

tim
e,

re
la

tiv
e

1.25 2.5 5 10 20 40

10

100

1 000 SI(R/SF/.25)

SI(R/SF/.25)

MES(5/.5)
SES(5/.5)

Density d

U
pd

at
e

tim
e

(s
)

Kathrin Hanauer Fully Dynamic Reachability – in Practice! 15

Experiments: Kronecker Instances, n ≈ 130k

answers

as-newman

as-routeviews

atp-gr-qc

bio-proteins

blog-nat05-6m

blog-nat06all

ca-dblp

ca-gr-qc

ca-hep-ph

ca-hep-th

cit-hep-ph

cit-hep-th

delicious

email-inside

epinions

flickr

gnutella-25

gnutella-30

web-notredame

27.7s

45.7s

49.1s

3min 29s

1min 13s

1min 48s

1min 55s

1min 35s

1min 41s

2min 25s

1min 14s

2min 14s

2min 16s

39.2s

19min 54s

51.2s

39.4s

49.1s

40.4s

40.4s

8min 34s

8min 4s

8min 46s

13min 8s

12min 5s

12min 58s

14min 26s

16min 52s

16min 31s

15min 51s

15min 51s

14min 34s

14min 22s

11min 30s

40min
25s

8min 25s

8min 25s

15min 29s

14min 32s

10min 10s

13.1s

19.4s

20.8s

13.7s

28.5s

41.1s

43.7s

37.8s

44.7s

52.8s

35.7s

48.8s

49.6s

18.7s

5min 50s

21.4s

16.9s

22.0s

19.2s

17.4s

13.4s

19.5s

21.3s

26.4s

29.3s

41.4s

44.9s

40.1s

53.5s

58.5s

42.7s

50.7s

51.8s

19.6s

13min 2s

21.6s

17.5s

22.7s

20.0s

18.2s

answers

as-newman

as-routeviews

atp-gr-qc

bio-proteins

blog-nat05-6m

blog-nat06all

ca-dblp

ca-gr-qc

ca-hep-ph

ca-hep-th

cit-hep-ph

cit-hep-th

delicious

email-inside

epinions

flickr

gnutella-25

gnutella-30

web-notredame

27.7s

45.7s

49.1s

3min 29s

1min 13s

1min 48s

1min 55s

1min 35s

1min 41s

2min 25s

1min 14s

2min 14s

2min 16s

39.2s

19min 54s

51.2s

39.4s

49.1s

40.4s

40.4s

8min 34s

8min 4s

8min 46s

13min 8s

12min 5s

12min 58s

14min 26s

16min 52s

16min 31s

15min 51s

15min 51s

14min 34s

14min 22s

11min 30s

40min
25s

8min 25s

8min 25s

15min 29s

14min 32s

10min 10s

13.1s

19.4s

20.8s

13.7s

28.5s

41.1s

43.7s

37.8s

44.7s

52.8s

35.7s

48.8s

49.6s

18.7s

5min 50s

21.4s

16.9s

22.0s

19.2s

17.4s

13.4s

19.5s

21.3s

26.4s

29.3s

41.4s

44.9s

40.1s

53.5s

58.5s

42.7s

50.7s

51.8s

19.6s

13min 2s

21.6s

17.5s

22.7s

20.0s

18.2s

MES(5/.5)
SES(5/.5)
SI(R/SF/.25)
SI(R/SF/.25)

≈ 50% insertions among updates –
≥ 71% of update time spent on deletions (except email-inside, 51%)

Kathrin Hanauer Fully Dynamic Reachability – in Practice! 16

Experiments: Real-World Instances, n = 31k . . . 2.2m

FR DE IT NL PL SIM

14
h

15
m

in

30
h

38
m

in

4h
36

m
in

4h
30

m
in

4h
54

m
in

1m
in

46
s

4h
59

m
in

8h
50

m
in

1h
37

m
in

1h
33

m
in

1h
40

m
in

46
s

13
h

30
m

in

8h
13

m
in

3h
32

m
in

41
m

in
29

s

1h
50

m
in

23
s1h

50
m

in

1h
2m

in

11
m

in
51

s

11
m

in
8s

1h
14

m
in

2s

MES(5/.5)
SES(5/.5)
SI(R/SF/.25)
SI(R/SF/.25)

FR_SHUF DE_SHUF IT_SHUF NL_SHUF PL_SHUF SIM_SHUF

5h
33

m
in

8h
50

m
in

2h
22

m
in

1h
27

m
in

2h
14

m
in

49
s1h

59
m

in

2h
53

m
in

46
m

in
24

s

28
m

in
11

s

40
m

in
38

s

17
s

17
h

58
m

in

13
h

7m
in

1h
34

m
in

1h
48

m
in

30
m

in
3s

20
s

47
m

in
23

s

56
m

in
27

s

10
m

in
13

s

5m
in

35
s

6m
in

11
s

3s

AS-CAIDA

3.
2s

2.
9s

5.
6s

2.
6s

51 – 85% insertions among updates –
> 89% of update time spent on deletions

Kathrin Hanauer Fully Dynamic Reachability – in Practice! 17

Which algorithm is best?

Shortest paths?

Update structure?

Size?

#Insertions?

small

random

no

SES(5/.5) SI(R/SF/.25)

yes

real-world,
long-living

edges
large

≥ 50%≤ 50%

Kathrin Hanauer Fully Dynamic Reachability – in Practice! 18

SSR Algorithms: Overview and Time Complexities

Algorithm Insertion Deletion Query

BFS, DFS 0 0 O(n + m)

CBFS, CDFS, LBFS, LDFS O(1) O(1) O(n + m)

SI(R?/SF?/ρ)
⌞ ρ = 0 O(n + m) O(n · m)

O(n + m) O(1)

ES(β/ρ), MES(β/ρ)
⌞ β ∈ O(1) ∨ ρ = 0 O(n + m) O(n · m)

O(n + m) O(1)

SES(β/ρ)
⌞ β ∈ O(1) ∨ ρ = 0 O(n + m) O(n · m)

O(n + m) O(1)

Kathrin Hanauer Fully Dynamic Reachability – in Practice! 19

Bibliography I

[AW14] A. Abboud and V. V. Williams. Popular conjectures imply strong
lower bounds for dynamic problems. In Proceedings of the 2014
IEEE 55th Annual Symposium on Foundations of Computer
Science, FOCS ’14, pages 434–443. IEEE, 2014.

[BPWN19] A. Bernstein, M. Probst, and C. Wulff-Nilsen. Decremental
strongly-connected components and single-source reachability in
near-linear time. In Proceedings of the 51st Annual ACM
Symposium on Theory of Computing, STOC ’19, 2019.

[DHZ00] D. Dor, S. Halperin, and U. Zwick. All-pairs almost shortest paths.
SIAM Journal on Computing, 29(5):1740–1759, 2000.

[DI08] C. Demetrescu and G. F. Italiano. Mantaining dynamic matrices
for fully dynamic transitive closure. Algorithmica, 51(4):387–427,
2008.

[FMNZ01] D. Frigioni, T. Miller, U. Nanni, and C. Zaroliagis. An experimental
study of dynamic algorithms for transitive closure. Journal of
Experimental Algorithmics (JEA), 6:9, 2001.

Kathrin Hanauer Fully Dynamic Reachability – in Practice! 20

Bibliography II

[HKNS15] M. Henzinger, S. Krinninger, D. Nanongkai, and T. Saranurak.
Unifying and strengthening hardness for dynamic problems via the
online matrix-vector multiplication conjecture. In 47th ACM
Symposium on Theory of Computing, STOC’15, pages 21–30.
ACM, 2015.

[KZ08] I. Krommidas and C. D. Zaroliagis. An experimental study of
algorithms for fully dynamic transitive closure. ACM Journal of
Experimental Algorithmics, 12:1.6:1–1.6:22, 2008.

[Rod08] L. Roditty. A faster and simpler fully dynamic transitive closure.
ACM Trans. Algorithms, 4(1), March 2008.

[RZ08] L. Roditty and U. Zwick. Improved dynamic reachability algorithms
for directed graphs. SIAM Journal on Computing,
37(5):1455–1471, 2008.

[RZ16] L. Roditty and U. Zwick. A fully dynamic reachability algorithm for
directed graphs with an almost linear update time. SIAM Journal
on Computing, 45(3):712–733, 2016.

Kathrin Hanauer Fully Dynamic Reachability – in Practice! 21

Bibliography III

[San04] P. Sankowski. Dynamic transitive closure via dynamic matrix
inverse. In 45th Symposium on Foundations of Computer Science
(FOCS), pages 509–517. IEEE, 2004.

[vdBNS19] J. van den Brand, D. Nanongkai, and T. Saranurak. Dynamic
matrix inverse: Improved algorithms and matching conditional
lower bounds. In 60th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2019, Baltimore, Maryland, USA,
November 9-12, 2019, pages 456–480, 2019.

[WW10] V. V. Williams and R. Williams. Subcubic equivalences between
path, matrix and triangle problems. In 51st Symposium on
Foundations of Computer Science (FOCS), pages 645–654, 2010.

Kathrin Hanauer Fully Dynamic Reachability – in Practice! 22

	Motivation
	SSR Algorithms
	SSR Experiments
	SSR Conclusion
	Appendix
	Bibliography

