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Relating Hypotheses

only very weak relations are known

e.g. ETH implies that k-SUM has no n°®) algorithm

OPEN: SETH implies that 3SUM has no 0 (n*~¢) algorithm ?

today we will see a barrier for tighter connections
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. Nondeterministic SETH
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Nondeterministic Algorithms

Turing machine: can choose any applicable transition at any point in time

RAM: operation guess() fills a cell with an integer

YES-instance: at least one accepting path NO-instance: all paths reject
guesses on an accepting path = proof that we have a YES-instance

NP: all problems solvable in polytime by a nondet. Turing machine

k-SAT algorithm: guess a satisfying assignment, check correctness 0(n + m)

,2guess a short proof of satisfiability and check it*

3SUM algorithm: guess a,b,c € A and checka+b+c =0 0(1)/0(n)
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Co-Nondeterministic Algorithms

Turing machine: can choose any applicable transition at any point in time

RAM: operation guess() fills a cell with an integer

YES-instance: all paths accept NO-instance: at least one path rejects
guesses on a rejecting path = proof that we have a NO-instance

co-NP: all problems solvable in polytime by a co-nondet. Turing machine

k-SAT: ,guess a short proof of unsatisfiability and check it“ — Is this possible ?

classic computational complexity:
if NP # co-NP, then k-SAT has no O(poly(n)) co-nondet. algorithm

we believe that NP # co-NP, since otherwise the polynomial hierarchy collapses
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(Co-)Nondeterministic SETH

if NP # co-NP, then k-SAT has no O(poly(n)) co-nondet. algorithm

not even a 0 (2'~¥™) co-nondet. algorithm is known!

Nondeterministic SETH:  k-SAT has no no 0(2'~9™) co-nondet. algorithm

[CGIMPS’16] —
do not allow randomization! ]

NSETH implies SETH (without randomization)
barely anyone believes that NSETH is true

but it formalizes a current barrier

NSETH can be used to conditionally rule out reductions
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Potential Reduction from SAT to 3SSUM

an deterministic algorithm A for k-SAT with oracle access to 3SUM s.t.:

3SUM
k-SAT reduction instance I,

fomula ¢ > size n,

n variables,
m < n”* clauses
total time instance I,
r(n) i
Size nk

Properties:

for any fomula ¢, algorithm A(¢) correctly solves k-SAT on ¢
A runs in time r(n) = 0(247"™) for some y > 0
forany e > 0 thereisa § € (0,y) s.t. YK n27¢ <20-9n

eg.k=1landn, = 2™2m¢  then n12—8 < 2@-¢/2)nyck ~ H(1-¢/3)n
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Potential Reduction from SAT to 3SSUM

an deterministic algorithm A for k-SAT with oracle access to 3SUM s.t.:

3SUM
k-SAT reduction instance I,

fomula ¢ _ > size n,

n variables, .
m < n”* clauses
total time instance I,
r(n) i
Size nk
Properties:

for any fomula ¢, algorithm A(¢) correctly solves k-SAT on ¢
A runs in time r(n) = 0(247"™) for some y > 0
forany e > 0 thereisa § € (0,y) s.t. YK n27¢ <20-9n

0(2(1=6)ny algorithm = 0 (n?~¢) algorithm
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Potential Reduction from SAT to 3SSUM

an deterministic algorithm A for k-SAT with oracle access to 3SUM s.t.:

3SUM
k-SAT reduction instance I,

fomula ¢ _ > size n,

n variables, .
m < n”* clauses
total time instance I,
r(n) i
Size nk
Properties:

for any fomula ¢, algorithm A(¢) correctly solves k-SAT on ¢
A runs in time r(n) = 0(247"™) for some y > 0
forany e > 0 thereisa § € (0,y) s.t. YK n27¢ <20-9n

nondet. 0(2(*~%") algorithmand ~ _ nondet. 0(n*~¢) algorithm and
co-nondet. 021~ algorithm co-nondet. 0 (n%~¢) algorithm
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Potential Reduction from SAT to 3SSUM

an deterministic algorithm A for k-SAT with oracle access to 3SUM s.t.:

3SUM
k-SAT reduction instance I,

fomula ¢ _ > size n,

n variables, .
m < n”* clauses
total time instance I,
r(n) i
Size nk

for each instance I;: guess whether it is YES- or NO-instance

if we guessed YES: guess a proof r; that /; is a YES-instance
if we guessed NO: guess a proof 7; that I; is a NO-instance

if we guessed correctly:

n = (mq,..., ) forms a proof that ¢ is satisfiable or unsatisfiable
algorithm A is the ,proof checker”
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Potential Reduction from SAT to 3SSUM

an deterministic algorithm A for k-SAT with oracle access to 3SUM s.t.:

3SUM
k-SAT reduction EETEE T,
fomula ¢ _ > size n,
n variables, '
m < n* clauses
total time instance I,
() size n,
nondet. 0(21~9") algorithmand ~ _ nondet. 0(n*~¢) algorithm and
co-nondet. 0(2(1=%)) algorithm co-nondet. 0 (n?~%) algorithm
no nondet. 0(2(1=9)") algorithm or _, ho nondet. 0 (n?~¢) algorithm or
no co-nondet. 0 (211~ algorithm no co-nondet. 0 (n?~%) algorithm

=NSETH
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Ruling Out Reductions

either 3SUM has strongly subquadratic algorithms

or 3SUM is hard for a different reason than k-SAT
or NSETH fails

has drawbacks, but this is the only tool for negative results in this area

N
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Co-Nondeterministic Algorithm for 3SUM

3SUM: given set A of integers in {—n?, ...,n°}, are there a,b,c€ Ast. a+ b +c=07?

Thm: 3SUM has a co-nondeterministic algorithm in time 0 (n3/?)

[CGIMPS'16]

0 hides polylogarithmic factors in n

0(f()) = 0(f @) - polylog n)

0(fm) = | Joramogn)

c=0
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Co-Nondeterministic Algorithm for 3SUM

3SUM: given set A of integers in {—n?, ...,n°}, are there a,b,c€ Ast. a+ b +c=07?

Thm: 3SUM has a co-nondeterministic algorithm in time 0 (n3/?)
[CGIMPS'16]

1) guess prime p < n®/2logn 0(p)

2) compute t = |{(a,b,c) € A3 | a+ b + ¢ = 0 mod p}| O(p)
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Recall: 3SUM for Small Numbers

3SUM is in time 0(n) + O(U) for numbers in {0, ..., U}

define polynomial P(X) =), ,c4 X
has degree at most U

compute Q(X) = P(X) - P(X) - P(X) = QaeaX")Raca X)) (Laea X

what is the coefficient of X' in Q(X)? (X¢ - XP . X© = xa+b+e)

it is the number of (a,b,c) summing to t

use efficient polynomial multiplication (via Fast Fourier Transform):
polynomials of degree d can be multiplied in time 0 (d)
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Co-Nondeterministic Algorithm for 3SUM

3SUM: given set A of integers in {—n?, ...,n°}, are there a,b,c€ Ast. a+ b +c=07?

Thm: 3SUM has a co-nondeterministic algorithm in time 0 (n3/?)
[CGIMPS'16]

1) guess prime p < n*/?logn

2) compute t = |{(a,b,c) € A3 | a+ b + ¢ = 0 mod p}| 0(p)

let B:={amodp|a€A} (ingeneral Bis a multi-set!)

letr, .= |{(a,b,c) € B3 |a+ b+ c = 0}

let r, :== |{(a,b,c) E B3 |a+ b+ c =p} - universe size U = p

letr, = |{(a,b,c) € B3 |a+ b+ c = 2p}|

thent=7”0 +7‘1 +7‘2
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Co-Nondeterministic Algorithm for 3SUM

3SUM: given set A of integers in {—n?, ...,n°}, are there a,b,c€ Ast. a+ b +c=07?

Thm: 3SUM has a co-nondeterministic algorithm in time 0 (n3/?)
[CGIMPS'16]
1) guess prime p < n*/?logn
2) compute t = |{(a,b,c) € A3 | a+ b + ¢ = 0 mod p}| 0(p)
3)if t > a-n3/2logn: accept (constant « to be fixed later)
)

4) guess distinct (ay,b;,¢,), ..., (a;, b, c;) € A% such that a; + b; + ¢; = 0 mod p Vi
5) check that for all (a;, b;, c;) we have a; +b; + ¢c; # 0

6) if everything works out: reject (otherwise accept)

v time 0 (n3/?) v if we reject then we have a NO-instance

v YES-instance: all paths accept NO-instance: atleast one path rejects
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Co-Nondeterministic Algorithm for 3SUM

3SUM: given set A of integers in {—n?, ...,n°}, are there a,b,c€ Ast. a+ b +c=07?

NO-instance: at least one path rejects:

show that there exists a prime p < n®/?logn such that
t =|{(a,b,c) €A% |a+b+c=0modp}| <a-n®?logn

M := # tuples (a, b, c,p) witha,b,c € Aand primeps.t. a+b+c=0modp
eacha+ b + cisin {—3n°,...,3n°} \ {0}, so it has at most log(3n®) prime factors

thus M <n3log(3n°) < 3s-ndlogn

by prime number theorem: there are at least n®/? /g primes p < n®/?logn

thus there is a prime p contained in at most M /(n®/? /) tuples (a, b, ¢, p)

thus there is a prime p with t < M/(n3/?/B) < 3s - B - n3/? log(n)
seta:=3s:-pf
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Co-Nondeterministic Algorithm for 3SUM

3SUM: given set A of integers in {—n?, ...,n°}, are there a,b,c€ Ast. a+ b +c=07?

Thm: 3SUM has a co-nondeterministic algorithm in time 0 (n3/?)
[CGIMPS'16]
1) guess prime p < n*/?logn
2) compute t = |{(a,b,c) € A3 | a+ b + ¢ = 0 mod p}| 0(p)
3)if t > a-n3/2logn: accept (constant « to be fixed later)
)

4) guess distinct (ay,b;,¢,), ..., (a;, b, c;) € A% such that a; + b; + ¢; = 0 mod p Vi
5) check that for all (a;, b;, c;) we have a; +b; + ¢c; # 0

6) if everything works out: reject (otherwise accept)

v time 0 (n3/?) v if we reject then we have a NO-instance

v YES-instance: all paths accept v NO-instance: at least one path rejects
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. Randomized Nondeterministic SETH
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Randomized Nondeterministic SETH

then the hypothesis is wrong!

) [Williams'16]
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Tools: Basics on Polynomials

fix field Z,, and assume that field operations can be performed in 0(1) time

univariate polynomials P(X) = Y™, a; X', Q(X) =X™ b, X!, m<n
multiplication P(X) - Q(X): O(n) (by FFT, without proof)

division with remainder: O(n) (without proof)
P(X) =5SX) - -Q(X) + R(X), where R(X) has degree < m

we write R(X) = P(X) mod Q(X)

evaluate P(X) at a given point x: O(n)

Horner's method: P(x) = a, + x - (a1 +x-(ay, +x- (. )))
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Tools: Multipoint Evaluation on Polynomials

fix field Z,, and assume that field operations can be performed in 0(1) time

univariate polynomial P(X) = Y™, a; X"

multipoint evaluation: 0(n)

evaluate P(X) at given points X = x4, ..., x,

1) let L(X) i= (X = %)~ (X = Xpy) and R(X) 1= (X = Xpjp1) - (X = %)
2) let P,(X)==PX)modL(X) and P, (X) := P(X) mod R(X)

3) recursively compute P (x4),..., P, (xp/2) @and Pr(Xy/241)s---» Pr(xp)

polynomial division: P(X) =SX) - L(X) + P,(X)
P(x;) = S(x;) - L(x;) + P, (x;) = P (x;)
T(n) = 2T(n/2) + O(n) = O(n) |
=0 fori<n/2
il IJI B i mangk institut



Tools: Multipoint Evaluation on Polynomials

fix field Z,, and assume that field operations can be performed in 0(1) time

univariate polynomial P(X) = X%, a; X’

computing L(X) == (X — xq) - (X — xp/2):

straight-forward binary tree computes canonical polynomials
Ps-2t+1,(s+1)2t(X)
logn

defined by _

J
Pi,j(X): = 1_[X — Xk
k=i
0

in layer i: n/2' multiplications of
(X —x;) polynomials of degree 2°

total time 0 (n)
il IJ J B oo planck instiou



Tools: Polynomial Interpolation

fix field Z,, and assume that field operations can be performed in 0(1) time

univariate polynomial P(X) = Y™, a; X"

polynomial interpolation: 0 (n)

given pairs (x,¥1), ..., (x5, ,) find a polynomial P(X) with P(x;) = y; for all i

‘ X — xj
Lagrange’s formula: P(X) = z y; - 1—[
i jei T

Caveat: ,division by x" in Z,, means multiplication with the inverse x 1

extended Euclidean algorithm:

computes s,t with s-x+t-p =gcd(x,p) =1
modulop: s-x =1
so s = x 1 is the inverse of x
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Tools: Polynomial Interpolation

, 1
1st goal: compute  P(X) _Zyl nX X; (for y;:= yi'Hj;tixlij)

_]-'.tl

let L(X) == (X — xq) - (X _xn/z) and R(X) = (X = xn/2+1)"' (X —xp)

recursion:
2ot x=xm=( 2, v | ] x-x)-re0
JE! 1<isn/2 1<jsn/2
JE
> oy ] x-x) e
n/2<isn n/2<js<n
J#i

LT U EE



Tools: Polynomial Interpolation

1

xi_x]'

2nd goal: compute factors s; = 1_[

JE!

compute the derivative of

QX) = ﬁX —Xx; = Z?_Oaixi
i=1 =
Q'(X) = ZnX —Xj = Z:L:Ol' : Cll-Xi_l

[ Jj#i
can compute Q' (X) in time 0(n)

then we have

Q' (xs) =znxk —x; = nxk —x; =S "

[ J#i Jj*k
compute all Q' (x,) for k =1, ...,n in time 0(n) by multipoint evaluation
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Tools: Polynomial Interpolation

fix field Z,, and assume that field operations can be performed in 0(1) time

univariate polynomial P(X) = X%, a; X’

polynomial interpolation: 0 (n)
given pairs (x,¥1), ..., (x5, ,) find a polynomial P(X) with P(x;) = y; for all i

‘ X — xj
Lagrange’s formula: P(X) = z%’ : ‘ ‘
Xi— Xj

i Jj#i J

can be computed in time 0 (n)!
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Tools: Arithmetic Circuits

fix field Z,, and assume that field operations can be performed in 0(1) time

arithmetic circuits are a (succinct) representation of (multivariate) polynomials

input gates labeled with variables X, ..., X;, - univariate if k =1

each other gate is a “+” or “x” (unbounded fanin)

ora “=" (fanin 1)
or a constant (fanin 0)

fanout is unbounded
one output gate

(no cyclic dependencies)

given an input x4, ..., x; € Ly

the output C (x4, ..., xx)
is the number computed X1 X, X3
by the output gate (in Zy,)

TITCI PRt (42 + (X1X2)) X1 X)) (=X,) (X5 + (X3 - 7))
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Tools: Arithmetic Circuits

fix field Z,, and assume that field operations can be performed in 0(1) time

representation as circuit is not unique

egg

3
2 X
(1+2X)2X)(3 —X) = —4X3 +10X% + 6X
circuit = unstructured, succinct polynomial = structured, verbose
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Tools: Arithmetic Circuits

fix field Z,, and assume that field operations can be performed in 0(1) time

working modulo p is necessary

over Z numbers can get very large:
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Tools: Arithmetic Circuits
fix field Z,, and assume that field operations can be performed in 0(1) time

k inputs size s = number if wires

degree d = ,largest degree of any monomial assuming no cancelations”

degree(input gate) = 1

1] ”»

(
degree(constant gate) = 0
degree(“—" gate) = degree of child

degree(“+” gate) =
maximum of degrees of children

1] ”

degree(“x” gate) =
sum of degrees of children

degree of circuit =
degree(output gate)

LT O PR (42 + (01X2)) (X1 X2) (=X2) (X3 + (X5 - 7))



Tools: Evaluation of Circuits

fix field Z,, and assume that field operations can be performed in 0(1) time
k inputs size s = number if wires degree d

egg

2 X
1+ 2X)2X)3 - X)

evaluating a circuit at given input: 0(s)

LT U EE



Tools: Identity Testing

fix field Z,, and assume that field operations can be performed in 0(1) time
k inputs size s = number if wires degree d

given two circuits C,,C,, do they represent the same polynomial over Z,?

this problem is called polynomial identity testing

assume that C,,C, are univariate and assume p > 2d

Schwarz-Zippel-Lemma:
this has a randomized 0 (s)-time algorithm with error probability 1 — s~ %)

_ C,(X) —C,(X) is a poly-
1) for log s rounds: nomial Q (X) of degree d

2) pick random x € Z, _
if C;(X) # C,(X) then Q(X)
3) if C;(x) # C,(x): return ,not identical* is not the 0-polynomial and

4) return ,identical* thus has at most d roots

with probability > 1/2 we
l l I p I L nrll%xrpl;la?ck institut pICk a non_root X



Tools: Evaluation of Circuits

fix field Z,, and assume that field operations can be performed in 0(1) time
k inputs size s = number if wires degree d

evaluating a circuit at given input: O(s)

multipoint evaluation (at n points):
no near-linear time algorithm known
trivial algorithm: O(n - s)
converting a univariate circuit

to a polynomial: O(s- d)
(write each gate as a degree polynomial)

(1+2X)2X)(3 - X)

conversion + multipoint evaluation for polynomials
= multipoint evaluation for univariate circuits in O(s- d+ n + d)

d+k+1

(for multivariate: degree d polynomial has up to ( I
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OV as Multipoint Evaluation on Circuits

OV: Givensets 4,B € {0,1}¢ of size n
Decide whether there are a € A,b € B suchthata 1L b

circuit C (a, b) for testing orthogonality of a, b:

d
c(ab) =] [ -ab)
i=1
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OV as Multipoint Evaluation on Circuits

OV: Givensets 4,B € {0,1}¢ of size n
Decide whether there are a € A,b € B suchthata 1L b

circuit C(a) for testing orthogonality of a with any b € B:

C(a)—ZC(a b) = zl—[(l

bEB bEB i=

- d inputs (for the coordinates of a)
- size 0 (nd)

C(a,b)
- degree < 2d foreach b € B

-foranya € {0,1}%: 0<C(a)<n
- pick prime p = n and work modulo p, i.e., over field Ly,
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(Co-)Nondet. Multipoint Evaluation on Circuits

Given circuit € on inputs Xy, ..., X, with size s and degree d over Z,
Given inputs zy, ..., z, € Z,"
want to evaluate C on each z; = (z;[1], ..., z;[k])

can assume p = 2nd, p < n°®

1) compute polynomials Ry (X), ..., R, (X) such that R;(j) = z[i] 0 (kn)
by polynomial interpolation
new goal: evaluate univariate circuit C'(X) = C(R{(X), ..., Rx(X)) onX =1, ...,n
C’ has size < O(s + kn) and depth < dn

2) guess a polynomial Q(X) of degree at most dn O(dn)

3) check that Q(X) = C(R;(X), ..., R, (X))

O(s+kn+d
by “polynomial identity testing” (s + kn+dn)

4) multipoint evaluate Q(X) on X =1, ...,n and return these values 0(dn)
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Co-Nondet. Algorithm for OV

use circuit C(a) for testing orthogonality of a with any b € B < {0,1}¢
evaluate C(a) ateacha € A
d inputs, size 0(dn), degree < 2d

YES-instance: all paths accept NO-instance: atleast one path rejects
...with high probability

1) compute polynomials R, (X), ..., R, (X) such that R;(j) = z;[i] 0 (kn)
by polynomial interpolation
new goal: evaluate univariate circuit C'(X) = C(R{(X), ..., Rx(X)) onX =1, ...,n

C’ has size < 0(s + kn) and depth < dn
2) guess a polynomial Q(X) of degree at most dn 0(dn)

3) check that Q(X) = C(R;(X), ...,R; (X))

) O(s + kn + dn)
by “polynomial identity testing”, if not: ACCEPT

4) multipoint evaluate Q(X) on X =1, ..., n and return these values O(dn)

NNR DN S)ACCEPTIf X, 0() > 1 0(dn)



Co-Nondet. Algorithm for OV

NO-instance: If we correctly guess Q(X) then the identity test works with prob. 1
and we correctly report non-existence of an orthogonal pair = REJECT

YES-instance: If we correctly guess Q(X) then we ACCEPT

If we wrongly guess Q(X) then identity test fails with prob. 1 — n=1)
for any guess: we ACCEPT with probability 1 — n=%®)
1) compute polynomials R, (X), ..., R, (X) such that R;(j) = z;[i] 0 (kn)

by polynomial interpolation
new goal: evaluate univariate circuit C'(X) = C(R{(X), ..., Rx(X)) onX =1, ...,n

C’ has size < 0(s + kn) and depth < dn
2) guess a polynomial Q(X) of degree at most dn 0(dn)

heck th X) =C(R,(X), ... ~
3) check that Q(¥) = C(R; (1), ., R (X)) 6(s + kn+ dn)
by “polynomial identity testing”, if not: ACCEPT

4) multipoint evaluate Q(X) on X =1, ..., n and return these values O(dn)

EERD B 5)ACCEPT if X7, Q() =1 O(dn)



Conclusion

Nondeterministic SETH:  k-SAT has no no 0(2'~9™) co-nondet. algorithm

No randomization allowed
If it holds, then there is no deterministic reduction from SETH to 3SUM,

since 3SUM has a 0 (n3/?) co-nondeterministic algorithm

This is the only tool for ruling out reductions!

,Randomized Nondeterministic SETH": is wrong!

We have seen a 0(dn) co-nondeterministic algorithm for OV

uses many tools for computing with polynomials and arithmetic circuits
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