
Complexity Theory of
Polynomial-Time Problems

Karl Bringmann

Lecture 11: Nondeterministic SETH

Complexity Inside P

SAT 2n

EDIT n2

LCS n2

Fréchet n2

diameter n2

OV n2 Colinearity n2

Negative Triangle n3

Radius n3
3SUM-hard

APSP
equivalent

SETH-hard

APSP n3

3SUM n2

BMM 𝑛"

SlidingWindowHD 𝑛"

BMM-hard

can we relate SAT / 3SUM / APSP / BMM?

Relating Hypotheses

only very weak relations are known

e.g. ETH implies that k-SUM has no 𝑛#(%) algorithm

today we will see a barrier for tighter connections

OPEN: SETH implies that 3SUM has no 𝑂(𝑛()*) algorithm ?

I. Nondeterministic SETH

Nondeterministic Algorithms

Turing machine: can choose any applicable transition at any point in time

RAM: operation guess() fills a cell with an integer

YES-instance: at least one accepting path NO-instance: all paths reject

NP: all problems solvable in polytime by a nondet. Turing machine

k-SAT algorithm: guess a satisfying assignment, check correctness 𝑂(𝑛 + 𝑚)

3SUM algorithm: guess 𝑎, 𝑏, 𝑐 ∈ 𝐴 and check 𝑎 + 𝑏 + 𝑐 = 0 𝑂(1)/𝑂(𝑛)

„guess a short proof of satisfiability and check it“

guesses on an accepting path = proof that we have a YES-instance

Co-Nondeterministic Algorithms

Turing machine: can choose any applicable transition at any point in time

RAM: operation guess() fills a cell with an integer

YES-instance: all paths accept NO-instance: at least one path rejects

co-NP: all problems solvable in polytime by a co-nondet. Turing machine

if NP ≠ co-NP, then k-SAT has no 𝑶(poly(𝒏)) co-nondet. algorithm
we believe that NP ≠ co-NP, since otherwise the polynomial hierarchy collapses

k-SAT: „guess a short proof of unsatisfiability and check it“ – Is this possible ?

guesses on a rejecting path = proof that we have a NO-instance

classic computational complexity:

(Co-)Nondeterministic SETH

NSETH implies SETH (without randomization)

barely anyone believes that NSETH is true

but it formalizes a current barrier

NSETH can be used to conditionally rule out reductions

not even a 𝑂(2 ?)* @) co-nondet. algorithm is known!

Nondeterministic SETH: k-SAT has no no 𝑂(2 ?)* @) co-nondet. algorithm

do not allow randomization!

if NP ≠ co-NP, then k-SAT has no 𝑂(poly(𝑛)) co-nondet. algorithm

[CGIMPS’16]

Potential Reduction from SAT to 3SUM

an deterministic algorithm 𝐴 for k-SAT with oracle access to 3SUM s.t.:

3SUM

total time
𝑟(𝑛)

size 𝑛?

reduction instance 𝐼1

size 𝑛%
instance 𝐼𝑘

…

…

for any fomula 𝜙, algorithm 𝐴(𝜙) correctly solves k-SAT on 𝜙
𝐴 runs in time 𝑟(𝑛) = 𝑂(2 ?)E @) for some 𝛾 > 0

for any 𝜀 > 0 there is a 𝛿 ∈ (0, 𝛾) s.t. ∑ 𝑛K()*%
KL? ≤ 2 ?)N @

Properties:

k-SAT

𝑛 variables,
𝑚 ≤ 𝑛% clauses

fomula 𝜙

e.g. 𝑘 = 1 and 𝑛? = 2@/(𝑚O, then 𝑛?()* ≤ 2 ?)*/(@𝑛O% ≤ 2 ?)*/P @

Potential Reduction from SAT to 3SUM

an deterministic algorithm 𝐴 for k-SAT with oracle access to 3SUM s.t.:

3SUM

total time
𝑟(𝑛)

size 𝑛?

reduction instance 𝐼1

size 𝑛%
instance 𝐼𝑘

…

…

for any fomula 𝜙, algorithm 𝐴(𝜙) correctly solves k-SAT on 𝜙
𝐴 runs in time 𝑟(𝑛) = 𝑂(2 ?)E @) for some 𝛾 > 0

for any 𝜀 > 0 there is a 𝛿 ∈ (0, 𝛾) s.t. ∑ 𝑛K()*%
KL? ≤ 2 ?)N @

Properties:

k-SAT

𝑛 variables,
𝑚 ≤ 𝑛% clauses

fomula 𝜙

𝑂(𝑛()*) algorithm𝑂(2 ?)N @) algorithm ⟸

Potential Reduction from SAT to 3SUM

an deterministic algorithm 𝐴 for k-SAT with oracle access to 3SUM s.t.:

3SUM

total time
𝑟(𝑛)

size 𝑛?

reduction instance 𝐼1

size 𝑛%
instance 𝐼𝑘

…

…

for any fomula 𝜙, algorithm 𝐴(𝜙) correctly solves k-SAT on 𝜙
𝐴 runs in time 𝑟(𝑛) = 𝑂(2 ?)E @) for some 𝛾 > 0

for any 𝜀 > 0 there is a 𝛿 ∈ (0, 𝛾) s.t. ∑ 𝑛K()*%
KL? ≤ 2 ?)N @

Properties:

k-SAT

𝑛 variables,
𝑚 ≤ 𝑛% clauses

fomula 𝜙

nondet. 𝑂(𝑛()*) algorithm and
co-nondet. 𝑂(𝑛()*) algorithm

nondet. 𝑂(2 ?)N @) algorithm and
co-nondet. 𝑂(2 ?)N @) algorithm

⟸

Potential Reduction from SAT to 3SUM

an deterministic algorithm 𝐴 for k-SAT with oracle access to 3SUM s.t.:

3SUM

total time
𝑟(𝑛)

size 𝑛?

reduction instance 𝐼1

size 𝑛%
instance 𝐼𝑘

…

…

for each instance 𝐼R : guess whether it is YES- or NO-instance
if we guessed YES: guess a proof 𝜋R that 𝐼R is a YES-instance

k-SAT

𝑛 variables,
𝑚 ≤ 𝑛% clauses

fomula 𝜙

if we guessed NO: guess a proof 𝜋R that 𝐼R is a NO-instance

if we guessed correctly:
𝜋 = (𝜋?,… , 𝜋%) forms a proof that 𝜙 is satisfiable or unsatisfiable
algorithm 𝐴 is the „proof checker“

Potential Reduction from SAT to 3SUM

an deterministic algorithm 𝐴 for k-SAT with oracle access to 3SUM s.t.:

3SUM

total time
𝑟(𝑛)

size 𝑛?

reduction instance 𝐼1

size 𝑛%
instance 𝐼𝑘

…

…
k-SAT

𝑛 variables,
𝑚 ≤ 𝑛% clauses

fomula 𝜙

nondet. 𝑂(𝑛()*) algorithm and
co-nondet. 𝑂(𝑛()*) algorithm

nondet. 𝑂(2 ?)N @) algorithm and
co-nondet. 𝑂(2 ?)N @) algorithm

⟸

no nondet. 𝑂(𝑛()*) algorithm or
no co-nondet. 𝑂(𝑛()*) algorithm

no nondet. 𝑂(2 ?)N @) algorithm or
no co-nondet. 𝑂(2 ?)N @) algorithm

⟹

=NSETH

Ruling Out Reductions

either 3SUM has strongly subquadratic algorithms

or 3SUM is hard for a different reason than k-SAT

or NSETH fails

then there is no deterministic reduction from k-SAT to 3SUM

If NSETH holds and

3SUM has a 𝑂(𝑛()*) co-nondeterministic algorithm we will
show this

has drawbacks, but this is the only tool for negative results in this area

Co-Nondeterministic Algorithm for 3SUM

Thm: 3SUM has a co-nondeterministic algorithm in time 𝑂V(𝑛P/()

[CGIMPS’16]

3SUM: given set 𝐴 of integers in {−𝑛Y, … , 𝑛Y}, are there 𝑎, 𝑏, 𝑐 ∈ 𝐴 s.t. 𝑎+ 𝑏 + 𝑐 = 0?

𝑂V hides polylogarithmic factors in n

𝑂V 𝑓 𝑛 =\𝑂 𝑓 𝑛 logO 𝑛
O^_

𝑂V 𝑓 𝑛 = 𝑂(𝑓 𝑛 ⋅ polylog	𝑛)

Co-Nondeterministic Algorithm for 3SUM

Thm: 3SUM has a co-nondeterministic algorithm in time 𝑂V(𝑛P/()

[CGIMPS’16]

1) guess prime 𝑝 ≤ 𝑛P/(log𝑛

2) compute 𝑡 = 𝑎,𝑏, 𝑐 ∈ 𝐴P	|	𝑎 + 𝑏 + 𝑐 = 0	mod	𝑝 𝑂V(𝑝)

3SUM: given set 𝐴 of integers in {−𝑛Y, … , 𝑛Y}, are there 𝑎, 𝑏, 𝑐 ∈ 𝐴 s.t. 𝑎+ 𝑏 + 𝑐 = 0?

𝑂V(𝑝)

Recall: 3SUM for Small Numbers

3SUM is in time 𝑂 𝑛 + 𝑂V(𝑈) for numbers in {0, … , 𝑈}

define polynomial 𝑃 𝑋 ≔ ∑ 𝑋kk∈l

has degree at most 𝑈

compute 𝑄 𝑋 ≔ 𝑃 𝑋 ⋅ 𝑃 𝑋 ⋅ 𝑃 𝑋 = (∑ 𝑋kk∈l)(∑ 𝑋kk∈l)(∑ 𝑋kk∈l)

what is the coefficient of 𝑋n in 𝑄(𝑋)?

use efficient polynomial multiplication (via Fast Fourier Transform):
polynomials of degree 𝑑 can be multiplied in time 𝑂V(𝑑)

(𝑋k ⋅ 𝑋p ⋅ 𝑋O = 𝑋kqpqO)

it is the number of (𝒂,𝒃, 𝒄)	summing to 𝒕

Co-Nondeterministic Algorithm for 3SUM

Thm: 3SUM has a co-nondeterministic algorithm in time 𝑂V(𝑛P/()

[CGIMPS’16]

1) guess prime 𝑝 ≤ 𝑛P/(log𝑛

2) compute 𝑡 = 𝑎,𝑏, 𝑐 ∈ 𝐴P	|	𝑎 + 𝑏 + 𝑐 = 0	mod	𝑝 𝑂V(𝑝)

3SUM: given set 𝐴 of integers in {−𝑛Y, … , 𝑛Y}, are there 𝑎, 𝑏, 𝑐 ∈ 𝐴 s.t. 𝑎+ 𝑏 + 𝑐 = 0?

let 𝐵 ≔ 𝑎	mod	𝑝	 	𝑎 ∈ 𝐴} (in general 𝐵 is a multi-set!)

let 𝑟_ ≔ 𝑎, 𝑏, 𝑐 ∈ 𝐵P	|	𝑎+ 𝑏 + 𝑐 = 0

let 𝑟? ≔ 𝑎, 𝑏, 𝑐 ∈ 𝐵P	|	𝑎 + 𝑏 + 𝑐 = 𝑝

let 𝑟(≔ 𝑎, 𝑏, 𝑐 ∈ 𝐵P	|	𝑎+ 𝑏 + 𝑐 = 2𝑝

then 𝑡 = 𝑟_ + 𝑟? + 𝑟(

universe size 𝑈 = 𝑝

Co-Nondeterministic Algorithm for 3SUM

Thm: 3SUM has a co-nondeterministic algorithm in time 𝑂V(𝑛P/()

[CGIMPS’16]

1) guess prime 𝑝 ≤ 𝑛P/(log𝑛

2) compute 𝑡 = 𝑎,𝑏, 𝑐 ∈ 𝐴P	|	𝑎 + 𝑏 + 𝑐 = 0	mod	𝑝

4) guess distinct 𝑎?,𝑏?, 𝑐? ,… , 𝑎n, 𝑏n, 𝑐n ∈ 𝐴P such that 𝑎K + 𝑏K + 𝑐K = 0	mod	𝑝 ∀𝑖

3) if 𝑡 > 𝛼 ⋅ 𝑛P/(log𝑛: accept

5) check that for all 𝑎K, 𝑏K, 𝑐K we have 𝑎K + 𝑏K + 𝑐K ≠ 0	

6) if everything works out: reject (otherwise accept)

𝑂V(𝑝)

✔ time 𝑂V(𝑛P/()

YES-instance: all paths accept NO-instance: at least one path rejects

✔ if we reject then we have a NO-instance

✔

3SUM: given set 𝐴 of integers in {−𝑛Y, … , 𝑛Y}, are there 𝑎, 𝑏, 𝑐 ∈ 𝐴 s.t. 𝑎+ 𝑏 + 𝑐 = 0?

(constant 𝛼 to be fixed later)

Co-Nondeterministic Algorithm for 3SUM

show that there exists a prime 𝑝 ≤ 𝑛P/(log𝑛 such that
𝑡 = 𝑎, 𝑏, 𝑐 ∈ 𝐴P	|	𝑎 + 𝑏 + 𝑐 = 0	mod	𝑝 < 𝛼 ⋅ 𝑛P/(log𝑛

NO-instance: at least one path rejects:

M := # tuples (𝑎, 𝑏, 𝑐, 𝑝)	with 𝑎, 𝑏, 𝑐 ∈ 𝐴 and prime 𝑝 s.t. 𝑎 + 𝑏 + 𝑐 = 0	mod	𝑝

3SUM: given set 𝐴 of integers in {−𝑛Y, … , 𝑛Y}, are there 𝑎, 𝑏, 𝑐 ∈ 𝐴 s.t. 𝑎+ 𝑏 + 𝑐 = 0?

each 𝑎 + 𝑏 + 𝑐	is in −3𝑛Y , … , 3𝑛Y ∖ {0}, so it has at most log(3𝑛Y) prime factors

thus 𝑀 ≤ 𝑛P log 3𝑛Y ≤ 3𝑠 ⋅ 𝑛P log 𝑛

by prime number theorem: there are at least 𝑛P/(/𝛽 primes 𝑝 ≤ 𝑛P/(log 𝑛

thus there is a prime 𝑝 contained in at most 𝑀/(𝑛P/(/𝛽) tuples (𝑎, 𝑏, 𝑐, 𝑝)

thus there is a prime 𝑝 with 𝑡 ≤ 𝑀/(𝑛P/(/𝛽) ≤ 3𝑠 ⋅ 𝛽 ⋅ 𝑛P/(log(𝑛)

set 𝛼 ≔ 3𝑠 ⋅ 𝛽

Co-Nondeterministic Algorithm for 3SUM

Thm: 3SUM has a co-nondeterministic algorithm in time 𝑂V(𝑛P/()

[CGIMPS’16]

𝑂V(𝑝)

✔ time 𝑂V(𝑛P/()

YES-instance: all paths accept NO-instance: at least one path rejects

✔ if we reject then we have a NO-instance

✔

3SUM: given set 𝐴 of integers in {−𝑛Y, … , 𝑛Y}, are there 𝑎, 𝑏, 𝑐 ∈ 𝐴 s.t. 𝑎+ 𝑏 + 𝑐 = 0?

(constant 𝛼 to be fixed later)

✔

1) guess prime 𝑝 ≤ 𝑛P/(log𝑛

2) compute 𝑡 = 𝑎,𝑏, 𝑐 ∈ 𝐴P	|	𝑎 + 𝑏 + 𝑐 = 0	mod	𝑝

4) guess distinct 𝑎?,𝑏?, 𝑐? ,… , 𝑎n, 𝑏n, 𝑐n ∈ 𝐴P such that 𝑎K + 𝑏K + 𝑐K = 0	mod	𝑝 ∀𝑖

3) if 𝑡 > 𝛼 ⋅ 𝑛P/(log𝑛: accept

5) check that for all 𝑎K, 𝑏K, 𝑐K we have 𝑎K + 𝑏K + 𝑐K ≠ 0	

6) if everything works out: reject (otherwise accept)

I. Randomized Nondeterministic SETH

Randomized Nondeterministic SETH

Nondeterministic SETH: k-SAT has no no 𝑂(2 ?)* @) co-nondet. algorithm

what if we allow randomization?

Thm: k-SAT has a randomized co-nondeterministic 𝑂(2@/(poly(𝑛)) algorithm
with error probability 2)�(@)

Thm: OV has a randomized co-nondeterministic 𝑂(𝑛	poly(𝑑, log 𝑛)) algorithm
with error probability 𝑛)�(?)

⟸
[Williams’16]

then the hypothesis is wrong!

Tools: Basics on Polynomials

fix field ℤ� and assume that field operations can be performed in 𝑂(1) time

univariate polynomials 𝑃 𝑋 = ∑ 𝑎K𝑋K@
KL_ , 𝑄 𝑋 = ∑ 𝑏K𝑋K�

KL_ , 𝑚 ≤ 𝑛

multiplication 𝑃 𝑋 ⋅ 𝑄(𝑋): 𝑂V 𝑛 (by FFT, without proof)

division with remainder: 𝑂V 𝑛 (without proof)

𝑃 𝑋 = 𝑆 𝑋 ⋅ 𝑄 𝑋 + 𝑅(𝑋), where 𝑅(𝑋) has degree < 𝑚

we write 𝑅 𝑋 = 𝑃 𝑋 	mod	𝑄 𝑋

evaluate 𝑃(𝑋) at a given point 𝑥: 𝑂(𝑛)

Horner‘s method: 𝑃 𝑥 = 𝑎_ + 𝑥 ⋅ 𝑎? + 𝑥 ⋅ 𝑎(+ 𝑥 ⋅ …

Tools: Multipoint Evaluation on Polynomials

multipoint evaluation: 𝑂V 𝑛

1) let 𝐿 𝑋 ≔ (𝑋 − 𝑥?)⋯(𝑋 − 𝑥@/() and 𝑅 𝑋 ≔ (𝑋 − 𝑥@/(q?)⋯ (𝑋 − 𝑥@)

evaluate 𝑃(𝑋) at given points 𝑋 = 𝑥?,… , 𝑥@

2) let 𝑃� 𝑋 ≔ 𝑃 𝑋 	mod	𝐿(𝑋) and 𝑃� 𝑋 ≔ 𝑃 𝑋 	mod	𝑅(𝑋)

3) recursively compute 𝑃�(𝑥?),…, 𝑃�(𝑥@/() and 𝑃�(𝑥@/(q?),…, 𝑃�(𝑥@)

fix field ℤ� and assume that field operations can be performed in 𝑂(1) time

univariate polynomial 𝑃 𝑋 = ∑ 𝑎K𝑋K@
KL_

𝑃 𝑋 = 𝑆 𝑋 ⋅ 𝐿 𝑋 + 𝑃�(𝑋)

𝑃 𝑥K = 𝑆 𝑥K ⋅ 𝐿 𝑥K + 𝑃� 𝑥K

= 0 for 𝑖 ≤ 𝑛/2

polynomial division:

𝑇 𝑛 = 2𝑇 𝑛/2 +𝑂V 𝑛 = 𝑂V 𝑛
= 𝑃� 𝑥K

Tools: Multipoint Evaluation on Polynomials

computing 𝐿 𝑋 ≔ (𝑋 − 𝑥?)⋯(𝑋 − 𝑥@/():

fix field ℤ� and assume that field operations can be performed in 𝑂(1) time

univariate polynomial 𝑃 𝑋 = ∑ 𝑎K𝑋K@
KL_

(𝑋 − 𝑥K)

𝑃K,R 𝑋 : =�𝑋 −𝑥%

R

%LK

computes canonical polynomials

𝑃Y⋅(�q?, Yq? (� 𝑋

defined by

straight-forward binary tree

log𝑛

0

in layer 𝑖: 𝑛/2K multiplications of
polynomials of degree 2K

total time 𝑂V 𝑛

Tools: Polynomial Interpolation

polynomial interpolation: 𝑂V 𝑛

given pairs 𝑥?,𝑦? ,… , (𝑥@, 𝑦@) find a polynomial 𝑃(𝑋) with 𝑃 𝑥K = 𝑦K for all 𝑖

fix field ℤ� and assume that field operations can be performed in 𝑂(1) time

univariate polynomial 𝑃 𝑋 = ∑ 𝑎K𝑋K@
KL_

Lagrange‘s formula: 𝑃 𝑋 =�𝑦K ⋅�
𝑋 − 𝑥R
𝑥K − 𝑥RR�KK

Caveat: „division by 𝑥“ in ℤ� means multiplication with the inverse 𝑥)?

extended Euclidean algorithm:
computes 𝑠, 𝑡 with 𝑠 ⋅ 𝑥 + 𝑡 ⋅ 𝑝 = gcd 𝑥, 𝑝 	 = 1

modulo 𝑝: 𝑠 ⋅ 𝑥 = 1
so 𝑠 = 𝑥)? is the inverse of 𝑥

Tools: Polynomial Interpolation

1st goal: compute 𝑃 𝑋 =�𝑦K� ⋅�𝑋 − 𝑥R
R�KK

�𝑦K� ⋅�𝑋 − 𝑥R
R�KK

= � 𝑦K� ⋅ � 𝑋 − 𝑥R
?�R�@/(
R�K

?�K�@/(

⋅ 𝑅 𝑋

recursion:

+ � 𝑦K� ⋅ � 𝑋 − 𝑥R
@/(�R�@
R�K

@/(�K�@

⋅ 𝐿 𝑋

(for 𝑦K�:= 𝑦K ⋅ ∏
?

��)��R�K)

let 𝐿 𝑋 ≔ (𝑋 − 𝑥?)⋯(𝑋 − 𝑥@/() and 𝑅 𝑋 ≔ (𝑋 − 𝑥@/(q?)⋯ (𝑋 − 𝑥@)

Tools: Polynomial Interpolation

2nd goal: compute factors 𝑠K =�
1

𝑥K − 𝑥RR�K

𝑄� 𝑋 = ��𝑋−𝑥R
R�KK

= � 𝑖 ⋅ 𝑎K𝑋K)?
@

KL_

compute the derivative of

can compute 𝑄� 𝑋 in time 𝑂V 𝑛

𝑄 𝑋 ≔�𝑋− 𝑥K

@

KL?

=� 𝑎K𝑋K
@

KL_

then we have

𝑄� 𝑥% =��𝑥% − 𝑥R
R�KK

= �𝑥% − 𝑥R
R�%

= 𝑠%)?

compute all 𝑄� 𝑥% for 𝑘 = 1, … ,𝑛 in time 𝑂V 𝑛 by multipoint evaluation

Tools: Polynomial Interpolation

polynomial interpolation: 𝑂V 𝑛

given pairs 𝑥?,𝑦? ,… , (𝑥@, 𝑦@) find a polynomial 𝑃(𝑋) with 𝑃 𝑥K = 𝑦K for all 𝑖

fix field ℤ� and assume that field operations can be performed in 𝑂(1) time

univariate polynomial 𝑃 𝑋 = ∑ 𝑎K𝑋K@
KL_

Lagrange‘s formula: 𝑃 𝑋 =�𝑦K ⋅�
𝑋 − 𝑥R
𝑥K − 𝑥RR�KK

can be computed in time 𝑂V 𝑛 !

Tools: Arithmetic Circuits

arithmetic circuits are a (succinct) representation of (multivariate) polynomials

fix field ℤ� and assume that field operations can be performed in 𝑂(1) time

×

+

×42

𝑋? 𝑋(

+

×

𝑋P
7

input gates labeled with variables 𝑋?,… , 𝑋% - univariate if 𝑘 = 1

each other gate is a “+” or “×” (unbounded fanin)
or a “−” (fanin 1)
or a constant (fanin 0)

fanout is unbounded
one output gate

given an input 𝑥?,… ,𝑥% ∈ ℤ�

(no cyclic dependencies)

the output 𝐶(𝑥?,… ,𝑥%)
is the number computed

42 + 𝑋?𝑋(𝑋?𝑋(−𝑋(𝑋P + 𝑋P ⋅ 7

−

by the output gate (in ℤ�)

= 7
= 1= 1= −2

= 7

= 8

= −1= −2

= 40

= 42

= 640

Tools: Arithmetic Circuits

fix field ℤ� and assume that field operations can be performed in 𝑂(1) time

×

+

×

2 𝑋

+

3

1+ 2𝑋 2𝑋 3 − 𝑋

−1

−4𝑋P + 10𝑋(+ 6𝑋=

𝑋

×

6

10

−4

representation as circuit is not unique
+

×
+

×

circuit = unstructured, succinct polynomial = structured, verbose

Tools: Arithmetic Circuits

fix field ℤ� and assume that field operations can be performed in 𝑂(1) time

2

working modulo 𝑝 is necessary

over ℤ numbers can get very large:

×

×

×

×

×

×

= 2(

Tools: Arithmetic Circuits

fix field ℤ� and assume that field operations can be performed in 𝑂(1) time

×

+

×42

𝑋? 𝑋(

+

×

𝑋P
7

42 + 𝑋?𝑋(𝑋?𝑋(−𝑋(𝑋P + 𝑋P ⋅ 7

−

size 𝑠 = number if wires𝑘 inputs

degree(input gate) = 1

degree(constant gate) = 0

degree(“−” gate) = degree of child

degree(“+” gate) =
maximum of degrees of children

degree(“×” gate) =
sum of degrees of children

degree of circuit =
degree(output gate)

degree 𝑑 = „largest degree of any monomial assuming no cancelations“

0
111

1

1

12

2

0

6

Tools: Evaluation of Circuits
fix field ℤ� and assume that field operations can be performed in 𝑂(1) time

size 𝑠 = number if wires𝑘 inputs

×

+

×

2 𝑋

+

3

1+ 2𝑋 2𝑋 3 − 𝑋

−1

evaluating a circuit at given input: 𝑂(s)

degree 𝑑

Tools: Identity Testing
fix field ℤ� and assume that field operations can be performed in 𝑂(1) time

size 𝑠 = number if wires𝑘 inputs

given two circuits 𝐶?,𝐶(, do they represent the same polynomial over ℤ�?

degree 𝑑

assume that 𝐶?,𝐶(are univariate and assume 𝑝 ≥ 2𝑑

this has a randomized 𝑂V(𝑠)-time algorithm with error probability 1 − 𝑠)�(?)

this problem is called polynomial identity testing

1) for log𝑠 rounds:
2) pick random 𝑥 ∈ ℤ�

3) if 𝐶?(𝑥) ≠ 𝐶((𝑥): return „not identical“

4) return „identical“

𝐶? 𝑋 − 𝐶((𝑋) is a poly-
nomial 𝑄(𝑋) of degree 𝑑

if 𝐶?(𝑋) ≠ 𝐶((𝑋) then 𝑄(𝑋)
is not the 0-polynomial and
thus has at most 𝑑 roots

with probability ≥ 1/2 we
pick a non-root 𝑥

Schwarz-Zippel-Lemma:

Tools: Evaluation of Circuits
fix field ℤ� and assume that field operations can be performed in 𝑂(1) time

size 𝑠 = number if wires𝑘 inputs

×

+

×

2 𝑋

+

3

1+ 2𝑋 2𝑋 3 − 𝑋

−1

evaluating a circuit at given input: 𝑂(s)

no near-linear time algorithm known

converting a univariate circuit
to a polynomial: 𝑂V(s ⋅ d)

degree 𝑑

(write each gate as a degree polynomial)

multipoint evaluation (at 𝑛 points):

trivial algorithm: 𝑂(𝑛 ⋅ s)

conversion + multipoint evaluation for polynomials
= multipoint evaluation for univariate circuits in 𝑂V(s ⋅ d + 𝑛 + 𝑑)

(for multivariate: degree 𝑑 polynomial has up to 𝑑 + 𝑘 + 1
𝑘 monomials ☹)

OV as Multipoint Evaluation on Circuits

circuit 𝐶(𝑎, 𝑏) for testing orthogonality of 𝑎, 𝑏:

Given sets 𝐴,𝐵 ⊆ 0,1 ¤ of size 𝑛
Decide whether there are 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 such that 𝑎 ⊥ 𝑏

OV:

𝐶(𝑎, 𝑏) =�(1 − 𝑎K𝑏K)
¤

KL?

×

+

×

1

𝑎? 𝑏?

−

1

…

−

×

𝑎¤ 𝑏¤

−

OV as Multipoint Evaluation on Circuits

circuit 𝐶(𝑎) for testing orthogonality of 𝑎 with any 𝑏 ∈ 𝐵:

Given sets 𝐴,𝐵 ⊆ 0,1 ¤ of size 𝑛
Decide whether there are 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 such that 𝑎 ⊥ 𝑏

OV:

𝐶(𝑎) = �𝐶(𝑎, 𝑏)
p∈¦

= ��(1 − 𝑎K𝑏K)
¤

KL?

p∈¦

+

…

for each 𝑏 ∈ 𝐵

𝐶(𝑎, 𝑏)
…

- 𝑑 inputs (for the coordinates of 𝑎)
- size 𝑂(𝑛𝑑)
- degree ≤ 2𝑑

- for any 𝑎 ∈ {0,1}¤: 0 ≤ 𝐶(𝑎) ≤ 𝑛
- pick prime 𝑝 ≥ 𝑛 and work modulo 𝑝, i.e., over field ℤ�

(Co-)Nondet. Multipoint Evaluation on Circuits
Given circuit 𝐶 on inputs 𝑋?,… ,𝑋% with size 𝑠 and degree 𝑑 over ℤ�

can assume 𝑝 ≥ 2𝑛𝑑, 𝑝 ≤ 𝑛§(?)

Given inputs 𝑧?,… , 𝑧@ ∈ ℤ�%

want to evaluate 𝐶 on each 𝑧R = (𝑧R 1 , … , 𝑧R 𝑘)

1) compute polynomials 𝑅? 𝑋 , … , 𝑅%(𝑋) such that 𝑅K 𝑗 = 𝑧R[𝑖]
by polynomial interpolation

𝑂V(𝑘𝑛)

new goal: evaluate univariate circuit 𝐶� 𝑋 = 𝐶(𝑅? 𝑋 , … , 𝑅%(𝑋)) on 𝑋 = 1, … ,𝑛

2) guess a polynomial 𝑄 𝑋 of degree at most 𝑑𝑛

3) check that 𝑄 𝑋 = 𝐶(𝑅? 𝑋 , … ,𝑅%(𝑋))
by “polynomial identity testing”

𝑂(𝑑𝑛)

𝑂V(𝑠 + 𝑘𝑛 + 𝑑𝑛)

4) multipoint evaluate 𝑄 𝑋 on 𝑋 = 1, … , 𝑛 and return these values 𝑂V(𝑑𝑛)

𝐶’ has size ≤ 𝑂(𝑠 + 𝑘𝑛) and depth ≤ 𝑑𝑛

Co-Nondet. Algorithm for OV

5) ACCEPT if ∑ 𝑄(𝑗)@
RL? ≥ 1

1) compute polynomials 𝑅? 𝑋 , … , 𝑅%(𝑋) such that 𝑅K 𝑗 = 𝑧R[𝑖]
by polynomial interpolation

𝑂V(𝑘𝑛)

new goal: evaluate univariate circuit 𝐶� 𝑋 = 𝐶(𝑅? 𝑋 , … , 𝑅%(𝑋)) on 𝑋 = 1, … ,𝑛

2) guess a polynomial 𝑄 𝑋 of degree at most 𝑑𝑛

3) check that 𝑄 𝑋 = 𝐶(𝑅? 𝑋 , … ,𝑅%(𝑋))
by “polynomial identity testing”, if not: ACCEPT

𝑂(𝑑𝑛)

𝑂V(𝑠 + 𝑘𝑛 + 𝑑𝑛)

4) multipoint evaluate 𝑄 𝑋 on 𝑋 = 1, … , 𝑛 and return these values 𝑂V(𝑑𝑛)

𝐶’ has size ≤ 𝑂(𝑠 + 𝑘𝑛) and depth ≤ 𝑑𝑛

use circuit 𝐶(𝑎) for testing orthogonality of 𝑎 with any 𝑏 ∈ 𝐵 ⊆ {0,1}¤

evaluate 𝐶(𝑎) at each 𝑎 ∈ 𝐴

𝑑 inputs, size 𝑂(𝑑𝑛), degree ≤ 2𝑑

𝑂V(𝑑𝑛)

YES-instance: all paths accept NO-instance: at least one path rejects
...with high probability

Co-Nondet. Algorithm for OV

5) ACCEPT if ∑ 𝑄(𝑗)@
RL? ≥ 1

1) compute polynomials 𝑅? 𝑋 , … , 𝑅%(𝑋) such that 𝑅K 𝑗 = 𝑧R[𝑖]
by polynomial interpolation

𝑂V(𝑘𝑛)

new goal: evaluate univariate circuit 𝐶� 𝑋 = 𝐶(𝑅? 𝑋 , … , 𝑅%(𝑋)) on 𝑋 = 1, … ,𝑛

2) guess a polynomial 𝑄 𝑋 of degree at most 𝑑𝑛

3) check that 𝑄 𝑋 = 𝐶(𝑅? 𝑋 , … ,𝑅%(𝑋))
by “polynomial identity testing”, if not: ACCEPT

𝑂(𝑑𝑛)

𝑂V(𝑠 + 𝑘𝑛 + 𝑑𝑛)

4) multipoint evaluate 𝑄 𝑋 on 𝑋 = 1, … , 𝑛 and return these values 𝑂V(𝑑𝑛)

𝐶’ has size ≤ 𝑂(𝑠 + 𝑘𝑛) and depth ≤ 𝑑𝑛

𝑂V(𝑑𝑛)

NO-instance: If we correctly guess 𝑄 𝑋 then the identity test works with prob. 1
and we correctly report non-existence of an orthogonal pair = REJECT

YES-instance: If we correctly guess 𝑄 𝑋 then we ACCEPT
If we wrongly guess 𝑄 𝑋 then identity test fails with prob. 1 − 𝑛)�(?)

for any guess: we ACCEPT with probability 1 − 𝑛)�(?)

Conclusion

No randomization allowed

Nondeterministic SETH: k-SAT has no no 𝑂(2 ?)* @) co-nondet. algorithm

If it holds, then there is no deterministic reduction from SETH to 3SUM,

This is the only tool for ruling out reductions!

„Randomized Nondeterministic SETH“: is wrong!

We have seen a 𝑂V(𝑑𝑛) co-nondeterministic algorithm for OV

uses many tools for computing with polynomials and arithmetic circuits

since 3SUM has a 𝑂V(𝑛P/() co-nondeterministic algorithm

