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Recall: Boolean Matrix Multiplication

given nxXn matrices A, B with entries in {0,1}

compute matrix C with C; ; = Vi_, A; x ABy ;

what we already know about BMM:

BMM is in time 0(n3/logn) (four Russians)

BMM is equivalent to computing the Transitive Closure of a given graph

BMM can be reduced to APSP — 0(n3/2vV1°8™)

@
O
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Exponent of Matrix Multiplication

define w as the infimum over all ¢ such that MM has an 0 (n) algorithm

note: MM is in time O (n®*¢) forany € > 0

we will be sloppy and write: MM is in time 0 (n®)

note: MM is not in time 0(n® %) forany € > 0

Thm:

this is very fast — in theory

all these algorithms have
impractically large constant factors

(maybe except Strassen’69)
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Strassen’69

Pan’78

Bini et al.”79
Schénhage’80

Romani’80
Coppersmith,Winograd’81
Strassen’86
Coppersmith,Winograd’90
Stothers’10
Vassilevska-Williams’11
Le Gall'14

w =< ...
2.81
2.79
2.78
2.52
2.52
2.50
2.48
2.376
2.374
2.37288
2.37287



Boolean Matrix Multiplication

Thm: BMM is in time 0 (n®)

given nxXn matrices A, B with entries in {0,1}
compute standard matrix product " with C;; = X1, A; . - By ;
define matrix C with C; ; = [C]; > 0]

then C is the Boolean matrix product of A and B

Hypothesis: BMM is not in time 0 (n® %)
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Combinatorial Algorithms

fast matrix multiplication uses algebraic techniques which are impractical

“combinatorial algorithms™: do not use algebraic techniques

not well defined!

Arlazarov,Dinic,Kronrod, 0(n3/log?n)
Faradzhev'70 (four russians)

Bansal,Williams’09 0(n®(loglog n)? /log®/*n)
Chan’15

0 (n3(loglog n)3 /log3n)

Yu'15 0 (n3 poly log log n /log*n)

Hypothesis: BMM has no “combinatorial” algorithm in time 0 (n3~¢)
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In this lecture you learn that...

...(B)MM is useful for designing theoretically fast algorithms

- Exercise: k-Clique in 0 (n®*/3)
- Exercise: MaxCut in 0(2°™3 poly(n))
- Node-Weighted Negative Triangle in 0(n®)

...BMM is an obstacle for practically fast / theoretically very fast algorithms

/ \

no combinatorial 0 (n>~%) not faster than 0 (n*373)

- Transitive Closure has no 0(n® ~¢) / combinatorial 0 (n*>~¢) algorithm
- Exercise: pattern matching with 2 patterns
- Sliding Window Hamming Distance

- context-free grammar problems
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Outline

1) Relations to Subcubic Equivalences
2) Strassen’s Algorithm

3) Sliding Window Hamming Distance

4) Node-Weighted Negative Triangle

5) Context-Free Grammars
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Corollaries from Subcubic Equivalences

BMM

0

All-Pairs- given an unweighted graph G
Triangle  \erticesv =1uj UK

II Vi,j: are they in a triangle with some k?

Triangle given an unweighted graph G

does it contain a triangle?

[Vassilevska-Williams,Williams’10]
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Corollaries from Subcubic Equivalences

APSP

Min-Plus

BMM Product

II n< II

All-Pairs- : NAg;;F;?ii\i'_
Triangle Triangle
. Negative
Triangle Triangle
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Corollaries from Subcubic Equivalences

BMM

0

All-Pairs-
Triangle

0

Triangle

IIIIJI

Given an unweighted undirected graph G

Adjacency matrix A, entries in {0,1}

1. Compute Boolean Product C = A * A:

Ci,j — \/kAi’k /\Ak,j

2. Compute V; ;4; i A C;
this equals \/ Ai jNAj Ny
i,k

thus we solved triangle detection
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Corollaries from Subcubic Equivalences

BMM

0

All-Pairs-
Triangle

| 0

Triangle

IIIIJI
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All-Pairs-Triangle to Triangle All-Pairs-

Triangle
Triangle Given graph G l
Decide whether there are vertices i, j, k such that Triangle

[,j, k form a triangle

All-Pairs-Triangle  Given graph ¢ with vertexsetV =1UJUK

Decide for every i € I,j € ] whether there is a vertex k € K such that
i,j, k form a triangle

Split 1,/, K into n/s parts of size s:
Ly, s Ingsi J1s o0 Jnyss K1y ooy Knys I

For each of the (n/s)? triples (I, ]y, K;):

consider graph G[I, U], UK,] Lx

LT U EE



All-Pairs-Triangle to Triangle All-Pairs-
Triangle

Initialize C as nxn all-zeroes matrix l

For each of the (n/s)?3 triples of parts (I, Jy, Kz): Triangle
While G[I, U ], U K,] contains a triangle:
Find atriangle (i,j,k) in G[I, U], UK,]
Set C[i,j] =1
Delete edge (i,))

[E)isi%nnomore triangles ]

v/ guaranteed termination:

[W’N’ o0 ..]
N

can delete < n? edges

v/ correctness:
if (i,7) is in a triangle,
we will find one
il IJI B i mangk institut

7N
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All-Pairs-Triangle to Triangle All-Pairs-

Triangle
Find a triangle (i,j,k) in G[I, U], UK,] l
How to find a triangle Triangle

if we can only decide whether one exists?

Partition I, into I, ", 1,*¥, J,, into J,V,,®, K, into K,V K,

Since G[I,, U J,, U K,] contains a triangle,
at least one of the 23 subgraphs

G[Ix(“) U]y(b) U KZ(C)]
contains a triangle

I
Decide for each such subgraph whether )
it contains a triangle

Recursively find a triangle in one subgraph

lleImeﬁ}?" i




All-Pairs-Triangle to Triangle All-Pairs-

Triangle
Find atriangle (i,j,k) in G[I, U ], UK,] l
How to find a triangle Triangle
if we can only decide whether one exists?
Partition I, into I, ", 1,*¥, J,, into J,V,,®, K, into K,V K,
Since G[I,, U J,, U K,] contains a triangle,
at least one of the 23 subgraphs
G[LY u ], ® u K, Running Time:
contains a triangle TrindTriangle () <
Decide for each such subgraph whether 23 . TpecideTriangle ()
it contains a triangle
Recursively find a triangle in one subgraph + TFindTriangle(n/ 2)

EERD B = O(TpecideTriangle (™))



All-Pairs-Triangle to Triangle All-Pairs-

Triangle
Initialize C as nxn all-zeroes matrix l
For each of the (n/s)?3 triples of parts (I, Jy, Kz): Triangle

While G[I, U ], U K,] contains a triangle:
Find atriangle (i,j,k) in G[I, U], UK,]
Set C[i,j] =1 - (%)
Delete edge (i,))

Running Time:
(*) = O(TrindTriangle(S)) = O(TpecideTriangle(S))
Total time: ((#triples) + (#triangles found)) - (%)
< ((n/s)® +n?) - TpecideTriangle (S)
Set s = n'/3 and assume TpecideTriangle M) = 0(n37%)

__ Total time: 0(n? - n1~¢/3) = 0(n3~¢/3
LY Ol DR ( ) = 0( )



Corollaries from Subcubic Equivalences

BMM

0

All-Pairs-
Triangle

0

Triangle

I uE:
n

If BMM has (combinatorial)

0 (n3~¢) algorithm

then Triangle has (combinatorial)
0 (n3~¢) algorithm

If Triangle has (combinatorial)
0 (n3~¢) algorithm

then BMM has (combinatorial)
0(n3~¢/3) algorithm

— subcubic equivalent,
but this mainly makes sense
for combinatorial algorithms

ax planck institut
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Outline

1) Relations to Subcubic Equivalences
2) Strassen’s Algorithm

3) Sliding Window Hamming Distance
4) Node-Weighted Negative Triangle

5) Context-Free Grammars
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Strassen‘s Algorithm

shows w < 2.81

C1,1 - A1,1 : B1,1 + A1,2 : Bz,1
Cip,=A11Bi,+A1, B,
Cy1=A31-By1+A4,,-B;4

Crp=A31"B1,+A4,, B,
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Strassen‘s Algorithm

shows w < 2.81

My = (A1 +4,,) (Bi1+B,5)
My = (Ay1+ Az2) - Bis
My =A;, (B, —B,,)
My =4z, (32,1 - B1,1)
Ms = (A1 +412) By
Mg = (Az1 — A1) (B + By 2)
M; = (A12 = Az2) - (Bz1 + By 2)

LT U EE

Ci,=M +M, —Ms + M,
Ci1,= M3+ Ms
C,1 =M, + M,
Crp=M; — M, + M3 + Mg

T(n) <7T(Mn/2)+0n?)
T(n) < O(nlogz 7) — 0(Tl2'8074)



Faster Matrix Multiplication

tensor = 3-dimensional matrix

matrix multiplication tensor:

n? rows/columns/... (', k"

entries in {0,1}

entry T(i,j),(i’,k’),(k”,j”) =1 (kll’jll)
iffi=i"andj=;"and k' =k" (i,))

i.e. Ay 1 - By i appears in C;

matrix of rank 1: outer product of two vectors

. . matrix rank is in P
matrix of rank r; sum of r rank-1-matrices

tensor of rank 1: outer product of three vectors tensor rank is not
tensor of rank r: sum of r rank-1-tensors known to be in P
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Faster Matrix Multiplication

tensor = 3-dimensional matrix

matrix multiplication tensor:

n? rows/columns/... (', k"

entries in {0,1}

entry T(i,j),(i’,k’),(k”,j”) =1 (kll’jll)
iffi=i"andj=;"and k' =k" (i,))

i.e. Ay 1 - By i appears in C;

Strassen: rank of MM-tensor for n = 2 is at most 7

any bound on rank of MM-tensor can be transformed into a MM-algorithm
thus search for faster MM-algorithms is a mathematical question

this is complete: one can find w by analyzing tensor rank!
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Outline

1) Relations to Subcubic Equivalences
2) Strassen’s Algorithm

3) Sliding Window Hamming Distance
4) Node-Weighted Negative Triangle

5) Context-Free Grammars
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Sliding Window Hamming Distance

given two strings: text T of length n and pattern P of lengthm <n

compute for each i the Hamming distance of P and T[i..i + m — 1]

c bbc aa
best known algorithm: b c a
O(n+/m polylogn) b c a
< 0(n1500) b b c a
b b c a
b b c a
[Indyk,Porat,Clifford‘09]
Thm: Sliding Window Hamming Distance has no

0 (n®/?7#) algorithm or combinatorial 0(n'>~¢) algorithm
unless the BMM-Hypothesis fails

~ 0 (n1.18)
LT VL LR

Open Problem: get rid of ,combinatorial”
or design improved algorithm using MM

N © W W N



Sliding Window Hamming Distance

given two strings: text T of length n and pattern P of lengthm <n
compute for each i the Hamming distance of P and T[i..i + m — 1]

A B
1 0 O 1 1 0
o 1 1 o 1 1
1 x X 1 1 vy
1 2 3 2 y 2 alphabet: {1,2,...,n,x,y,$}
x 2 3 y 3 3
pattern = concat rows: text = concat columns + padding:

1xx123x23 $$5$55$5512y$1y33y23$$5$5$59%$

1xx123x23
Iﬂl‘jlzmme



Sliding Window Hamming Distance

RN
X
X
RN
N
w
X
N

= N W

1 x| x| 11 2| 3| x| 2| 3 put a 1 if there is
at least one match
1 x| x| 1/ 2| 3| x| 2| 3 !
1 17 1

0 O
1 1 1
o 1 1
l l I p I I rﬁ?xrﬁ}a?Ck institut
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Sliding Window Hamming Distance

given Boolean nxn-matrices A, B

we construct text+pattern of length 0(n?) (in time 0(n?))

thus, an 0(n®/?7¢) algorithm for Sliding Window Hamming Distance
would yield an 0 (n®~%¢) algorithm for BMM, contradicting BMM-Hypothesis

and an 0 (n'>~¢) combinatorial algorithm for Sliding Window Hamming Dist.
would yield an 0 (n®~%%) combinatorial algorithm for BMM

Thm: Sliding Window Hamming Distance has no
0 (n®/?7#) algorithm or combinatorial 0(n'>~¢) algorithm
unless the BMM-Hypothesis fails
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Outline

1) Relations to Subcubic Equivalences
2) Strassen’s Algorithm

3) Sliding Window Hamming Distance
4) Node-Weighted Negative Triangle

5) Context-Free Grammars
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Node-Weighted Negative Triangle

(Edge-

Weighted) o3
Negative is there a triangle i,j, k: w; ; +w;, +wy ; <07

Triangle

Y

Node-
Weighted given a directed graph with weights w; on nodes,

Negative is there a triangle i,j, k: w; +w; + wy, <0 7?
Triangle

‘ W; = —1

Triangle o0n®)

given a directed graph with weights w; ; on edges,

given an unweighted undirected graph,
is there a triangle?
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Node-Weighted Negative Triangle

(Edge-
V:\Ilelght_ed) 0(n*) find appropriate edge weights that
e.gatlve simulate the given node weights:
Triangle
‘ set Wi,j = (Wi +VVJ)/2
then for a triangle i, j, k:
Node-
Weighted Wii + Wik + Wi j =W T W + W
Negative
Triangle

|

Triangle o0n®)
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Node-Weighted Negative Triangle

(Edge-
Weighted) o3
Negative
Triangle

Y

Node-
Weighted 0(1”) [Czumaj,Lingas’07]
Negative
Triangle

|

Triangle o0n®)

actually for Node-Weighted Minimum Weight Triangle

l l I I max planck institut
informatik



Node-Weighted Minimum Weight Triangle

we can assume that the graph is tripartite:

G: G':

—
\
2

triangle i, j, k = triangle i,,j,, k3

LT U EE



Node-Weighted Minimum Weight Triangle

given graph ¢ = (V,E)withV =1 U J U K and node weights w,,
compute minimum weight g s.t.
therearei € 1,j € ],k € K with (i, ), (j, k), (k,i) € Eand w; + w; + wy, = q

- assume that /, /, K are sorted by weight
- parameter p (=sufficiently large constant)

-assumen = |I| = |J]| = |K| = p’ forsome £ € N
(add isolated dummy vertices)
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Node-Weighted Minimum Weight Triangle

given graph ¢ = (V,E)withV =1 U J U K and node weights w,,
compute minimum weight g s.t.
therearei € 1,j € ],k € K with (i, ), (j, k), (k,i) € Eand w; + w; + wy, = q

- assume that I, /, K are sorted by weight

- parameter p (=sufficiently large constant)

-assumen = |I| = |J]| = |K| = p’ forsome £ € N
(add isolated dummy vertices)

ALG(G): 0)ifn =0(1) then solve in constant time

1)ysplitl=LU-Ul,J=];U-UJ, K=K U-UK,
(in sorted order: maxw(l,) < minw(/l,,,) and so on)

2) R =={(x,y,2) €{1,..,p}* | G|I, U], UK,] contains a triangle}
3) for each (x,y,z) € R s.t. thereisno (x',y',z')eR withx'<x, y' <y, z' <z

run ALG(G|1,, uj,u K,|)
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Node-Weighted Minimum Weight Triangle

3) for each (x,y,z) € R s.t. thereisno (x',y",z')ER withx' <x, y' <y, z' <z
run ALG(G|, uj,u K,])

Correctness:
if there is no triangle in G|, U J, U K, then we can ignore it

if (x,y,z) € R is dominated by (x',y’,z") € R:
let i, j, k be a triangle in G|, U J, UK,|, and i',j', k" a triangle in G|I,» U], UK |

thenw; + w; + w, = minw(l,) + minw(/,) + minw(K,)
VI \ VI
and wy + wir + wyr < maxw(l,) + maxw(/,’) + maxw(K,)

so we can safely ignore G|I, U], UK,|
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Node-Weighted Minimum Weight Triangle

given graph ¢ = (V,E)withV =1 U J U K and node weights w,,
compute minimum weight g s.t.
therearei € 1,j € ],k € K with (i, ), (j, k), (k,i) € Eand w; + w; + wy, = q

- assume that I, /, K are sorted by weight

- parameter p (=sufficiently large constant)

-assumen = |I| = |J]| = |K| = p’ forsome £ € N
(add isolated dummy vertices)

ALG(G): 0)ifn =0(1) then solve in constant time

1)ysplitl=LU-Ul,J=];U-UJ, K=K U-UK,
(in sorted order: max/, < minl,,; aso.)

2)R ={(x,y,z) € {1, ..,p}° | G[Ix uj,u KZ] contains a triangle} 0(p>n®)

3) for each (x,y,z) € R s.t. thereisno (x',y",z')ER withx' <x, y' <y, z' <z
run ALG(G[I, UJ, UK,]) T size n/p

Nl p B B o planck instit how many iterations?



Node-Weighted Minimum Weight Triangle

3) for each (x,y,z) € R s.t. thereisno (x',y",z')ER withx' <x, y' <y, z' <z

How many iterations?

define A, ¢ = {(x,y,2) € {1,..,p}° | x—y =r and x — z = s}
={1,1-7r1-5),22-1,2-5),..(p,p—1,p—5)}n{1, .., p}°
forr,s € {—p,...,p}
the sets A, ; cover {1, ..., p}>

line 3) applies to at most one (x,y, z) in A, ; for any r, s!

hence, there are at most (2p)?= 4p? recursive calls to ALG

Il p B ] o planck instiva recursion: T(n) < 4p?-T(n/p) + 0(p3n®)



Node-Weighted Minimum Weight Triangle

given graph ¢ = (V,E)withV =1 U J U K and node weights w,,
compute minimum weight g s.t.
therearei € 1,j € ],k € K with (i, ), (j, k), (k,i) € Eand w; + w; + wy, = q

- assume that I, /, K are sorted by weight

- parameter p (=sufficiently large constant)

-assumen = |I| = |J]| = |K| = p’ forsome £ € N
(add isolated dummy vertices)

ALG(G): 0)ifn =0(1) then solve in constant time

1)ysplitl=LU-Ul,J=];U-UJ, K=K U-UK,
(in sorted order: max/, < minl,,; aso.)

2)R ={(x,y,z) € {1, ..,p}° | G[Ix uj,u KZ] contains a triangle} 0(p>n®)

3) for each (x,y,z) € R s.t. thereisno (x',y",z')ER withx' <x, y' <y, z' <z
run ALG(G[I, UJ, UK,]) size n/p

l l I p I I rﬁ%xrﬁ}a?ckmstltut reCUI"SIOn T(n) S 4p2 . T(n/p) _I_ 0(p3nw)



Node-Weighted Minimum Weight Triangle

recursion: T(n) <4p?-T(n/p) + 0(p>n?®)

T(n) <4p* -T(n/p) + ap*n® for some constant
want to show: T(n) < 2ap3n®
plug in: T(n) < 4p? - 2ap®(n/p)®+ap3n®

= ap3n®(1+ 8p*~®)

assume w > 2: < 2ap3n® for a sufficiently large constant p
so we have: T(n) <0(n®)
(if w = 2: show that T(n) < 2a p3n®*¢)

. . 2
l l I p I ‘ nrll%xrplga{lckmstltut IN tOta| T(n) S O(nw + n +€) fOf any E> 0



In this lecture you learned that...

...(B)MM is useful for designing theoretically fast algorithms

- Exercise: k-Clique in 0 (n®*/3)
- Exercise: MaxCut in 0(2°™3 poly(n))
- Node-Weighted Negative Triangle in 0(n®)

...BMM is an obstacle for practically fast / theoretically very fast algorithms

/ \

no combinatorial 0 (n>~%) not faster than 0 (n*373)

- Transitive Closure has no 0(n® ~¢) / combinatorial 0 (n*>~¢) algorithm
- Exercise: pattern matching with 2 patterns
- Sliding Window Hamming Distance

- context-free grammar problems
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