
Complexity Theory of

Polynomial-Time Problems

Sebastian Krinninger

Lecture 7: 3SUM II

Reminder: 3SUM

June 16, 2016 2/19

given sets 𝐴, 𝐵, 𝐶 of 𝑛 integers

are there 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶 such that 𝑎 + 𝑏 + 𝑐 = 0?

well-known: 𝑂(𝑛2)

Conjecture: no 𝑂 𝑛2−𝜀 algorithm

→ 3SUM-Hardness

Alternative algorithm: 𝑂(𝐴 ⋅ 𝐵 + |𝐶|)
(store negated pairwise sums in hashmap)

Reminder: Hashing

June 16, 2016 3/19

Hash function ℎ: 𝑈 → [𝑅]

1 2 𝑅⋯

𝑥

ℎ(𝑥)

Goal: Distribute uniformly, avoid collisions, etc.

Magical hash functions

June 16, 2016 4/19

Uniform difference: Pr ℎ 𝑥 − ℎ(𝑦) = 𝑖 = 1/𝑅

Balanced: 𝑥 ∈ 𝑆 ∶ ℎ 𝑥 = 𝑖 ≤ 3𝑛/𝑅

Linear: ℎ 𝑥 + ℎ 𝑦 = ℎ 𝑥 + 𝑦 (mod 𝑅)

(for any set 𝑆 = 𝑥1, … , 𝑥𝑛 ⊆ 𝑈 and any 𝑖 ∈ 𝑅)

Desired properties for family of hash functions from 𝑈 → 𝑅
(i.e., for every ℎ chosen from family)

(for any 𝑥, 𝑦 ∈ 𝑈)

(for any 𝑥, 𝑦 ∈ 𝑈 s.t. 𝑥 ≠ 𝑦 and 𝑖 ∈ 𝑅)

But: We do not know such a family…

June 16, 2016 5/19

Almost magical hash functions

June 16, 2016 6/19

Uniform difference: Pr ℎ 𝑥 − ℎ(𝑦) = 𝑖 = 1/𝑅

Almost balanced: Expected number of elements from S hashed to

heavy values is 𝑂(𝑅), where value 𝑖 ∈ 𝑅 is heavy if

𝑥 ∈ 𝑆 ∶ ℎ 𝑥 = 𝑖 > 3𝑛/𝑅

Almost linear: ℎ 𝑥 + ℎ 𝑦 ∈ ℎ 𝑥 + 𝑦 + 𝑐ℎ + 0,1 (mod 𝑅)

(for any set 𝑆 = 𝑥1, … , 𝑥𝑛 ⊆ 𝑈 and any 𝑖 ∈ 𝑅)

Desired properties for family of hash functions from 𝑈 → 𝑅
(i.e., for every ℎ chosen from family)

(for any 𝑥, 𝑦 ∈ 𝑈 and some integer 𝑐ℎ depending only on ℎ)

(for any 𝑥, 𝑦 ∈ 𝑈 s.t. 𝑥 ≠ 𝑦 and 𝑖 ∈ 𝑅)

Definition of hash function

June 16, 2016 7/19

Rest of this lecture: ℎ picked randomly from this family

ℋ𝑈,𝑅,𝑟 = ℎ𝑎,𝑏: 𝑈 → 𝑅 ∣ 𝑎 ∈ 𝑟 odd integer and 𝑏 ∈ 𝑟

ℎ𝑎,𝑏 𝑥 = 𝑎𝑥 + 𝑏 mod 𝑟 div 𝑟/𝑅

Thm: Family ℋ𝑈,𝑅,𝑟 is has the uniform difference property, is almost

balanced and almost linear with 𝑐ℎ𝑎,𝑏 = (𝑏 − 1 mod 𝑟) div 𝑟/𝑅 .

Set 𝑟 = 𝑘𝑚 for some 𝑘 ≥ 𝑈/2 and 𝑈, 𝑅, 𝑟 powers of 2

(Pairwise independence [Dietzfelbinger ’96] implies uniform difference

(easy to check) and almost balanced [Baran et al. ‘08]. Almost linear:

easy to check.)

Hashing down the universe

June 16, 2016 8/19

Lem: If 3SUM on universe of size 𝑂(𝑛3) solvable in exp. time 𝑂(𝑛2−𝜖),
then 3SUM on arbitrary universe solvable in expect. time 𝑂(𝑛2−𝜖).

Algorithm:

Repeat until output:

• Pick hash function ℎ: 1…𝑈 → 1…6𝑛3 at random

• 𝐴′ = ℎ 𝑎 𝑎 ∈ 𝐴 , 𝐵′ = {ℎ 𝑏 ∣ 𝑏 ∈ 𝐵}, 𝐶′ = ℎ 𝑐 + 𝑐ℎ 𝑐 ∈ 𝐶
• 𝐴′′ = ℎ 𝑎 𝑎 ∈ 𝐴 , 𝐵′′ = {ℎ 𝑏 ∣ 𝑏 ∈ 𝐵}, 𝐶′′ = ℎ 𝑐 + 𝑐ℎ + 1 𝑐 ∈ 𝐶
• Solve two 3SUM instances 𝐴′, 𝐵′, 𝐶′ and 𝐴′′, 𝐵′′, 𝐶′′

• If algorithm reports no 3SUM witness: output ‘no 3SUM’

• Consider first reported 3SUM witness 𝑥′, 𝑦′, 𝑧′ for 𝐴′, 𝐵′, 𝐶′ :

• If ℎ−1 𝑥′ , ℎ−1 𝑦′ , ℎ−1 𝑧′ − 𝑐ℎ contains witness 𝑥, 𝑦, 𝑧: output

𝑥, 𝑦, 𝑧
• Consider first reported 3SUM witness 𝑥′′, 𝑦′′, 𝑧′′ for 𝐴′′, 𝐵′′, 𝐶′′ :

• If ℎ−1 𝑥′′ , ℎ−1 𝑦′′ , ℎ−1 𝑧′′ − 𝑐ℎ − 1 contains witness 𝑥, 𝑦, 𝑧:

output 𝑥, 𝑦, 𝑧

No false negatives: If 𝑥 + 𝑦 = 𝑧, then ℎ 𝑥 + ℎ 𝑦 ∈ ℎ 𝑧 + 𝑐ℎ + 0,1

Follows from [Baran et al. ‘08]

Running Time

June 16, 2016 9/19

Number of iterations:

Triple 𝑥, 𝑦, 𝑧 gives false positive if 𝑥 + 𝑦 ≠ 𝑧 and one of

ℎ 𝑥 + ℎ 𝑦 = ℎ 𝑧 + 𝑐ℎ or ℎ 𝑥 + ℎ 𝑦 = ℎ 𝑧 + 𝑐ℎ + 1
Linearity: ℎ 𝑥 + ℎ 𝑦 = ℎ 𝑥 + 𝑦 + 𝑐ℎ or ℎ 𝑥 + ℎ 𝑦 = ℎ 𝑥 + 𝑦 + 𝑐ℎ + 1
Thus, probability that fixed 𝑥, 𝑦, 𝑧 (with 𝑥 + 𝑦 ≠ 𝑧) gives false positive is:

Pr ℎ 𝑥 + 𝑦 − ℎ 𝑧 ∈ {−1,0,1} ≤
3

6𝑛3
=

1

2𝑛3
(uniform difference)

Overall probability of false positive: ≤ 𝑛3 ⋅
1

2𝑛3
=

1

2

In expectation: 2 iterations until no false positive (waiting time bound)

(If no false positive, then algorithm certainly stops)

We need to bound:

• Number of iterations 𝑂(1)
• Number of candidate witnesses 𝑂(1)

Then: number of calls to 3SUM algorithm: 𝑂(1)

Running Time

June 16, 2016 10/19

Number of candidate witnesses:

Fix 3SUM witness 𝑥′, 𝑦′, 𝑧′ of instance (𝐴′, 𝐵′, 𝐶′)
Let 𝑥∗ ∈ ℎ−1 𝑥′

For every 𝑥 ≠ 𝑥∗: Pr ℎ 𝑥 = ℎ 𝑥∗ =
1

6𝑛3
(uniform difference)

𝐸 ℎ−1 𝑥′ ≤ 1 +
𝑛

4𝑛3
≤ 2

Similarly: 𝐸 ℎ−1 𝑦′ ≤ 2, 𝐸 ℎ−1 𝑧′ ≤ 2

𝐸 ℎ−1 𝑥′ ∪ ℎ−1 𝑦′ ∪ ℎ−1 𝑧′ ≤ 𝑂(1) (linearity of expectation)

In expectation, algorithm manually checks constant number of candidate

witnesses per iteration

We need to bound:

• Number of iterations 𝑂(1)
• Number of candidate witnesses 𝑂(1)

Then: number of calls to 3SUM algorithm: 𝑂(1)

Convolution 3SUM

June 16, 2016 11/19

Given array 𝐴 1…𝑛 of integers

are there 𝑖, 𝑗 such that 𝐴 𝑖 + 𝐴 𝑗 = 𝐴[𝑖 + 𝑗]?

trivial algorithm: 𝑂(𝑛2)

Thm: There is no 𝑂(𝑛2−𝜖) algorithm for Convolution 3SUM unless the

3SUM Conjecture fails.

𝑖

𝑥 𝑦 𝑥 + 𝑦

𝑗 𝑖 + 𝑗

[Pătrașcu 2010]

Stepping stone towards hardness of other “structured” problems

Reduction from 3SUM

June 16, 2016 12/19

Given set 𝑋 ⊆ [𝑈] of integers

are there 𝑥, 𝑦, 𝑧 ∈ 𝑋 such that 𝑥 + 𝑦 = 𝑧?

Preprocessing: Check if there is a solution 2𝑥 = 𝑧 𝑂 𝑛 log𝑛

Pick random hash function ℎ: 𝑈 → 𝑅 (almost linear, etc.)

1 2 𝑅⋯

In expectation: 𝑂 𝑅 elements in buckets with load > 3𝑛/𝑅 (almost bal.)

For each such 𝑥: check for 3SUM triple involving 𝑥 𝑂 𝑅𝑛 (in exp.)

1

3𝑛/𝑅

⋮

For this proof: assume ℎ is almost balanced and linear (magically…)

Convolution 3SUM instance

June 16, 2016 13/19

1 𝑡 𝑅⋯

𝑘

𝑖

𝑗

Number elements in each bucket from 0 to
3𝑛

𝑅
− 1

Iterate over all triples 𝑖, 𝑗, 𝑘 ∈ 3𝑛/𝑅

⋯

⋯ ⋯

For every bucket 𝑡:
• Put 𝑖-th element to 𝐴[8𝑡 + 1]
• Put 𝑗-th element to 𝐴[8𝑡 + 3]
• Put 𝑘-th element to 𝐴[8𝑡 + 4]
Set all other array entries to ∞ (sufficiently large number)

3𝑛

𝑅

3
instances of Convolution 3SUM

Correctness

Assume 𝑥 + 𝑦 = 𝑧

Then ℎ 𝑥 + ℎ 𝑦 = ℎ 𝑧 (mod 𝑅) (linearity)

Duplicate array for Convolution 3SUM instance

If 𝑥 = 𝑦, triple found in preprocessing

If 𝑥, 𝑦, or 𝑧 hashed to heavy bucket: triple found in second step

Either ℎ 𝑥 + ℎ 𝑦 = ℎ 𝑧 or ℎ 𝑥 + ℎ 𝑦 = ℎ 𝑧 + 𝑅

Observation: 𝐴 𝑖 + 𝐴 𝑗 = 𝐴 𝑖 + 𝑗 only if 𝑖 = 8𝑡1 + 1 and 𝑗 = 8𝑡2 + 3

𝐴 8ℎ 𝑥 + 1 + 𝐴 8ℎ 𝑦 + 3 = 𝐴 8ℎ 𝑧 + 4 or

𝐴 8ℎ 𝑥 + 1 + 𝐴 8ℎ 𝑦 + 3 = 𝐴 8(ℎ 𝑧 + 𝑅) + 4

Thus, no false negatives. Also no false positives:

(𝑥 + 𝑦 = 𝑧 mod 8 has unique solution over 1,3,4 and 𝐴 𝑖 ≠ 𝐴[𝑗])

Running Time

Assumption: Convolution 3SUM in time 𝑂(𝑛2−𝜖)

Total expected running time: 𝑂 𝑛 log𝑛 + 𝑛𝑅 +
𝑛

𝑅

3
𝑛2−𝜖

Set 𝑅 = 𝑛1−𝜖/4

Total time: 𝑂 𝑛2−𝜖/4

Contradicts 3SUM Conjecture

Set Disjointness Problem

1. Preprocess subsets 𝒜,ℬ ⊆ 𝑈 over universe 𝑈

2. Answer queries: Given 𝐴 ∈ 𝒜,𝐵 ∈ ℬ, is 𝐴 ∩ 𝐵 ≠ ∅?

Repeated queries

(Static) data structure

Goal: Lower bound on preprocessing and query time

Queries not known in advance

Offline Set Disjointness: 𝑞 queries known in advance (part of input)

Reduction to 3SUM [Kopelowitz et al]

Thm: Let 𝑓 𝑛 be such that 3SUM requires expected time Ω 𝑛2/𝑓(𝑛) .

For any constant 0 ≤ 𝛾 < 1, let ALG be an algorithm for offline Set

Disjointness where 𝒜 = ℬ = Θ(𝑛 log 𝑛), 𝑈 = Θ 𝑛2−2𝛾 , each

set in 𝒜 ∪ℬ has at most 𝑂(𝑛1−𝛾) elements from 𝑈, and 𝑞 =
Θ 𝑛1+𝛾 log 𝑛 . Then ALG requires expected time Ω 𝑛2/𝑓(𝑛) .

Cor: Assuming the 3SUM conjecture, for any 0 < 𝛾 < 1, any data

structure for Set Disjointness has

𝑡𝑝 + 𝑁
1+𝛾
2−𝛾𝑡𝑞 = Ω 𝑁

2
2−𝛾−𝑜(1)

where 𝑁 is the sum of the set sizes, 𝑡𝑝 is the preprocessing time,

and 𝑡𝑞 is the time per query.

Example: Data structures with constant query time

Make 𝛾 tend to 1, need 𝑡𝑝 = Ω 𝑁2−𝑜(1)

Evidence that trivial preprocessing algorithm is optimal (for constant query)

(From Thm: 𝑁 = Θ 𝑛2−𝛾 log 𝑛)

3SUM version

In the following proof we use a balanced, linear hash function with

uniform difference property. (magically…)

This can be modified for almost balanced, almost linear hash function

with uniform difference property.

Given set 𝑋 ⊆ [𝑈] of integers

are there 𝑥, 𝑦, 𝑧 ∈ 𝑋 such that 𝑥 − 𝑦 = 𝑧?

Crucial insight

June 16, 2016 19/19

⇔

𝑎

𝑏
+

=
𝑐

𝑎

𝑏↑
+

=
𝑐

−
𝑏↓

higher order bits

lower order bits

Algorithm Overview

June 16, 2016 20/19

Set 𝑅 = 𝑛𝛾, 𝑄 =
5𝑛

𝑅

2

Pick random hash functions ℎ: 𝑈 → [𝑅] and 𝑔𝑘: 𝑈 → [𝑄] for 𝑘 = 1 to 10 log 𝑛

Initialize buckets 𝐵 1 ,… , 𝐵[𝑅] s.t. 𝐵 𝑖 = {𝑥 ∶ ℎ 𝑥 = 𝑖}

For all 𝑖 ∈ 𝑅 , 𝑗 ∈ 𝑄 , initialize buckets 𝐵𝑘
↑ 𝑖, 𝑗 and 𝐵𝑘

↓[𝑖, 𝑗] s.t.

𝐵𝑘
↑ 𝑖, 𝑗 = 𝑔𝑘 𝑥 + 𝑗 ⋅ 𝑄 mod 𝑄 ∣ 𝑥 ∈ 𝐵 𝑖

𝐵𝑘
↓ 𝑖, 𝑗 = 𝑔𝑘 𝑥 − 𝑗 (mod 𝑄) ∣ 𝑥 ∈ 𝐵 𝑖

Initialize 𝑘 set intersection problems with 𝐵𝑘
↑ 𝑖, 𝑗 ’s and 𝐵𝑘

↓[𝑖, 𝑗]’s

For every 𝑧 ∈ 𝑋 and every 𝑖 = 1 to 𝑅

Check if 𝐵𝑘
↑ 𝑖, 𝑔𝑘

↑(𝑧) and 𝐵𝑘
↓ 𝑖 − ℎ 𝑧 (mod 𝑅), 𝑔𝑘

↓(𝑧) intersect

If intersection for all 𝑘:

Search for 𝑥 ∈ 𝐵 𝑖 and 𝑦 ∈ 𝐵[𝑖 − ℎ 𝑧 (mod 𝑅)] s.t.

𝑥 − 𝑦 = 𝑧 and output it if found

If nothing found: output ‘no 3SUM’

𝑔𝑘
↑ 𝑧 : higher order bits of 𝑔𝑘(𝑧)

𝑔𝑘
↓ 𝑧 : higher order bits of 𝑔𝑘(𝑧)

Correctness I

June 16, 2016 21/19

Algorithm verifies every triple before stopping

Need to show: if 𝑥 − 𝑦 = 𝑧, then algorithm finds it

Claim 1: If 𝑥 − 𝑦 = 𝑧, then 𝐵 𝑖 ∩ (𝐵 𝑗 + 𝑧) ≠ ∅
where 𝑖 = ℎ 𝑥 , 𝑗 = 𝑖 − ℎ 𝑧 mod 𝑅

Linear hash function: ℎ 𝑥 − ℎ 𝑦 = ℎ 𝑥 − 𝑦 = ℎ 𝑧 mod 𝑅
Thus: 𝑗 = ℎ 𝑥 − ℎ 𝑧 = 𝑖 − ℎ 𝑧 mod 𝑅

𝑦 ∈ 𝐵 𝑗 ⇒ 𝑥 = 𝑦 + 𝑧 ∈ 𝐵 𝑗 + 𝑧

𝑥

𝐵[𝑖]

𝑦

𝐵[𝑗]

𝑦 + 𝑧

𝐵 𝑗 + 𝑧

+𝑧

𝑥 𝑦

Correctness II

June 16, 2016 22/19

Claim 2: If 𝐵 𝑖 ∩ 𝐵 𝑗 + 𝑧 ≠ ∅, then 𝐵↑ 𝑖, 𝑔𝑘
↑(𝑧) ∩ 𝐵↓ 𝑗, 𝑔𝑘

↓ 𝑧 ≠ ∅ ∀𝑘.

𝐵 𝑖 ∩ 𝐵 𝑗 + 𝑧 ≠ ∅
⇓

𝑔𝑘 𝐵 𝑖 ∩ 𝑔𝑘 𝐵 𝑗 + 𝑧 ≠ ∅
⇕

𝑔𝑘 𝐵 𝑖 ∩ 𝑔𝑘 𝐵 𝑗 + 𝑔𝑘 𝑧 ≠ ∅

⇕

𝑔𝑘 𝐵 𝑖 ∩ 𝑔𝑘 𝐵 𝑗 + 𝑔𝑘
↑ 𝑧 + 𝑔𝑘

↓ 𝑧 ≠ ∅

⇕

𝑔𝑘 𝐵 𝑖 − 𝑔𝑘
↑ 𝑧 ∩ 𝑔𝑘 𝐵 𝑗 + 𝑔𝑘

↓ 𝑧 ≠ ∅

⇕

𝐵↑ 𝑖, 𝑔𝑘
↑(𝑧) ∩ 𝐵↓ 𝑗, 𝑔𝑘

↓ 𝑧 ≠ ∅

Claim 1: If 𝑥 − 𝑦 = 𝑧, then 𝐵 𝑖 ∩ (𝐵 𝑗 + 𝑧) ≠ ∅
where 𝑖 = ℎ 𝑥 , 𝑗 = 𝑖 − ℎ 𝑧 mod 𝑅

Conclusion: If 𝑥 − 𝑦 = 𝑧, then 𝐵↑ 𝑖, 𝑔𝑘
↑(𝑧) ∩ 𝐵↓ 𝑗, 𝑔𝑘

↓ 𝑧 ≠ ∅ ∀𝑘.

Running time

June 16, 2016 23/19

Set intersection instance:

• Number of sets: 𝑂 𝑅 𝑄𝑘 = 𝑂(𝑛 log 𝑛)

• Number of elements in each set: 𝑂 𝑄 = 𝑂 𝑛1−𝛾

• Size of universe: 𝑂 𝑄 = 𝑂 𝑛2−2𝛾

• Number of set intersection queries: 𝑂 𝑛𝑅𝑘 = 𝑂 𝑛1+𝛾 log 𝑛

Finding witnesses:

• If 𝐵𝑘
↑ 𝑖, 𝑔𝑘

↑(𝑧) and 𝐵𝑘
↓ 𝑗, 𝑔𝑘

↓(𝑧) intersect, try to find 𝑥 ∈ 𝐵 𝑖 , 𝑦 ∈ 𝐵[𝑗]

s.t. 𝑥 − 𝑦 = 𝑧

• Time 𝑂
𝑛

𝑅
per witness check

• But: pair 𝑖, 𝑗 could be false positive with no such 𝑥 ∈ 𝐵 𝑖 , 𝑦 ∈ 𝐵[𝑗]
• Probability of false positive is small

• In expectation: 𝑂(1) false positives (next slide)

• Total time: 𝑂
𝑛

𝑅
+ #false positives

𝑛

𝑅
= 𝑂

𝑛

𝑅

Bounding number of false positive

June 16, 2016 24/19

For a fixed 𝑧 and any pair 𝑥, 𝑦 ∈ 𝑈 s.t. 𝑥 − 𝑦 ≠ 𝑧:

Pr 𝑔𝑘 𝑥 = 𝑔𝑘 𝑦 + 𝑔𝑘(𝑧) = Pr 𝑔𝑘 𝑥 − 𝑦 = 𝑔𝑘(𝑧) =
1

𝑄
(linear and uniform difference)

Remember: Every bucket has size ≤
3𝑛

𝑅
(balanced)

Prob. of false positive in buckets 𝐵[𝑖] and 𝐵[𝑗] for hash function 𝑔𝑘:

Pr 𝑔𝑘 𝐵[𝑖] = 𝑔𝑘 𝐵[𝑗] + 𝑔𝑘(𝑧) ≤
3𝑛

𝑅

2
1

𝑄
=

9

25

Prob. of false positive in buckets 𝐵[𝑖] and 𝐵[𝑗] for all hash functions 𝑔𝑘:

≤
1

𝑛𝑐

In expectation: total number of false positives is a constant.

