' ' I I max planck institut
informatik

Complexity Theory of
Polynomial-Time Problems

Lecture 7: 3SUM Il

Sebastian Krinninger

Reminder: 3SUM

given sets 4, B, C of n integers

aretherea€ A,b e B,ce Csuchthata+ b +c =07?

well-known: 0(n?)
Conjecture: no 0(n?~¢) algorithm

— 3SUM-Hardness

Alternative algorithm: O(|A| - |B| + |C|)
(store negated pairwise sums in hashmap)

. l I I max planck institut
informatik

June 16, 2016 2/19

Reminder: Hashing

Hash function h: [U] — [R]

Goal: Distribute uniformly, avoid collisions, etc.

inl p [e June 16, 2016 3/19

Magical hash functions

Desired properties for family of hash functions from [U] — [R]
(i.e., for every h chosen from family)

Uniform difference: Pr[h(x) — h(y) =i] = 1/R
(forany x,y € [U] s.t. x # yand i € [R])

Balanced: {x € S: h(x) =i} <3n/R
(forany set S = {x4,...,x,} € [U] and any i € [R])

Linear: h(x) + h(y) = h(x + y) (mod R)
(for any x,y € [U])

But: We do not know such a family...

. l I I max planck institut
informatik June 16. 2016

4/19

P —

- P

“!ﬂigf = ‘i?’;»M/wulAéig

OCCURS ..

&

max planck institut
. l I p I infor?natik June 16, 2016 5/19

Almost magical hash functions

Desired properties for family of hash functions from [U] — [R]
(i.e., for every h chosen from family)

Uniform difference: Pr[h(x) — h(y) =i] = 1/R
(forany x,y € [U] s.t. x # yand i € [R])

Almost balanced: Expected number of elements from S hashed to
heavy values is O(R), where value i € [R] is heavy if
{x €S : h(x) =i} >3n/R

(forany set S = {x4,...,x,} € [U] and any i € [R])

Almost linear: h(x) + h(y) € h(x + y) + ¢, + {0,1} (mod R)
(for any x,y € [U] and some integer c;, depending only on h)

il p | June 16, 2016 6/19

Definition of hash function

Setr = km for some k > U/2 and U, R, r powers of 2

Hyrr = {hap: [U] = [R] | a € [r] odd integer and b € [r]}
hgp(x) = (ax + b modr) div (r/R)

Thm: Family Hy r - is has the uniform difference property, is almost
balanced and almost linear with cp,,, = (b — 1 modr) div (r/R).

(Pairwise independence [Dietzfelbinger '96] implies uniform difference
(easy to check) and almost balanced [Baran et al. ‘08]. AImost linear:
easy to check.)

Rest of this lecture: h picked randomly from this family

1 p | [June 16, 2016 7119

Hashing down the universe

Lem: If 3SUM on universe of size 0(n®) solvable in exp. time 0(n?~¢),
then 3SUM on arbitrary universe solvable in expect. time 0(n?~¢).

Follows from [Baran et al. ‘08]

Algorithm:
Repeat until output:
« Pick hash function h:[1...U] = [1...6n3] at random
« AA={h(a)la€A}, B={h(b)IbeB},C'={h(c)+c,lceC}
« A'={h(a)la€e A}, B"={h(b) I beB},C"={h(c)+c,+1|cecC}
« Solve two 3SUM instances (4’,B’,C') and (4"”,B",C"")
« If algorithm reports no 3SUM witness: output ‘no 3SUM’
« Consider first reported 3SUM witness x',y’,z’' for (4',B’,C’):
« Ifh~1(x"),h"1(y"),h"1(z’' — ¢}) contains witness x,y, z: output
x,V,Z
« Consider first reported 3SUM witness x"',y", z" for (A”,B",C"):
e fRA 1), A" 1(y"),h (2" — ¢;, — 1) contains witness x, y, z:
output x, vy, z

No false negatives: If x + y = z, then h(x) + h(y) € h(z) + ¢, + {0,1}

il p | June 16, 2016 8/19

Running Time

We need to bound:
* Number of iterations 0(1)
* Number of candidate withesses 0(1)

Then: number of calls to 3SUM algorithm: 0(1)

Number of iterations:
Triple x, y, z gives false positive if x + y #+ z and one of
h(x) + h(y) = h(z) + c,orh(x) + h(y) =h(z) + ¢, + 1
Linearity: h(x) + h(y) = h(x +y) + c,orh(x) + h(y) =h(x+y) +c, + 1
Thus, probability that fixed x, y, z (with x + y # z) gives false positive is:
Prlh(x +y) — h(z) € {-1,0,1}] < 2 -1 (uniform difference)

- 6n13 21113
Overall probability of false positive: < n? el

In expectation: 2 iterations until no false positive (waiting time bound)

(If no false positive, then algorithm certainly stops)

1 p | [9119

June 16, 2016

Running Time

We need to bound:
* Number of iterations 0(1)
* Number of candidate withesses 0(1)

Then: number of calls to 3SUM algorithm: 0(1)

Number of candidate withesses:
Fix 3SUM witness x’,y’, z’ of instance (4',B’,C")
Let x* € h~1(x")

For every x # x*: Pr[h(x) = h(x*)] = # (uniform difference)

E[Ihn"1(xD]] <1+ 4% <2
Similarly: E[|[h~1(y")|] < 2, E[|h"1(z)]|] < 2

E[ln"1(x)Yuht(y)uh ()] <00) (linearity of expectation)
In expectation, algorithm manually checks constant number of candidate
witnesses per iteration

. l I I max planck institut
informatik

June 16, 2016 10/19

Convolution 3SUM

trivial algorithm: 0(n?)

[Patrascu 2010]

Stepping stone towards hardness of other “structured” problems

1 p | [June 16, 2016 11/19

Reduction from 3SUM

Given set X € [U] of integers

are there x,y,z € X suchthat x + y = z?

Preprocessing: Check if there is a solution 2x = z O(nlogn)

Pick random hash function h: [U] — [R] (almost linear, etc.)

For this proof: assume h is almost balanced and linear (magically...)

3n/R WL

In expectation: O(R) elements in buckets with load > 3n/R (almost bal.)

For each such x: check for 3SUM triple involving x O(Rn) (in exp.)
max planck institut
l ll p I I informatik June 16, 2016 12/19

Convolution 3SUM Instance

Number elements in each bucket from 0 to %" —1
lterate over all triples i, j, k € [3n/R]

- [I

For every bucket t:

* Puti-th element to A[8t + 1]

* Put j-th element to A[8t + 3]

* Put k-th element to A[8t + 4]

Set all other array entries to oo (sufficiently large number)

3
(%") instances of Convolution 3SSUM

1 p | [June 16, 2016 13/19

Correctness
Assumex +y =z
Then h(x) + h(y) = h(z) (mod R) (linearity)
If x = y, triple found in preprocessing
If x, y, or z hashed to heavy bucket: triple found in second step

Either h(x) + h(y) = h(z) or h(x) + h(y) = h(z) + R

Duplicate array for Convolution 3SUM instance

[[o Bl oo I I [o Bl o] o I

A[8h(x) + 1] + A[8h(y) + 3] = A[8h(z) + 4] or
A[8h(x) + 1] + A[8h(y) + 3] = A[8(h(2) + R) + 4]

Thus, no false negatives. Also no false positives:
Observation: Ali] + A[j] = Ali +j]onlyifi =8t; + 1 and j = 8t, + 3

(x + vy = z (mod 8) has unique solution over {1,3,4} and A[i] # A[j])

l l I I max planck institut
informatik

Running Time

Assumption: Convolution 3SUM in time 0(n?~¢)

3
Total expected running time: O <n logn +nR + (g) n2_€>

Set R = n'=¢/4
Total time: 0(n?~¢/#)

Contradicts 3SUM Conjecture

l l I I max planck institut
informatik

Set Disjointness Problem

1. Preprocess subsets A, B € U over universe U

2. Answer queries: Given A€ A,BE€B,iISANB + @7

Repeated queries

(Static) data structure

Queries not known in advance

Goal: Lower bound on preprocessing and query time

Offline Set Disjointness: g queries known in advance (part of input)

. l I I max planck institut
informatik

Reduction to 3SUM [Kopelowitz et al]

Thm: Let f(n) be such that 3SUM requires expected time Q.(n?/f(n)).
For any constant 0 < y < 1, let ALG be an algorithm for offline Set
Disjointness where |A| = |B| = ©(nlogn), |U| = 0(n?~?Y), each
setin A U B has at most 0(n'~7) elements from U, and g =
O(n'*”logn). Then ALG requires expected time Q.(n?/f(n)).

Cor: Assuming the 3SUM conjecture, forany 0 < y < 1, any data
structure for Set Disjointness has

1+y 2
t, + N27Vt, = Q =as)

where N is the sum of the set sizes, t, is the preprocessing time,
and t, Is the time per query.
(From Thm: N = 0(n?7" logn))

Example: Data structures with constant query time
Make y tend to 1, need ¢, = Q(N27°(0)
Evidence that trivial preprocessing algorithm is optimal (for constant query)

. l I I max planck institut
informatik

3SUM version

Given set X ¢ [U] of integers

are there x,y,z € X such that x —y = z?

In the following proof we use a balanced, linear hash function with
uniform difference property. (magically...)

This can be modified for almost balanced, almost linear hash function
with uniform difference property.

. l I I max planck institut
informatik

Crucial insight

.] a
L b
D e
—
.] a
iy T
higher order bits _ b
e c
lower order bits _ bl
M - In p BB g plagkinsiun June 16, 2016 19/19

Algorithm Overview

SetR=nY,Q = (5;)2

Pick random hash functions h: U = [R] and g;:U — [Q] for k = 1to 10logn

Initialize buckets B[1], ..., B[R] s.t. B[i] = {x : h(x) = i}

For all i € [R],j € [/Q], initialize buckets B} [i,j] and Bi[i,j] s
Bili,jl = {gx(x) +j - /Q (mod Q) | x € B[i]}
Bili,j1 = {gx(x) — j (mod Q) | x € B[il}
Initialize k set intersection problems with B.[i, j]’s and Bj[i, j]'s
Foreveryze Xandeveryi=1t0R
Check if BL[i, g (2)] and Bi[i — h(z) (mod R), gx(z)] intersect
If intersection for all k:

Search for x € Bli] and y € B[i — h(z) (mod R)] s.t
x —y = z and output it if found

If nothing found: output ‘no 3SUM’

g1(2): higher order bits of g, (z)
gx(2): higher order bits of g, (z)

il p | [o June 16, 2016

20/19

Correctness |

Algorithm verifies every triple before stopping
Need to show: if x — y = z, then algorithm finds it

Claim 1: If x —y =z, then B[i] n (B[j] +2) # ©
where i = h(x),j =i — h(z) (modR)

Linear hash function: h(x) — h(y) = h(x —y) = h(z) (mod R)
Thus: j = h(x) —h(z) =i — h(z) (modR)
yEB[j] ® x=y+z€B[j]l+z

l l I I I max planck institut
informatik

June 16, 2016 21/19

Correctness |l

Bli]nB[j]l+z+©
gr(BliD N gkléB il+2)#0
gr(B[iD N (gk(Bﬁ[i]) +gx(2)) = 0
gr(B[iD N (gk(B[i])Ii gh(2) + gi(2)) # 0
(gk(B[i]) - gfc(z)) n ?gk(B[i]) + g;ﬁ(z)) lll
B'[i, g ()] n gl[f» 9k@)] # 0

e JO BB June 16, 2016 22119

Running time

Set intersection instance:

Number of sets: 0(R\/Qk) = 0(nlogn)

Number of elements in each set: 0(,/Q) = 0(n*™")

Size of universe: 0(Q) = 0(n*~?Y)

Number of set intersection queries: 0(nRk) = 0(n**" logn)

Finding witnesses:

If B[i, g%(2)] and Bj, gx (2)] intersect, try to find x € B[i],y € B[j]
St.x—y=2z

Time 0 (%) per witness check

But: pair i,j could be false positive with no such x € Bli],y € B[Jj]
Probability of false positive is small

In expectation: 0(1) false positives (next slide)
n

Total time: O (g + (#false positives) %) =0 (E)

. l I I max planck institut
informatik June 16. 2016

23/19

Bounding number of false positive

For a fixed z and any pair x,y € U S.t. x — y # z:

1
Prig(x) = 9 0) + g(@)] = Prlgi(x =) = 9] =

(linear and uniform difference)

Remember: Every bucket has size < 2n (balanced)
R

Prob. of false positive in buckets B[i] and B[j] for hash function g;:

3n\°1 9

Prlgy (B[i]) = gk (B[jD + gk(2)] < (?) 5 - 25

Prob. of false positive in buckets B[i] and B[j] for all hash functions g:

1
S_
nC

In expectation: total number of false positives is a constant.

. l I I max planck institut
informatik June 16. 2016

24/19

