Complexity Theory of
Polynomial-Time Problems

Lecture 4: The polynomial method
Part Il: All-pairs shortest paths

Sebastian Krinninger

Overview on APSP Algorithms

Floyd-Warshall algorithm: O (n3)

Inserts one node at a time
n iterations, each taking time 0(n?)

Faster algorithms for sparse graphs

* Directed graphs:
* Single-source shortest paths: O(m + nlogn) (Dijkstra with Fibonacci heap/Hollow heap)
= All-pairs shortest paths: O0(mn + n?logn), improved to O(mn + n?loglogn) [Pettie 02]
* Undirected graphs:
* Single-source shortest paths: O(m) [Thorup 97]
* = All-pairs shortest paths: O (mn)

Pseudopolynomial algorithms

Today: Fastest “general-purpose” algorithm

History of slightly subcubic algorithms
unningTime Authort) vl

n3 Floyd, Warshall 1962
n®/log'/3n Fredman 1975
n3/log/?n Dobosiewicz, Takaoka 1990, 1991
n3/log®>" n Han 2004

n3/logn Takaoka, Zwick, Chan 2004, 2005
n3/log>*n Han 2006

n3/log?n Chan, Han/Takaoka 2007, 2012
n3 /2log)/ Williams 2014

Grows faster than any polylogarithmic factor

Problem definition: desired output

e Can create instances such that for every pair of nodes u, v shortest
path from u to v consists of (1(n) nodes

= Cannot output all shortest paths explicitly in time o(n?)

» Distance matrix: output size n?

* Shortest path matrix SP: output size n?

For every pair of nodes u, v, SP[u, v] = next node on shortest path from u to v

Machine model: Real RAM

Floyd-Warshall: 0(n?) with only additions and comparisons
Q(n3) lower bound if only additions and comparisons allowed [Kerr 70]

Real RAM:
e Additions and comparisons of reals: unit cost

e Other operations: logarithmic cost

Tools

Tool 1: Razborov-Smolensky

Represent AND of d variables x; A -+ A x4 by low-degree polynomial
* Parameter q

*Foreveryi=1,..,q,j=1,..,d: Set r;j = 0 or1with probability%
d

A(xqy, ., xy) = /q\ 16 69 T (xj) 1)
i=1 j=1

Lemma: Pr[A(xq, ...,

Ti,j

By distributive law, 4 can be written as XOR of (1 + d)? monomials

A(.X'l, 1 @ 97"1"]' . (X] @ 1)
l]:
Lemma: Pr{A(xq, ..., xq) = x1 A - /\xd >1-— iq
Ti,j
Proof:
x1 A+ Axg = 1: Each x; must be 1. Clearly, A(xq, ..., xg) = 1 FolHaEIe) Haelg A A oy

x1 N ANxg = 0: First, fix some i #odd subsets = #even subsets
S: subsets of x;’s that are 0 (by binary encoding of the 21|

subsets)

S': subsets of x;’s that are 0 and additionally 7; ; = 1
Bad event: i-th component of outer AND is 1 & |S’| is even
Each subset of S has same probability of being picked as S’

Pr[|S’| is odd] = Pr[|S’]| is even] = 5

A(x4,...,xg) = 1 only if bad event happens for each component of outer AND

= Error probability < 2%1

Tool 2:

n <

Theorem: There is an algorithm for multiplyingann X n

-ast rectangular matrix
X —

——

nO.l

multiplicati

0.17

matrix with an n%17 X n matrix in time 0 (n*log® n).

Also works for finite fields such as F, |

on

Fast evaluation of polynomial

Given: Polynomial P(x[1], ..., x[d], y[1], ..., y[d]) over F,
« With m < n%! monomials
* Two sets of inputs:

X ={xq{ .., x,} €{0,1}° Y ={y,,...,y,} € {0,1}¢
(x; = (qi[1], -, x[d])) vj = (y;[11, ..., y[d]))

Lemma: There is an algorithm for evaluating P on all pairs

(xl-,yj) € X X Y (simultaneously) in time O(n?poly(logn)).

Restrictions of monomials

Shape of polynomial P:

*P=pittp
* each py is a monomial

Define

* D |x: restriction of k-th monomial to variables x[1], ..., x|d]
* p|y: restriction of k-th monomial to variables y[1], ..., y[d]
* (empty product = 1)

“Inner product”
*P=pilx-pily + -+ pmlx - pmly

Reduction to matrix multiplication

/‘
X1
< X }no'l monomials
Xn N /

Y
~ Y1 -Yn
k I f
: Entr ,]): Evaluation o :

191 monomials y (k,j): Evaluati Pi |y

Entry (i, k): Evaluation of py |x;

Result matrix R[i, j]: Evaluation of P under x; = (x;[1], ..., x;[d])
and y; = (y;[1], ..., y;[d])

Tool 3: Union Bound and Chernoff Bound

Union Bound:
Pr|A U B] < Pr|A] + Pr|[B]

(Variant of) Chernoff Bound:

Let X, ..., X; be independent 0/1-valued random variables such that
0 < El[X;] <1.

Then, the random variable X = Y¥_, X; satisfies:

Pr[X < (1 — §)E[X]] < e 9 E[X1/2
forevery0 <6 <1

Solving the Problem

Min-plus matrix product

We give an algorithm for the following problem:
* Given: n X d integer matrix A and d X n integer matrix B

e Qutput: n X n matrix C such that

Cli,j] = ker{rlun (Ali, k] + Blk,j])

Matrix multiplication in min-plus semiring:
* min is addition
* + is multiplication
* Ois 1-element
e o is 0-element

k* suchthat Ali,k*]| + B[k",j] = ke({r%m (Ali, k] + B[k, j]) is a witness for i, j

Tripartite graph for min-plus product

n <

Cli,j]1 = min (A[i, k] + B[k, j])

1<k<d
/‘ ‘\
®>
@ -
- > d ® n
' o< '
W @ _
N A Y,

'
w(i, k) = A[i, k]

'
w(k,j) = Blk,j] (no edge if weight is c0)

1. Min-plus product = APSP in tripartite graph
2. fA =B =G:G X G = matrix of 2-hop distances

APSP and min-plus product are “equivalent”

In general: Gt = matrix distances using exactly i hops

Distance matrix D:
D=1+G+G*+--+G6"1=(G+D"1?
+ is entry-wise minimum
Identity matrix I: 0 at diagonal, co otherwise

Repeated squaring: Compute (G +)4, (G + D*, (G +)8, ...,
= 0 (logn) min-plus products for distances, shortest paths through witnesses

Even stronger relationship known:

Theorem: APSP on n nodes can be solved in time O(T'(n)) if and only

min-plus product on n X n matrices can be solved in time O(T (n)).

Step 1: Divide into subproblems

Overall algorithm

1. Setd = 2y/l0ER/100
2. Divide problem into g subproblems

3. Solve each subproblem in time
0(n?poly(logn))
4. Merge solutions in time 0(n3/d)

Total time:

n3
0 (F pOlY(lOg Tl)) — nB/ZQ(log n)1/2

A B
Al An/d Bl } d
Bn/d
n
For every k = 1, ey

* Compute product C;, of A, and B,
(n X d matrix with d X n matrix)

Return: min(Cl,) Cn/d)
(entry-wise minimum)

Subproblem

We solve the following subproblem:
e Given: n X d matrix A and d X n matrix B

e Qutput: n X n matrix W of witnesses such that

W1i,jl = argmin(4li, k] + Blk,j])
kefl,..,d)

From witnesses in W we can easily reconstruct values of min-plus

product ke?lnn (A[i, k] + B[k,]) in time 0(n?)

Step 2: Preprocess input of subproblem

Enforce uniqgue minimum

For every entry i, k of A: Running time:
AL, k] :==Ali, k] - (n+ 1)+ k O (log n) additions per entry
For every entry k,j of B ~ (add to itself for O (logn) times)
B*[k,j] :== B[k,j] - (n+ 1) = 0(nd logn)
~/

Fix some pair i, j and define k™ as smallest k' € {1, ..., d} such that

Ali, k'] + Bk, j]= ker{rlun (Ali, k] + Blk,j])

Claim: k™ is unique minimum of A*[i, k] + B*|k, j] over k* € {1, ..., d

= Work with A® and B* instead of A and B to ensure unique minima

Proof of Claim: k* is unique minimum of A*|i, k| + B*|k, j]
over k* € {1, ...,d)}

Let k + k*. We show that A*[i, k] + B*|k,j] > A*[i,k*| + B*|[k, j]
or equivalently
(1) (Ali, k] + Blk,j]) - (n+ 1) + k > (A[i, k"] + Blk",j]) - (n+ 1) + k°

Case 1: A[i, k] + Blk,j] = Ali, k*] + B[k,]
Then k™ < k because k™ is smallest index assuming min value
(1) follows immediately

Case 2: Ali, k] + Blk,j] > Ali,k*] + Blk, j]
= Ali, k] + Blk,j] = Ali,k*] + Blk,j] + 1 (integers!)
= (Ali,k] + Blk,j]) - (n+1) + k

Sk R Gy

-

Fredman’s trick: Get rid of weights

Construct n X d? matrix A’ and d? X n matrix B’
« A'i, (k,£)] == A*[i, k] — A*[i, ¢]
* B'|(k,?),j] = B*|¢,j] — B*[k,j]

Idea: Compare alternatives k and £ without taking sums
Observation: A'li, (k,?)] < B'[(k,?),]]
< A*[i, k] + B*[k,j] < A*[i,¢] + B*[4,]]

Fredman’s trick continued

For every pair k, £ sort set Sy, , :== {A'[i, (k,?)], B'[(k,©),i] | i =1, ...,n}

Breaking ties:

* Precedence of A’-entries over B'-entries 0 (ndz logn) <0 (nz)
e Otherwise arbitrarily

Define matrices A" and B"': Properties:

: : 1. Entries of A" and B" from {1, ..., 2n}
e A"i, (k,)] = k(A'li, (k,©)]; S S
[l ()] rdn ([l ()] k'{)) 2. Comparisons preserved:

e B'[(k.£), i] = rank(B'[(k.©). il S A'Ti, (k, ©)] < B'[(k, ©), /] iff
[(k, €), j] = rank(B'[(k, £), j]; Sk,¢) . (A"[l?,](k,f)][(ﬁ By’[](]kl,f),j]

(replace each value by rank in 5; /) 3. Forevery i,{!' there is unique k™ such
= Every entry needs 1 + log n bits tha’félf,‘?[ria'('k*: 0] < B"[(k*,), j]

(no weight dependence!)

Footnote on running time: A" and B’ do not need to be computed explicitly. No subtractions necessary!

Step 3: Design circuit for subproblem

Circuit for min-plus product

Circuit with 0/1 as inputs

Gates:
* Boolean functions: AND, OR
e XOR (i.e., sum modulo 2)

Circuit only outputs 1 bit! = Compute result bit-per-bit

For every pairi,j and every b € {1, ...,logn}:

Design circuit C, (A" [i,*], B"'[*, j]) computing b-th bit of unique k* for which
A"'li,(k*,©)] < B"[(k*,¥),j] forall £
Input: Each bit of i-th row of A" and j-th colum of B”

Structure of circuit

Goal: For every i, j, compute k* s.t. V¥: A”[i (k*,¢)] < B"|(k*,¥),]]

Gy A LB D = \/ /\[A"[z (k0] < 8”10k £).1]

_/
ke{1,...d}, +¢£=1
bth bitofkis 1 1 iff comparison true (to be specified)

Claim: C,(:,-) = b-th bit of k* for which V£: A" [i, (k*, €)] < B"'[(k*,), /]

Proof:

e BigANDreturnslifandonlyifk = k™ (unigueness of minimum)
 If b-th bit of k™ is 1: Big OR includes k™ and thus returns 1

* If b-th bit of k™ is 0: Big OR does not include k™ and thus returns 0

Step 4: Represent circuit by polynomial

Outer OR

d

P\ A" k0] < B[, €),1]

ke{l,..d}, +f=1
bth bitof kis 1

Cp(A"[ix], B"[%,J]) =

May be replaced by @ due to uniqueness:
AND outputs 1 for exactly one k

Polynomial for outer circuit

Fixing i, j, and k, we want to replace the following circuit by a polynomial:
d

/\[4"1i, (k.01 < B[k, 0,1

=1 " ~ —

—- LEQk,{(';')

Apply Razborov-Smolensky with p = 3 + logd:
D d

Al 10 ED re - (18 a1, 8" D & 1)

x=1 =1

* Error probability for specific k: < zip

* Error probability forall k: < d -é (union bound)

Less-or-equal-circuit for two numbers a and b

May be replaced by XOR: at most one of inner expressions is true

| \\

LEQ(ab)—(/\(l@al@b) (1€Bai)/\bi/\/\1€9aj@bj)
i=1 = =1
J \ J
Y Y
=1iffa=0>b = 1iff

* Firsti — 1 bits of a and b equal,
* i-thbitofa =0, and
e j-thbitofb=1

Polynomial for LEQ circuit

t

t i—1
LEQ(a,b) = (/\(1 D a; @h)) &) @((1 @ai)/\bi/\/\l D a; €Bbj>
i=1 j=1

i=1
Apply Razborov/Smolensky with g = 3 + 2logd + log(t + 1):

69(/\(695“2@gates"2))

t+1 q <t \
at most one a;, at most one b;, at most one constant

Additional trick: For every entry a of A" and every entry b of B"":
Precompute XOR of a;’s and XOR of b;’s: additional time O(nd?*tq) < 0(n?)

Introduce new variables for these combinations for later evaluation

New form: LEQ'(a,b) = 69 </\("2 45 gates"))
q

t+1

Polynomial for LEQ circuit cont’d

LEQ'(a,b) = 69 (/\("2 @b gates"))

t+1 q

Expansion (distributive law): = polynomial over F, with
* degree < g
e #monomials:m < (t + 1) - 39 monomials

Error probability: For each application of Raz/Smol: Error prob. < ziq

By union bound:

* For comparing a fixed pair (a, b): error probability < t;—ql

d?(t+1) < d?(t+1)

2 : : it — =z
* For all d“ comparisons: error probability < 4 = J3+2log dtlog(rD — g

1

Final polynomial

14 d
PaliL 8D = (D /\(1@@w-(LEQ,Q,AA”[L*],B"[*,j])ea1))
=1 \

k=1,...,d x=1 J
bth bitof kis 1

Y

XOR withm < (t + 1) - 39 monomials

L J
Y

XOR with < (d + 1)m monomials

Apply distributive law: #monomials bounded by
M<d-((d+1Dm)’ =d-((d+1)m)
Error probability: < % + % =

2+logd

el

The calculation a=2/viw ,-34105a q=3+2l0gd +log(t + 1)

#monomials M < d - ((d + Dm)” = d- ((d+ Dm)*"**

=d-((d+1)-(t+1)-39)°"%
—d - ((d i 1) . (t i 1)) 33+210g d+log(t+1)

Claim: M < n®1

)3+logd

Taking logarithms:
logM < logd + (3 +logd)(log(d + 1) + log(t + 1) + (3 + 2logd + log(t + 1)) -log3) d =t
<logd + (3 +1logd)(log(d + 1) +log(d +1) + (3 + 2logd + log(d + 1)) - 2)
<logd + (3logd + logd)(2logd + 2logd + (3logd + 2logd + 2logd) - 2)
= logd + 4logdz(4logd + (7logd) - 2) =logd + 76log?d < 100log? d

J]1ogn
= 100 < 0.1logn

100

Step 5: Fast evaluation of polynomial

Fast evaluation of polynomial

Forevery b € {1, ...,logn}:

Generate probabilistic polynomial P, with the following properties

* Py is XOR of M < n%! monomials
* Variables of P, can partitioned into two subsets X and Y
* For every pair i,j: if

* variables of X evaluated according to i-th row of A" and

* variables of Y evaluated according to j-th column of B”,

* then P, returns b-th bit of arg min(A4"'[i, (k,)] < B"'[(k,), j]) with probability >
ke(1,..,d}

= (Fast Evaluation Lemma):
Can evaluate Py, for all n? pairs i, j in time O (n“poly(logn))
Result matrix R, with entries Ry [i, j]

S w

Step 6: Amplify success probability

Majority amplification

For all pairsi,j and every b € {1, ...,logn}:
Ryli,jl = C,(A"[i,*], B"[*,]]) with probability >

& w

Repeat evaluation with 7 = 18 log n different random polynomials

Define Wy [i, j] as majority output of all r evaluations
..still 0 (n*poly(logn))

Fix pairi,jand b € {1, ...,logn}
X: Random variable counting how often Ry [i, j] and Cy, (i,) agree over all r trials
r
3-r

E[X] ZT

Bounding success probability

Chernoff: Pr[X < (1 — 8)E[X]] < e~ EIX1/2

Bound error probability using tail bound:

X <gE[X]] =Pr|X < (1 —1>E[X]

3

r
Pr[M,[i,j] # C(i,j,b)] < Pr [X < 5] < Pr

2 2
< e_(§) E(X]/2 _ ,-4E[X]/18 < ,—37/18 _ ,-3logn < p—4logn _ p—4

Majorlty needs to be correct for all n* pairs i, j and log d bit positions b in all
- Z instances of the algorithm:

Union bound:
nlogd _,

1
Pr|3i,j,b: Myli,j] # C,(i,j) in some instance] < . B -

Questions?

