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Overview on APSP Algorithms

• Floyd-Warshall algorithm: 𝑂(𝑛3)
Inserts one node at a time
𝑛 iterations, each taking time 𝑂(𝑛2)

• Faster algorithms for sparse graphs
• Directed graphs:

• Single-source shortest paths: 𝑂(𝑚 + 𝑛 log𝑛) (Dijkstra with Fibonacci heap/Hollow heap)
• ⇒ All-pairs shortest paths: 𝑂(𝑚𝑛 + 𝑛2 log 𝑛), improved to 𝑂(𝑚𝑛 + 𝑛2 log log 𝑛) [Pettie 02]

• Undirected graphs:
• Single-source shortest paths: 𝑂(𝑚) [Thorup 97]
• ⇒ All-pairs shortest paths: 𝑂(𝑚𝑛)

• Pseudopolynomial algorithms

• Today: Fastest “general-purpose” algorithm



History of slightly subcubic algorithms

Running Time Author(s) Year(s)

𝑛3 Floyd, Warshall 1962

𝑛3/ log1/3 𝑛 Fredman 1975

𝑛3/ log1/2 𝑛 Dobosiewicz, Takaoka 1990, 1991

𝑛3/ log5/7 𝑛 Han 2004

𝑛3/ log 𝑛 Takaoka, Zwick, Chan 2004, 2005

𝑛3/ log5/4 𝑛 Han 2006

𝑛3/ log2 𝑛 Chan, Han/Takaoka 2007, 2012

𝑛3/2Ω log 𝑛
1/2 Williams 2014

Grows faster than any polylogarithmic factor



Problem definition: desired output

• Can create instances such that for every pair of nodes 𝑢, 𝑣 shortest 
path from 𝑢 to 𝑣 consists of Ω(𝑛) nodes

• ⇒ Cannot output all shortest paths explicitly in time 𝑜(𝑛3)

• Distance matrix: output size 𝑛2

• Shortest path matrix 𝐒𝐏: output size 𝑛2

For every pair of nodes 𝑢, 𝑣, SP 𝑢, 𝑣 = next node on shortest path from 𝑢 to 𝑣



Machine model: Real RAM

Floyd-Warshall: 𝑂(𝑛3) with only additions and comparisons

Ω(𝑛3) lower bound if only additions and comparisons allowed [Kerr 70]

Real RAM:

• Additions and comparisons of reals: unit cost

• Other operations: logarithmic cost



Tools



Tool 1: Razborov-Smolensky

Represent AND of 𝑑 variables 𝑥1 ∧ ⋯∧ 𝑥𝑑 by low-degree polynomial

• Parameter 𝑞

• For every 𝑖 = 1,… , 𝑞, 𝑗 = 1,… , 𝑑: Set 𝑟𝑖,𝑗 = 0 or 1 with probability 
1

2

𝐴 𝑥1, … , 𝑥𝑑 = 

𝑖=1

𝑞

1⊕ 

𝑗=1

𝑑

𝑟𝑖,𝑗 ⋅ 𝑥𝑗⊕1

By distributive law, 𝐴 can be written as XOR of 1 + 𝑑 𝑞 monomials

Lemma: Pr
𝑟𝑖,𝑗
𝐴 𝑥1, … , 𝑥𝑑 = 𝑥1 ∧ ⋯∧ 𝑥𝑑 ≥ 1 −

1

2𝑞



𝐴 𝑥1, … , 𝑥𝑑 = 

𝑖=1

𝑞

1⊕ 

𝑗=1

𝑑

𝑟𝑖,𝑗 ⋅ 𝑥𝑗⊕1

Lemma: Pr
𝑟𝑖,𝑗
𝐴 𝑥1, … , 𝑥𝑑 = 𝑥1 ∧ ⋯∧ 𝑥𝑑 ≥ 1 −

1

2𝑞

Proof:

𝑥1 ∧ ⋯∧ 𝑥𝑑 = 1: Each 𝑥𝑗 must be 1. Clearly, 𝐴 𝑥1, … , 𝑥𝑑 = 1

𝑥1 ∧ ⋯∧ 𝑥𝑑 = 0: First, fix some 𝑖

𝑆: subsets of 𝑥𝑗’s that are 0

𝑆′: subsets of 𝑥𝑗’s that are 0 and additionally 𝑟𝑖,𝑗 = 1

Bad event: 𝑖-th component of outer AND is 1⇔ |𝑆′| is even

Each subset of 𝑆 has same probability of being picked as 𝑆′

Pr |𝑆′| is odd = Pr |𝑆′| is even =
1

2
𝐴 𝑥1, … , 𝑥𝑑 = 1 only if bad event happens for each component of outer AND

⇒ Error probability ≤
1

2𝑞

Observation: For every set 𝑆, 
#odd subsets = #even subsets

(by binary encoding of the 2|𝑆|

subsets)



Tool 2: Fast rectangular matrix multiplication

Theorem: There is an algorithm for multiplying an 𝑛 × 𝑛0.17

matrix with an 𝑛0.17 × 𝑛 matrix in time 𝑂(𝑛2 log2 𝑛).

𝑛0.1

𝑛

Also works for finite fields such as 𝐹2!

× =



Fast evaluation of polynomial

Given: Polynomial 𝑃(𝑥[1],… , 𝑥[𝑑], 𝑦[1], … , 𝑦[𝑑]) over 𝐹2
• With 𝑚 ≤ 𝑛0.1 monomials

• Two sets of inputs:

𝑋 = 𝑥1, … , 𝑥𝑛 ⊆ 0,1
𝑑 𝑌 = 𝑦1, … , 𝑦𝑛 ⊆ 0,1

𝑑

(𝑥𝑖 = 𝑥𝑖[1], … , 𝑥𝑖[𝑑] ) (𝑦𝑗 = 𝑦𝑗[1], … , 𝑦𝑗[𝑑] )

Lemma: There is an algorithm for evaluating 𝑃 on all pairs 

𝑥𝑖 , 𝑦𝑗 ∈ 𝑋 × 𝑌 (simultaneously) in time 𝑂 𝑛2poly log 𝑛 .



Restrictions of monomials

Shape of polynomial 𝑃:

• 𝑃 = 𝑝1 +⋯+ 𝑝𝑚
• each 𝑝𝑘 is a monomial

Define

• 𝑝𝑘|𝑥: restriction of 𝑘-th monomial to variables 𝑥[1],… , 𝑥[𝑑]

• 𝑝𝑘|𝑦: restriction of 𝑘-th monomial to variables 𝑦[1],… , 𝑦[𝑑]

• (empty product = 1)

“Inner product”

• 𝑃 = 𝑝1 𝑥 ⋅ 𝑝1 𝑦 +⋯+ 𝑝𝑚 𝑥 ⋅ 𝑝𝑚 𝑦



Reduction to matrix multiplication

𝑥1
⋮
𝑥𝑛

×

𝑛0.1 monomials

𝑦1…𝑦𝑛

𝑛0.1 monomials

Entry 𝑖, 𝑘 : Evaluation of 𝑝𝑘|𝑥𝑖

Entry 𝑘, 𝑗 : Evaluation of 𝑝𝑘|𝑦𝑗

Result matrix 𝑅[𝑖, 𝑗]: Evaluation of 𝑃 under 𝑥𝑖 = 𝑥𝑖[1], … , 𝑥𝑖[𝑑]

and 𝑦𝑗 = 𝑦𝑗[1], … , 𝑦𝑗[𝑑]



Tool 3: Union Bound and Chernoff Bound

Union Bound:
Pr 𝐴 ∪ 𝐵 ≤ Pr 𝐴 + Pr 𝐵

(Variant of) Chernoff Bound:

Let 𝑋1, … , 𝑋𝑘 be independent 0/1-valued random variables such that 
0 < 𝐸 𝑋𝑖 < 1.

Then, the random variable 𝑋 =  𝑖=1
𝑘 𝑋𝑖 satisfies:

Pr 𝑋 < 1 − 𝛿 𝐸[𝑋] ≤ 𝑒−𝛿
2𝐸[𝑋]/2

for every 0 ≤ 𝛿 ≤ 1



Solving the Problem



Min-plus matrix product

We give an algorithm for the following problem:

• Given: 𝑛 × 𝑑 integer matrix 𝐴 and 𝑑 × 𝑛 integer matrix 𝐵

• Output: 𝑛 × 𝑛 matrix 𝐶 such that
𝐶 𝑖, 𝑗 = min

𝑘∈{1,…,𝑑}
(𝐴 𝑖, 𝑘 + 𝐵 𝑘, 𝑗 )

Matrix multiplication in min-plus semiring:
• min is addition
• + is multiplication
• 0 is 1-element
• ∞ is 0-element

𝑘∗ such that 𝐴 𝑖, 𝑘∗ + 𝐵 𝑘∗, 𝑗 = min
𝑘∈{1,…,𝑑}

(𝐴 𝑖, 𝑘 + 𝐵 𝑘, 𝑗 ) is a witness for 𝑖, 𝑗



Tripartite graph for min-plus product

⋮ ⋮

⋮𝑛 𝑛𝑑

𝑤 𝑖, 𝑘 = 𝐴[𝑖, 𝑘] 𝑤 𝑘, 𝑗 = 𝐵[𝑘, 𝑗] (no edge if weight is ∞)

𝐶 𝑖, 𝑗 = min
1≤𝑘≤𝑑
(𝐴 𝑖, 𝑘 + 𝐵 𝑘, 𝑗 )

1. Min-plus product = APSP in tripartite graph
2. If 𝐴 = 𝐵 = 𝐺: 𝐺 × 𝐺 =matrix of 2-hop distances



APSP and min-plus product are “equivalent”

In general: 𝐺𝑖 =matrix distances using exactly 𝑖 hops

Distance matrix 𝐷:
𝐷 = 𝐼 + 𝐺 + 𝐺2 +⋯+ 𝐺𝑛−1 = 𝐺 + 𝐼 𝑛−1

+ is entry-wise minimum

Identity matrix 𝐼: 0 at diagonal, ∞ otherwise

Repeated squaring: Compute 𝐺 + 𝐼 2, 𝐺 + 𝐼 4, 𝐺 + 𝐼 8, …, 
⇒ 𝑂(log 𝑛)min-plus products for distances, shortest paths through witnesses

Even stronger relationship known:

Theorem: APSP on 𝑛 nodes can be solved in time 𝑂(𝑇 𝑛 ) if and only 
min-plus product on 𝑛 × 𝑛 matrices can be solved in time 𝑂(𝑇 𝑛 ).



Step 1: Divide into subproblems



Overall algorithm

1. Set 𝑑 = 2 log 𝑛/100

2. Divide problem into 
𝑛

𝑑
subproblems

3. Solve each subproblem in time 
𝑂 𝑛2poly log 𝑛

4. Merge solutions in time 𝑂 𝑛3/𝑑

Total time:

𝑂
𝑛3

𝑑
poly log 𝑛 = 𝑛3/2Ω log 𝑛

1/2

For every 𝑘 = 1,… ,
𝑛

𝑑
:

• Compute product 𝐶𝑘 of 𝐴𝑘 and 𝐵𝑘
(𝑛 × 𝑑 matrix with 𝑑 × 𝑛 matrix)

Return: min 𝐶1, … , 𝐶𝑛/𝑑
(entry-wise minimum)

𝐴 𝐵

𝐴1 𝐴𝑛/𝑑 𝐵1

𝐵𝑛/𝑑

𝑑



Subproblem

We solve the following subproblem:

• Given: 𝑛 × 𝑑 matrix 𝐴 and 𝑑 × 𝑛 matrix 𝐵

• Output: 𝑛 × 𝑛 matrix 𝑊 of witnesses such that
𝑊 𝑖, 𝑗 = arg min

𝑘∈{1,…,𝑑}
(𝐴 𝑖, 𝑘 + 𝐵 𝑘, 𝑗 )

From witnesses in 𝑊 we can easily reconstruct values of min-plus 
product min

𝑘∈{1,…,𝑑}
(𝐴 𝑖, 𝑘 + 𝐵 𝑘, 𝑗 ) in time 𝑂 𝑛2



Step 2: Preprocess input of subproblem



Enforce unique minimum

For every entry 𝑖, 𝑘 of 𝐴:

𝐴∗ 𝑖, 𝑘 ∶= 𝐴 𝑖, 𝑘 ⋅ 𝑛 + 1 + 𝑘

For every entry 𝑘, 𝑗 of 𝐵

𝐵∗ 𝑘, 𝑗 ∶= 𝐵 𝑘, 𝑗 ⋅ 𝑛 + 1

Fix some pair 𝑖, 𝑗 and define 𝑘∗ as smallest 𝑘′ ∈ {1,… , 𝑑} such that

𝐴 𝑖, 𝑘′ + 𝐵 𝑘′, 𝑗 = min
𝑘∈{1,…,𝑑}

𝐴 𝑖, 𝑘 + 𝐵 𝑘, 𝑗

⇒Work with 𝐴∗ and 𝐵∗ instead of 𝐴 and 𝐵 to ensure unique minima

Running time:
𝑂(log 𝑛) additions per entry
(add to itself for 𝑂(log 𝑛) times)
⇒𝑂 𝑛𝑑 log 𝑛

Claim: 𝑘∗ is unique minimum of 𝐴∗ 𝑖, 𝑘 + 𝐵∗ 𝑘, 𝑗 over 𝑘∗ ∈ {1, … , 𝑑}



Proof of Claim: 𝑘∗ is unique minimum of 𝐴∗ 𝑖, 𝑘 + 𝐵∗ 𝑘, 𝑗
over 𝑘∗ ∈ {1, … , 𝑑}

Let 𝑘 ≠ 𝑘∗. We show that 𝐴∗ 𝑖, 𝑘 + 𝐵∗ 𝑘, 𝑗 > 𝐴∗ 𝑖, 𝑘∗ + 𝐵∗ 𝑘, 𝑗

or equivalently

(1) 𝐴 𝑖, 𝑘 + 𝐵 𝑘, 𝑗 ⋅ 𝑛 + 1 + 𝑘 > 𝐴 𝑖, 𝑘∗ + 𝐵 𝑘∗, 𝑗 ⋅ 𝑛 + 1 + 𝑘∗

Case 1: 𝐴 𝑖, 𝑘 + 𝐵 𝑘, 𝑗 = 𝐴 𝑖, 𝑘∗ + 𝐵 𝑘, 𝑗

Then 𝑘∗ < 𝑘 because 𝑘∗ is smallest index assuming min value

(1) follows immediately

Case 2: 𝐴 𝑖, 𝑘 + 𝐵 𝑘, 𝑗 > 𝐴 𝑖, 𝑘∗ + 𝐵 𝑘, 𝑗

⇒ 𝐴 𝑖, 𝑘 + 𝐵 𝑘, 𝑗 ≥ 𝐴 𝑖, 𝑘∗ + 𝐵 𝑘, 𝑗 + 1 (integers!)

⇒ 𝐴 𝑖, 𝑘 + 𝐵 𝑘, 𝑗 ⋅ 𝑛 + 1 + 𝑘
≥ 𝐴 𝑖, 𝑘∗ + 𝐵 𝑘∗, 𝑗 ⋅ 𝑛 + 1 + 𝑘 + 𝑛 + 1
> 𝐴 𝑖, 𝑘∗ + 𝐵 𝑘∗, 𝑗 ⋅ 𝑛 + 1 + 𝑘∗



Fredman’s trick: Get rid of weights

Construct 𝑛 × 𝑑2 matrix 𝐴′ and 𝑑2 × 𝑛 matrix 𝐵′

• 𝐴′ 𝑖, 𝑘, ℓ ≔ 𝐴∗ 𝑖, 𝑘 − 𝐴∗ 𝑖, ℓ

• 𝐵′ 𝑘, ℓ , 𝑗 ≔ 𝐵∗ ℓ, 𝑗 − 𝐵∗ 𝑘, 𝑗

Idea: Compare alternatives 𝑘 and ℓ without taking sums

Observation: 𝐴′ 𝑖, 𝑘, ℓ ≤ 𝐵′ 𝑘, ℓ , 𝑗

⇔ 𝐴∗ 𝑖, 𝑘 + 𝐵∗ 𝑘, 𝑗 ≤ 𝐴∗ 𝑖, ℓ + 𝐵∗ ℓ, 𝑗



Fredman’s trick continued

For every pair 𝑘, ℓ sort set 𝑆𝑘,ℓ ≔ {𝐴
′ 𝑖, 𝑘, ℓ , 𝐵′ 𝑘, ℓ , 𝑖 ∣ 𝑖 = 1,… , 𝑛}

Breaking ties:

• Precedence of 𝐴′-entries over 𝐵′-entries

• Otherwise arbitrarily 

Properties:

1. Entries of 𝐴′′ and 𝐵′′ from {1, … , 2𝑛}

2. Comparisons preserved:
𝐴′ 𝑖, 𝑘, ℓ ≤ 𝐵′ 𝑘, ℓ , 𝑗 iff
𝐴′′ 𝑖, 𝑘, ℓ ≤ 𝐵′′ 𝑘, ℓ , 𝑗

3. For every 𝑖, 𝑗 there is unique 𝑘∗ such 
that for all ℓ:
𝐴′′ 𝑖, 𝑘∗, ℓ ≤ 𝐵′′ 𝑘∗, ℓ , 𝑗

Define matrices 𝐴′′ and 𝐵′′:

• 𝐴′′ 𝑖, 𝑘, ℓ = rank(𝐴′ 𝑖, 𝑘, ℓ ; 𝑆𝑘,ℓ)

• 𝐵′′ 𝑘, ℓ , 𝑗 = rank(𝐵′ 𝑘, ℓ , 𝑗 ; 𝑆𝑘,ℓ)

(replace each value by rank in 𝑆𝑘,ℓ)

⇒ Every entry needs 1 + log 𝑛 bits
(no weight dependence!)

Footnote on running time: 𝐴′ and 𝐵′ do not need to be computed explicitly. No subtractions necessary!

𝑂 𝑛𝑑2 log 𝑛 ≤ 𝑂 𝑛2



Step 3: Design circuit for subproblem



Circuit for min-plus product

Circuit with 0/1 as inputs

Gates:
• Boolean functions: AND, OR

• XOR (i.e., sum modulo 2)

Circuit only outputs 1 bit! ⇒ Compute result bit-per-bit

For every pair 𝑖, 𝑗 and every 𝑏 ∈ {1, … , log 𝑛}:
Design circuit 𝐶𝑏 𝐴

′′ 𝑖,∗ , 𝐵′′[∗, 𝑗] computing 𝑏-th bit of unique 𝑘∗ for which 
𝐴′′ 𝑖, 𝑘∗, ℓ ≤ 𝐵′′ 𝑘∗, ℓ , 𝑗 for all ℓ

Input: Each bit of 𝑖-th row of 𝐴′′ and 𝑗-th colum of 𝐵′′



Structure of circuit

Goal: For every 𝑖, 𝑗, compute 𝑘∗ s.t. ∀ℓ: 𝐴′′ 𝑖, 𝑘∗, ℓ ≤ 𝐵′′ 𝑘∗, ℓ , 𝑗

𝐶𝑏 𝐴
′′ 𝑖,∗ , 𝐵′′[∗, 𝑗] =  

𝑘∈ 1,…,𝑑 ,
𝑏th bit of 𝑘 is 1

 

ℓ=1

𝑑

𝐴′′ 𝑖, 𝑘, ℓ ≤ 𝐵′′ 𝑘, ℓ , 𝑗

Claim: 𝐶𝑏 ⋅,⋅ = 𝑏-th bit of 𝑘∗ for which ∀ℓ: 𝐴′′ 𝑖, 𝑘∗, ℓ ≤ 𝐵′′ 𝑘∗, ℓ , 𝑗

Proof:
• Big AND returns 1 if and only if 𝑘 = 𝑘∗ (uniqueness of minimum)
• If 𝑏-th bit of 𝑘∗ is 1: Big OR includes 𝑘∗ and thus returns 1
• If 𝑏-th bit of 𝑘∗ is 0: Big OR does not include 𝑘∗ and thus returns 0

1 iff comparison true (to be specified)



Step 4: Represent circuit by polynomial



Outer OR

𝐶𝑏 𝐴
′′ 𝑖,∗ , 𝐵′′[∗, 𝑗] =  

𝑘∈ 1,…,𝑑 ,
𝑏th bit of 𝑘 is 1

 

ℓ=1

𝑑

𝐴′′ 𝑖, 𝑘, ℓ ≤ 𝐵′′ 𝑘, ℓ , 𝑗

May be replaced by ⨁ due to uniqueness:
AND outputs 1 for exactly one 𝑘



Polynomial for outer circuit

Fixing 𝑖, 𝑗, and 𝑘, we want to replace the following circuit by a polynomial:

Apply Razborov-Smolensky with 𝑝 = 3 + log 𝑑:

• Error probability for specific 𝑘: ≤
1

2𝑝
=
1

8𝑑

• Error probability for all 𝑘: ≤ 𝑑 ⋅
1

8𝑑
=
1

8
(union bound)

 

ℓ=1

𝑑

𝐴′′ 𝑖, 𝑘, ℓ ≤ 𝐵′′ 𝑘, ℓ , 𝑗

 

𝑥=1

𝑝

1⊕ 

ℓ=1

𝑑

𝑟𝑥,ℓ ⋅ 𝐿𝐸𝑄𝑘,ℓ 𝐴
′′ 𝑖,∗ , 𝐵′′[∗, 𝑗] ⊕ 1

=: 𝐿𝐸𝑄𝑘,ℓ ⋅,⋅



Less-or-equal-circuit for two numbers 𝑎 and 𝑏

𝐿𝐸𝑄 𝑎, 𝑏 =  

𝑖=1

𝑡

(1⊕ 𝑎𝑖⊕𝑏𝑖) ∨ 

𝑖=1

𝑡

1⊕ 𝑎𝑖 ∧ 𝑏𝑖 ∧ 

𝑗=1

𝑖−1

1⊕ 𝑎𝑗⊕𝑏𝑗

= 1 iff 𝑎 = 𝑏 = 1 iff
• First 𝑖 − 1 bits of 𝑎 and 𝑏 equal,
• 𝑖-th bit of 𝑎 = 0, and
• 𝑖-th bit of 𝑏 = 1

May be replaced by XOR: at most one of inner expressions is true



Polynomial for LEQ circuit

Apply Razborov/Smolensky with 𝑞 = 3 + 2 log 𝑑 + log(𝑡 + 1):

Additional trick: For every entry 𝑎 of 𝐴′′ and every entry 𝑏 of 𝐵′′:
Precompute XOR of 𝑎𝑖’s and XOR of 𝑏𝑖’s: additional time 𝑂 𝑛𝑑2𝑡𝑞 ≤ 𝑂 𝑛2

Introduce new variables for these combinations for later evaluation

New form: 

𝐿𝐸𝑄 𝑎, 𝑏 =  

𝑖=1

𝑡

(1 ⊕ 𝑎𝑖⊕𝑏𝑖) ⊕ 

𝑖=1

𝑡

1⊕ 𝑎𝑖 ∧ 𝑏𝑖 ∧ 

𝑗=1

𝑖−1

1⊕ 𝑎𝑗⊕𝑏𝑗

 

𝑡+1

 

𝑞

 

≤𝑡

"2⊕ gates"

𝐿𝐸𝑄′ 𝑎, 𝑏 = 

𝑡+1

 

𝑞

("2⊕ gates")

at most one 𝑎𝑖, at most one 𝑏𝑖, at most one constant



Polynomial for LEQ circuit cont’d

Expansion (distributive law): → polynomial over 𝐹2 with
• degree ≤ 𝑞
• #monomials: 𝑚 ≤ 𝑡 + 1 ⋅ 3𝑞 monomials

Error probability: For each application of Raz/Smol: Error prob. ≤
1

2𝑞

By union bound:

• For comparing a fixed pair (𝑎, 𝑏): error probability ≤
𝑡+1

2𝑞

• For all 𝑑2 comparisons: error probability ≤
𝑑2(𝑡+1)

2𝑞
≤

𝑑2 𝑡+1

23+2 log 𝑑+log 𝑡+1
=
1

8

𝐿𝐸𝑄′ 𝑎, 𝑏 = 

𝑡+1

 

𝑞

("2⊕ gates")



Final polynomial

Apply distributive law: #monomials bounded by

𝑀 ≤ 𝑑 ⋅ 𝑑 + 1 𝑚
𝑝
= 𝑑 ⋅ 𝑑 + 1 𝑚

2+log 𝑑

Error probability: ≤
1

8
+
1

8
=
1

4

𝑃𝑏 𝐴
′′ 𝑖,∗ , 𝐵′′[∗, 𝑗] =  

𝑘=1,…,𝑑
𝑏th bit of 𝑘 is 1

 

𝑥=1

𝑝

1⊕ 

ℓ=1

𝑑

𝑟𝑥,ℓ ⋅ (𝐿𝐸𝑄𝑘,ℓ
′ 𝐴′′ 𝑖,∗ , 𝐵′′[∗, 𝑗] ⊕ 1)

XOR with 𝑚 ≤ 𝑡 + 1 ⋅ 3𝑞 monomials

XOR with ≤ (𝑑 + 1)𝑚 monomials



The calculation

#monomials 𝑀 ≤ 𝑑 ⋅ 𝑑 + 1 𝑚
𝑝
= 𝑑 ⋅ 𝑑 + 1 𝑚

3+log 𝑑

= 𝑑 ⋅ 𝑑 + 1 ⋅ 𝑡 + 1 ⋅ 3𝑞
3+log 𝑑

= 𝑑 ⋅ 𝑑 + 1 ⋅ 𝑡 + 1 ⋅ 33+2 log 𝑑+log 𝑡+1
3+log 𝑑

Claim: 𝑀 ≤ 𝑛0.1

Taking logarithms:
log𝑀 ≤ log𝑑 + 3 + log𝑑 log 𝑑 + 1 + log 𝑡 + 1 + 3 + 2 log 𝑑 + log 𝑡 + 1 ⋅ log 3
≤ log𝑑 + 3 + log𝑑 log 𝑑 + 1 + log 𝑑 + 1 + 3 + 2 log𝑑 + log 𝑑 + 1 ⋅ 2
≤ log𝑑 + 3 log𝑑 + log𝑑 2 log 𝑑 + 2 log 𝑑 + 3 log𝑑 + 2 log𝑑 + 2 log𝑑 ⋅ 2
= log𝑑 + 4 log𝑑 4 log 𝑑 + 7 log𝑑 ⋅ 2 = log𝑑 + 76 log2 𝑑 ≤ 100 log2 𝑑

= 100
log 𝑛

100

2

≤ 0.1 log 𝑛

𝑑 ≥ 𝑡

𝑑 = 2 log 𝑛/100 𝑝 = 3 + log 𝑑 𝑞 = 3 + 2 log 𝑑 + log(𝑡 + 1)



Step 5: Fast evaluation of polynomial



Fast evaluation of polynomial

For every 𝑏 ∈ 1,… , log 𝑛 :

Generate probabilistic polynomial 𝑃𝑏 with the following properties
• 𝑃𝑏 is XOR of 𝑀 ≤ 𝑛0.1 monomials
• Variables of 𝑃𝑏 can partitioned into two subsets 𝑋 and 𝑌
• For every pair 𝑖, 𝑗: if

• variables of 𝑋 evaluated according to 𝑖-th row of 𝐴′′ and
• variables of 𝑌 evaluated according to 𝑗-th column of 𝐵′′,

• then 𝑃𝑏 returns 𝑏-th bit of arg min
𝑘∈{1,…,𝑑}

(𝐴′′ 𝑖, 𝑘, ℓ ≤ 𝐵′′ 𝑘, ℓ , 𝑗 ) with probability ≥
3

4

⇒ (Fast Evaluation Lemma):

Can evaluate 𝑃𝑏 for all 𝑛2 pairs 𝑖, 𝑗 in time 𝑂(𝑛2poly log 𝑛 )

Result matrix 𝑅𝑏 with entries 𝑅𝑏 𝑖, 𝑗



Step 6: Amplify success probability



Majority amplification

For all pairs 𝑖, 𝑗 and every 𝑏 ∈ 1,… , log 𝑛 :

𝑅𝑏 𝑖, 𝑗 = 𝐶𝑏 𝐴
′′ 𝑖,∗ , 𝐵′′ ∗, 𝑗 with probability ≥

3

4

Repeat evaluation with 𝑟 = 18 log 𝑛 different random polynomials
Define 𝑊𝑏[𝑖, 𝑗] as majority output of all 𝑟 evaluations

Fix pair 𝑖, 𝑗 and 𝑏 ∈ 1,… , log 𝑛
𝑋: Random variable counting how often 𝑅𝑏[𝑖, 𝑗] and 𝐶𝑏(𝑖, 𝑗 ) agree over all 𝑟 trials

Pr 𝑊𝑏 𝑖, 𝑗 ≠ 𝐶𝑏(𝑖, 𝑗) ≤ Pr 𝑋 <
𝑟

2

𝐸 𝑋 ≥
3 ⋅ 𝑟

4

…still 𝑂(𝑛2poly log 𝑛 )



Bounding success probability

Bound error probability using tail bound:

Pr 𝑀𝑏 𝑖, 𝑗 ≠ 𝐶(𝑖, 𝑗, 𝑏) ≤ Pr 𝑋 <
𝑟

2
≤ Pr 𝑋 <

4

6
E 𝑋 = Pr 𝑋 < 1 −

1

3
E 𝑋

≤ 𝑒
 −

2
3

2
E 𝑋 2
= 𝑒  −4E 𝑋 18 ≤ 𝑒  −3𝑟 18 = 𝑒−3 log 𝑛 ≤ 2−4 log 𝑛 = 𝑛−4

Majority needs to be correct for all 𝑛2 pairs 𝑖, 𝑗 and log 𝑑 bit positions 𝑏 in all 
𝑛

𝑑
instances of the algorithm:

Union bound:

Pr ∃𝑖, 𝑗, 𝑏:𝑀𝑏 𝑖, 𝑗 ≠ 𝐶𝑏 𝑖, 𝑗 in some instance ≤
𝑛3 log 𝑑

𝑑
⋅ 𝑛−4 ≤

1

𝑛

Chernoff: Pr 𝑋 < 1 − 𝛿 𝐸[𝑋] ≤ 𝑒−𝛿
2𝐸[𝑋]/2



Questions?


