Lemma (Transitivity) If \(A \leq B \) and \(B \leq C \), then \(A \leq C \).

If \(A \leq B \), \(B \leq C \), \(C \leq A \), then \(A, B, C \) are "subcubic equivalent".

Consequence: If one of \(A, B, C \) admits an \(O(n^{3/8}) \)-time algorithm, then all of \(A, B, C \) do.

Def. A subcubic reduction from problem \(P \) to problem \(Q \) exists \((P \leq Q)\) if there is an alg \(A \) with oracle access to \(Q \) s.t.

- For every instance \(x \) of \(P \), \(A(x) \) solves problem \(P \) on \(x \).
- Excluding oracle calls, \(A \) runs in time \(O(n^{3/8}) \) on instances of size \(n \).

For every \(\epsilon \) there is a \(\delta > 0 \) s.t. for every instance \(x \) of \(P \) of size \(n \), \(\sum_{i=1}^{n} i \leq n^{3/8} \) if \(n = n_1 + n_2 \).
Given weighted directed graph $G = (V, E)$

APSP

Task: Given a directed graph, compute the length of the shortest path from u to v

Given $n 	imes n$ matrices A, B

Compute matrix C

$C[i, j] = \min (A[i, k] + B[k, j])$

$C = A \odot B$

Given a directed graph with node set $V = I \cup J \cup K$

Task: For every $i \in I$ and $j \in J$, decide if there is a negative-weight path $i \rightarrow j$

Task: Decide if there is a triangle $V \rightarrow V \rightarrow V$ of total negative weight

Observation: $\forall v \in V: \text{dist}(v^{(1)}, v^{(4)}) < 0$

$\iff G$ contains a negative-weight triangle including v

Reduction:

- Construct G'
- Compute APSP on G'
- Look at $\text{dist}(v^{(1)}, v^{(4)})$ for every node v
- Output 'yes' if $v < 0$ for some node v
- Output 'no'
From All-Pairs Neg Triangle to Neg Triangle

First assume neg triangle alg. also outputs one neg triangle (if it exists)

- Initialize C as an all-zero matrix

- Split each of I, J, K into \(\leq \frac{s}{3}\) parts of size \(s\)

 \[I = I_1, I_2, \ldots, I_{\frac{s}{3}}; J = J_1, J_2, \ldots, J_{\frac{s}{3}}; K = K_1, K_2, \ldots, K_{\frac{s}{3}}\]

 \(\Rightarrow\) \((\frac{n}{s})^3\) triples of the form \((I_x, J_x, K_z)\)

- For each triple \((I_x, J_x, K_z)\)

 While \(G[I_x, J_x, K_z]\) contains a neg triangle

 Find a neg triangle \((i, k, j) (k, i, j) (j, i)\)

 Set \(C[i, j] = 1\)

 Remove \((j, i)\) from the graph

Correctness: algorithm terminates (can remove at most \(n^2\) edges)

- if \(i, k, j\) is neg triangle, it will be found

Running Time

\(#\) oracle calls: \(\text{FindNT}(s)\)

\(= (\#\text{triples} \times \#\text{triangles found}) \cdot \text{FindNT}(s)\)

\(= (\frac{n^3}{s} + n^2) \cdot \text{FindNT}(s)\)

[Assume \(\text{FindNT}(n) = n^2 \cdot \varepsilon\)]

Set \(s = n^{\frac{3}{\varepsilon}}\)

\(= O(n^2 \cdot (n^{\frac{3}{\varepsilon}})^{3\varepsilon}) = O(n^3 - \varepsilon)^{\varepsilon}\)
From All-Pairs Neg Triangle to Neg Triangle

Now: Finding Neg Triangle using decision algorithm.

Partition each node set into two sets of same size each:

$I = I_1 \cup I_2$

$J = J_1 \cup J_2$

$K = K_1 \cup K_2$

For each triple (I_a, J_b, K_c):

check if subgraph $G[I_a \cup J_b \cup K_c]$ contains any Δ

For one triple (I_a, J_b, K_c) that contains a neg triangle:

Recurse on $G[I_a \cup J_b \cup K_c]$

[Base case: If I, J, K constant size then use brute-force approach to find and output neg Δ]

Running Time:

$T_{FindNT}(n) \leq 2^3 T_{DecideNT}(\frac{n}{2}) + T_{FindNT}(\frac{n}{2}) + \alpha n^2$

$= O(T_{DecideNT}(\frac{n}{2}))$

$= O(\sum_{\text{DecideNT}(\frac{m}{2})}) = O(T_{DecideNT}(n) + n^2)$