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Abstract.Although quad-trees are not the most successful strategy in image coding, some generalized subdivision schemes
have been proposed recently. This work exploits a moderate generalization of quad-trees where tiles are not restricted to be split
in both dimensions, which leads to a previously developed graph of anisotropic tiles called “bush”. An algorithm is developed
to find the minimal number of tiles to represent shapes, which is used to build a codec for bi-level and indexed color images.
Also, a lossy codec based on tile-wise rate-distortion optimized quantization of low-frequency DCT coefficients is developed.
The aim of this work is to investigate whether anisotropic tiles have an advantage over square tiles. The results indeed show
significant improvements. The lossless algorithm is suitable for images with large continuous regions and high color payload,
such as geographical maps. The lossy codec is able to compete with JPEG2000, especially for artificial images.
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1. Introduction

Quad-trees have long been used in general image cod-
ing [34], for bi-level images [23], cartoon images [38],
and video coding [20]. In quad-tree coding, square
tiles are recursively decomposed into four square sub-
tiles. The process stops for sufficiently uniform tiles,
for which the color payload is encoded. The tree struc-
ture also has to be encoded. However, the advantage
of quad-trees is that they can be encoded efficiently by
only one bit per tile that indicates if it is split or not.

For bi-level or indexed color images, the payload
is the pixel color. For natural images, image seg-
ments are approximated by planar [22, 31] or polyno-
mial [27, 32] functions. Generalized tilings with arbi-
trarily oriented linear splitting are used here, though,
to achieve a more accurate approximation of region
borders. However, this leads to increased bit budgets
for encoding of the segmentation structure, so block
merge algorithms [42] or combinations with quad-
trees [12] have been developed.

These schemes can be applied to DCT [19] and
wavelet [39] coding, as well as motion estimation
[2, 28, 44] in video coding. Common to these appli-
cations is the amount of data to be encoded per tile,
which is larger than the single bit payload for bi-level

images, where JBIG2 [25] or chain codes [30] are far
superior. Another reason to use tree structures to en-
code image data is the ability to arbitrarily select spa-
tial details, as needed in terrain visualization [3] and
display of geospatial data [45]. Also, spatial databases
use quad-trees [13] in a similar way. Apart from that,
[1, 4–11, 24, 26, 35] are somewhat related to the topic.

This work exploits a moderate generalization of
quad-trees. It admits non-square tiles, but does not
go as far as generalized tilings at arbitrary positions
and angles. Thus, it retains some of the economical
encodability of quad-trees while offering a somewhat
greater flexibility. Tiles may be split anisotropically
in horizontal or vertical dimension, which may pro-
duce highly non-square tiles. The number of these
decompositions was shown to be much higher than
that of quad-trees [16, 43]. Moreover, the represen-
tation as a binary tree of horizontal or vertical splits
is not unique, and, therefore, causes redundancy and
inefficiency in coding. However, if the graph struc-
ture is expanded to incorporate all possible decompo-
sition trees with the same set of leaf nodes, uniqueness
is achieved. In [14–16], such a graph, called “bush”,
together with an efficient redundancy-free coding al-
gorithm has been developed. Redundancy-free means
that there is only one representation for each set of
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tilings and, when encoded, no encoded symbol can be
deduced from other parts of encoded data. An efficient
coding algorithm is important in our context because
the amount of data necessary to represent the tiling
structure is not negligible compared to the coding of
color payload.

In this work, an algorithm to find the best bush tiling
for an image, in terms of tile count, is presented, and
a lossless coding scheme for the color information is
developed. The coding scheme aims at images with
large uniform areas which may occur in geographical
maps or technical drawings. A class of images is gen-
erated by randomly growing blots, optionally followed
by smoothing operations, to test the coding efficiency
and to compare it to JBIG2 and PNG. The aim is to
investigate, what the benefits of bush tilings are over
conventional quad-tree tilings, and which kind of im-
age data they are suitable for. This first part can also
be found in [17].

In the second part of this work, based on these in-
sights, a new lossy image compression algorithm is
developed in order to demonstrate the benefits of bush
tilings on general images. It applies successive bit-
plane coding of a subset of low-frequency DCT co-
efficients, which are calculated for each tile. These
DCT coefficients are considered as a tile-wise approx-
imation in the sense of piece-wise planar or polyno-
mial approximations as in [27, 32]. The bit-rate per
tile is controlled by the number of bitplane passes per-
formed. The optimal number of passes for each tile is
determined by rate-distortion optimization. The best
tiling is also found in terms of this rate-distortion opti-
mization by minimizing the sum of rate-distortion val-
ues, which leads to a variant of the optimal tiling algo-
rithm of the lossless case. The schemes are compared
to JPEG2000.

Section 2 presents the algorithm to find tilings with
a minimal number of anisotropic tiles. Section 3 de-
velops the lossless coding algorithm for shapes repre-
sented by an optimal tiling. In Section 4, the set of
test shape images is generated. Results for the loss-
less case are shown in Section 5. Section 6 develops
the lossy coding algorithm, and Section 7 presents the
coding performance results. Section 8 concludes the
findings of this work.

2. Tiling algorithm

Anisotropic tilings lead to non-unique decompositions
in terms of binary trees. See e.g. Figure 1, where
four square sub-tiles can be produced either by hori-

Figure 1: A full bush of anisotropic tiles

(a) shape (b) quad-tree (c) bush

Figure 2: A shape and its decomposition into 3514
quad-tree tiles and 1861 bush tiles.

zontal followed by vertical splitting, as well as in the
reverse order. The coding of such a decomposition
tree is, therefore, necessarily redundant. By incorpo-
rating all decomposition trees into a two-dimensional
graph structure, called “bush”, a unique representation
is achieved. This graph is basically a Cartesian prod-
uct of two binary trees, or a subgraph thereof. It is not
a tree because it contains cycles. The condition that
the bush must contain all possible decomposition trees
can be checked and enforced in a local fashion by in-
heriting complete splits up and down the hierarchy of
nodes.

This allows to encode splits as early as possible in
a top-down coding scheme and to omit redundant split
information at deeper levels in the graph. For an effi-
cient coding algorithm of bushes, see [14–16]. It basi-
cally encodes whether a tile is split horizontally, ver-
tically or both. Then it passes the information about
the vertical split to horizontal child tiles, or vice versa.
If that information indicates a vertical split, the hori-
zontal child also has to be split vertically, so this does
not have to be encoded. If the information indicates no
split, the only one horizontal child may be split, which
also reduces the information to be encoded. This is
repeated recursively. The results is a unique bitstream
that is free of redundancy.

However, there are still several possible bush tilings
for a given shape, contrary to quad-trees, which are
always unique. As these bush tilings have different
numbers of tiles, we want to find the one with the low-
est number of tiles. See Figure 2 for an example. First,
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Figure 3: Example for optimal tiling algorithm

we need a way to arrange all possible tiles of an image.
Since a bush is a product of two binary trees, and a bi-
nary tree can be arranged as a 1-D array, bush-nodes
can be arranged in a 2-D array of size 2m−1×2n−1,
where m × n is the image size, and m and n are, for
simplicity, a power of two. See Figure 3 for an ex-
ample. The right lower m × n-block of this array is
filled with image data. Each node is associated with
the best number of tilings it can be decomposed into.
This number is calculated from the lower right to the
upper left corner. If a tile is uniform, it gets a 1. Other-
wise, it gets the minimum of the sum of the horizontal
or vertical sub-tiles, and is associated with the corre-
sponding decomposition dimension. In the end, the
upper left node contains the minimum number of tiles
for the image. Following the optimal decomposition
dimensions, starting from the upper left node, the op-
timal bush can be created.

Figure 4 shows the actual algorithm. In the first
double loop, the arrays are initiated for pixel-size leaf
nodes in the region {2k − 1, . . . , 2(2k − 1)} × {2l −
1, . . . , 2(2l − 1)}, where the subtile count n[i′, j′] is
1, the split dimension d[i′, j′] is u for “no split”, and
c[i′, j′] gets the corresponding pixel color. Then a dou-
ble loop iterates from the bottom-right to the upper-left
corner. For each node [i, j], [2i+1, j] and [2i+2, j] are
the horizontal child nodes, and [i, 2j+1] and [i, 2j+2]
are the vertical child nodes. First, if both child nodes
have the same color, then c[i, j] is set to that color and
the horizontal minimal subtile count is set to 1. Oth-
erwise, it is set to the sum of the subtile counts of the
child tiles n[2i+1, j]+n[2i+2, j]. The same is done
in the vertical dimension. Then, if the horizontal or
vertical minimal subtile count is 1, the optimal split
dimension d[i, j] is set to u. Otherwise, it is set to the
dimension (h or v) of the smaller subtile count. The
bush structure is then built along these optimal split
dimensions, beginning with the root node, with the re-
cursive procedure makeTiling.

for i = 0 . . . 2k − 1 // initialize arrays n, d, c
for j = 0 . . . 2l − 1
i′ = i+ 2k − 1; j′ = j + 2l − 1
n[i′, j′] = 1; d[i′, j′] = u; c[i′, j′] = I[i, j]

for i = 2k+1 − 1 . . . 0 // main algorithm
for j = 2l+1 − 1 . . . 0
nh = nv =∞
if 2i+ 2 < 2k

if c[2i+ 1, j] = c[2i+ 2, j] 6= −1
c[i, j] = c[2i+ 1, j]; nh = 1

else
nh = n[2i+ 1, j] + n[2i+ 1, j]

if 2j + 2 < 2l

if c[i, 2j + 1] = c[i, 2j + 2] 6= −1
c[i, j] = c[i, 2j + 1]; nv = 1

else
nv = n[i, 2j + 1] + n[i, 2j + 1]

if nh = 1 or nv = 1
d[i, j] = u; n[i, j] = 1

else if nh ≤ nv
d[i, j] = h; n[i, j] = nh

else
d[i, j] = v; n[i, j] = nv

makeTiling (0, 0, I) // root node is whole image

makeTiling (i, j, T ) := // build bush recursively
if d[i, j] = h

split T horizontally
makeTiling (2i+ 1, j, left subtile of T )
makeTiling (2i+ 2, j, right subtile of T )

if d[i, j] = v
split T vertically
makeTiling (i, 2j + 1, upper subtile of T )
makeTiling (i, 2j + 2, lower subtile of T )

Figure 4: Pseudo code of tiling algorithm for image I
with size 2l×2k. Array n contains subtile count, c tile
color, and d preferred split dimension (h . . . horizontal,
v . . . vertical, u . . . uniform/no split).



for T in nodes of bush
if T is not leaf

choose split dimensions d
if first child T1 in dim. d is leaf

encode c(T1)
else if second child T2 of T in dim. d is leaf

encode c(T2)

Figure 5: Color coding of bi-level image with bushes.

The resulting tiling is optimal in the sense that it
uses the smallest number of tiles to represent a given
shape. This can be seen from the fact that each non-
uniform tile is decomposed into the smallest number
of subtiles by splitting it either horizontally or verti-
cally. The smallest number of subtiles is then either
given by the smallest number of subtiles the horizon-
tal child tiles can be decomposed into, or by that of the
vertical child tiles. The smaller of the two possibilities
gives the optimal result for a tile. The recursive appli-
cation of this principle to all possible tiles guarantees
the optimality for the root tile, i.e. the whole image.

Image sizes that are not a power of two can be han-
dled easiest by simply expanding the image to power-
of-two size and filling the expanded area with the color
of nearest margin pixels. In this way, only a slight en-
largement of the bush and only a few additional tiles
are required. When decoding an image, the expanded
area is discarded.

3. Color coding

After the bush structure is encoded using the algorithm
in [14–16], the color information has to be encoded
for each leaf tile. For bi-level images, each leaf tile
is encoded with one bit (to be more precise, one out
of two symbols in the arithmetic coder), except if two
sibling tiles are both leaves, in which case only one tile
has to be encoded, the other one must have the other
color. Figure 5 shows the algorithm. It traverses the
nodes of the bush in a depth-first order of a spanning
tree. The “else if” line implies that T2 is only encoded
if T1 is not also a leaf tile.

For quad-trees, a similar scheme is used. See Fig-
ure 6. Only for a set of four sub-tiles that are all leaves,
a second model is used in the arithmetic coder to en-
code all sub-tiles together as one out of 14 symbols,
since the two combinations of all equal colors are not
possible.

for T in nodes of quad-tree
if T is not leaf

if all 4 children T1, T2, T3, T4 of T are leaves
encode c(T1) + 2c(T2) + 4c(T3) + 8c(T4)− 1

else
for i = 1 . . . 4

if Ti is leaf, then encode c(Ti)

Figure 6: Color coding of bi-level image with quad-
trees.

for T in nodes of bush
if T is not leaf

choose split dimensions d
if first child T1 in dim. d is leaf

encode whether c(T ) = c(T1)
if c(T ) 6= c(T1)

remove c(T ) from arith. coder model
encode c(T1)

c(T ) = c(T1)
if second child T2 in dim. d is leaf

if T1 is not leaf
encode whether c(T ) = c(T2)

if T1 is leaf or c(T ) 6= c(T2)
remove c(T ) from arith. coder model
encode c(T2)

c(T ) = c(T2)
if T1 is not leaf, then c(T1) = c(T )
if T2 is not leaf, then c(T2) = c(T )

Figure 7: Color coding of color image with bushes.

For multi-color images, the situation is more com-
plicated. Colors that appear at one point in a sub-tree
or sub-bush are more probable than other colors to ap-
pear in other nodes in the same sub-tree or sub-bush.
Therefore, when a leaf-node is encoded, its color is
passed on to its parent node and to all child nodes of
the latter. See Figure 7 for the bush case, and Figure 8
for the quad-tree case. Before encoding a leaf-node’s
color, the information is encoded whether its color is
equal to the color passed on from its parent node. The
color only has to be encoded if a “no” has been en-
coded, and the passed-on color is removed from the
arithmetic coder’s model. In the case of sibling leaf
nodes, “no” can be assumed without coding for the
second node (in the bush case) or the last node (in the
quad-tree case when the first three nodes have equal
color) because these nodes must have a color that is



for T in nodes of quad-tree
if T is not leaf

for Ti in children T1, T2, T3, T4 of T
if Ti is leaf
e =false
if not (i = 4 and T1, T2, T3 leaves

and c(T1) = c(T2) = c(T3))
encode whether c(Ti) = c(T )
if c(Ti) = c(T ) then e =true;

if not e
remove c(T ) from arith. coder model
encode c(T )

c(T ) = c(Ti)
for Ti in T1, T2, T3, T4

if Ti is not leaf then c(Ti) = c(T )

Figure 8: Color coding of color image with quad-trees.

(a) raw (b) smoothed (c) aligned (d) colors

Figure 9: Generated shapes made of 40 blots. (a) has
3.9% border pixels, (b) is smoothed with a 33 × 33-
filter to 2.4% border pixels, (c) is aligned with a 65 ×
5-filter to 1.17% aligned and 1.07% diagonal border
pixels, (d) has 16 colors with one blot for each color.

different from the color that is passed on from the sib-
ling nodes.

4. Test image generation

The lossless coding algorithm is certainly not applica-
ble to natural images because it relies on areas of con-
stant color. Bi-level versions of natural images with
dithering also do not meet this condition. So the tar-
get application is shape coding. Therefore, we want
to generate a set of test images with a certain range
of properties. They should contain areas of constant
color with arbitrary borders, similar to geographical
maps. This is done by randomly growing blots. For
each color, a certain number of pixel seeds are placed
on the image and stored in a buffer of border pixel po-
sitions. Buffer entries are randomly chosen, and, af-
ter coloring the corresponding pixel, their neighbors

in four directions are inserted into the buffer. Pixels
that are already colored are discarded. The process
stops when the buffer is empty. See Figure 9 (a) for an
example.

Because the result has very ragged borders, an op-
tional smoothing filter is applied. It takes the form of
a block centered around each pixel. The pixel’s color
is substituted by the most frequent color in that block.
The larger the block, the smoother the result will be.
See Figure 9 (b) for an example.

To quantify the smoothness of the result, all (over-
lapping) 2 × 2-blocks of the image are classified as
either mono-colored or, otherwise, as border blocks.
The rate of border blocks approximates the rate of bor-
der pixels. A border pixel is a pixel that is located at
the border of a uniform region. The border pixel rate is
determined by the number of blot seeds, the number of
colors, and the smoothing block size. The bit-rate of
compressed images is expected to grow linearly with
this rate because the information content of a shape is
contained in its border. The more complex a shape is,
the longer will be its border. Therefore, the number of
border pixels is a better measure of image content than
its size.

Moreover, anisotropic bush tilings prefer horizon-
tally or vertically aligned borders for obvious reasons.
To achieve such an alignment, the filter block is mod-
ified to have a cross shape made of two rectangular
blocks of size a × b and b × a respectively. See Fig-
ure 9 (c) for an example of a filtered image. To quan-
tify also the alignment of blot borders, we further clas-
sify border blocks into diagonal blocks if two diagonal
pixels are equal, and aligned blocks otherwise. The
difference between aligned and diagonal pixel rates is
a measure for the overall horizontal and vertical align-
ment of the blot borders.

5. Results for lossless coding

A total of 745 bi-level images and 1292 colored im-
ages of size 1024 × 1024 have been generated to test
the performance of our quad-tree and bush coding
schemes. Figure 10 shows overall results depending
on the rate of border pixels for bi-level images. As the
bit-rate is expected to grow linearly with this rate, it
is not calculated in bits per image pixel but in bits per
border pixel, so that a constant curve indicates a lin-
early growing bit-rate. Individual results are grouped
into bins of equal number of images, and the average
bit-rate together with error bars representing the stan-
dard deviation are shown. JBIG2 is superior and PNG
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Figure 10: Bit-rate depending on the number of pixels
lying at region borders
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Figure 11: Bit-rate depending on the degree of align-
ment (horizontal and vertical) of region borders

is inferior compared to our coding schemes. Note that
all schemes exhibit a linear growth of bit-rate with the
border pixel rate, except for PNG, which cannot bene-
fit as much from larger blots of constant color.

Note that bush tilings do not necessarily have better
performance than quad-tree tilings because the encod-
ing of the bush graph needs more bits than a quad-
tree. In this case, quad-tree and bush tilings show
approximately equal performance for general bi-level
images. However, bush tilings have much larger devi-
ation. This indicates that there are some images where
bush tilings perform significantly better, and others
where they are worse. It turns out that the border
alignment is what causes this phenomenon. Figure 11
shows that the bit-rate drops by almost one bit per bor-
der pixel for images with more aligned than diagonal
pixels. This is of importance because many images
naturally incorporate horizontal and vertical features.
The reason for this behavior is the reduced number of
anisotropic tiles for such images, as can be seen in Fig-
ure 12.

This figure also shows that bush tilings are able to
reduce the number of tiles by approximately two for
all images. Accordingly, the bit-rate used for encod-
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Figure 13: Share of bits used to encode the graph
structure
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Figure 14: Bit-rate depending on the payload,
i.e. number of colors, for border pixel rates between
3 and 4

ing the graph structure is much higher for bush tilings
than for quad-tree tilings, as can be seen in Figure 13.
Conversely, the bit-rate for color information is much
lower, due to the reduced number of tiles. This effect
even grows with the number of colors because the bit-
rate for color coding becomes more prominent.

As a result, a higher number of colors increases the
competitiveness of bush tilings, as can be seen in Fig-
ure 14. Bush tilings are clearly superior to quad-trees,
and the quotient of their bit-rates evolves in favor of
bush tilings while the number of colors grows. Note



that the border pixel rate is quite high in Figure 14 in
order to fit 256 blots into the image. This is the rea-
son that PNG is able to beat bush tilings for images
with over 40 colors. For larger images, blots are also
larger, and PNG performs far worse, as shown in Fig-
ure 10. Note also that the bit-rate for PNG remains
about constant in Figure 14 while that of quad-tree and
bush tilings increases linearly. This shows that the bit
budget for representing shapes is prominent in PNG
while the pure color information is comparably negli-
gible.

6. Lossy image coding

Insights from the lossless algorithm tell us that bush
tilings will enable more efficient compression than
quad-tree tilings in case of big color payloads per tile.
Schemes like piece-wise linear or polynomial approx-
imations on tiles meet this condition. It is therefore
promising to develop such a scheme for anisotropic
bush tilings. The result will be suitable for images
with smooth areas and sharp borders, as can be found
in technical drawings, screenshots or cartoons.

In order to use tilings in lossy image coding, we
need a reasonable coding algorithm that is applicable
to rectangular tiles. Each tile should represent a good
local image approximation. Refinements on the ap-
proximation shall not be achieved by a more detailed
description of the contents of a tile, but by splitting a
tile into smaller ones that can be approximated more
easily.

Therefore, we perform a discrete two-dimensional
cosine transform (DCT) on the tiles and select a sub-
set of the coefficients as the approximation of the tile’s
content. The subset chosen is, of course, a set of low-
frequency coefficients. It is organized as a number of
slots. Each slot groups coefficients with horizontal fre-
quency index i and vertical index j so that i+ j is the
slot’s index. See Figure 15 (a). Slot 0 contains the
so-called DC coefficient. When n slots are used, then
n(n + 1)/2 coefficients are to be encoded, all others
are neglected. If other coefficients contain too much
energy, so that the approximation error is too big, then
the tile has to be split. The choice of DCT is, of course,
motivated by JPEG, but also by [19] which uses DCT
on quad-tree tilings. The shape of the slots is moti-
vated by the zig-zag scan order of JPEG.

To encode the DCT coefficients efficiently, we ap-
ply a bitplane approach, as is usual in modern com-
pression schemes [36, 37, 46]. Beginning with a max-
imum threshold, the most significant bits of the DCT
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Figure 15: coding of DCT coefficients

coefficients are encoded so that the quantization error
of each coefficient is smaller than the threshold. The
quantization is then refined in subsequent passes with
the threshold being divided by two in each pass. DC
coefficients tend to dominate the energy in the tile’s
DCT domain. This problem is somewhat relieved by
simply subtracting the average of the whole image
from the image, which has to be encoded in the be-
ginning.

Figure 16 shows the algorithm. For each coding
pass, it first checks whether there are insignificant co-
efficients (c̃[i, j] = 0) that become significant in that
pass (|c[i, j]| ≥ 2k), which is encoded. Thus, a pass
with no changes in coefficient significance is abbrevi-
ated by a single bit for the whole pass. It then iterates
through the set P of coefficient indices. For insignif-
icant coefficients, their new significance is encoded,
and, if significant, its sign bit has to be encoded as
well. For significant coefficients, a refinement bit is
encoded.

Arithmetic coding is used to encode significance
bits, refinement bits and sign bits of the DCT coeffi-
cients. See Figure 15 (b). Refinement and sign bits
have a 50% percent probability for 1 and 0. Signifi-
cance bits, however, correlate with those of neighbor-
ing coefficients. Therefore, they are classified into two
contexts depending on whether the left or upper neigh-
bor, i.e. (i − 1, j) and (i, j − 1), was significant in a
previous pass. See Figure 15 (c). When those two
neighbors are not significant, then there is a chance of
only 10% or lower that the coefficient becomes signif-
icant. Otherwise, the probability is higher, i.e. about
50% for more than 3 slots, 40% for 3 slots, and 30%
for 2 slots. These probabilities are used in a fixed way
in the arithmetic coder, no adaptivity is applied. This
has the advantage of better computational performance
and, more important, the rate-distortion analysis is ex-
act because bit statistics of neighboring tiles have no
influence on the bit-rate.



c . . . DCT transform coefficients for tile
c̃ . . . reconstructed approximation of c; c̃[·, ·] = 0
P = {(i, j) | i, j ≥ 0, i+ j < slots}∩ tile range
k = 8 // maximum bitplane
for # coding passes
k = k − 1
s :⇔ ∃(i, j) ∈ P : 2k ≤ |c[i, j]| < 2k+1

if ∃(i, j) ∈ P : c̃[i, j] = 0 then encode s
for (i, j) ∈ P
c̃old = c̃[i, j]
if c̃[i, j] = 0

if s
if i > 0 and |c̃[i− 1, j]| ≥ 2k+1

or j > 0 and |c̃[i, j − 1]| ≥ 2k+1

or i = j = 0
if slots = 2 then f1 = 3; f0 = 7
else if slots = 3 then f1 = 4; f0 = 6
else f1 = f0 = 1

else f1 = 1; f0 = 9
encode q :⇔ |c[i, j]| ≥ 2k with freq. f1 : f0
if q

encode r :⇔ c[i, j] < 0 with freq. 1 : 1
c̃[i, j] = (−1)r · 1.5 · 2k

else
encode u :⇔ c[i, j] < c̃[i, j] with freq. 1 : 1
c̃[i, j] = c̃[i, j] + (−1)u2k−1

D = D − (c[i, j]− c̃old)
2 + (c[i, j]− c̃[i, j])2

record rate and distortion D

Figure 16: Lossy coding of a tile in coding passes

After each pass we get a certain total bit-rate R and
a total distortion D of the tile, i.e. the sum of squared
approximation errors. The distortion can be calculated
in the DCT domain because of the orthogonal nature
of the DCT. Each coefficient is approximated by 1.5
times the threshold at the decoder. The tile’s distortion
is reduced accordingly at the end of the algorithm in
Figure 16, and recorded to be used in rate-distortion
optimization, where the number of effectively used
coding passes is chosen for each tile so that the sum
of rates and distortions of all tiles is an optimal com-
promise. A rate-distortion slope λ is chosen for the
whole image, and in each tile the point on the rate-
distortion curve with the minimum RD-value D+ λR
is selected. This has been proven to produce the mini-
mum distortion for the according total bit-rate [36,37].
The total bit-rate can be adjusted by the choice of λ.
The optimal number of passes has to be encoded for

calcRD (0, 0, I)
for i = 2k+1 − 1 . . . 0

for j = 2l+1 − 1 . . . 0
rh = rv =∞
if 2i+2 < 2k then rh = r[2i+1, j] + r[2i+1, j]
if 2j +2 < 2l then rv = n[i, 2j +1]+ r[i, 2j +1]
if r[i, j] < rh and r[i, j] < rv
d[i, j] = u

else if rh ≤ rv
d[i, j] = h; r[i, j] = rh

else
d[i, j] = v; r[i, j] = rv

makeTiling (0, 0, I)

calcRD (i, j, T ) := // calculate rate-distortion
if 2i+ 2 < 2k

calcRD (2i+ 1, j, left subtile of T )
calcRD (2i+ 2, j, right subtile of T )

calcRD2 (i, j, T )

calcRD2 (i, j, T ) :=
calculate DCT of tile T
perform coding passes and collect RD-points
find RD-point for slope λ
r[i, j] = D + λR
if 2j + 2 < 2l

calcRD2 (i, 2j + 1, upper subtile of T )
calcRD2 (i, 2j + 2, lower subtile of T )

Figure 17: Tiling algorithm for lossy coding with rate-
distortion optimization

each tile.

However, the optimal tiling structure is not indepen-
dent of the choice of rate and distortion, i.e. the choice
of the RD-slope λ. A tile might be approximated bet-
ter with a reduced bit-rate if it is split into sub-tiles.
Therefore, we add the RD-values D + λR of the sub-
tiles and compare the sum to the RD-value of the par-
ent tile. To be more precise, not the RD-values of the
sub-tiles themselves but the optimal values after the
splitting decision for the sub-tiles are considered here,
which leads to the recursive algorithm. If the sum is
smaller, then the tile is split into four child sub-tiles in
the case of quad-tree tiling. In the case of anisotropic
bush tilings, splitting can be done in two possible di-
mensions. The dimension with the smaller sum of two
RD-values is selected. This leads to the tiling algo-
rithm in Figure 17, which is similar to the one in Sec-



Figure 18: Deblocking filter

tion 2 and Figure 3. The difference is that RD-values
are added and minimized instead of just tile counts.

This coding scheme is supposed to be suitable for
smooth regions with sharp borders, which corresponds
to shape coding in lossless image coding. Images
like that occur as technical drawings, diagrams and
cartoons. It is assumed that sharp borders can be
better approximated by tile borders or small tiles.
Anisotropic tiles should be able to adapt to borders
with a lower number of tiles, thus saving a lot of bit-
rate. As the “color payload” in this case consists of
encoded DCT coefficients and is large compared to the
simple color indices of the lossless case, anisotropic
tilings should show advantages.

The presented algorithms are based on blocks and,
thus, exhibit blocking artifacts as known from JPEG.
To prevent such artifacts, deblocking filters can be ap-
plied. The major problem of these filters is to distin-
guish between edges that are part of the image content
and edges from block borders. The former should not
be filtered in order not to blur the image. [18] presents
a method to choose different filters based on image
gradients. In [33], interleaved DCT blocks are mod-
ified in the DCT domain in order to suppress coeffi-
cients belonging to unwanted block border step func-
tions, while leaving other image features intact. All
these methods imply a fixed 8 × 8 block size. There-
fore, they cannot be applied directly in our case. Meth-
ods used in video coding, e.g. H.264 [21], rely on in-
formation like motion vectors that is not available in
still image coding.

Therefore, we propose a new scheme. First, smooth
image regions can be well distinguished from non-
smooth regions by the block sizes. In smooth re-
gions, blocks are bigger. Therefore, we use the fil-
ter only if the block size is at least 8, and the filter
size grows proportionally with the block size. Second,
pixel values near the block borders are modified as de-
picted in Figure 18. For filter size s, the pixel values
{p0, p1, . . . , ps} to the right of a block border are sub-
stituted by

p′i = pi −
1

2
d
s− i
s+ 1

2

,

where

d = p0 + (p0 − ps)
1
2

s+ 1
2

− q0 − (q0 − qr)
1
2

r + 1
2

,

is the the distance of the projected values at the half-
pixel border position. {q0, . . . , qr} are the symmetri-
cally corresponding pixel values to the left of the block
border. r is the left filter size, which can be differ-
ent from s. Pixel values to the left of the block bor-
der are treated accordingly. In this way, the resulting
projected values from ps through p0 at the half-pixel
border position will meet, and image content deviat-
ing from that straight projection line will be retained,
as shown in Figure 18.

We choose a filter size s of 1/8 of the block size, so
that larger, and thus smoother, blocks will have longer
filters. The procedure is also applied in the vertical
dimension. However, this will leave artifacts at three-
block corners, so the horizontal smoothing has to be
repeated after that.

As for the computational complexity, the cur-
rent non-optimized implementation has higher com-
plexity than JPEG or JPEG2000. The main prob-
lem is the DCT transform for all kinds of block
sizes. The transform of a block of size 2i × 2j

is O(2i+j(log 2i + log 2j)) = O(2i+j(i + j)).
If the image size is n2, there are n22−i2−j such
blocks. Thus, for the quad-tree tiling the complexity is
O(

∑logn
i=0 n2i) = O(n2(log n)2). For the bush tiling it

is O(
∑logn

i=0

∑logn
j=0 n

2(i+ j)) = O(n2(log n)3). The
rest of the algorithm is linear with respect to image
size, i.e. O(n2), times the bit-depth of the coefficients.
Note that the number of possible tiles in the bush case
is O((2n − 1)2) = O(n2). The decoder, however,
does not have to transform all possible tiles but just the
ones chosen in the encoder. The decoder complexity
is therefore linear, additionally containing a factor for
the average tile size. The encoder complexity could
be reduced, though, by setting a maximum tile size,
and by applying a truncated DCT transform that does
not calculate the coefficients outside of the used DCT
slots.

7. Results of lossy coding

The lossy coding algorithms are demonstrated on two
images. The first one is a typical natural image, the
well known Lena image, see Figure 19 (a). The sec-
ond one is an artificial image with a square shape that



(a) original (b) JPEG2000

(c) quad-tree reconstruction (d) quad-tree tiling

(e) bush reconstruction (f) bush tiling

Figure 19: Compression of Lena at 0.1 bits per pixel
with 10 DCT slots

is horizontally and vertically aligned borders, a trian-
gular shape with angular borders, and an elliptic shape.
The shapes are filled with smooth gradients. There-
fore, we will call this image the gradient-shape im-
age. It is supposed to be more suitable for the proposed
tiling-oriented coding algorithms. Note that such a im-
ages can often be found in technical drawings, com-
puter generated images, presentation slides, and screen
shots.

Figure 19 shows coding artifacts and decomposition
structures for the Lena image at a bit-rate of 0.1 bits
per pixel. 10 slots of DCT coefficients have been used.
For comparison, the reconstruction of the JPEG2000
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Figure 20: Image quality depending on bit-rate for the
Lena image

compressed image at the same rate is shown. The
strength of artifacts of all three algorithms, quad-tree
tilings, bush tilings, and JPEG2000, are in a compa-
rable range. Of course, blocking artifacts due to the
tiling have an unpleasant effect, which is known from
JPEG compression. On the other hand, some edges are
represented more clearly in the bush-tiling.

The quad-tree scheme cannot benefit too much from
varying tile sizes, as there are only a few small tiles.
So, it seems to rely more on the DCT representation.
However, the bush tiling can be adapted better to im-
age content. It contains smaller tiles where needed,
leading to improved image quality compared to the
quad-tree tiling.

This is confirmed by PSNR analysis over the whole
range of bit-rates and image quality. Figure 20 (a)
shows quad-tree results for the Lena image. Using



10 DCT slots seems to be the best choice. More or
fewer slots degrade the image quality. A higher num-
ber of slots brings a slight improvement only for high
quality images over 42 dB. A lower number is inferior
for all bit-rates. Unfortunately, to automatically select
the best number of slots would basically mean to re-
peat the encoding for several numbers, and to select
the best number. However, the degradation is not se-
rious in the range between 5 and 20 slots, so a fixed
number of slots is an acceptable choice.

JPEG2000 is up to two dB better than the quad-tree
scheme for low and mid-range quality, a little less for
high quality. Anisotropic bush tilings perform signif-
icantly better, however, as is shown in Figure 20 (b).
The best results, again for 10 slots, are only slightly
worse than JPEG2000. The behavior of higher num-
bers of slots for higher quality images is the same for
bush tilings.

Results for the artificial gradient-shape image show
a more extreme picture. In Figure 21 one can see that
JPEG2000 produces very blurred edges for a low bit-
rate of 0.02 bits per pixel. The quad-tree coder is not
able to improve this because creating more small tiles
at edges would also increase the bit consumption for
neighboring small tiles where it is not needed. How-
ever, bush tilings again improve the adaptivity of the
tiling to image content significantly. This produces a
much clearer representation of shape borders with less
ringing effects.

The fact that quad-tree tilings are not suitable for
efficient coding of the shapes is even more distinct
in Figure 22 (a). JPEG2000 has an up to 5 dB bet-
ter PSNR than the quad-tree coder for all feasible
bit-rates. Only for very low bit-rates, JPEG2000 has
worse results probably due to the higher amount of
header information. Apart from that, 5 DCT slots
seem to be the best choice in this case, which means
that a lower number of slots is more suitable for
smoother, less complex images. The reason for this
is that smoother tile content can be represented by a
smaller number of DCT coefficients because higher
frequency coefficients have a smaller value.

There is a big difference, however, between quad-
tree and bush performance, as can be seen in Fig-
ure 22 (b). The bush tiling scheme is able to outper-
form JPEG2000 slightly for mid-range qualities, and
significantly for low and high bit-rates. The best num-
ber of DCT slots is 5, just as for the quad-tree tiling. In
summary, anisotropic bush tilings are able to improve
the rate-distortion performance by about 5 dB against
quad-tree tilings.

(a) original (b) JPEG2000

(c) quad-tree reconstruction (d) quad-tree tiling

(e) bush reconstruction (f) bush tiling

Figure 21: Compression of the gradient-shape image
at 0.02 bits per pixel with 5 DCT slots

Figure 23 shows the effect of the deblocking filter.
Although the subjective visual quality is improved by
the filter, the PSNR results do not reflect this, as can be
seen in Figure 24. For the Lena image, the deblocked
images have even worse PSNR than the blocky ones.
For the gradient shape image, there is a slight improve-
ment.

Therefore, we look at an alternative image quality
measure that reflects the human visual system. We
use MS-SSIM* (multiscale structural similarity) [29],
a variant of MS-SSIM [41], which is in turn a multi-
scale variant of SSIM [40]. Figure 25 shows the re-
sults. While there is still only marginal improvement
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Figure 22: Image quality depending on bit-rate for the
gradient-shape image

for the Lena image, a significant gain is achieved for
the gradient-shape image. Thus, for artificial images,
the scheme seems to yield better performance than
JPEG2000.

Table 1 shows the results for more standard images.
For natural images the bush tiling algorithm gains
between 0.5 and 1 dB in PSNR with respect to the
quad-tree algorithm. The deblocking filter cannot im-
prove the PSNR. On the contrary, it decreases it quite
significantly. The bush tiling results are constantly
about 0.5 dB below JPEG2000. The MS-SSIM* val-
ues also reflect this. For the last image, a cartoon im-
age from “Corpus Ponomarenko”, the behavior is dif-
ferent. First, the deblocking filter is able to improve
the PSNR, albeit only slightly. Second, although the
PSNR of the bush tiling algorithm is about 1 dB below
that of JPEG2000, the MS-SSIM* values are signif-

(a) unfiltered (b) deblocked

Figure 23: Effect of deblocking filter

icantly better. Third, the bush tiling outperforms the
quad-tree tilings by 1 to 2 dB.

Finally, a comparison with [12] shows that further
generalization of the tiling structure is able to improve
the image quality to 31.04 dB PSNR for the Lena im-
age at 0.125 bpp (29.70 for the bush tiling), and 33.14
dB at 0.25 dB (32.52 for bush tiling). As [12] is a hy-
brid scheme, combining quad-trees with wedgelets, a
combination with bush tilings would be a promising
approach.

8. Conclusions

Anisotropic tilings are able to represent a shape with
only half the number of tiles compared to quad-tree
tilings if a new algorithm for optimal tiling is applied.
However, there are much more possible tilings and
the tiling structure is a more complicated graph, a so-
called “bush”. Therefore, a bigger part of the bit-rate
has to be devoted to encoding the tiling. Neverthe-
less, the reduced number of tiles reduces the bit-rate
for the payload, i.e. the tile color information, so that
the overall bit-rate is improved especially for high pay-
load, e.g. high numbers of colors, geographical infor-
mation, or parameters for image approximation.

As the bit-rate depends linearly on the number of
pixels at the border of blots of uniform color, contrary
to schemes such as PNG, where the bit-rate depends
on the image size, bush tilings are suitable for images
with large mono-colored blots. Such images may be
found in geographical maps. In those applications, the
ability to arbitrarily select spatial details is important, a
feature that is carried over from quad-trees to bushes.
Moreover, bush tilings prefer horizontally and verti-
cally aligned blot borders which are common in tech-
nical diagrams as well as images of artificial objects.



Image Bpp Quad-Tree QT Deblocked Bush Bush Deblocked JPEG2000
Barbara 0.125 23.98 0.7828 23.81 0.7785 24.52 0.7917 24.45 0.7904 24.59 0.8198

0.250 26.12 0.8468 25.65 0.8413 26.86 0.8637 26.69 0.8620 27.28 0.8866
0.500 29.15 0.9067 27.88 0.8983 30.30 0.9222 29.82 0.9205 30.86 0.9337
0.750 31.50 0.9353 29.67 0.9278 32.91 0.9462 32.11 0.9443 33.52 0.9559
1.000 33.72 0.9530 31.21 0.9469 34.96 0.9598 33.68 0.9577 35.77 0.9651
1.500 36.86 0.9708 33.57 0.9666 38.07 0.9747 36.19 0.9729 39.01 0.9797
2.000 39.41 0.9805 35.91 0.9772 40.49 0.9827 38.76 0.9813 41.33 0.9858

Goldhill 0.125 27.48 0.8057 27.44 0.7996 27.88 0.8178 27.86 0.8134 28.08 0.8431
0.250 29.27 0.8738 29.09 0.8661 29.77 0.8798 29.72 0.8757 30.07 0.9045
0.500 31.40 0.9248 31.07 0.9187 32.13 0.9348 31.96 0.9311 32.70 0.9502
0.750 33.16 0.9504 32.56 0.9449 33.77 0.9565 33.46 0.9531 34.54 0.9660
1.000 34.41 0.9634 33.64 0.9587 35.07 0.9668 34.69 0.9640 35.87 0.9740
1.500 36.84 0.9784 35.32 0.9740 37.33 0.9795 36.69 0.9775 38.46 0.9849
2.000 38.64 0.9846 37.00 0.9816 39.27 0.9855 38.72 0.9842 40.67 0.9883

Peppers 0.125 28.31 0.8020 28.23 0.8051 29.24 0.8165 29.27 0.8195 30.26 0.8513
0.250 31.10 0.8646 30.94 0.8647 32.14 0.8727 32.14 0.8727 33.01 0.8915
0.500 33.96 0.9063 33.70 0.9049 34.78 0.9128 34.69 0.9113 35.27 0.9289
0.750 35.42 0.9247 35.07 0.9219 36.06 0.9314 35.93 0.9293 36.37 0.9392
1.000 36.53 0.9421 36.02 0.9384 36.98 0.9421 36.81 0.9402 37.55 0.9538
1.500 38.01 0.9562 37.53 0.9531 38.56 0.9580 38.44 0.9562 39.48 0.9715
2.000 39.39 0.9667 38.75 0.9634 40.03 0.9700 39.92 0.9685 41.35 0.9778

Baboon 0.125 21.04 0.6351 20.96 0.6216 21.40 0.6991 21.33 0.6882 21.28 0.7337
0.250 22.27 0.7901 22.11 0.7752 22.68 0.7930 22.55 0.7842 22.74 0.8337
0.500 23.93 0.8613 23.63 0.8505 24.59 0.8765 24.43 0.8706 25.06 0.8968
0.750 25.55 0.9044 24.92 0.8937 26.13 0.9099 25.94 0.9053 27.01 0.9420
1.000 27.04 0.9291 26.21 0.9212 27.51 0.9322 27.28 0.9284 28.60 0.9499
1.500 29.26 0.9522 27.90 0.9450 29.87 0.9558 29.63 0.9531 31.55 0.9742
2.000 31.56 0.9732 30.07 0.9682 31.93 0.9718 31.54 0.9696 34.13 0.9827

Cartoon 0.125 18.49 0.6951 18.59 0.7013 18.98 0.7193 19.07 0.7246 20.12 0.7788
0.250 20.84 0.8062 20.93 0.8130 21.68 0.8314 21.79 0.8358 23.55 0.8475
0.500 25.02 0.8999 25.03 0.9036 26.79 0.9262 26.88 0.9277 29.03 0.9025
0.750 28.60 0.9402 28.65 0.9415 31.46 0.9674 31.53 0.9681 33.21 0.9303
1.000 32.34 0.9656 32.28 0.9664 35.92 0.9858 35.96 0.9862 37.08 0.9467
1.500 39.64 0.9924 39.40 0.9920 45.90 0.9981 45.91 0.9981 43.39 0.9666

Table 1: PSNR and MS-SSIM* results for several standard images and all encoding schemes

Bush tilings can also be applied to natural image
and video coding in the same way as quad-trees are
used. Here, the tile payload consists of parameters for
planar or polynomial or DCT approximations of im-
age content or motion vectors in the case of motion
compensated video coding. Such a rather big payload,
compared to indexed color images, makes bush tilings
especially interesting. A lossy image compression
scheme proposed in this work is based on DCT ap-
proximation. It distributes bit-rates among tiles by ap-
plying rate-distortion optimization. The optimal tiling
is found by a variant of the algorithm of lossless cod-

ing that minimizes rate-distortion values instead of the
number of tiles. Results show that bush tilings gain be-
tween 0.5 dB and 3 dB of image quality compared to
quad-tree tilings. The scheme is able to compete with
JPEG2000 and outperforms it for artificial images con-
taining shapes filled with smooth content.

Bush tilings can be seen as a compromise between
quad-trees and general segmentations with arbitrarily
oriented linear splittings. They offer more flexibil-
ity and adaptability than quad-trees while retaining a
redundancy-free representation, which is important for
efficient coding.
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Figure 24: Image quality with and without deblocking
filter
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