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The mean resultant length (MRL) is the length of the average of random vectors on the
unit circle. It is used to measure the concentration of unimodal circular distributions.
The sample MRL, as an estimator for the population MRL, has not been investigated
thoroughly yet. This work examines the bias, variance and mean squared error of the
MRL. Unbiased or near unbiased estimators are developed wherever possible for the
squared and non-squared MRL as well as their variances and mean squared error. All
estimators are tested numerically on four representative circular distributions.
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1. Introduction

In circular statistics (see [1, 2]), a random variable X is defined on an interval which is

thought of as cyclic. Such an interval can be scaled to the range [0, 2π] and represented

properly by the unit circle in the complex plane through the expression eiX . To provide

parameters equivalent to the expected value E(X) and the variance V (X), as defined in

the linear case, for circular random variables in a similar fashion, one considers the complex

expected value E(eiX) = ρeiµ. In this representation, µ is the mean direction, i.e. the circular

average of X, and ρ is a measure of concentration. It is called mean resultant length (MRL).

ρ(X) :=
∣∣∣E (eiX)∣∣∣ (1)

IfX is maximally concentrated at a single value, then ρ = 1. If there is no concentration at all,

e.g. for the uniform distribution, then ρ = 0. In this case the mean direction is undefined. Of

course, ρ can also be 0 for multimodal distributions, e.g. when P (X = 0) = P (X = π) = 1
2
.

Often the so-called circular variance CV (X) = 1− ρ(X) is used instead.

This work deals with the estimation of the MRL and the squared MRL ρ2(X). Curiously,

the estimator of the MRL on a random sample, which is also called MRL, is more commonly

known than the above definition. It is often denoted R̄. However, we concentrate on its

properties as an estimator, rather than just the descriptive measure. Therefore, we write

it as ρ̂ and define it as follows. Given a random sample x = {x1, x2, . . . , xn}, the MRL
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estimator is

ρ̂(x) :=
1

n

∣∣∣eix1 + eix2 + . . .+ eixn
∣∣∣ . (2)

ρ̂ is used in many fields. In meteorology and geology it determines tendencies in the direction

of air (see [3]), water and land mass motion. In physiological psychology it is called phase

locking index (PLI) (see [4]) and measures the coherency of phases in EEG signals at certain

frequencies. Many other applications could be mentioned.

In many applications, the MRL is used to test if there is a strong preferred direction

in measured data. It is argued that this is the case if the sample MRL exceeds a certain

threshold which is chosen arbitrarily. However, due to the MRL’s variance and bias, such

a strategy can be misleading, especially for small samples. If the distribution is known, a

proper statistical test can be applied. If not, then one has to use descriptive measures such

as the MRL. In this case, the reliability of the MRL is crucial. Therefore, this work aims at

shedding light on this problem and, if possible, improving the situation.

Because no such thing as a distribution-free confidence interval for the population MRL

has yet been found, we must rely on other means to see what a given sample MRL implies

for the population MRL. A big sample MRL might result from a big population MRL, but

it might also result from bias and random variation of the sample MRL, both of which are

stronger for small samples. Therefore, we will examine the bias, and estimate the variance

of the sample MRL. The results will be evaluated for some representative distributions.

The properties of the squared MRL ρ̂2 in terms of moments and distribution have been

studied by [1, 5, 6] primarily for the purpose of statistical testing. From the moments the

variance of ρ̂2 can be derived quite easily. However, if the distribution is unknown, the

properties of ρ̂2 have to be estimated entirely from a given sample. Also, the properties of

the non-squared MRL ρ̂ are more difficult to determine.

In linear statistics there are more or less obvious methods to treat estimates such as

average and variance and to determine the accuracy of these estimates, e.g. V (X̄) = 1
n
V (X).

However, to do such things for the MRL, is more complicated. This work aims at developing

some methods for this purpose. First we will have a look at the bias of ρ̂ and ρ̂2. Then we will

calculate the variance of ρ̂2 and develop an estimator. Also, an estimator for the variance

of the non-squared estimator ρ̂ will be found, as well as one for the mean squared error

(MSE) of ρ̂2. Attempts will be made to find unbiased estimates as far as possible. Unbiased

estimates can be found for ρ2, V (ρ̂2) and MSE(ρ̂2), and near unbiased estimates can be

found for ρ and V (ρ̂). Finally, it will be shown how to estimate ρ2 and V (ρ̂2) for a subset of

a larger sample, which is important for comparing distinct samples. All estimators are tested

numerically on four representative circular distributions, i.e. the uniform distribution, two

von Mises distributions with a κ of 1 and 3, and a discrete distribution with P (X = 0) = 3
4

and P (X = 3π
4

) = 1
4
.

2. Bias

Let us now look at the expected values of the MRL estimator ρ̂. We will see that the MRL

is a biased but consistent estimator, which gives us a first lower limit for the sample size

necessary for proper estimates. Let X = {X1, X2, . . . , Xn} be a set of independent random

variables that own the same distribution as X. Then E(ρ̂(X)) is the expected estimate which

would be equal to ρ(X) if the MRL was unbiased. For ease of calculation, however, let us
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first examine ρ̂2 instead. We obtain

E(ρ̂2(X)) = E

(
1

n2

∣∣∣∣∣
n∑
k=1

eiXk

∣∣∣∣∣
2)

= E

(
1

n2

n∑
k=1

n∑
l=1

eiXke−iXl

)

=
1

n2
E

 n∑
k=1

ei(Xk−Xk) +

n∑
k=1

∑
l6=k

eiXke−iXl


=

1

n2

n∑
k=1

E(1) +
1

n2

n∑
k=1

∑
l 6=k

E
(
eiXke−iXl

)

=
n

n2
+
n(n− 1)

n2
ρ2(X)

=
1

n
+
n− 1

n
ρ2(X) . (3)

The derivation is presented here in such detail because the involved strategy, i.e. distinguish-

ing between the cases l = k and l 6= k, is applied later on in more involved circumstances.

(3) shows that the squared MRL is biased, i.e. E(ρ̂2(X)) 6= ρ2(X). However, it is consistent

because

lim
n−→∞

ρ̂2(X) = ρ2(X) and lim
n−→∞

V (ρ̂2(X)) = 0 . (4)

The second condition is shown later in (11).

A possible approach to get rid of the bias is simply to use (3) to turn ρ̂2 into an unbiased

estimator by defining the modified MRL ρ̂′ as

ρ̂′(x) :=

√
n

n− 1

(
ρ̂2(x)− 1

n

)
=

√
1

n− 1

(
1

n
|eix1 + . . . |2 − 1

)
, (5)

such that E(ρ̂′2(X)) = ρ2(X), as desired. While this gives us an unbiased estimator for

the squared MRL, this does not necessarily give us an unbiased estimator for the MRL.

The reason for this is that the equation (E(ρ̂))2 = E(ρ̂2) for an arbitrary estimator ρ̂ does

not hold. On the contrary, the definition of the variance implies (E(ρ̂))2 = E(ρ̂2) − V (ρ̂),

which shows that our modified MRL will underestimate the correct value. Note that the

same is true for the standard deviation which is biased although its square, i.e. the empirical

variance, is unbiased.

There is no easy way like that above for the squared MRL to calculate the expected

value of the non-squared MRL. Moreover, it strongly depends on the distribution of the

circular random variable X. Therefore, we simply take the square root, as usual, and apply

a simulation for some special distributions to see how the expected values of the estimators

behave for varying sample sizes. The results are shown in Fig. 1. The variance-corrected

MRL shown in this figure will be introduced later.

One can see that the conventional MRL overestimates the correct value while the modified

version underestimates it, as expected. Especially for small MRLs the modified estimator is
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Figure 1. Expected values of the MRL and modified MRL estimators for increasing sample size n

better. But also for greater MRLs it can beat the conventional one, as Fig. 1 (c) shows. How-

ever, the conventional MRL seems to be more robust for discrete or “jumpy” distributions.

Note that the simulation can experience negative values for ρ̂′2(x) due to the subtraction

of 1
n

, which leads to problems when extracting the root. In such a case, 0 is substituted,

which adds a positive bias, especially for the uniform distribution.

3. Variance and Mean Squared Error

In linear statistics, the deviation of the average x̄ of a sample x from the expected value µ is

measured by its variance which can in turn be derived from the variance of the population by

V (X̄) = 1
n
V (X) = 1

n
σ2. Accordingly, the variance of the average can be estimated by means

of the sample variance by V̂ (x̄) = 1
n
s2. A similar relation can be found for the variance of

the variance estimator s2 by V (s2) = 1
n

(µ4− n−3
n−1

σ4), where µ4 is the fourth central moment.

This suggests that the variance of all these estimators decreases with an order of O( 1
n

). Our

goal is now to find analogous statistics for ρ̂ and ρ̂2.

To measure how much the MRL can deviate from its estimator, we will look at the variance

and the mean squared error of the estimators. While our new modified MRL estimator ρ̂′

is unbiased in its squared version, variance and mean squared error will differ for the non-

squared version and for the standard estimator.
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3.1. Variance of the Squared Standard Estimator

Since the squared estimator is easier to handle, we will first look at the variance of the

squared estimator, following [1, Ch. Moments of R]. It can be calculated by

V (ρ̂2) = E(ρ̂4)− E(ρ̂2)2 . (6)

While we have already derived E(ρ̂2) in (3), we have to do something similar for E(ρ̂4). We

obtain

E(ρ̂4(X)) = E

((
1

n2

n∑
j=1

n∑
k=1

eiXj e−iXk

)2)

= E

(
1

n4

n∑
j=1

n∑
k=1

n∑
l=1

n∑
m=1

eiXj e−iXkeiXle−iXm

)

=
1

n3

(
(n− 1)(n− 2)(n− 3)ρ4(X) + 4(n− 1)2ρ2(X) +

2(n− 1)(n− 2)ς(X) + (n− 1)τ(X) + (2n− 1)
)

(7)

after considering all possibilities for j, k, l and m to be equal or unequal, where

ς(X) = <(E(ei2X1e−iX2e−iX3)) = <(E(ei2X)E(e−iX)2) and (8)

τ(X) = E(ei2X1e−i2X2) = ρ2(2X) . (9)

By substituting this in (6), we get

V (ρ̂2) =
n− 1

n3

(
2(n− 2)ρ2 − (4n− 6)ρ4 + 2(n− 2)ς + τ + 1

)
(10)

=
v1
n

+
v2
n2

+
v3
n3

, (11)

where

v1 = 2ρ2 − 4ρ4 + 2ς (12)

is the principal measure of inaccuracy of MRL estimation. For n large enough and v1 not

near 0, it is reasonable to approximate V (ρ̂2) by v1
n

. Note that while in linear statistics

V (X̄) = V (X)
n

, in our case v1 plays a similar role for ρ2 as V (X) does for X̄.

v1 depends only on the distribution and takes values between 0 ≤ v1 ≤ 1, which is not so

easy to see. To prove that v1 ≤ 1, we first show that ς ≤ ρ2:

ς(X) = <(E(ei2X)E(e−iX)2) ≤
∣∣∣E(ei2X)E(e−iX)2

∣∣∣ =
∣∣∣E(ei2X)

∣∣∣ ∣∣∣E(e−iX)
∣∣∣2

≤
∣∣∣E(e−iX)

∣∣∣2 = ρ2(X) . (13)
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With that it follows easily that

v1 = 2ρ2 − 4ρ4 + 2ς ≤ 2ρ2 − 4ρ4 + 2ρ2 = 4ρ2(1− ρ2) ≤ 4
1

2

(
1− 1

2

)
= 1 . (14)

To prove that v1 ≥ 0, we just consider that V (ρ̂2) would become negative for large enough

n if v1 was negative, since the v2- and v3-parts decrease faster than the v1-part (see (11)).

Of course, that is not possible, so v1 must not be negative.

v1 actually can take the values 0 and 1. v1 is 0 simply if ρ = 0, e.g. for the uniform

distribution. The case v1 = 1 can be constructed with a discrete distribution with two

possible angles 0 and π, where P (X = 0) = 1
4
(2 +

√
2) and P (X = π) = 1

4
(2−

√
2), so that

ρ2 = ς = 1
2

and thus v1 = 1. This case is similar to our discrete test distribution, so we will

see that the latter will have a high variance in the simulation that is to follow.

To find an estimator for the variance V (ρ̂2), we first find estimators for ς and τ :

ς̂(x) = <

((
1

n

n∑
k=1

ei2xk

)(
1

n

n∑
k=1

e−ixk

)2)
, (15)

τ̂(x) =

∣∣∣∣∣ 1n
n∑
k=1

ei2xk

∣∣∣∣∣
2

, (16)

which have the following expected values:

E(ς̂(X)) =
1

n3
(n(n− 1)(n− 2)ς(X) + 2n(n− 1)ρ2(X) + n(n− 1)τ(X) + n) , (17)

E(τ̂(X)) =
n− 1

n
τ(X) +

1

n
. (18)

Now we can find a linear combination V̂ (ρ̂2) := aρ̂4 + bρ̂2 + cς̂+dτ̂ +e such that E(V̂ (ρ̂2)) =

V (ρ̂2) (as in (6)) is fulfilled. By comparing the coefficients of ρ4, ρ2, ς, τ and 1, we obtain a

system of five equations that gives us the solution

V̂ (ρ̂2) =
2(n+ 1)

n(n− 3)
ρ̂2 − 4n− 6

(n− 2)(n− 3)
ρ̂4 +

2(n− 1)

(n− 2)(n− 3)
ς̂

− n− 1

n(n− 2)(n− 3)
τ̂ − 1

n(n− 2)
, (19)

which is an unbiased estimator for the variance of the squared MRL estimator.

However, this variance estimator is only a good indicator of the quality of MRL estima-

tion if it does itself not deviate too much from the true variance. Therefore, we conduct

a simulation to see how the estimated variances spread around their mean. Fig. 2 shows

results for our four distributions. To give an impression of the distribution of the estimated

variance values, the median, quartiles and lowest and highest decile is shown. Additionally,

all variances are multiplied by the sample size n because, as for the linear case, the variance

decreases with n by an order of 1
n

. In this way, the plot can show more details.

The fact that the lower quartile remains below zero for the uniform distribution indicates

that the variance estimator does not make sense for small MRLs since there is a non-negligible

probability that the variance estimator reports a very small (or even negative) variance

whereas the true variance is much higher. For all other distributions, the estimator seems
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Figure 2. Variance estimation for the squared standard MRL estimator ρ̂2. nV̂ (ρ̂2) is shown since

V̂ (ρ̂2)→ 0.

to be trustworthy if the sample size is at least 20, say. With increasing n, the estimation

accuracy increases. Of course,

nV̂ (ρ̂2)
n→∞−−−−→ v1 . (20)

There is also the possibility to estimate v1 by

v̂1 := 2ρ̂2 − 4ρ̂4 + 2ς̂ , (21)

and then approximate V̂ (ρ̂2) by

V̂ (ρ̂2) ≈ v̂1
n
, (22)

which also gives quite good results.

3.2. Variance of the Non-Squared Standard Estimator

It is not possible to find, by the same means, an estimator for the variance of the non-squared

estimator ρ̂, i.e. the square root of ρ̂2. Therefore, we will try to transform V̂ (ρ̂2) properly to

get a good, if not unbiased, estimator V̂ (ρ̂).

The first idea is to apply the so-called δ-method [3, p. 77], i.e., if ρ̂2 deviates by ε, then

ρ̂ deviates approximately by aε where a is the slope of the square root function at ρ̂2,

i.e. a = 1
2ρ̂

. In this way, we obtain V̂ (ρ̂) = V̂ (ρ̂2)

4ρ̂2
. This estimator is consistent because the
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Figure 3. Variance estimation for the non-squared standard MRL estimator ρ̂. nV̂ (ρ̂) is shown since

V̂ (ρ̂)→ 0.

relevant region of the ρ̂2 values shrinks as n grows, and the square root function can be

approximated within this region by a straight line, with increasing precision. However, for

smaller n an accidentally small value of ρ̂2 (which can as well be negative, as we have seen)

would make a very large since the slope of the square root function tends to infinity near

zero. This makes the proposed estimator very unstable, as experiments show.

Therefore, we suggest a slightly different approach. Since it is not sufficient to approximate

the square root function by a straight line, we should actually transform the distribution of

ρ̂2 and calculate the variance of the transformed distribution. However, the distribution is

unknown, so we assume, for reasons of simplicity, a two-valued distribution with a mean of ρ̂2

and a variance of V̂ (ρ̂2). This means, we let ρ̂2 deviate by

√
V̂ (ρ̂2) in positive and negative

direction, then transform these two values by the square root function. The difference between

the two transformed values should then approximately be equal to 2
√
V (ρ̂). Thus, we obtain

V̂ (ρ̂) :=


√
ρ̂2 +

√
V̂ (ρ̂2)−

√
ρ̂2 −

√
V̂ (ρ̂2)

2


2

=
ρ̂2 −

√
ρ̂4 − V̂ (ρ̂2)

2
. (23)

Note that the expression ρ̂4− V̂ (ρ̂2) can have negative values. In this case, 0 is substituted

to avoid a complex square root, which amounts to limitting the variance of ρ̂2 to ρ̂4, assuming

that negative values for ρ̂2 do not make much sense anyway. This adds an additional negative

bias to the estimator.

We investigate the performance of this estimator in a simulation in the same way as we did

for the squared estimator. Results are shown in Fig. 3. The bias of the proposed estimator is
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acceptable, compared to its deviation. The problems with the uniform distribution of course

remain the same.

3.3. Mean Squared Error of the Squared Standard Estimator

The mean squared error can be calculated very similar to the variance

MSE(ρ̂2) = E((ρ̂2 − ρ2)2)

= E(ρ̂4)− 2E(ρ̂2)ρ2 + ρ4

=
1

n3

(
2(n− 2)2ρ2 − (n− 2)(4n− 3)ρ4 + 2(n− 1)(n− 2)ς + (n− 1)τ + (2n− 1)

)
=
v1
n

+
w2

n2
+
w3

n3
.

The principal part v1 is the same as for the variance.

To estimate the mean squared error seems difficult because the true MRL is not known.

However, it can be estimated without bias. We can apply the same strategy as for the

variance. Again, we model our estimator as a linear combination M̂SE(ρ̂2) := aρ̂4 + bρ̂2 +

cς̂ + dτ̂ + e such that E(M̂SE(ρ̂2)) = MSE(ρ̂2) is fulfilled. Similarly, we obtain

M̂SE(ρ̂2) =
2

n− 3
ρ̂2 − 4n− 3

(n− 1)(n− 3)
ρ̂4 +

2n

(n− 1)(n− 3)
ς̂ − 1

(n− 1)(n− 3)
τ̂ , (24)

which is indeed an unbiased estimator for the mean squared error of the standard MRL

estimator. Fig. 4 shows the simulation results. Again, the uniform distribution shows a

problematic deviation, making the estimated mean squared error questionable.

3.4. Variance of the Modified Estimator

Since the squared modified estimator ρ̂′2 is just scaled by a factor of n
n−1

and the shift of 1
n

has no effect on its variance, we have

V̂ (ρ̂′2) =
n2

(n− 1)2
V̂ (ρ̂2) . (25)

The behaviour is, of course, similar to Fig. 2.

To estimate the variance of the non-squared modified MRL estimator, the same procedure

as in (23) can be applied:

V̂ (ρ̂′) :=
ρ̂′2 −

√
ρ̂′4 − V̂ (ρ̂′2)

2
. (26)

Again, the plot will look similar to Fig. 3.
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Figure 4. Mean squared error estimation for the squared standard MRL estimator ρ̂2. nM̂SE(ρ̂2) is

shown since M̂SE(ρ̂2)→ 0.

4. Variance-Corrected Estimator

Now that we have a good estimate of the variance of the non-squared estimators, we can

use it to construct yet another estimator with an expected value that is even closer to the

correct value. By transforming the ordinary formula for the variance, we obtain

V (ρ̂′) = E(ρ̂′2)− E(ρ̂′)2 ⇒ E(ρ̂′) =
√
E(ρ̂′2)− V (ρ̂′) =

√
ρ2 − V (ρ̂′) . (27)

This means that the squared expected value of the MRL estimator is reduced by the vari-

ance of the estimator. It is therefore natural to try to compensate this error by adding the

estimated variance to the squared MRL estimator.

ρ̂′′ :=

√
ρ̂′2 + V̂ (ρ̂′) (28)

Fig. 1 shows the expected value of this variance-corrected MRL. One can see that it converges

to the correct value much faster than the other MRL estimators.

However, the variance of the modified and variance-corrected MRL estimators is higher

than that of the conventional one. Therefore, the two new estimators cannot beat the con-

ventional one in terms of mean squared error, as is shown in Fig. 5. Only for the uniform

distribution (or distributions with small MRLs) the new estimators are better. The reason for

this is that negative estimations, which are implausible, have been set to 0 in the simulation,

a value that produces no error if ρ = 0.



Statistics 559

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 100 50 20 10 5

conventional MRL
modified MRL
var. corr. MRL

(a) uniform distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 100 50 20 10 5

conventional MRL
modified MRL
var. corr. MRL

(b) von Mises distribution, κ = 1

 0

 0.05

 0.1

 0.15

 0.2

 100 50 20 10 5

conventional MRL
modified MRL
var. corr. MRL

(c) von Mises distribution, κ = 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 50 20 10 5

conventional MRL
modified MRL
var. corr. MRL

(d) discrete distribution

Figure 5. Mean squared error of the (non-squared) conventional, modified and variance-corrected
MRL estimators. nMSE(ρ̂), nMSE(ρ̂′), nMSE(ρ̂′′) is shown since MSE(·)→ 0.

5. Estimation for a Sample Subset

Often, samples of distinct populations have to be compared, in order to prove that the

populations have different directional concentration. However, the samples may have different

size, which makes the corresponding MRLs not comparable directly because bias and variance

depend on the sample size. Therefore, it might be necessary to scale down the MRL of the

larger sample and its variance to a subset of the size of the smaller sample, while utilizing

the information of the whole larger sample.

In the linear case, the average of a subset y of a sample x is equal to the average of the

total sample in terms of their expected value (E(Ȳ ) = E(X̄)). The variance of the average of

the subset is increased to V (Ȳ ) = n
m
V (X̄), where n is the size of the total sample x and m is

the size of the subset y. Accordingly, V̂m(X̄) := n
m
V̂ (X̄) is a good estimator for V (Ȳ ). This

relation is, for instance, applied when we test if two samples belong to the same population.

Now we want to examine the corresponding procedure when estimating ρ2. If we use

the standard estimator ρ̂2, then E(ρ̂2(Y)) 6= E(ρ̂2(X)) because the standard estimator is

biased (see (3)). To improve ρ̂2(y) we model a new estimator ρ̂2m(x) = aρ̂2(x) + b such that

E(ρ̂2m(X)) = E(ρ̂2(Y)) is fulfilled. Comparing the coefficients of ρ and 1, we obtain

ρ̂2m(x) :=
n(m− 1)

m(n− 1)
ρ̂2(x) +

n−m
m(n− 1)

. (29)

However, the difference between ρ̂2m(x) and ρ̂2(x) is small if n and m are large. When using

the modified estimator ρ̂′2, no correction at all is necessary because it is unbiased.

Now we want to improve the estimator V̂ (ρ̂2)(y) in the same way. If we approximate V̂ (ρ̂2)
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Figure 6. Variance estimation for a sample subset of size m. The total sample size is fixed n = 100.

mV̂m(ρ̂2) is shown since V̂m(ρ̂2)→ 0.

by v̂1
n

(see (22)), then it is as easy as in the linear case to state

V̂ (ρ̂2)(y) ≈ v̂1(x)

m
=

n

m
V̂ (ρ̂2)(x) . (30)

However, to develop a more accurate estimate, we have to apply the strategy as in (29) again.

We model a new estimator as a linear combination V̂m(ρ̂2)(x) = aρ̂2(x) + bρ̂4(x) + cς̂(x) +

dτ̂(x) + e such that E(V̂m(ρ̂2)(X)) = V (ρ̂2(Y)) is fulfilled. By comparing the coefficients of

ρ4, ρ2, ς, τ and 1, we obtain

V̂m(ρ̂2)(x) :=
n(m− 1)

m3(n− 1)(n− 2)(n− 3)

(
2
(
m(n(n+ 1)− 4)− 2n(n− 1)

)
ρ̂2(x)

− n2(4m− 6)ρ̂4(x) + 2n(mn+m− 2n)ς̂(x) + (n− 2m)(n− 1)τ̂(x)

+ (n− 2m)(n− 3)
)
. (31)

Fig. 6 shows numerical results for a fixed total sample size of n = 100 and varying sample

subset size m. One can see that not only is the accuracy of the variance estimation for

the total sample transfered to the estimation for the sample subset, but the accuracy even

increases for decreasing sample subset size m.
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6. Conclusion

Similar to the linear variance and standard deviation, it is possible to estimate the squared

circular mean resultant length (MRL) without bias, but not in general the non-squared MRL.

However, near unbiased estimators can be found. As in the linear case, the unbiasedness

comes at the expense of increased variance and thus, as it seems, also increased mean squared

error. Therefore, estimating the MRL appears to be a trade-off between bias and estimation

error. It has to be noted that the (near) unbiased estimators produce smaller values for all

distributions but most so for the uniform distribution. This is important because a given

big sample MRL is less likely to have emerged by chance from a uniform distribution, which

makes it easier to discriminate between a unimodal and the uniform distribution.

Estimators that are an m-th degree polynomial of sample moments up to the n-th have

a variance that is an m′-th degree polynomial (m′ ≤ 2m) in population moments up to

the 2n-th. The squared MRL estimator is a second degree polynomial in the first complex

moment of eiX . Thus, its variance is found to be a fourth degree polynomial in the first

and second complex population moments. Furthermore, an estimator for the variance of the

squared MRL can be constructed through a polynomial of corresponding sample moments

by choosing coefficients so that the estimator is unbiased. In a similar way, the mean squared

error of the squared MRL can be calculated and estimated.

Again, the variance of the non-squared MRL cannot be estimated without bias. However,

the bias is small compared to the estimation error. Generally, for the squared and the non-

squared MRL, the variance estimation is trustworthy only if the sample size and also the

MRL itself is big enough. For MRLs near zero the variance estimation fails.
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