
Kutil and Mraz Parnum11

SHORT VECTOR SIMD PARALLELIZATION OF
MAXIMUM FILTER

Rade Kutil and Erich Mraz
University of Salzburg, Department of Computer Sciences

Jakob Haringer-Str. 2, 5020 Salzburg, Austria
Email: rkutil@cosy.sbg.ac.at

Abstract

The maximum filter is used in mathematical morphology and other image and signal
processing applications. A naive implementation of the maximum filter would be similar
to an FIR filter and could be parallelized for short vector SIMD processor extensions
such as SSE in the same way as FIR filters have been parallelized. However, there is
a more efficient algorithm called van Herk/Gil-Werman algorithm, whose complexity is
independent of the filter length. Therefore, this work investigates ways to parallelize this
algorithm in 1D as well as 2D. The developed schemes achieve speedups between 2.8 and
6 on 16-fold SIMD.

1 Introduction

The maximum filter substitutes each sample a(x) of a discrete signal a by the maximum of
the signal samples within an interval [x− k, x + l] around the sample’s position x:

b(x) =
l

max
i=−k

a(x + i) (1)

This filter is a primitive operation in mathematical morphology [5], which has applications in
object recognition [1], feature extraction [7], edge detection [4], image enhancement [3], and
image compression [2].

When the filter is implemented in a straight forward way according to (1), the complexity
depends linearly on the filter size

s = k + l + 1 . (2)

The complexity is

(k + l)n = (s− 1)n , (3)

where n is the data size. However, there exists a more efficient algorithm called van Herk/Gil-
Werman (HGW) algorithm [9, 6], whose complexity is independent of the filter length. This
algorithm works in blocks of size s− 1. It uses two intervals of size s− 1 to the left (c) and
right (d) of a position u where the maximum between u and each position in the interval
is cumulated, which can be done in linear complexity. Each desired maximum value of the
output array b can then be calculated by a single maximum operation of two values, one from
the left and one from the right interval. Figure 1 shows the algorithm. The outer loop over
u iterates the blocks of size s − 1, where u points to the center of the block. The first inner
loop fills the cumulated maximum-array d to the right of u, the second inner loop fills the
corresponding array c to the left of u. Finally, in the last loop a block of the output array b

Parallel Numerics 11/Leibnitz, Austria/October 5-7 1

Parnum11 Kutil and Mraz

for u = l . . . n step s− 1
d(0) = a(u)
for i = 1 . . . s− 2

d(i) = max(d(i− 1), a(u + i))
c(s− 2) = a(u− 1)
for i = 1 . . . s− 2

c(s− i− 2) = max(c(s− i− 1), a(u− i− 1))
for i = 0 . . . s− 2

b(u− l + i) = max(c(i), d(i))

Figure 1: Van Herk/Gil-Werman algorithm. Data outside of the array boundaries is assumed
to have zero or minimum value.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...

c c c c c c c c d d d d d d d d

b b b b b b b b

c c c c c c c c d d d d d d d d

b b b b b b b b

Figure 2: Example for van Herk/Gil-Werman algorithm for k = 3, l = 5, s = 9. c is the
cumulative interval to the left, and d the one to the right of u. The first two iterations
u = l = 5 and u = l + s− 1 = 13 are shown.

2 Parallel Numerics 11/Leibnitz, Austria/October 5-7

Kutil and Mraz Parnum11

is calculated from one value of c and one from d for each output value. Figure 2 shows an
example. Note that the algorithm in Figure 1 does not show the handling of array bounaries
for reasons of comprehensibility. However, if outside-data is assumed to have zero (or negative
maximum) values, the algorithm is correct. The actual implementation copes with the first
and last u-iteration separately in order not to access outside-data and to avoid if-then-else-
constructs in the main loop for performance reasons. The complexity of this algorithm is
almost independent of the filter size s:

n
2(s− 2) + (s− 1)

s− 1
= n

(
3−O

(
1

s

))
. (4)

Even though this algorithm is very fast, processing of large images should be as efficient as
possible. Short-vector SIMD extensions such as SSE or AltiVec are a convenient possibility for
parallelization because they are available in almost all general purpose processors nowadays.
They allow to process 16 bytes at a time, so 16 max-operations can be carried out in a single
cycle. The bytes have to be arranged consecutively in vector registers, though, which is not
always easy to do. There are instructions for almost arbitrary permutations and selections
to rearrange the bytes properly. However, these instructions take additional processor time,
thus reducing the speedup.

A 2-D maximum filter, in its simple form, consists of the 1-D filtering of all rows of the
2-D source data set, followed by the 1-D filtering of all columns. If a 2-D array of data with
row-wise memory layout has to be processed, then sequential 1-D algorithms applied vertically
to all columns can be parallelized easily by applying the sequential algorithm on vectors of
16-byte-rows in order to process 16 columns at once. On the other hand, true 1-D SIMD
parallelizations, as required for 1-D data and rows of 2-D data, are always more complicated.

This is also true for the HGW algorithm. Recently, a short-vector SIMD parallelization
of the HGW algorithm was presented in [8]. However, the horizontal part of the HGW is
implemented by transposing the whole image and applying the vertical version. Moreover,
results are only presented for the vertical 1-D part of the algorithm.

This work develops a true 1-D SIMD parallelization of the HGW algorithm. The vertical
part of the 2-D algorithm is implemented as in [8], and performance results are shown for
the combined 2-D algorithm. Intel SSE2 with vectors of 16 bytes is used. Experiments are
performed on an Intel Core 2 Duo with 2.66 GHz. C++ code is compiled with gcc 4.2.1. The
image size used for experiments is 2560× 1024.

2 1-D SIMD parallelization

The 1-D parallel SIMD algorithm is executed in two stages. The first stage performs a
maximum filter of length r < 32, which can be done in log2(r) steps with SIMD operations.
The second stage is analogous to the sequential algorithm, but works on vectors.

First, the filter size s has to be decomposed into

s = 16(pk + pl) + rk + rl + q , (5)

Parallel Numerics 11/Leibnitz, Austria/October 5-7 3

Parnum11 Kutil and Mraz

y1 = y2 = y3 = y4 = x1 = x2 = x3 = (0, . . . , 0) // initialization of vectors
for u = −2 . . . n/16− 1 // start at −2 for correct startup

x = a(u + 2) // read new vector
if (q ≥ 2) {y = x; x = max(x, (y1, x)(15,...,30)); y1 = y;} // max. with left neighbor
if (q ≥ 4) {y = x; x = max(x, (y2, x)(14,...,29)); y2 = y;} // max. with 3 left neighbors
if (q ≥ 8) {y = x; x = max(x, (y3, x)(12,...,27)); y3 = y;} // max. with 7 left neighbors
if (q = 16) {y = x; x = max(x, (y4, x)(8,...,23)); y4 = y;} // max. with 15 left neighbors
// build max. of q + rk + rl size intervals
a(u) = max((x3, x2, x1)(15−rk,...,30−rk), (x2, x1, x)(rl,...,15+rl))
x3 = x2; x2 = x1; x1 = x

Figure 3: First stage of 1-D SIMD algorithm. x·, y·, and a(u) are vectors of size 16. The
handling of data accesses outside of array boundaries is not shown.

where the variables obey the following conditions:

q =

1 s = 2

2 s = 3, 4

4 s = 5, 6, 7, 8

8 s = 9, . . . , 16

16 s > 16

rk = k − 16pk − q
rl = l − 16pl
pk ≥ 0, pl ≥ 0
−16 < rk ≤ 16
0 ≤ rl < 31
0 ≤ rk + rl ≤ 16

(6)

The first stage calculates for each position i the maximum of the interval [i−q−rk +1, i+rl].
a(u) shall denote the u-th vector containing 16 bytes. We assume that n is a multiple of 16.
Figure 3 shows the algorithm. The first four vector-max-operations calculate the maximum
of q-size intervals, where q is a power of two, in log2(q) steps. The first operation calculates
the maximum of size-2 intervals, the second one calculates the maximum of size-4 intervals
based on the size-2 results, and so on. The last max-operation accounts for non-power-of-two
size intervals. Variables xi and yi are used to pass reusable vectors from one iteration to the
next, in order to avoid recalculating or re-reading them from memory.

Expressions of the form (x, y)(s0,...,s15) denote shift- and permutation operations, where
elements with indices s0, . . . , s15 are selected from the concatenation of the vectors x and y,
and assembled into the resulting vector. Such an operation must be implemented in SSE as
(at least) two shift- and an or-instruction. A shift instruction shifts one source vector and
fills remaining elements with zeros. For two source vectors, two shifts have to be applied
and the non-overlapping results have to be combined by an or-instruction. For instance,
(x, y)2,...,17 = shl(x, 2) | shr(y, 14), which takes three instructions. Each of these instructions
will take one clock cycle if the instructions can be scheduled optimally.

Values q, rk, rl, pk and pl must be computed at compile-time for two reasons. First, shift-
instructions need immediate arguments for the shift distance. Second, the if-branches should
be resolved at compile-time in order to avoid time consuming jumps in the inner loop. Also,
a few iterations at the beginning and the end of the u-loop would access data outside of the

4 Parallel Numerics 11/Leibnitz, Austria/October 5-7

Kutil and Mraz Parnum11

a(0) a(1)=y1 a(2)

x

x

x

y2

y3

x1x2

a(0)

. . .

. . .

. . .

. . .

Figure 4: Iteration u = 0 of the first stage of the 1-D SIMD algorithm for k = 3, l = 5, s = 9,
pk = pl = 0, rk = 3 − 8 = −5, rl = 5. Each box represents a vector of 16 values. Arched
arrows indicate the passing of a vector from a previous iteration.

a-array. To avoid that, these iterations are implemented separately, leaving out unnecessary
operations. Figure 4 illustrates an iteration of the 1-D SIMD algorithm.

The second stage of the 1-D SIMD algorithm is analogous to the sequential algorithm in
Figure 1. The only differences are that a, b, c, and d are now arrays of vectors, where u and
i denote vector-indices, and pk and pl substitute k and l.

 1

 2

 5

 10

 20

 50

 0 5 10 15 20 25 30 35 40 45

ex
ec

u
ti

o
n
 t

im
e

p
er

 p
ix

el
 [

n
s]

filter size s

seq. naive
seq. HGW

SIMD

Figure 5: Execution time per pixel of 1-D horizontal algorithms

Figure 5 shows the performance results. In the naive implementation, the execution time
grows linearly with the filter size, whereas the other implementations yield almost constant
times. The SIMD algorithm has a jump of about one nanosecond at filter size 32. This is the
filter size that first requires the second stage of the SIMD algorithm, which takes some extra

Parallel Numerics 11/Leibnitz, Austria/October 5-7 5

Parnum11 Kutil and Mraz

for j = 0 . . .m
for u = l . . . n step s− 1

[block as in Figure 1 for column j]

(a) not cache-optimized

for u = l . . . n step s− 1
for j = 0 . . .m

[block as in Figure 1 for column j]

(b) cache-optimized

Figure 6: Loop transposition for cache optimization in the vertical part of the 2-D van
Herk/Gil-Werman algorithm.

time. Speedups range between 2.2 and 3.5 compared to the sequential HGW algorithm.

3 2-D SIMD parallelization

The vertical part of the 2-D SIMD parallelization can be implemented simply as the sequential
algorithm in Figure 1, where all data variables are vectors of 16-byte-rows. Thus, 16 columns
are processed in one run.

However, it is known that such implementations violate the demand for data locality
because of step sizes of one or more image rows between subsequent memory accesses. As a
consequence, their performance suffers from poor cache usage. Therefore, we suggest a simple
modification of the vertical 2-D algorithm, as shown in Figure 6. By transposing the loop
for image columns and the u-loop over the s− 1-size blocks of the HGW algorithm, the 2-D
image is processed in rows of height s − 1, or, to be precise, height 2(s − 1) with overlap of
s − 1. This improves the data locality significantly, both for the sequential and the SIMD
implementation.

Figure 7 shows the performance results. Cache-optimization gains a speedup between 1.5
and 2. The cache-optimized algorithms are a bit more sensitive to the filter size because
higher filter sizes increase the height of block rows, which worsens the data locality. The
SIMD algorithms exhibit a speedup between 4.5 and 6.

By applying the horizontal 1-D algorithm followed by the vertical implementation, a 2-
D max-filter is achieved. The total execution times are shown in Figure 8. We get overall
speedups between 2.8 and 3.

4 Conclusion

This work shows that the van Herk/Gil-Werman algorithm for the 1-D maximum filter, as
heavily used in mathematical morphology, can be parallelized with short-vector SIMD exten-
sions. The easier case of vertical filtering of 2-D data can be combined with horizontal 1-D
filtering to get a SIMD implementation of a 2-D maximum filter.

For 16-fold SIMD, the vertical filtering shows a speedup of about 6 and the horizontal
filtering a speedup of about 3. Together, the speedup is about 3, which shows that the hor-
izontal filtering dominates the execution time. Cache-optimization of the vertical algorithm
achieves an additional speedup between 1.5 and 2.

6 Parallel Numerics 11/Leibnitz, Austria/October 5-7

Kutil and Mraz Parnum11

 1

 2

 5

 10

 20

 0 5 10 15 20 25 30 35 40 45

ex
ec

u
ti

o
n

 t
im

e
p

er
 p

ix
el

 [
n
s]

filter size s

seq.
seq. cache-opt

SIMD
SIMD cache-opt

Figure 7: Execution time per pixel of 1-D vertical algorithms

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 50 100 150 200 250 300 350 400 450

ex
ec

u
ti

o
n
 t

im
e

p
er

 p
ix

el
 [

n
s]

filter size s

seq.
SIMD

Figure 8: Execution time per pixel of 2-D algorithms

Parallel Numerics 11/Leibnitz, Austria/October 5-7 7

Parnum11 Kutil and Mraz

As future work, in order to possibly improve the performance of the implementation,
horizontal and vertical cache-optimized filtering could be interleaved, which would increase
cache reusage. Furthermore, the transposition approach that enables to use the faster vertical
algorithm for horizontal filtering should be compared to the scheme of this work. On-the-fly
block transposition using SIMD shuffle instructions could be used to reduce the computation
time for the image transposition.

References

[1] Michael R. Bullock, David L. Wang, Scott R. Fairchild, and Tim J. Patterson. Auto-
mated training of 3D morphology algorithm for object recognition. In Automatic Object
Recognition IV, volume 2234 of Proc. SPIE, pages 238–251, April 1994.

[2] Yen-Yu Chen and Shen-Chuan Tai. Compressing medical images by morphology filter
voting strategy and ringing effect elimination. Electronic Imaging, 14:013007–14, March
2005.

[3] P. Deng-Wong, Fulin Cheng, and Anastasios N. Venetsanopoulos. Adaptive morphological
filters for color image enhancement. In Visual Communications and Image Processing,
volume 1818 of Proc. SPIE, pages 358–365, November 1992.

[4] Shan Duan and Qian-Qing Qin. Edge detection based on dynamic morphology. In MIPPR
2005: Image Analysis Techniques, volume 6044 of Proc. SPIE, pages 19–25, 2005.

[5] Charles R. Giardina and Edward R. Dougherty. Morphological methods in image and
signal processing. Prentice Hall, Englewood Cliffs, NJ, 1988.

[6] Joseph Gil and Michael Werman. Computing 2-D min, median and max filters. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 15(5):504–507, May 1993.

[7] Xiaojing Jin and Curt H. Davis. New applications for mathematical morphology in urban
feature extraction from high-resolution satellite imagery. In Applications of Digital Image
Processing XXVII, volume 5558 of Proc. SPIE, pages 137–148, August 2004.

[8] Ram Saran and Anil K. Sarje. Vectorization of constant-time gray-scale morphological
processing algorithm using AltiVec. In 2011 National Conference on Communications
(NCC), pages 1–5, Bangalore, January 2011.

[9] Marcel van Herk. A fast algorithm for local minimum and maximum filters on rectangular
and octagonal kernels. Pattern Recognition Letters, 13(7):517–521, July 1992.

8 Parallel Numerics 11/Leibnitz, Austria/October 5-7

