
A Generalization of Quad-Trees Applied to Shape
Coding

Rade Kutil and Christine Gfrerer
University of Salzburg, Department of Computer Sciences

Jakob Haringer-Str. 2, 5020 Salzburg, Austria
Email: rkutil@cosy.sbg.ac.at

Proc. IWSSIP, pages 265-268, Sarajevo, Bosnia and Herzegovina, June 2011, http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5977353

Abstract—Quad-trees are restricted to combined horizontal and
vertical decomposition of tiles. If this restriction is dropped,
anisotropic rectangular tiles result which can be arranged in a
previously developed graph structure called “bush”. A new tiling
algorithm is able to reduce the number of tiles by a factor of
about two. Together with an existing efficient coding scheme for
this graph, a lossless coding algorithm for bi-level and indexed
color images is developed. It is compared to JBIG2 and PNG,
and turns out to be efficient for situations with large uniform
regions and high color payload.

I. INTRODUCTION

Quad-trees have long been used in general image coding
[1], for bi-level images [2], and video coding [3]. In quad-
tree coding, square tiles are recursively decomposed into four
square sub-tiles. The process stops for sufficiently uniform
tiles, for which the color payload is encoded. For bi-level
or indexed color images, this payload is the pixel color. For
natural images, image segments are approximated by planar
[4] or polynomial [5], [6] functions. Generalized tilings with
arbitrarily oriented linear splitting are used here, though, to
achieve a more accurate approximation of region borders.
However, this leads to increased bit budgets for encoding of
the segmentation structure, so block merge algorithms [7] or
combinations with quad-trees [8] have been developed.

These schemes can be applied to DCT [9] and wavelet
[10] coding, as well as motion estimation [11]–[13] in video
coding. Common to these applications is the amount of data to
be encoded per tile, which is larger than the single bit payload
for bi-level images, where JBIG2 [14] or chain codes [15] are
far superior. Another reason to use tree structures to encode
image data is the ability to arbitrarily select spatial details, as
needed in terrain visualization [16] and display of geospatial
data [17]. Also, spatial databases use quad-trees [18] in a
similar way.

This work exploits a generalization of quad-trees that retains
a redundancy-free representation. Tiles may be split anisotrop-
ically in horizontal or vertical dimension, which may produce
highly non-square tiles. The number of these decompositions
was shown to be much higher than that of quad-trees [19],
[20]. Moreover, the representation as a binary tree of hori-
zontal or vertical splits is not unique, and, therefore, causes
redundancy and inefficiency in coding. However, if the graph
structure is expanded to incorporate all possible decomposition
trees with the same set of leaf nodes, uniqueness is achieved.

(a) shape (b) quad-tree (c) bush

Fig. 1. A shape and its decomposition into 3514 quad-tree tiles and 1861
bush tiles.

Fig. 2. A full bush of anisotropic tiles

In [20]–[22], such a graph, called “bush”, together with an ef-
ficient redundancy-free coding algorithm has been developed.
Redundancy-free means that there is only one representation
for each set of tilings and, when encoded, no encoded symbol
can be deduced from other parts of encoded data. In this work,
an algorithm to find the best bush-tiling for an image, in terms
of tile count, is presented, and a coding scheme for the color
information is developed. A class of images is generated by
randomly growing blots, optionally followed by smoothing
operations, to test the coding efficiency and to compare it to
JBIG2 and PNG.

II. TILING ALGORITHM

Anisotropic tilings lead to non-unique decompositions in
terms of binary trees. See e.g. Fig. 2, where four square sub-
tiles can be produced either by horizontal followed by vertical
splitting, as well as in the reverse order. The coding of such
a decomposition tree is, therefore, necessarily redundant. By
incorporating all decomposition trees into a two-dimensional
graph structure, called “bush”, a unique representation is
achieved. This graph is basically a Cartesian product of two
binary trees, or a subgraph thereof. It is not a tree because it
contains cycles. The condition that the bush must contain all
possible decomposition trees can be checked and enforced in

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {5\global \mathchardef \accent@spacefactor \spacefactor }\accent 22 5\egroup \spacefactor \accent@spacefactor 977353

(a) shape

3 1 2

3 1 2

3 1 2

5 1 4

2 1 1

3 1 2

4 1 3

1 1 1

1 1 2

1 1 3

1

1

1

(b) algorithm (c) result

Fig. 3. Example for optimal tiling algorithm

a local fashion by inheriting complete splits up and down the
hierarchy of nodes. This allows to encode splits as early as
possible in a top-down coding scheme and to omit redundant
split information at deeper levels in the graph. For an efficient
coding algorithm of bushes, see [20]–[22].

However, there are still several possible bush tilings for a
given shape, contrary to quad-trees, which are always unique.
As these bush tilings have different numbers of tiles, we want
find the one with the lowest number of tiles. See Fig. 1 for an
example. First, we need a way to arrange all possible tiles of
an image. Since a bush is a product of two binary trees, and a
binary tree can be arranged as a 1-D array, bush-nodes can be
arranged in a 2-D array of size 2m−1×2n−1, where m×n
is the image size, and m and n are, for simplicity, a power of
two. See Fig. 3 for an example. The right lower m× n-block
of this array is filled with image data. Each node is associated
with the best number of tilings it can be decomposed into.
This number is calculated from the lower right to the upper
left corner. If a tile is uniform, it gets a 1. Otherwise, it gets the
minimum of the sum of the horizontal or vertical sub-tiles, and
is associated with the corresponding decomposition dimension.
In the end, the upper left node contains the minimum number
of tiles for the image. Following the optimal decomposition
dimensions, starting from the upper left node, the optimal bush
can be created.

Image sizes that are not a power of two can be handled
easiest by simply expanding the image to power-of-two size
and filling the expanded area with the color of nearest margin
pixels. In this way, only a slight enlargement of the bush and
only a few additional tiles are required. When decoding an
image, the expanded area is discarded.

III. COLOR CODING

After the bush structure in encoded using the algorithm in
[20]–[22], the color information has to be encoded for each
leaf tile. For bi-level images, each leaf tile is encoded with
one bit (to be more precise, one out of two symbols in the
arithmetic coder), except if two sibling tiles are both leaves,
in which case only one tile has to be encoded, the other one
must have the other color. For quad-trees, a similar scheme
is used. Only for a set of four sub-tiles that are all leaves, a
second model is used in the arithmetic coder to encode all sub-
tiles together as one out of 14 symbols, the two combinations
of all equal colors are not possible.

(a) raw (b) smoothed (c) aligned (d) colors

Fig. 4. Generated shapes made of 40 blots. (a) has 3.9% border pixels, (b)
is smoothed with a 33× 33-filter to 2.4% border pixels, (c) is aligned with a
65× 5-filter to 1.17% aligned and 1.07% diagonal border pixels, (d) has 16
colors with one blot for each color.

For multi-color images, the situation is more complicated.
Colors that appear at one point in a sub-tree or sub-bush are
more probable than other colors to appear in other nodes in
the same sub-tree or sub-bush. Therefore, when a leaf-node is
encoded, its color is passed on to its parent node and to all
child nodes of the latter. Before encoding a leaf-node’s color,
the information is encoded whether its color is equal to the
color passed on from its parent node. The color only has to be
encoded if a “no” has been encoded, and the passed-on color
is removed from the arithmetic coder’s model. In the case of
sibling leaf nodes, “no” can be assumed without coding for
the second node (in the bush case) or the last node (in the
quad-tree case when the first three nodes have equal color)
because these nodes must have a color that is different from
color that is passed on from the sibling nodes.

IV. TEST IMAGE GENERATION

To test the coding performance, we need a set of test images
with a range of properties. They should contain areas of
constant color with arbitrary borders, similar to geographical
maps. This is done by randomly growing blots. For each color,
a certain number of pixel seeds are placed on the image and
stored in a buffer of border pixel positions. Buffer entries are
randomly chosen, and, after coloring the corresponding pixel,
their neighbors in four directions are inserted into the buffer.
Pixels that are already colored are discarded. The process stops
when the buffer is empty. See Fig. 4 (a) for an example.

Because the result has very ragged borders, an optional
smoothing filter is applied. It takes the form of a block
centered around each pixel. The pixel’s color is substituted
by the most frequent color in that block. The larger the block,
the smoother the result will be. See Fig. 4 (b) for an example.
To quantify the smoothness of the result, all (overlapping)
2×2-blocks of the image are classified as either mono-colored
or, otherwise, as border blocks. The rate of border blocks
approximates the rate of border pixels. It is determined by the
number of blot seeds, the number of colors, and the smoothing
block size. The bit-rate of compressed images is expected to
grow linearly with this rate.

Moreover, anisotropic bush tilings prefer horizontally or
vertically aligned borders for obvious reasons. To achieve such
an alignment, the filter block is modified to have a cross
shape made of two rectangular blocks of size a× b and b× a
respectively. See Fig. 4 (c) for an example. To quantify also

 1

 2

 3

 4

 5

 6

 7

 8

 0.1 0.2 0.5 1 2

b
it

s
p
er

 b
o
rd

er
 p

ix
el

border pixels in percent

PNG
quadtree

bush
jbig2

Fig. 5. Bit-rate depending on the number of pixels lying at region borders

 1

 2

 3

 4

 5

 6

 7

 8

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

b
it

s
p
er

 b
o
rd

er
 p

ix
el

aligned minus diagonal pixels in percent

PNG
quadtree

bush
jbig2

Fig. 6. Bit-rate depending on the degree of alignment (horizontal and vertical)
of region borders

the alignment of blot borders, we further classify border blocks
into diagonal blocks if two diagonal pixels are equal, and
aligned blocks otherwise.

V. EXPERIMENTAL RESULTS

A total of 745 bi-level images and 1292 colored images of
size 1024× 1024 have been generated to test the performance
of our quad-tree and bush coding schemes. Fig. 5 shows
overall results depending on the rate of border pixels for bi-
level images. As the bit-rate is expected to grow linearly with
this rate, it is not calculated in bits per image pixel but in
bits per border pixel, so that a constant curve indicates a
linearly growing bit-rate. Individual results are grouped into
bins of equal number of images, and the average bit-rate plus-
minus the standard deviation is shown. JBIG2 is superior and
PNG is inferior compared to our coding schemes. Note that
all schemes exhibit a linear growth of bit-rate with the border
pixel rate, except for PNG, which cannot benefit as much from
larger blots of constant color.

Quad-tree and bush tilings show approximately equal per-
formance for general bi-level images. However, bush tilings
have much larger deviation. This indicates that there are some
images where bush tilings perform significantly better, and
others where they are worse. It turns out that the border
alignment is what causes this phenomenon. Fig. 6 shows that
the bit-rate drops by almost one bit per border pixel for images
with more aligned than diagonal pixels. This is of importance
because many images naturally incorporate horizontal and
vertical features. The reason for this behavior is the reduced

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

ti
le

s
p
er

 b
o
rd

er
 p

ix
el

aligned minus diagonal pixels in percent

quadtree
bush

Fig. 7. Number of tiles depending on the degree of alignment of region
borders

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 8 16 32 64 128 256
g
ra

p
h
 b

it
s

in
 p

er
ce

n
t

number of colors

quadtree
bush

Fig. 8. Share of bits used to encode the graph structure

 3

 4

 5

 6

 7

 8

 9

 10

 11

 4 8 16 32 64 128 256

b
it

s
p
er

 b
o
rd

er
 p

ix
el

number of colors

PNG
quadtree

bush

Fig. 9. Bit-rate depending on the payload, i.e. number of colors, for border
pixel rates between 3 and 4

number of anisotropic tiles for such images, as can be seen in
Fig. 7.

This figure also shows that bush tilings are able to reduce
the number of tiles by approximately two for all images.
Accordingly, the bit-rate used for encoding the graph structure
is much higher for bush tilings than for quad-tree tilings, as can
be seen in Fig. 8. Conversely, the bit-rate for color information
is much lower, due to the reduced number of tiles. This effect
even grows with the number of colors because the bit-rate for
color coding becomes more prominent.

As a result, a higher number of colors increases the com-
petitiveness of bush tilings, as can be seen in Fig. 9. Bush
tilings are clearly superior to quad-trees, and the quotient of
their bit-rates evolves in favor of bush tilings while the number
of colors grows. Note that the border pixel rate is quite high

in Fig. 9 in order to fit 256 blots into the image. This is the
reason that PNG is able to beat bush tilings for images with
over 40 colors. For larger images, blots are also larger, and
PNG performs far worse, as shown in Fig. 5. Note also that the
bit-rate for PNG remains about constant in Fig. 9 while that of
quad-tree and bush tilings increases linearly. This shows that
the bit budget for representing shapes is prominent in PNG
while the pure color information is comparably neglectable.

VI. CONCLUSIONS

Anisotropic tilings, when applying a new algorithm for
optimal tiling, are able to represent a shape with only half
the number of tiles compared to quad-tree tilings. However,
there are much more possible tilings and the tiling structure
is a more complicated graph, a so-called “bush”. Therefore, a
bigger part of the bit-rate has to be devoted to encoding the
tiling. Nevertheless, the reduced number of tiles reduces the
bit-rate for the payload, i.e. the tile color information, so that
the overall bit-rate is improved especially for high payload,
i.e. high numbers of colors.

As the bit-rate depends linearly on the number of pixels
at the border of blots of uniform color, contrary to schemes
such as PNG, where the bit-rate depends on the image size,
bush tilings are suitable for images with large mono-colored
blots. Such images may be found in geographical maps.
In those applications, the ability to arbitrarily select spatial
details is important, a feature that is carried over from quad-
trees to bushes. Moreover, bush tilings prefer horizontally and
vertically aligned blot borders which are common in technical
diagrams as well as images of artificial objects.

Bush tilings can also be applied to natural image and video
coding in the same way as quad-trees are used. Here, the
tile payload consists of parameters for planar or polynomial
approximations of image content or motion vectors in the
case of motion compensated video coding. Such a rather big
payload, compared to indexed color images, makes bush tilings
especially interesting. Rate-distortion curves may be shifted to
produce better image approximations with more detailed and
better fitting tilings with the same or lower bit budget for tile
payload.

Bush tilings can be seen as a compromise between quad-
trees and general segmentations with arbitrarily oriented linear
splittings. They offer more flexibility and adaptability than
quad-trees while retaining a redundancy-free representation,
which is important for efficient coding.

REFERENCES

[1] G. J. Sullivan and R. L. Baker, “Efficient quadtree coding of images
and video,” IEEE Transactions on Image Processing, vol. 3, no. 3, pp.
327–331, May 1994.

[2] M. Manohar, P. S. Rao, and S. S. Iyengar, “Template quadtrees for
representing region and line data present in binary images,” Computer
Vision, Graphics, and Image Processing, vol. 51, no. 3, pp. 338–354,
1990.

[3] M. Lightstone and S. K. Mitra, “Quadtree optimization for image and
video coding,” Journal of VLSI Signal Processing, vol. 17, pp. 215–224,
1997.

[4] M. Sarkis and K. Diepold, “Content adaptive mesh representation of
images using binary space partitions,” IEEE Transactions on Image
Processing, vol. 18, no. 5, pp. 1069–1079, May 2009.

[5] R. Shukla, P. L. Dragotti, M. N. Do, and M. Vetterli, “Rate-distortion
optimized tree-structured compression algorithms for piecewise polyno-
mial images,” IEEE Transactions on Image Processing, vol. 14, no. 3,
pp. 343–359, Mar. 2005.

[6] H. Radha, M. Vetterli, and R. Leonardi, “Image compression using bi-
nary space partitioning trees,” IEEE Transactions on Image Processing,
vol. 5, no. 12, pp. 1610–1624, Dec. 1996.

[7] C. S. Won, “A block-based MAP segmentation for image compressions,”
IEEE Transactions on Circuits and Systems for Video Technology, vol. 8,
no. 5, pp. 592–601, Sep. 1998.

[8] A. A. Kassim, W. S. Lee, and D. Zonoobi, “Hierarchical segmentation-
based image coding using hybrid quad-binary trees,” IEEE Transactions
on Image Processing, vol. 18, no. 6, pp. 1284–1291, Jun. 2009.

[9] K. Lengwehasatit and A. Ortega, “Rate-complexity-distortion optimiza-
tion for quadtree-based DCT coding,” in Proceedings of the IEEE
International Conference on Image Processing, ICIP 2000, vol. 3, Sep.
2000, pp. 821–824.

[10] C. Y. Wang, S. J. Liao, and L. W. Chang, “Wavelet image coding using
variable blocksize vector quantization with optimal quadtree segmen-
tation,” Signal Processing: Image Communication, vol. 15, no. 10, pp.
879–890, 2000.

[11] V. Argyriou and T. Vlachos, “Quad-tree motion estimation in the
frequency domain using gradient correlation,” IEEE Transactions on
Multimedia, vol. 9, no. 6, pp. 1147–1154, Oct. 2007.

[12] J. Zhang, M. O. Ahmad, and M. N. S. Swamy, “Quadtree structured
region-wise motion compensation for video compression,” IEEE Trans-
actions on Circuits and Systems for Video Technology, vol. 9, no. 5, pp.
808–822, Aug. 1999.

[13] I. Rhee, G. R. Martin, S. Muthukrishnan, and R. A. Packwood,
“Quadtree-structured variable-size block-matching motion estimation
with minimal error,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 10, no. 1, pp. 42–50, Feb. 2000.

[14] F. Ono, W. Rucklidge, R. Arps, and C. Constantinescu, “JBIG2 – the
ultimate bi-level image coding standard,” in Proceedings of the IEEE
International Conference on Image Processing, ICIP 2000, vol. 1, Sep.
2000, pp. 140–143.

[15] H. Sánchez-Cruz, E. Bribiesca, and R. M. Rodrı́guez-Dagnino, “Effi-
ciency of chain codes to represent binary objects,” Pattern Recognition,
vol. 40, no. 6, pp. 1660–1674, 2007.

[16] K. Baumann, J. Döllner, K. Hinrichs, and O. Kersting, “A hybrid, hierar-
chical data structure for real-time terrain visualization,” in Proceedings
of the Computer Graphics International conference, CGI 1999, 1999,
pp. 85–92.

[17] J. Zhang and S. You, “Supporting web-based visual exploration of
large-scale raster geospatial data using binned min-max quadtree,” in
Proceedings of the 22nd international conference on scientific and
statistical database management, ser. SSDBM’10. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 379–396.

[18] R. K. Kothuri, S. Ravada, and D. Abugov, “Quadtree and R-tree indexes
in Oracle spatial: a comparison using GIS data,” in Proceedings of the
2002 ACM SIGMOD international conference on Management of data,
ser. SIGMOD ’02. New York, NY, USA: ACM, 2002, pp. 546–557.

[19] D. Xu and M. N. Do, “On the number of rectangular tilings,” IEEE
Transactions on Image Processing, vol. 15, no. 10, pp. 3225–3230, Oct.
2006.

[20] R. Kutil and D. Engel, “Methods for the anisotropic wavelet packet
transform,” Applied and Computational Harmonic Analysis, vol. 25,
no. 3, pp. 295–314, 2008.

[21] R. Kutil, “The graph structure of the anisotropic wavelet packet trans-
form,” in Proceedings of the 7th international scientific conference
devoted to the 25th anniversary of civil engineering faculty and 50th
anniversary of technical university Kosice, May 2002, pp. 41–47.

[22] ——, “Wavelet domain based techniques for video coding,” Ph.D. dis-
sertation, Department of Scientific Computing, University of Salzburg,
Austria, Jul. 2002.

	I Introduction
	II Tiling Algorithm
	III Color Coding
	IV Test Image Generation
	V Experimental Results
	VI Conclusions
	References

