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ABSTRACT

Much work has been done to optimize wavelet transforms for SIMD extensions of

modern CPUs. However, these approaches are mostly restricted to the vertical part of
2-D transforms with line-wise organized memory layouts because this leads to a rather

straight forward SIMD-implementation. This work shows for an example of a common

wavelet filter new approaches to use SIMD operations on 1-D transforms that are able
to produce reasonable speedups. As a result, the performance of algorithms that use

wavelet transforms, such as JPEG2000, can be increased significantly. Various variants

of parallelization are presented and compared. Their advantages and disadvantages for
general filters are discussed.
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1. Introduction

The wavelet transform is a well-established method used in many applications
in signal processing and multimedia processing and compression [1]. It provides
a redundancy-free time-frequency representation in real coefficients and has sev-
eral advantages over related transforms. First, in contrast to blocked DCT (dis-
crete cosine transform) coefficient manipulation does not imply unpleasant block-
ing artifacts. Second, the discrete orthogonal variants with finitely supported basis
functions have linear computational complexity O(n) while that of DCT or other
Fourier-related transforms is O(n log n). The reason for the optimal complexity of
the fast wavelet transform is the applicability of multiresolution methods. In this
case, the wavelet transform can be implemented in terms of a hierarchical applica-
tion of FIR filter banks together with down-sampling of the low-frequency parts.

Despite the speed of the algorithm it is still demandable to investigate speedup
techniques, since many applications have to satisfy realtime constraints and pro-
cessed data sets are becoming larger. A significant amount of work has been done
for MIMD parallelization [2,3,4] and old SIMD arrays [5,6,7]. The use of SIMD ex-
tensions of modern general purpose processors for wavelet transforms is investigated
for the 2-D case in [8,9].
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The wavelet transform is divided into several levels, each of which consists of
the application of a quadrature mirror filter pair. Common filters have 6 to 12
taps. For 2-D data a horizontal and a vertical filtering of each row and column
has to be performed at every level. If the memory layout is such that horizontally
neighbouring data is placed next to each other then the vertical transform can be
SIMD-enabled easily by performing the sequential algorithm on vectors of horizon-
tally neighbouring values instead of scalar values [8,9]. The horizontal filtering is
not that straight forward to parallelize. The same problem arises in 1-D transforms
and applications with memory constraints [10]. The reason for this is that consec-
utive data that is read into a single packed word requires treatment that changes
from word to word because of badly aligned filters and down-sampling. Therefore,
data has to be rearranged within packed registers and packed filter vectors have to
be set properly.

Apart from the direct FIR filter implementation, there is also the lifting scheme
[11] which is based on the factorization of the filter pair. It can reduce the number of
multiplies and adds and yields theoretical speedups of up to 2. The lifting scheme is
also considered in this work and compared to the standard implementation. Often,
implementations of the lifting scheme produce interleaved low-pass and high-pass
subbands. In this work, separated subbands are used for all filter algorithms for
two reasons. First, the presented filter algorithms can be applied recursively on the
low-pass subbands without modification to give a full wavelet transform. Second,
most applications, such as JPEG2000, prefer separated subbands.

This work presents new approaches for an example of a common filter, i.e. the
biorthogonal 7/9 filter, and shows that reasonable speedups can be achieved. All
results in this work have been conducted on an Intel Pentium 4 CPU with 3.2GHz
and 2MB cache size using the SSE extension with packed words of 4 single precision
numbers. All implementations use the same amount of code optimization, i.e. mem-
ory access through incremented pointers instead of indexed arrays, and compilation
with gcc 3.3.5 with the -O3 option. SIMD operations are implemented using gcc’s
built-in functions for vector extensions and the -msse option. Note that in order to
have full control over generated code, no automatic vectorization is applied.

The approaches proposed in this work are not compared to automatically vec-
torized code since it has already been shown in [8,9] that automatic vectorization
is still not able to produce a performance increase for this problem. However, they
are compared to hand-optimized code by human experts, i.e. the Intel r© Integrated
Performance Primitives (IPP) v5.0, and are able to compete with and even outper-
form it depending on the algorithm class and data size. Note that the IPP library
also uses SIMD operations, but the applied methods are not known to the authors.

2. The Haar Filter

The Haar filter is the most simple orthogonal wavelet filter. It is a 2-tap filter.
We consider it in this section to explain the basic approach to SIMD-parallelization
of wavelet filters, while following sections will concentrate on the biorthogonal 7/9
filter. The coefficients are (a, a) = (

√
2

2 ,
√

2
2 ) in the low-pass form and (a,−a) =

(
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2
2 ,−

√
2

2 ) in the high-pass form. Together with down-sampling by a factor of 2,
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the following assignments define the filtering process of the Haar wavelet transform.

for all i : Li ← ax2i + ax2i+1, Hi ← ax2i − ax2i+1

L and H are the low-pass and the high-pass subbands respectively. As a first
sequential improvement we can reuse already computed products, which leads to

for all i : p← ax2i, q ← ax2i+1, Li ← p + q, Hi ← p− q .

We see that for each pair Li,Hi of output values we have to read two input
values x2i, x2i+1. Since it is reasonable to read and write only full packed words
when using SIMD, we consequently have to read two packed words in each iteration.
We denote packed multiplication and addition by � and ⊕ respectively. To access
packed words and to rearrange data in packed registers (shuffle) we use the notation
y(i0,... ,im) := (yi0 , . . . , yim

). Thus, we can write the SIMD parallelization of the
Haar filter for word size 4 as

for all i :
p← x(8i,... ,8i+3) � (a, a, a, a), q ← x(8i+4,... ,8i+7) � (a, a, a, a),
r ← (p, q)(0,2,4,6), s← (p, q)(1,3,5,7),
L(4i,... ,4i+3) ← r ⊕ s, H(4i,... ,4i+3) ← r 	 s .

In the first line two perfectly aligned packed words are read and each element is im-
mediately multiplied by the coefficient a with a single packed multiply operation for
each word. In the second line the elements are rearranged into one word containing
all even elements and one containing all uneven elements using shuffle operations.
To calculate the sum and difference of every two neighbouring elements, we just
have to add and subtract the two words, which is done in the third line.

While the sequential algorithm requires two multiplies and two additions (or
subtractions) for every two input values, the SIMD version requires two packed
multiplies and two packed additions for every eight input values. This gives a
theoretical speedup of 4. However, since the shuffle operations also require some
execution time and memory access can be a bottleneck, the speedup is reduced and
we get an actual speedup of 2.7.

In the following sections we will discuss the more complicated example of the
biorthogonal 7/9-tap filter which is used in many multimedia applications such as
the JPEG2000 standard [1]. Note that all algorithms will show the same phases:
memory read, coefficient multiplication, data rearrangement, summation and mem-
ory write. Some will have a different order of execution, though. Especially coeffi-
cient multiplication and data rearrangement will be interchanged.

3. Biorthogonal 7/9 without Lifting

3.1. Sequential Algorithm

The biorthogonal 7/9 filter is an example for an uneven, symmetrical filter. It has
9 low-pass coefficients (a, b, c, d, e, d, c, b, a) and 7 high-pass coefficients (p, q, r, s, r, q, p).
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Fig. 1. Execution time of naive and improved sequential algorithm in ns/sample. The horizontal

axis shows the size of the repeatedly transformed data set in number of single precision values.

The sequential algorithm is

for all i :
Li ← ax2i−4 + bx2i−3 + cx2i−2 + dx2i−1 + ex2i

+ dx2i+1 + cx2i+2 + bx2i+3 + ax2i+4,
Hi ← px2i−2 + qx2i−1 + rx2i + sx2i+1 + rx2i+2 + qx2i+3 + px2i+4 .

However, this algorithm can be optimized in terms of number of required mul-
tiplication operations due to the symmetry of the filters. Samples that have to
be multiplied by the same coefficient and added afterwards can be added before
multiplication instead, saving one multiply.

for all i :
Li ← a(x2i−4 + x2i+4) + b(x2i−3 + x2i+3) + c(x2i−2 + cx2i+2)

+ d(x2i−1 + x2i+1) + ex2i ,
Hi ← p(x2i−2 + x2i+4) + q(x2i−1 + x2i+3) + r(x2i + x2i+2) + sx2i+1 .

Thus, 14 adds and only 9 multiplies (instead of 16) are required in each iteration.
To see the gain in performance of the optimized sequential algorithm, look at Fig. 1.
This plot shows the execution times in ns/sample over the size of transformed data.
The algorithm has been performed several times on the same data in order to unveil
the influence of cache on the execution time. However, the fact that execution times
per sample do not vary significantly with the data size shows that accessing cached
data has little impact on the performance. This shows that memory access is not
a bottleneck and the speedups shown in this and the following sections represent
algorithmic improvements. The improved algorithm gains a sequential speedup of
1.18. All parallel speedups in this section will be measured against the improved
algorithm.
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3.2. SIMD Parallelization – Variant 1

There are many possibilities to parallelize the above algorithm. The main dif-
ference between these variants is when to apply the phase of shuffle operations –
before or after multiplying with filter coefficients. The first variant performs this
multiplication directly after source data is read from memory.

As with the Haar filter, two packed words have to be read to calculate one new
low-pass word and one new high-pass word. However, since the filter is now longer
than two taps, the contents of more than two packed words are actually needed.
This can be overcome by reusing intermediate results from previous iterations, which
amounts to passing values from iteration to iteration.

In this first variant, the values of each of the two recently read words are imme-
diately multiplied by all necessary filter coefficients. Then appropriate shuffles of
the products have to be added, leading to the following algorithm:

for all i :
Y ← x(8i+4,... ,8i+7), Z ← x(8i+8,... ,8i+11)

A← C, B ← D, C ← Y � (a, b, a, b), D ← Z � (a, b, a, b),
E ← G, F ← I, G← Y � (c, d, c, d), I ← Z � (c, d, c, d),
J ←M, K ← N, M ← Y � (e, 0, e, 0), N ← Z � (e, 0, e, 0),
L(4i,... ,4i+3) ← (A,B)(0,2,4,6) ⊕ (A,B)(1,3,5,7) ⊕ (E,F,G)(2,4,6,8)⊕

(E,F,G)(3,5,7,9) ⊕ (K, M)(0,2,4,6) ⊕ (F,G)(1,3,5,7) ⊕ (F,G, I)(2,4,6,8)⊕
(B,C,D)(3,5,7,9) ⊕ (C,D)(0,2,4,6),

P ← R, Q← S, R← Y � (p, q, p, q), S ← Z � (p, q, p, q),
T ← V, U ←W, V ← Y � (r, s, r, s), W ← Z � (r, s, r, s),
H(4i,... ,4i+3) ← (P,Q,R)(2,4,6,8) ⊕ (P,Q,R)(3,5,7,9) ⊕ (U, V )(0,2,4,6)⊕

(U, V )(1,3,5,7) ⊕ (U, V,W )(2,4,6,8) ⊕ (Q,R, S)(3,5,7,9) ⊕ (R,S)(0,2,4,6)

Fig. 2 depicts the algorithm as a data-flow diagram. After multiplying the two
new source words by words of appropriate filter coefficients, they are rearranged
by shuffle operations (thin arrows) so that the sum of the resulting words is the
desired destination word containing four low-pass filtered samples. Note that the
intermediate words (after multiplication) are passed from the previous iteration
(dashed arrows). In this way one can avoid half of the multiplication operations.

Only the low-pass calculations are shown. The operations for high-pass filtering
are similar. A big disadvantage of this variant is that no intermediate results can
be shared between the low- and high-pass part. Moreover, many shuffle operations
have to be composed by two or more shuffles. One reason for this is that some
such operations require three source words. Another reason is that the processor’s
instruction set does not allow arbitrary shuffles, i.e. not all possible maps from two
source words to one destination word can be done in one instruction. Altogether
this algorithm can be implemented by 10 multiplies, 14 adds, and 26 shuffles.

3.3. SIMD Parallelization – Variant 2

A major disadvantage of the first variant is that values that have to be collected
in a single word are spread over several intermediate words, requiring more shuffle
operations. The reason for this is that downsampling causes every second value
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Fig. 2. Variant 1 of SIMD-parallel algorithm. Packed words are indicated by boxes, multiplication
by boxes with rounded edges, addition by a circle with a +, shuffle operations by thin arrows,

and the passing of values between iterations by dashed arrows. Only the low-pass calculations are

shown, high-pass operations are similar.
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Fig. 3. Variant 2 of SIMD-parallel algorithm.
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Fig. 4. Variant 3 of SIMD-parallel algorithm. Multiplication by a packed word of equal coefficients

is depicted by a single circle.

to belong together. Therefore, the second variant inserts a single step of shuffling
before the multiplication, putting even and odd samples into separate words. This
leads to the following algorithm, which is also shown in Fig. 3.

for all i :
Y ← x(8i+4,8i+6,8i+8,8i+10), Z ← x(8i+5,8i+7,8i+9,8i+11)

A← C, B ← D, C ← Y � (a, a, a, a), D ← Z � (b, b, b, b),
E ← G, F ← I, G← Y � (c, c, c, c), I ← Z � (d, d, d, d),
J ← K, K ← Y � (e, e, e, e),
L(4i,... ,4i+3) ← A⊕B ⊕ (E,G)(1,2,3,4) ⊕ (F, I)(1,2,3,4) ⊕ (J,K)(2,3,4,5)⊕

(F, I)(2,3,4,5) ⊕ (E,G)(3,4,5,6) ⊕ (B,D)(3,4,5,6) ⊕ C
P ← R, Q← S, R← Y � (p, p, p, p), S ← Z � (q, q, q, q),
T ← V, U ←W, V ← Y � (r, r, r, r), W ← Z � (s, s, s, s),
H(4i,... ,4i+3) ← (P,R)(1,2,3,4) ⊕ (Q,S)(1,2,3,4) ⊕ (T, V )(2,3,4,5)⊕

(U,W )(2,3,4,5) ⊕ (T, V )(3,4,5,6) ⊕ (Q,S)(3,4,5,6) ⊕R

This has two advantages. First, there is one less multiplication for the e-
coefficient. Second, no shuffle requires more than two source words. Moreover,
the two results of the first shuffling step can be reused in the high-pass part. Thus,
this algorithm is implemented by only 9 multiplies, 14 adds, and 20 shuffles.

3.4. SIMD Parallelization – Variant 3

The third variant adopts the scheme of the improved sequential algorithm. First,
the input words are shuffled so that the remaining operations can be performed as
in the sequential case. This reverses the order of phases completely. Then, words
that have to be multiplied by the same filter coefficients are added, followed by
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Fig. 5. Speedups of the SIMD parallelization variants against the improved sequential algorithm.

The horizontal axis again shows the size of the repeatedly transformed data set.

multiplication and the final sum. The following algorithm is also shown in Fig. 4.

for all i :
Y ← x(8i+4,... ,8i+7), Z ← x(8i+8,... ,8i+11),
A← J, B ← K, C ← (A, Y )(1,2,3,4), D ← (B, Y )(1,2,3,5),
E ← (C, Y )(1,2,3,6), F ← (D,Y )(1,2,3,7), G← (E,Z)(1,2,3,4),
I ← (F,Z)(1,2,3,5), J ← (G, Z)(1,2,3,6), K ← (I, Z)(1,2,3,7),
L(4i,... ,4i+3) ← (A⊕ J)� (a, a, a, a)⊕ (B ⊕ I)� (b, b, b, b)⊕

(C ⊕G)� (c, c, c, c)⊕ (D ⊕ F )� (d, d, d, d)⊕ E � (e, e, e, e)
H(4i,... ,4i+3) ← (C ⊕ J)� (p, p, p, p)⊕ (D ⊕ I)� (q, q, q, q)⊕

(E ⊕G)� (r, r, r, r)⊕ F � (s, s, s, s)

Note that only two words have to be passed to the next iteration. This reduces
the demand for register allocation significantly. The biggest advantage of this al-
gorithm is that all results of the shuffle phase can be reused in the high-pass part.
Unfortunately, none of the shuffles, as depicted in Fig. 4, can be implemented as a
single instruction. However, through appropriate rearrangements some of the ad-
ditional instructions can be avoided. Altogether, this variant requires 9 multiplies,
14 adds, and 12 shuffles.

3.5. Experimental Results

As variants 2 and 3 of the SIMD algorithms have the same number of multiplies
and adds as the improved sequential algorithm, only with packed words instead of
single numbers, there is a potential speedup of 4. However, due to massive shuffle
operations this speedup cannot be reached, as one can see in Fig. 5. According to
expectations, variant 3 is the best, giving speedups of 1.8.
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Again, accessing cached data has only a minor influence on performance. The
decay of speedup for small data sizes is due to complex startup and close-off oper-
ations, e.g. for initializing registers, which become more dominant for small data
sizes. The slight decay for large data sizes is probably due to cache effects.

The hand-optimized Intel r© IPP library has slightly better speedups for medium
data sizes. However, it seems to be more dependent on cache since its performance
decreases noticeably for large data sizes. Also, it seems to have even more problems
with startup operations for small data sizes, although filter allocation is performed
only once for all repeated calls in the experiment. Note that ippsWTFwd_32f is
used here which does not apply lifting and where filters are not fixed, i.e. defined
at runtime.

3.6. Arbitrary Filters

The approaches presented here can all be applied to other filters as well. It is
not apparent, however, which one would be the best for a given filter, or if some
modification of a variant can do even better. Let us, therefore, look at how the
features of the presented variants behave on other kinds of filters.

Variants 1 and 2 rely on the fact that a single filter coefficient has to be applied
to either even or odd samples, but not both. However, this is only true for uneven
symmetrical filters, or filter without any symmetry. This means that variant 3 has
even more advantages for even symmetrical filters. On the other hand, variant
3 might imply redundant multiplications for non-symmetrical filters if some low-
and high-pass coefficients are equal. This happens mostly for orthogonal wavelets.
In this case, however, filters have even length and, as a consequence, a low-pass
coefficient for even samples always corresponds to an equal high-pass coefficient for
uneven samples, or vice versa. Therefore, variant 3 does not produce redundant
multiplications for orthogonal wavelets, since multiplied even samples can never be
reused for the high-pass filtering.

Important questions arise for particularly long filters. Variants 2 and 3 need
to store at least one word for each filter tap to pass it to the next iteration. This
requires the allocation of many CPU registers and leads to additional memory access
when the compiler runs out of available registers. On the other hand, variant 3 has
to keep all shuffled words in registers, whereas variants 1 and 2 can drop shuffled
words (and even some other intermediate words) after having added them to the
final sum. However, variant 3 can also drop these if the filter is non-symmetrical.

All these remarks are only hints, of course. Filters reveal surprisingly diverse
features with respect to SIMD parallelization. Each particular filter should be
examined thoroughly, based on the approaches presented in this work.

4. Biorthogonal 7/9 with Lifting

4.1. Sequential Algorithm

As most wavelet filters, the biorthogonal 7/9 filter can also be implemented
by applying the lifting scheme [11]. It factors the filter pair into several predict
and update steps, where odd values (values at odd position) are predicted from
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even values and replaced by the difference between prediction and actual value, and
even values are updated to represent a local average. This method significantly
reduces the number of multiplies in the sequential algorithm. In this specific case
the sequential biorthogonal 7/9 without lifting uses 9 multiplies for every two sam-
ples (improved version), whereas biorthogonal 7/9 with lifting as shown here only
requires 6 multiplies.

for all i : x2i+1 ← x2i+1 + a(x2i + x2i+2), for all i : x2i ← x2i + b(x2i−1 + x2i+1),
for all i : x2i+1 ← x2i+1 + c(x2i + x2i+2), for all i : x2i ← x2i + d(x2i−1 + x2i+1),
for all i : x2i+1 ← −ex2i+1, for all i : x2i ← 1

ex2i

The low-pass and high-pass subbands are then found interleaved in even and
odd positions, respectively. Note that the coefficients a, . . . , e are not the same as
in the sequential algorithm, but are the result of the factorization process on which
the lifting scheme is based. Note also that each of these assignments has to be
executed for all i before proceeding with the next assignment.

However, the lifting scheme can also be implemented in a single-loop manner
in the sense that each input value is read from memory only once and each output
value is written to memory once without subsequent updates. While this is an
improvement in itself, since it minimizes memory access, it turns out to be the only
reasonable way to go for the SIMD parallelization. To see why, let us examine
the number of operations in a single lifting pass x2n ← x2n + α(x2n−1 + x2n+1).
There are 2 adds and 1 multiply for every second sample, which makes 1 add and
1
2 multiply per sample. Now, assume that SIMD operates on packed words of 4
samples. We can implement this operation by

x(2n,... ,2n+3) ← x(2n,... ,2n+3) + (α, 0, α, 0)� (x(2n−1,... ,2n+2) + x(2n+1,... ,2n+4)) .

Since x(2n−1,... ,2n+2) and x(2n+1,... ,2n+4) require shuffle operations, we need 2 shuf-
fles, 2 adds and 1 multiply for every 4 samples, giving 1

2 shuffle, 1
2 add and 1

4 multiply
per sample or - taken together - 1.25 operations instead of 1.5 in the non-SIMD case.
This is, obviously, not a satisfying speedup, given the theoretical maximum speedup
of 4.

Therefore, we develop a new algorithm with a single outer loop. To do so, we
have to rewrite it by applying the well known loop fusion technique. Immediately
after iteration (i, j) of loop i, iteration (i + 1, k) of the subsequent loop i + 1 is
executed that depends on iteration (i, j) and does not depend on an iteration (i, l)
in loop i occurring later in that loop (l > j). The process begins with the first loop.
After one iteration of each loop has been executed, one iteration of the fused loop
is completed and the process starts over with a subsequent iteration. As iteration
(i, j) also depends on iteration (i, j−1), values have to be passed between iterations.
For every two input values, two output values can be calculated, one low-pass and
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Fig. 6. Sequential single-loop algorithm for the biorthogonal 7/9 filter with lifting. Circles with

three inputs (l left, r right, u upper) denote basic lifting operations y = u + α(l + r). Rounded

frames indicate single iterations.

one high-pass coefficient. This leads to the following algorithm:

for all i :
o← q, p← x2i+3, q ← x2i+4,
r ← s, s← p + a(o + q),
t← u, u← o + b(r + s),
v ← w, w ← r + c(t + u),
Li ← t + d(v + w) · 1

e , Hi ← w · (−e) .

This algorithm is also shown in Fig. 6 for a very short data length of 10. Iteration,
as described above, are denoted “main”. Longer data would, of course, require more
“main” iterations. Note that intermediate values q, s, u, w are passed from iteration
to iteration, indicated by arrows that cross iteration borders in Fig. 6. These four
values have to be set properly at the beginning of the loop. Also, the end of the
loop needs special treatment. Fig. 6 shows how this must be done in the case of
mirroring border handling in the phases denoted by “prolog” and “epilog”.

4.2. SIMD Parallel Algorithm

To be able to obtain speedup using SIMD operations, again full packed words
have to be loaded. Like in variant 2 of the biorthogonal filter without lifting data
is shuffled after being read from memory. Then SIMD operations are applied. This
leads to intermediate results which have to be shuffled again before proceeding.
These results can be reused in the next iteration step, much like in the sequential
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Fig. 7. SIMD-algorithm of biorthogonal 7/9 filter with lifting. Heavy use of shuffle-operations may

cause non-optimal speedups. Like in the sequential case, intermediate values are passed between

iterations (dashed lines).

algorithm, which leads to the following algorithm:

for all i :
h← x2, x1 ← x(8i+4,... ,8i+7), x2 ← x(8i+8,... ,8i+11),
q ← (h, x1)(0,2,4,6), p← (h, x1, x2)(3,5,7,9), o← (h, x1)(2,4,6,8),
r ← s, s← (a, a, a, a)� (o⊕ q)⊕ p, r ← (r, s)(3,5,6,7),
t← u, u← (b, b, b, b)� (r ⊕ s)⊕ o, t← (t, u)(3,5,6,7),
v ← w, w ← (c, c, c, c)� (t⊕ u)⊕ r, v ← (v, w)(3,5,6,7),
L(4i,... ,4i+3) ← ((d, d, d, d)� (v ⊕ w)⊕ t)� ( 1

e , 1
e , 1

e , 1
e ),

H(4i,... ,4i+3) ← (−e,−e,−e,−e)� w .

See also Fig. 7 for a data-flow diagram of the algorithm. The algorithm can also be
interpreted as being equivalent to variant 3 of the non-lifting algorithm, applied to
each of the four stages for coefficients a, b, c, d. To see this, consider each stage as
the application of the short filters (a, 1, a), . . . , (d, 1, d). Then each stage consists
of the steps shuffle, add, multiply, and sum, just like variant 3 in Section 3.4.
Variants 1 and 2 could also be used here. However, considerations show that these
would immediately imply unreasonable slow-downs. For other filters given in lifting
scheme, a similar approach can be applied, interpreting the lifting steps as short
filters.

Again, it is not possible to implement the algorithm straight forward because
SIMD extensions (e.g. Intel SSE2 instruction set) do not support shuffling from three
sources into a single destination in a single instruction. However, the algorithm can
be implemented with 6 multiplies, 8 adds, and 11 shuffles.



Parallelization of Wavelet Filters using SIMD Extensions

 0

 2

 4

 6

 8

 10

 12

 100  1000  10000  100000  1e+06

sequential without lifting (improved)
sequential with lifting

SIMD with lifting
Intel IPP with lifting

Fig. 8. Execution times in ns/sample of sequential and SIMD implementations with and without

lifting over the size of the repeatedly transformed data set (number of floats).

4.3. Experimental Results

Fig. 8 shows execution times of the sequential and SIMD implementations of the
lifting algorithm in comparison to the non-lifting algorithm. Interestingly, the se-
quential implementation is slower with lifting than without, despite the reduced
number of multiplies and adds. Theoretical considerations [11] would imply a
speedup of 1.64. An investigation of the assembler code showed no obvious rea-
son, the faster code being significantly longer. A guess is that there is a peculiar
problem in scheduling the instructions optimally which can be resolved more easily
in the longer code.

However, the SIMD implementation is able to reduce the execution times signif-
icantly. Again, cached values do not seem to play an important role. Fig. 9 shows
the speedup of the SIMD implementation compared to versions without lifting or
SIMD. While compared to the sequential lifting algorithm we get a speedup of up
to 2.66 (of a theoretical maximum of 4), the speedup is only 2.36 (of theoretical
1.64 ·4 = 6.56) compared to the sequential algorithm without lifting since the latter
is faster, as mentioned above. However, the SIMD algorithm with lifting is faster
than that without lifting. There is a speedup of about 1.3 (of theoretical 1.64). The
speedup decay for large data sizes is again probably due to cache problems.

Again, the Intel r© IPP library is not able to outperform our SIMD implemen-
tation of wavelet lifting, as can be seen in Fig. 8. It shows equal performance for
small and slightly worse for medium data sizes. For large data sizes there seems
to be a major cache problem, since its performance even drops below that of the
sequential non-lifting algorithm. Note that ippiWTFwdRow_D97_JPEG2K_32f_C1R is
used where lifting is applied and the filter is fixed, as in our implementation.
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5. Conclusion

We have shown that the 1-D wavelet filter operation is indeed parallelizable with
SIMD extensions of common general purpose processors without hand-optimizing
assembly code. For the example of the very common biorthogonal 7/9 filter,
speedups in the range from 2 to 2.66 can be achieved for packed words of 4 single
precision floating point numbers.

The efficiency of the parallelization depends largely on the filter lengths, their
alignments and even on the coefficients of the filters. If some of the coefficients are
equal, as there are for symmetrical filters, the sequential algorithm can be optimized
by reusing computed values. To do the same in the SIMD parallelized algorithm
often implies complicated shuffle operations.

Generally, the need for many shuffle operations reduces the speedup most. Mem-
ory access as a bottleneck could also limit speedups. However, investigations show
that the execution times are almost invariant to whether source data is in cache or
not. This means that the speedups shown in this paper represent purely algorithmic
improvements.

Compared to the hand-optimized Intel r© IPP library, our approaches show at
least comparable but mostly better performance, especially for small and large data
sizes due to lower initialization complexity and less cache dependence, respectively.

Apart from speedup issues, algorithms have to be found to derive optimal solu-
tions. This is important because each parallelization presented in this work is one
of many possible solutions and it is not at all clear that the shown solutions could
not be improved. Since in practice it would be an almost unaccomplishable amount
of work to hand-code a variety of solutions to find the best, automatic optimization
techniques as in [12] are required.
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