
A Single-Loop Approach to SIMD Parallelization of 2-D Wavelet Lifting

Rade Kutil
University of Salzburg

Department of Scientific Computing
Jakob Haringer Str. 2, 5020 Salzburg, Austria

rkutil@cosy.sbg.ac.at

Abstract

Widespread use of wavelet transforms as in JPEG2000
demands efficient implementations on general purpose com-
puters as well as dedicated hardware. The increasing avail-
ability of SIMD technologies is a great challenge since
efficient SIMD parallelizations are not trivial. This work
presents a parallelized 2-D wavelet transform following a
single-loop approach, i.e. a loop fusion of the lifting steps
of horizontal filtering, and interleaving horizontal and ver-
tical filtering for optimal temporal locality. In this way,
each input value is read only once and each output value
is written once without subsequent updates. Such an ap-
proach turns out to be a necessary basis for an efficient
SIMD parallelization. Results are obtained on a general
purpose processor with a 4-fold single-precision SIMD ex-
tension. Speedups of about 3.7 due to the use of SIMD, 2.55
due to the single-loop approach and up to 6 due to cache
effects for pathologic data sizes are obtained, giving total
speedups of up to 56.

1. Introduction

Today’s most efficient wavelet transforms can be real-
ized by the lifting scheme [6, 17, 18], a factorization of the
involved filter pair. The most prominent filter of this kind is
the biorthogonal 7/9 filter, which is used in the JPEG2000
standard [9]. For this reason, it is used in this work as an ex-
ample for the presented parallelization approach.

The lifting scheme is a sequence of prediction and up-
date passes of the formx2n ← x2n + α(x2n−1 + x2n+1)
or x2n+1 ← x2n+1 + α(x2n + x2n+2) whereα is a pre-
defined factor which is different for each pass. These fac-
tors determine the underlying wavelet completely. In the
end, even samplesx2n represent low-pass filtered coeffi-
cients and odd samplesx2n+1 represent high-pass coeffi-
cients. Often, these interleaved subbands are rearranged into

separate low- and high-pass subbands. In this work the sep-
aration is done implicitly without an extra rearrangement
step.

In the 2-D case, each line is filtered by this scheme fol-
lowed by columns being processed in the same way, giving
four subbands denoted by LL, LH, HL, HH. The LL sub-
band is transformed further in a recursive way in the so-
called pyramidal transform. We will only investigate a sin-
gle filtering step in this work. However, the presented meth-
ods for subband filtering can be applied without modifica-
tion at each transform level as a consequence of subband
separation. Otherwise, methods for the transform as a whole
would have to be developed [13].

Despite the speed of the algorithm (linear complexity)
it is still demandable to investigate speedup techniques,
since many applications have to satisfy realtime constraints
and processed data sets are becoming larger. A significant
amount of work has been done for MIMD parallelization
[12, 20, 8] and old SIMD arrays [15, 1, 7]. The use of
SIMD extensions of modern general purpose processors for
wavelet transforms is investigated in [19, 2] together with
extensive cache optimizations.

The SIMD parallelization of the vertical filtering is usu-
ally the easier task if samples are arranged in row ma-
jor order. One simply has to perform the sequential algo-
rithm while operating on packed words of several horizon-
tally neighbouring samples, thus filtering several columns at
once [19, 2]. The horizontal filtering is not so straight for-
ward to parallelize because it involves an amount of shuffle
operations [10] which have to be selected carefully so as to
minimize the total number of SIMD operations. This work
basically presents a successful new SIMD parallelization of
the horizontal filtering and evaluates its performance in con-
junction with existing techniques for SIMD parallelization
and cache issues of the 2-D filtering.

The lifting scheme can be implemented in a single-loop
manner by a loop fusion of the lifting steps, which is a well
known state-of-the-art compiler technique. In this way, each
input value is read from memory only once and each out-

put value is written to memory once without subsequent up-
dates. While this is an improvement in itself, since it min-
imizes memory access, it turns out to be the only reason-
able way to go for the SIMD parallelization. To see why,
let us examine the number of operations in a single lifting
passx2n ← x2n + α(x2n−1 + x2n+1). There are 2 adds
and 1 multiply for every second sample, which makes 1 add
and 1

2 multiply per sample. Now, assume that SIMD oper-
ates on packed words of 4 samples. We can implement this
operation by

x(2n,...,2n+3) = x(2n,...,2n+3) + (α, 0, α, 0)
· (x(2n−1,...,2n+2) + x(2n+1,...,2n+4)) ,

wherex(a,...,a+3) is the packed word consisting of the four
samplesxa, xa+1, xa+2, xa+3, and+ and· are (pointwise)
packed add and multiply operations. Sincex(2n−1,...,2n+2)

andx(2n+1,...,2n+4) require shuffle operations, we need 2
shuffles, 2 adds and 1 multiply for every 4 samples, giv-
ing 1

2 shuffle, 1
2 add and1

4 multiply per sample or – taken
together –1.25 operations instead of1.5 in the non-SIMD
case. This is, obviously, not a satisfying speedup, given the
theoretical maximum speedup of4.

Therefore, this work concentrates on combining all
passes into a single one leading to the single-loop im-
plementation of the 1-D case. Performing all passes
at once gives more freedom to the SIMD paralleliza-
tion since more operations have to be performed consec-
utively which can be rearranged to a certain degree. By
exploiting these degrees of freedom, the SIMD paralleliza-
tion can be optimized.

If the single-loop approach is applied horizontally and
vertically, whether with or without using SIMD, a double-
loop algorithm results, with one loop for horizontal and one
for vertical filtering. These two loops can be incorporated
into a single loop if each value produced by an iteration of
the horizontal part is immediately fed into an iteration of
the vertical part, so the two iterations can be merged (or in-
terleaved). This technique is also called pipeline computa-
tion [2, 3]. The resulting algorithm turns out to be optimal
in terms of memory access and cache usage. It can be com-
bined successfully with SIMD parallelization.

All results in this work have been conducted on an In-
tel Pentium 4 CPU with 2.80GHz and 1MB cache size us-
ing the SSE extension with packed words of 4 single preci-
sion numbers. All implementations use the same amount of
code optimization, i.e. memory access through incremented
pointers instead of indexed arrays, and compilation with
gcc 3.3.5 with the -O3 option. SIMD operations are imple-
mented using built-in functions for vector extensions and
the -msse option. Note that in order to have full control over
generated code, no automatic vectorization is applied.

2. Cache Issues

The first step in the optimization of the wavelet lifting
algorithm has to be optimization of cache usage. There is a
major problem for higher dimensional transforms on almost
all common platforms. When accessing data in the second
(or higher) dimension, steps (i.e. distances between verti-
cally neighbouring samples in terms of memory addresses)
that are a power of two are frequently observed. Caches are,
on the other hand, divided into a number of cache sets. A
certain amount of low-order bits of memory addresses are
used to assign addresses to a cache set. In almost all cases,
the number of these cache sets is also a power of two. As
a consequence, whole columns are often assigned to a sin-
gle cache set. This leads to excessive cache misses and dra-
matically reduced performance.

This issue has been addressed in [14, 11]. An easy
method to overcome this problem is to insert gaps between
rows of data (array padding). Contrary to what is said in
[14], this does not mean that the data size has to be ex-
tended; the data in the gaps should simply not be accessed
instead. The stride between consecutive rows (i.e. row width
plus gap) should be chosen so that a sequence of memory
accesses in a single column should reuse cache sets as late
as possible. This is the case if the stride and the number of
cache sets are relatively prime. [14] suggests that the stride
be the nearest prime number greater than the row width.
However, since the number of cache sets is a power of two,
it is sufficient that the stride be odd, which guarantees rela-
tive primeness.

More sophisticated cache optimizations have been devel-
oped in [19, 2] by altering the memory layout of the data ar-
rays. In this work a memory layout with separated subbands
is chosen, which is denoted “mallat” in [19]. It has the ad-
vantage that subsequent filtering steps of the full transform
can be applied analogously to the low-pass subband. More-
over, subband-based applications such as JPEG2000 prefer
separated subbands. Other layouts, such as fully interleaved
subbands [13], are more cache optimal and do not need ex-
tra memory due to in-place transformation and are suitable
for coefficient-tree based applications [16]. These memory
layouts will not be considered in this work, because the pre-
sented algorithms can themselves be viewed as an alterna-
tive way of memory access optimization.

Figure 1 shows a comparison of the standard (multi-
loop) implementation with and without array padding. Note
that execution time is divided by the number of pixels of the
transformed image, so horizontal lines would indicate (the
expected) linear complexity of the algorithm. One can see
that starting at an image size of about 200,000 pixels the
performance depends strongly on the image size. If the im-
age size is a power of two or a sum of large powers of two,
execution times tend to be 6 times that of the array padded

 1000

 500

 200

 100

 50

 20

 10
 10000 100000 1e+06 1e+07

ns
 /

pi
xe

l

pixel

standard
with array padding

Figure 1. Cache misses for the vertical trans-
form can be reduced by array padding, i.e. by
inserting gaps between rows of data so that
the stride between vertically neighbouring
sample points is relatively prime to the num-
ber of cache sets. Execution time in nanosec-
onds per pixel is shown.

version.
In [14] another approach called aggregation is suggested.

This approach is somehow similar to the single-loop ap-
proach presented in this work in that it processes several
columns at once. If this idea is extended to the full width,
one could incorporate the horizontal and the vertical filter-
ing into a single loop, although this is not done in [14].
However, this shows that we can expect that the approaches
presented in this work will be able to resolve the cache miss
problem even without array padding.

3. Loop Fusion

To see how loops of the wavelet lifting scheme can be
incorporated into a single one, see Figure 2. It depicts the
data flow of the lifting algorithm for a 10 sample data set.
There are four factorsα, β, γ, δ used in four passes as de-
scribed in the introduction, followed by a scaling pass with
factors1

e for even and−e for odd samples.
Now we apply a loop fusion technique by splitting the

whole data flow graph into areas of width two as shown in
Figure 2. The computations in each area can be executed
from top to bottom if intermediate results from the preced-
ing pass are accessible. These intermediate values are in-
dicated by arrows that cross the borders of areas. To make
these values accessible, they have to be passed from itera-
tion to iteration. The areas (iterations) are executed from left
to right. In each main iteration, two values are read from
memory and two values are output, one low-pass and one

α α α α α

β β β β β

γ γ γ γ γ

δ δ δ δ δ

1/ε 1/ε 1/ε 1/ε 1/ε−ε −ε −ε −ε −ε

prolog main main

epilog

Figure 2. The lifting scheme. Boxes with three
inputs (l left, r right, u upper) denote basic
lifting operations y = u + α(l + r), boxes
with one input denote simple multiplication.
Loop iterations in a 1-D single-loop imple-
mentation are indicated by rounded frames.
Arrows crossing the borders indicate values
that have to be passed from iteration to itera-
tion.

high-pass coefficient. The leftmost and the rightmost area
labeled prolog and epilog in the figure (first and last itera-
tion) differ from the main iterations and have to be imple-
mented separately. They are responsible for correct border
handling (with uneven mirroring).

This procedure can also be described in terms of signal
processing, which is shown in Figure 3. Blocks with three
inputs, labelled withα, β, γ, δ, have the same meaning as
in Figure 2, i.e. they calculatey = u + α(l + r), where

z4

z3

z-2

α

z-2

β

z-2

γ

z-2

δ

−ε

1/ε

2

2

L(z)

Figure 3. Signal processing model for lifting.
This leads to the same single-loop procedure
as shown in Figure 2.

 200

 100

 50

 20

 10
 10000 100000 1e+06 1e+07

ns
 /

pi
xe

l

pixel

multi-loop
double-loop

Figure 4. Execution times per pixel for loop-
reduced 1-D lifting. Whereas multi-loop de-
notes the standard implementation, double-
loop indicates that there is a single loop for
each dimension.

in this caseu is the horizontal input andl, r are the verti-
cal inputs. The passing of values between iterations is done
by the blocks labelledz−2 which delay intermediate val-
ues by 2 samples, i.e. by the duration of one iteration.

It is this blockL(z) that is the basic building block for
all following algorithms in this work. The obvious advan-
tage is reduced memory access since intermediate values
that have to be passed from iteration to iteration can be kept
in CPU registers. This also reduces cache problems as a fur-
ther side effect.

Although we now have a single loop for 1-D lifting,
we need another loop for the second dimension in the 2-
D transform. Therefore, we call this algorithm thedouble-
loop algorithm. Figure 4 shows the execution times of the
double-loop implementation compared to the standard im-
plementation, which we will callmulti-loopalgorithm from
now on. Both apply array padding so we can see the perfor-
mance gain independent of simple cache problems. A re-
duction of execution time by a factor of up to2.2 can be
reached. Note also that the time per pixel increases with the
number of pixels. This means that the total execution time
does not grow linearly with the image size. The reason for
this is that the rate of remaining cache misses grows with
the image size.

4. SIMD Parallelization

4.1. Pure Horizontal Parallelization

After having introduced the single-loop approach for the
1-D transform we shall now come to the main achievement

α α α α

β β β β

γ γ γ γ

δ δ δ δ

1/ε ... −ε ...

Figure 5. Lifting with SIMD operations. The
same idea of splitting the algorithm into ar-
eas which can be executed by passing val-
ues from iteration to iteration applies here as
well. A single iteration is shown. Boxes repre-
sent vectors (packed words) except for those
labeled with α . . . ε which represent basic lift-
ing operations (as in Figure 2). Thin arrows
indicate shuffle operations. Arrows that leave
the iteration to the right and come in to the
left indicate the passing of values between it-
erations.

in this paper, i.e. an efficient SIMD parallelization of the
horizontal filtering. Note that we assume a row-major mem-
ory layout, in which case the horizontal filtering is the more
difficult part. Figure 5 contains a schematic representation
of the operations involved. The main idea from the sequen-
tial single-loop approach applies here as well. The algo-
rithm is split into iterations which can be executed by pass-
ing values from one iteration to the next. One such iteration
is depicted in Figure 5. The difference is that now two whole
packed words are read from memory per iteration and two
packed words are output, one containing four low-pass co-
efficients and one containing four high-pass coefficients.

There is a number of shuffle operations involved, indi-
cated by thin arrows in Figure 5. Depending on the instruc-
tion set of the SIMD processor, these shuffle operations
can often not be implemented directly (they cannot in In-
tel SSE). Therefore, some intermediate words have to be
produced. If these are chosen wisely, they can be reused in
other shuffle operations. This is addressed in more detail in
[10]. In the current implementation 11 shuffles are neces-

sary for every two input words. Again there are prolog and
epilog iterations at the beginning and at the end of the loop
which have to care for border handling.

4.2. Vertical Parallelization

As stated before, the vertical filtering can be imple-
mented more easily by adopting the sequential algorithm
to act on four columns at the same time. Instead of a sin-
gle sample of a single column, four horizontally neighbour-
ing samples are read from memory into a packed word. It is
straight forward to implement this in the single-loop style
introduced in Section 3. Together with the horizontal SIMD
filtering we get a SIMD parallelized double-loop algorithm.

4.3. Verticalized Horizontal Parallelization by Lo-
cal Transposition

The easier vertical approach to SIMD parallelization can
also be applied in the horizontal direction by performing a
transposition of data before and after the filtering. This, of
course, means extra computations and memory accesses. It
saves ourselves the shuffle operations of the pure horizontal
approach, though. In [2] this is done on blocks of data to
increase locality.

As this is not consistent with the intended single-loop ap-
proach, we choose to perform the transposition “on the fly”,
i.e. we read four packed words, transpose this4 × 4-block
and perform the 1-D single-loop algorithm on it. As the re-
sult has to be transposed again, we actually have to read two
4 × 4-blocks at a time, producing one low-pass block and
one high-pass block, which are transposed and stored sepa-
rately. As in [2] the transposition is done with SIMD shuf-
fle instructions. One such transposition requires 8 instruc-
tions. This makes4 · 8 = 32 instructions for every 8 input
words, or 8 instructions for every two input words, which
is less than the 11 instructions of the pure horizontal paral-
lelization.

Figure 6 shows execution times of the SIMD parallelized
double-loop algorithms compared to the SISD double-loop
algorithm of Section 3. We see that there is another perfor-
mance gain by a factor of about 2.8 over the whole range
of image sizes. The transposition-based parallelization is
slightly better than the pure horizontal approach (denoted
line-SIMD), mainly due to the lower number of total shuf-
fle operations.

5. Single-Loop

As we have seen, the algorithms we encountered so far
have not reduced the number of loops to one. So the promise
of the title is still to be fulfilled. In the following, there will

 200

 100

 50

 20

 10

 5
 10000 100000 1e+06 1e+07

ns
 /

pi
xe

l

pixel

SISD
transpose-SIMD

line-SIMD

Figure 6. Execution times per pixel for the
double-loop implementations with and with-
out SIMD.

be two nested loops, an outer vertical and an inner horizon-
tal loop. However, we shall consider this as a single loop
over all pixels of the image. (The algorithm could actually
be implemented this way although this would be impracti-
cal.)

In the 1-D case, we pass four values from one itera-
tion to the other. To do a similar thing in the second di-
mension, we apply an approach that is known as pipeline
or line-based computation [3]. If we imagine a whole row
as a single value (as in the easy vertical SIMD algorithm,
only with words of the size of a whole row), we must pass
four such rows from one iteration to the other. This amounts
to a buffer of four rows. In the 1-D case, we read two val-
ues from memory in a single iteration. In our row-wise ap-
proach this means that we need two new rows to start an it-
eration.

Since the source data for this row-wise vertical filter-
ing is the output of the horizontal filtering, we try to use
the output of the horizontal filtering in the vertical trans-
form immediately after it is available. Thus, we have to per-
form two horizontal filterings (on two consecutive rows) at
once. For each row we get a low-pass and a high-pass coef-
ficient, which makes four values in total. The two low-pass
values are fed into an iteration of the vertical type which
produces an LL- and an LH-type coefficient, followed by
the same operation on the two high-pass coefficients which
produces an HL- and an HH-type coefficient. In each iter-
ation the vertical part updates four values in the four-row
buffer, which are reused when the next two rows are pro-
cessed.

All this can be depicted as a simple signal-processing
model, which is shown in Figure 7. The first module rep-
resents the horizontal filtering, producing a low-pass and a

L(z)

L(zλ)

L(zλ)

LL
HL

LH
HH

Figure 7. Signal processing model of the
single-loop algorithm. L(z) is defined in Fig-
ure 3. zλ denotes the delay of a whole row
(λ being the image width). In the latter case,
downsampling has to be applied to rows,
i.e. one row is passed to the output, the other
is not.

 200

 100

 50

 20

 10
 10000 100000 1e+06 1e+07

ns
 /

pi
xe

l

pixel

double-loop
single-loop

Figure 8. Execution times for the single-loop
implementation compared to the double-loop
implementation.

high-pass data stream. Each of these is processed vertically
by L(zλ) whereλ is the image width. InL(zλ) all occur-
rences ofz−k in L(z) of Figure 3 are replaced byz−λk, rep-
resenting a delay ofk rows. Downsampling inL(zλ) has to
be applied to rows, i.e. one row is passed to the output, the
other is not.

Although this model seems to be very simple, the imple-
mentation is quite complicated. The main problem are the
prolog and epilog phases (see Figure 2). Both the horizon-
tal as well as the vertical part have three kinds of phases:
prolog, main, and epilog. As in the 1-D case, these have to
be implemented individually. However, now we have actu-
ally nine phases for all combinations of horizontal and ver-
tical phases. This makes the coding arduous since there are
no language features that support such an attempt of “code-
time scheduling of concurrent tasks”.

However, we finally have asingle-loopalgorithm that

performs vertical and horizontal filtering in one pass. Each
pixel is read only once from memory and each output coef-
ficient is written once to memory and not updated anymore.
To see the performance gain of this approach, look at Fig-
ure 8. It compares the single-loop algorithm to the double-
loop algorithm. There is some speedup for image sizes over
100,000 pixel. The most impressive fact, though, is that the
execution time per pixel is now constant for the single-loop
algorithm, which means that the implementation scales lin-
early with the image size due to reduced dependence on
cache performance. This leads to high speedups for large
images.

Note that this approach is also useful for memory limited
applications [4, 3, 5] such as hardware implementations for
streaming image data. The buffer needed in this algorithm is
only 4 rows for the passing of data between iterations and 1
row because we have to process two rows at once in the ver-
tical part. The idea of the single loop can also be extended
to the whole wavelet transform, although the implementa-
tion becomes even more complicated. In this case the buffer
size is5(1 + 1

2 + 1
4 + . . .) ≈ 10 rows in size. See [13] for a

hardware implementation of an equivalent scheme.

6. Single-Loop SIMD Parallelization

Finally, the single-loop algorithm can be SIMD paral-
lelized. The same ideas apply as in the sequential case. For
the horizontal and vertical parts of each iteration, the SIMD
parallelized versions of the 1-D single-loop algorithm of
Section 3 are used. All memory accesses are through packed
words. The problem of the nine phases has to be coped with
here as well.

Both, the pure line-SIMD and the transposition based
approach can be used for the horizontal part. In the latter
case, the vertical filtering has to be performed in chunks of
4 lines, which unfortunately increases the required buffer
size to 8 rows of data for one filtering step, or 16 rows for a
whole transform.

Figure 9 shows the execution time of the final SIMD
parallelized single-loop algorithms compared to the non-
parallelized version of the single-loop algorithm. Fortu-
nately, the constancy of the execution time per pixel over
the whole range of image sizes is still present. This time the
transposition based algorithm is significantly worse than the
pure line-SIMD approach. The reason for this is increased
buffer size destroying data locality, and an increased num-
ber of concurrently processed intermediate words per iter-
ation making register allocation more difficult. The line-
SIMD algorithm, however, performs about 3.7 times faster
than the non-parallelized, which is very close to the theoret-
ical maximum of 4.

 50

 20

 10

 5
 10000 100000 1e+06 1e+07

ns
 /

pi
xe

l

pixel

SISD
transpose-SIMD

line-SIMD

Figure 9. Execution times per pixel for the
single-loop implementation with and without
SIMD.

7. Conclusion

We have seen several performance boosts in this work.
The first simple improvement was array padding, which
avoided pathological cache misses for certain image sizes.
The development of single-loop variants of the lifting algo-
rithm yielded significant reduction of memory access for
the 1-D case involved in the 2-D double-loop algorithm
as well as for 2-D single-loop algorithm which incorpo-
rates horizontal and vertical filtering into a single loop over
the whole image by a pipelining-technique. It was shown
that the single-loop approach allows an efficient SIMD par-
allelization which can be combined to a 2-D single-loop
SIMD algorithm which outperforms all other variants sig-
nificantly.

Array padding does not only serve as a performance im-
provement, it also shows the cache dependence of the algo-
rithms presented in this work. Figure 10 shows a compar-
ison of the speedups array padding causes for each of the
algorithms. The fact that there is no speedup for the single-
loop variants shows that these have very low cache depen-
dence. This also shows that hardware implementations for
streaming wavelet lifting with low memory demand can be
derived.

Figure 11 shows a final speedup comparison for all al-
gorithms. These speedups are relative to the array-padded
standard multi-loop algorithm. A speedup of 9.5 for image
sizes of one megapixel and above is achieved, which con-
sists of 2.55 due to the single-loop algorithm and 3.7 due to
the use of SIMD. Because the reference algorithm also con-
tains some speedups (see multi-loop in Figure 10) we can
multiply these speedups, so we get speedups of up to 56 for
pathological image sizes (powers of two and similar) which

 0

 2

 4

 6

 8

 10

 12

 10000 100000 1e+06 1e+07

sp
ee

du
p

pixel

multi-loop
double-loop
single-loop
double-loop transpose-SIMD
double-loop line-SIMD
single-loop transpose-SIMD
single-loop line-SIMD

Figure 10. Effect of array padding on each
algorithm. This graph shows only execu-
tion times for critical image sizes (com-
pare Figure 1). One can see that the single-
loop implementations are able to resolve all
cache problems since there is no additional
speedup for array padding.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 10000 100000 1e+06 1e+07

sp
ee

du
p

pixel

single-loop line-SIMD
single-loop transpose-SIMD
double-loop line-SIMD
double-loop transpose-SIMD
single-loop SISD
double-loop SISD

Figure 11. Speedups of each algorithm com-
pared to the array-padded multi-loop imple-
mentation. These speedups can be multiplied
by the speedups for multi-loop in Figure 10
to compare each algorithm to the completely
non-optimized implementation.

are actually quite common. Although the speedups become
even higher in Figure 11 for very large images, this is com-
pensated by decreasing speedups in Figure 10, so the total
speedup remains at about 56 for all image sizes above one
megapixel.

References

[1] C. Chakrabarti and M. Vishvanath. Efficient realizations of
the discrete and continuous wavelet transforms: From sin-
gle chip implementations to mappings on SIMD array com-
puters.IEEE Transactions on Signal Processing, 3(43):759–
771, 1995.

[2] D. Chaver, C. Tenllado, L. Piñuel, M. Prieto, and F. Tirado.
2-D wavelet transform enhancement on general-purpose mi-
croprocessors: Memory hierarchy and SIMD parallelism ex-
ploitation. In Proceedings of the 2000 International Con-
ference on High Performance Computing, Bangalore, India,
Dec. 2002.

[3] C. Chrysafis and A. Ortega. Line based, reduced memory,
wavelet image compression.IEEE Transactions on Image
Processing, 9(3):378–389, Mar. 2000.

[4] C. Chrysafis and A. Ortega. Minimum memory implementa-
tions of the lifting scheme. InProceedings of SPIE, Interna-
tional Symposium on Optical Science and Technology, San
Diego, CA, USA, July 2000.

[5] P. C. Cosman and K. Zeger. Memory constrained wavelet-
based image coding. IEEE Signal Processing Letters,
5(9):221—223, 1998.

[6] I. Daubechies and W. Sweldens. Factoring wavelet trans-
forms into lifting steps.Journal of Fourier Analysis Appli-
cations, 4(3):245–267, 1998.

[7] M. Feil and A. Uhl. Wavelet packet decomposition and
best basis selection on massively parallel SIMD arrays. In
Proceedings of the International Conference “Wavelets and
Multiscale Methods” (IWC’98), Tangier, 1998. INRIA, Roc-
quencourt, Apr. 1998. 4 pages.

[8] J. Fridman and E. Manolakos. On the scalability of 2D dis-
crete wavelet transform algorithms.Multidimensional Sys-
tems and Signal Processing, 8(1–2):185–217, 1997.

[9] ISO/IEC JPEG committee. JPEG 2000 image coding system
— ISO/IEC 15444-1:2000, Dec. 2000.

[10] R. Kutil, P. Eder, and M. Watzl. SIMD parallelization of
common wavelet filters. InParallel Numerics ’05, pages
141–149, Portorǒz, Slovenia, Apr. 2005.

[11] R. Kutil and A. Uhl. Hardware and software aspects for 3-
D wavelet decomposition on shared memory MIMD com-
puters. In P. Zinterhof, M. Vajtersic, and A. Uhl, edi-
tors, Parallel Computation. Proceedings of ACPC’99, vol-
ume 1557 ofLecture Notes on Computer Science, pages
347–356. Springer-Verlag, 1999.

[12] R. Kutil and A. Uhl. Optimization of 3-d wavelet decompo-
sition on multiprocessors.Journal of Computing and Infor-
mation Technology (Special Issue on Parallel Numerics and
Parallel Computing in Image Processing, Video Processing,
and Multimedia), 8(1):31–40, 2000.

[13] G. Lafruit, B. Vanhoof, L. Nachtergaele, F. Catthoor, and
J. Bormans. The local wavelet transform: a memory-
efficient, high-speed architecture optimized to a region-
oriented zero-tree coder.Integrated Computer-Aided Engi-
neering, 7(2):89–103, Mar. 2000.

[14] P. Meerwald, R. Norcen, and A. Uhl. Cache issues with
JPEG2000 wavelet lifting. In C.-C. J. Kuo, editor,Visual
Communications and Image Processing 2002 (VCIP’02),
volume 4671 ofSPIE Proceedings, pages 626–634, San Jose,
CA, USA, January 2002. SPIE.

[15] M. Pic, H. Essafi, and D. Juvin. Wavelet transform on par-
allel SIMD architectures. In F. Huck and R. Juday, editors,
Visual Information Processing II, volume 1961 ofSPIE Pro-
ceedings, pages 316–323. SPIE, Aug. 1993.

[16] A. Said and W. A. Pearlman. A new, fast, and efficient image
codec based on set partitioning in hierarchical trees.IEEE
Transactions on Circuits and Systems for Video Technology,
6(3):243–249, June 1996.

[17] W. Sweldens. The lifting scheme: A custom-design construc-
tion of biorthogonal wavelets.Appl. Comput. Harmon. Anal,
3(2):186–200, 1996.

[18] W. Sweldens. The lifting scheme: A construction of second
generation wavelets.Siam J. Math. Anal., 29(2):511–546,
1997.

[19] C. Tenllado, D. Chaver, L. Piñuel, M. Prieto, and F. Tirado.
Vectorization of the 2D wavelet lifting transform using
SIMD extensions. InWorkshop on Parallel and Dis-
tributed Image Processing, Video Processing, and Multime-
dia, PDIVM ’03, Nice, France, Apr. 2003.

[20] M.-L. Woo. Parallel discrete wavelet transform on the
Paragon MIMD machine. In R. Schreiber et al., editors,Pro-
ceedings of the seventh SIAM conference on parallel pro-
cessing for scientific computing, pages 3–8, 1995.

