
Alluvion –
A Language for Computer Arithmetic Algorithms

Rade Kutil∗

Abstract. Computer arithmetic algorithms usually are represented by circuit diagrams which do
not seem to be the first choice foralgorithms. Rather, this is a consequence of the fact that these
algorithms are implemented as circuits in almost all cases. However, it is possible to represent these
algorithms in a procedural way, as is shown in this work. A specialized programming language is
developed to formalize these algorithms efficiently. Advantages of this approach are shorter repre-
sentations, easier understandability, code reuseability and better flexibility and adaptability. Real
circuits can automatically be constructed through interfaces to hardware definition languages.

1. Introduction

Computer arithmetic algorithms [2, 4] include solutions to arithmetic operations such as addition with
all sorts of carry propagation enhancements, multiplication, division, square roots and elementary
mathematical functions applied to numbers represented in the binary number system. Representations
such as integer 2-s complement for negative numbers, fixed point and floating point numbers are
possible.

They are usually implemented as hardware circuits [3] with VLSI methods or with FPGAs [6]. There-
fore, such algorithms are usually represented by logic circuit diagrams. All calculations have to be
done through elementary logic functions such asand, or andnot.

Similar to normal algorithms, the efficiency (complexity) of a computer arithmetic algorithm is de-
fined in terms of space and time, where space is basically measured by the number of logic gates
needed in the hardware implementation and – mostly more important – time is measured by the
biggest delay of all output bits. This delay is the sum of all gate delays in the longest path of gates
from an input pin to an output pin. It largely determines the clock frequency of processing units. As
with normal algorithms, time complexity can be reduced by accepting higher complexity in space,
i.e. more gates working in parallel.

It is important to note that the fanout, i.e. the number of gate inputs that must be driven by a single
gate output, usually imposes further limits on the algorithm. Although fanout limits can be avoided
by the use of buffers, these cause additional delays and, therefore, reduce the performance.

The representation of computer arithmetic algorithms as circuit diagrams can be messy and hard to
understand for large and complex algorithms. However, these algorithms can be written in a pro-
cedural form. The problem with this is the loss of parallelity which makes it hard to transform an

∗Department of Scientific Computing, University of Salzburg, Austria, email: rkutil@cosy.sbg.ac.at



algorithm into its circuit representation. This work shows how restrictions on the language can avoid
this problem. Strict separation of data and control variables allows the generation of a fixed data flow
graph through evaluation of the control flow (calls, loops, . . . ) which depends on control variables
only. The resulting data flow graph is a representation of the corresponding circuit.

Another important aspect is the use of alternative representations of knowledge for educational pur-
poses. In fact, the language proposed in this work was developed for teaching computer arithmetic
algorithms. This approach was chosen for the following reasons. The language has to be easy to
understand. Therefore, it has to be simple and to provide only necessary features. In this way, short
and clear formulations of algorithms can be found, which enables to compare the algorithms easily.
They are reproducible and adaptable. Interactive usage can improve the learning process as one can
quickly test modifications.

Traditional hardware description languages such as Verilog [5] and VHDL [1] use a more conven-
tional approach by describing the algorithms directly in terms of data flow. Although design units can
be arranged as simple chains and arrays, this does not provide the flexibility and comfort of iteration
and selection statements in programming languages.Alluvion represents an approach to combine the
two worlds of hardware and software to enable unified development.

2. Basic Syntax

One major idea of Alluvion is to provide an easily comprehensible way to describe algorithms. There-
fore, syntactical constructs were chosen that are well known from existing programming languages
such as C or Java. The following example demonstrates the basic syntax of an Alluvion program.

(c, z) = HalfAdd (x, y)
{

z = xor (x, y);
c = and (x, y);

}

(cout, z) = FullAdd (x, y, cin)
{

(c1, s1) = HalfAdd (x, y);
(c2, z) = HalfAdd (s1, cin);
cout = or (c1, c2);

}

In this example two functions are defined. The first one takes two arguments, i.e. two bitsx andy ,
and performs a half adder operation. It calculates two output bitsz andc (the carry bit) by calling the
built-in functionsxor andand . The second function is a full adder. It is implemented by two calls
of the half adder function. Three intermediate variables (c1 , s1 , c2 ) are created by specifying them
as part of result vectors. They do not have to be declared.

Figure 1 shows the circuit representation of the program example. A connection is drawn wherever the
output of a function is read as input to another function. Note that this can easily produce an enormous



x •

//
//

//
/ = 1 z

y •

�������
& c

(a) half adder (HA)

x
y HA HA

z

c ≥ 1 c

(b) full adder (FA)

Figure 1. Atomic adder units in circuit representation

amount of crossing lines, where Alluvion prevents confusion when accessing named variables at any
point in a function.

The program can be called by a command line such asFullAdd(’1’,’0’,’1’) , leading to the
resultcout = 1 andz = 0 and some program statistics such as gate count (= 5) and total gate delays
(= 3 for cout ) which are discussed later on in this paper.

3. Data Variables and Control Variables

The most important decision in the design of Alluvion is to distinguish data variables and control
variables. While the former basically correspond to electrical connections (often called signals in
HDLs), the latter parameterize the algorithm and, as a consequence, the resulting circuit. Control
variables appear as signal counts, signal numbers, stage depths and other characteristic values in
those circuits.

Control variables can influence values of data variables since control variables control how data vari-
ables are created – hence the name. On the other hand, data variables cannot influence control vari-
ables since the values of control variables are considered constant with respect to the data flow in
data variables. This is important in order to avoid the need to translate control flow statements into a
circuit representation, which would be difficult since there is no “electronic while unit” for instance.

During the evaluation of an Alluvion program, control variables are not constant, though. This appar-
ent contradiction can be resolved by imagining two phases of evaluation. In the first phase functions
are instantiated following the control flow of a given program. This can be done with the sole knowl-
edge of control variable values. In the second phase data values are supplied to function instances and
their data variables in the order of instantiation.

The following example demonstrates all this. It implements the usual ripple-carry adder.

z[0,n] = Add<n> (x[0,n-1], y[0,n-1], c)
{

for i = [0,n-1]
{

(c, z[i]) = FullAdd (x[i], y[i], c);
}
z[n] = c;

}



c c

x[0] z[0]

y[0]

x[1] z[1]

y[1]

x[2] z[2]

y[2]

x[3] z[3]

y[3] z[4]

(a) initial state

c

x[0] FA z[0]

y[0] c

x[1] z[1]

y[1]

x[2] z[2]

y[2]

x[3] z[3]

y[3] z[4]

(b) after first iteration

c

x[0] FA z[0]

y[0]

x[1] FA z[1]

y[1]

x[2] FA z[2]

y[2]

x[3] FA

c

z[3]

y[3] z[4]

(c) final state

Figure 2. How a loop creates an array of units and connections in the Add<4> function

In this examplen and i are control variables. Control variablen denotes the word size of the two
wordsx[0,n-1] andy[0,n-1] that should be added. It is passed to the function not as normal
argument but in<> brackets similar to generic parameters in C++ . The number of input and output
bits, which are specified as arrays, depends on this control variable. Thus, a function can be parame-
terized by the caller so as to process arbitrary sized data. Note that settingi = c would produce an
error because data variables cannot be assigned to control variables.

The control variablei serves as bit index. It counts from the least significant bit to the most significant
bit in a for loop. At each bit position the addition is performed by calling the aboveFullAdd
function.

Note that the current carry bit is passed toFullAdd and is immediately overwritten by the new carry
as it is output by the function. What this means for signals in the resulting circuitry, is explained in
the next section.

4. Writing to Variables Creates New Nodes

A circuit can be viewed as a set of elementary units with input and output connectors, and a set of
nodes. Each node is connected to exactly one output connector and one or more input connectors.

Alluvion virtually maps function instances to elementary units or circuit blocks. These blocks are
connected corresponding to input and output arguments. Whenever a function instance reads from a
variable, it is – in terms of circuitry – connected to the function instance that last wrote to the variable.
This means that variables serve as connection nodes.

However, this is not entirely true. In fact, it is the value of a variable that corresponds to a single node.
To see the difference, consider a variable that is overwritten with a new value. This value is produced
by the instance of a function. The output of this instance should not be connected to the node that is
currently associated with the variable. Instead, a new node has to be created. As the variable gets the
new value, it is associated with the new node.



If a variable is copied to another variable (as inz[n] = c ), two variables contain the same value
and, consequently, are associated with the same node. Therefore, a node is being manipulated until
the last associated variable is overwritten or runs out of scope, i.e. its function instance is destructed.

This principle allows Alluvion to pass signals from one loop iteration to another as well as into and
out of a loop, as shown in Figure 2. The carry bitc in the aboveAdd function is first passed to the
function and then used in the first iteration. Each iteration generates a new carry bit and passes it on
to the next iteration by overwritingc . In the circuit diagrams in Figure 2 the current value of the carry
bit is represented by the non-connected outputc. The final carry bit is passed from the last iteration
to the function result vector by copyingc to z[n] .

5. Statistics

If the above adder function is called by the command line

Add<8> (’11010000’, ’00001111’, ’0’)

then Alluvion produces the following output:

z[0,n]:
[8] 0 (17, 7)
[7] 1 (16, 6)
[6] 1 (14, 4)
[5] 0 (12, 11)
[4] 1 (10, 9)
[3] 1 (8, 7)
[2] 1 (6, 5)
[1] 1 (4, 3)
[0] 1 (2, 2)

Statistics:
and: 16 instances, max. fanout = 1
or: 8 instances, max. fanout = 2
xor: 16 instances, max. fanout = 2
HalfAdd: 16 instances, 32 gates (32 internal, 0 external)
FullAdd: 8 instances, 40 gates (8 internal, 32 external)
Add: 1 instances, 40 gates (0 internal, 40 external)

The first part represents the output vector. It consists of the arrayz[0,8] , wherez[8] is the
outgoing carry bit. Each line shows the index of the array element, it’s bit value and the two delay
values in parentheses. The first one is the total gate delay, i.e. the number of gate levels involved in the
calculation of the output bit. The second delay is the effective delay. It represents the time (measured
in gate delays) at which the output bit is guaranteed to contain the final value. The effective delay
can be smaller than the normal gate delay depending on input data. For instance, the expression
or(’1’,and(’0’,’0’)) yields a gate delay of 2 but an effective delay of 1 since the value of
theand(..) subexpression does not change the output of theor .



The second part shows overall statistics. First, the number of times a function is instantiated is
counted. For built-in functions this shows the number of gates of a certain type used in the corre-
sponding circuit. For other functions, the total gate count (i.e. the sum of the gate counts of every
instance) is calculated additionally, divided into the number of internal and external gates. Internal
gates are created through the use of built-in functions directly in the function. External gates are cre-
ated when another function is called. The external gate count is also contained in the total gate counts
of the called functions.

6. Implementation

Although the semantics of Alluvion is closely related to circuits, Alluvion does not produce any
kind of circuit representation when a program is evaluated, at least not in its current implementation.
Instead, each variable contains additional information about virtually associated circuit nodes which
is sufficient to calculate program statistics. Needless to say that the data values (bits) can be calculated
in usual language interpreter style, i.e. by replacing variable’s values on assignment. In the following
the way each of the statistical values is computed is explained.

Each node of a circuit has a certain gate delay, i.e. the longest distance to an input node in terms of
intermediate gates. As values of variables correspond to nodes, Alluvion associates a gate delay to
each value. Whenever a built-in function (a gate) is called, it calculates the maximum gate delay of
all input values, adds one to it and writes the result together with the computed data value into the
destination variable. If a value is copied from one variable to another, its gate delay is also copied.
This is especially important for function calls when input values are copied into local variables of the
called function’s instance. Output values are handled the same way. Thus, gate delays are passed into
and out of functions.

The effective delay is calculated in a similar way. The only difference is that the effective output
delay is not necessarily calculated via themaximumof effective input delays. Actually, the behaviour
depends on the input values themselves. If, for instance, both input values of an and-function are zero,
theminimumof the input delays is used.

Fanout values are more complicated to determine. The reason is that a value corresponding to a
single node can be spread over several variables if it has been copied. If each of the copied values
would count by itself the number of times it is supplied to a built-in function, all these counts must be
added in the end, which is difficult because corresponding values are hard to find and possibly already
destroyed because they went out of scope or have been overwritten. The solution is to create a node
object for each new value and let the values reference the object. Copied values reference the same
object. Now, the node object can count the input uses for all corresponding values. Node objects can
be destroyed after the last referencing value is destroyed.

Finally, gate counts can easily be determined by counting calls to built-in functions. Each called
function has to return its gate count which can then in turn be added to the gate count of the calling
function.

7. Example

To see how Alluvion works for more complicated algorithms than the ones we have seen so far, let us
look at the well known carry look-ahead add algorithm.



(g, p) = GP_Group<n> (x[0,n-1], y[0,n-1])
{

if n > 1
{

m = n/2;
(g0, p0) = GP_Group<m> (x[0,m-1], y[0,m-1]);
(g1, p1) = GP_Group<n-m> (x[m,n-1], y[m,n-1]);
g = or (g1, and (g0, p1));
p = and (p1, p0);

}
else
{

g = and (x[0], y[0]);
p = xor (x[0], y[0]);

}
}

z[0,n] = CLA_Add<n,k> (x[0,n-1], y[0,n-1], c)
{

for l = [0,n-k,k]
{

(cdead, z[l,l+k-1]) = Add<k> (x[l,l+k-1], y[l,l+k-1], c);
(g, p) = GP_Group<k> (x[l,l+k-1], y[l,l+k-1]);
c = or (g, and (c, p));

}
z[n] = c;

}

The functionCLA_Add<n,k> implements a carry look-ahead adder forn bits. It groups then-bit
words into blocks of sizek (e.g.x[l,l+k-1] ) and applies the usual ripple-carry adder to the blocks.
As the maximum gate delay primarily depends on the propagation of the carry bit, the carry look-
ahead algorithm ignores the carry bit that is output by theAdd function. Instead, it computes carry
bits throughc=or(g,and(c,p)) , whereg is the generate-bit that indicates whether the current
block generates a carry bit, andp is the propagate-bit that indicates whether the the current block
propagates an incoming carry bit. These two bits are calculated by theGP_Group<n> function.
This function is implemented in a recursive way in order to minimize the gate delay of its outputs. It
first calculates the GP-bits for the lower and upper half of the block and then combines the results.
This leads to a binary tree of gate blocks. The height of this tree depends logarithmically on the word
lengthn and, thus, is optimal in terms of gate delay.

When the carry look-ahead function is called for 16 bits in groups of 4 (CLA_Add<16,4> ), it yields
a delay of 17 forz[15] and a gate count of 156, while the ripple-carry adder (Add<16> ) yields a
delay of 32 and a gate count of 80.



8. Conclusion

Alluvion is a simple and yet powerful language that helps to design and convey computer arithmetic
algorithms. Instead of messy diagrams and lengthy explanations it provides short and precise rep-
resentations of the algorithms. Alluvion calculates characteristic values such as gate delay and gate
count. Therefore, one can easily test new and modified algorithms without having to develop a full cir-
cuit. Because algorithms are usually easier to understand in their procedural representation, Alluvion
can also be used in education.

References

[1] P. J. Ashenden.The Designer’s Guide to VHDL. Academic Press, 2002.

[2] I. Koren. Computer Arithmetic Algorithms. A.K. Peters Ltd., 2001.

[3] M. Morris Mano and C. R. Kime.Logic and Computer Design Fundamentals. Prentice Hall,
2000.

[4] A. R. Omondi. Computer Arithmetic Systems: Algorithms, Architecture, and Implementation.
Prentice Hall, 1994.

[5] S. Palnitkar.Verilog HDL. Prentice Hall, 2003.

[6] B. Zeidman.Designing with FPGAs and CPLDs. CMP Books, 2002.


