
OPTIMIZATION OF BITSTREAM ASSEMBLY IN PARALLEL
MULTIMEDIA COMPRESSION

RADE KUTIL ∗

Abstract. Multimedia compression algorithms usually take DCT or wavelet transformed input
data and produce a stream of bits as output. It has been shown that compression algorithms can
be parallelized in a data driven way so that a sequence of bit-stream parts is produced by each
processing element (PE) corresponding to the PE-local part of the partitioned and distributed input
data. Unfortunately, the collection and assembly of these bit-stream parts by a single PE turns out
to be a major bottleneck because it is sequential. This work addresses this problem by sequential
optimizations and parallelization of the assembly process itself.

Key words. video coding, transform coding, parallel processing

1. Introduction. The most successful method for image and video compression
is transform coding. The input data is usually given as two- or three-dimensional
arrays of pixels. This data is transformed by a blocked discrete cosine transform
(DCT) (as in JPEG [15] or MPEG [2, 9]) or by a discrete wavelet transform (as
in JPEG2000 [7] or SPIHT [14]). The transformed data is then quantized and the
resulting integer values are encoded bit by bit.

Although these algorithms are efficient in terms of rate-distortion performance
as well as with respect to computational complexity, the amount of data that has
to be processed causes prohibitive computational and memory demands (especially
for real-time applications). Therefore, MIMD architectures seem to be an interesting
choice for such algorithms.

The parallelization of a multimedia compression scheme is divided into at least
two phases: Parallel transform and parallel compression. Parallel transform is easy
for blocked DCT, since DCT blocks do not interfere. A significant amount of work
has been done on parallel wavelet transform [12, 17, 6]. The parallelization of the
compression algorithm did not catch so much attention, although there exists parallel
implementations of MPEG [1], JPEG [3, 5], JPEG2000 [13], EZW [4, 16] and SPIHT
[10, 11].

The author’s own investigations showed that the SPIHT algorithm can be fully
parallelized except for the bit-stream assembly as the only sequential part. Although
bit-stream assembly seems to be a simple and non-complex process, it turned out to
be a major bottleneck in parallel SPIHT compression. This work is dedicated to the
comparison of several approaches to efficient bit-stream assembly.

For obtaining experimental results, MPI implementations on a Cray T3E were
employed which is situated at the High-Performance Computing-Center in Stuttgart
and consists of 512 DEC Alpha EV5 processors (900 MFLOPS each) interconnected by
a 3-D torus with 3 GB/s bandwidth in each network node. Results were also conducted
on a shared memory machine (SGI Powerchallenge GR at RIST++, Salzburg Univ.)
with 20 MIPS R10000 processors. However, these results are very similar to the
Cray T3E results. Therefore, they are not shown in this paper. The parallel SPIHT
algorithm is applied to 3-D monochrome video data with 864× 88× 72 pixels. In all
examples, a bit-rate of 0.09 bpp is chosen.

∗Dept. of Scientific Computing, University of Salzburg, Jakob Haringer-Str. 2, A-5020 Salzburg,
Austria (rkutil@cosy.sbg.ac.at).

1



2 R. Kutil

Enc

Enc

Enc

Enc

BS

Sep.

DP Shift Copy

BS

Sep.

BS

Sep.

BS

Sep.

Fig. 3.1. Method A. Enc = Encoding process (produces bit-stream parts and separators), BS =
bit-stream, Sep. = separators, DP = calculation of destination positions, Shift = bit-alignment of
bit-stream parts, Copy = merge bit-stream parts to a single bit-stream.

2. Separators. Most multimedia compression algorithms can be viewed as an
abstract procedure which processes a set of primitive tasks in a certain order. For
each task, a certain amount of bits is written into a bit-stream. Moreover, each
task is associated with a certain approximate spatial position (i.e. a DCT-block or a
wavelet). Hence, there exists a natural approach to data-driven parallelization, that
is to distribute the source data among the PE’s and to distribute the primitive tasks
corresponding to the data distribution.

The problem is now to assemble the bit-stream parts produced by each PE both
correctly and efficiently. A good way to do this is to use separators. Separators are
dummy entries in the list of tasks which indicate a change of the PE the tasks belong
to. So, each PE only has local tasks in its local part of the task list and inserts a
separator wherever the global list continues with other PE’s tasks. While tasks are
processed, new tasks can be created and appended at the end of the task list. If the
creation of these tasks depends only on local information (i.e. other tasks that belong
to the same PE), then it is possible that each PE handles its separators correctly
without any additional communication. When separators are processed as part of the
task list, two things have to be done: First, a separator has to be inserted into the bit-
stream. This is necessary to identify the bit-stream parts that have to be assembled
in an alternating way at the end of the encoding process. Second, a separator has to
be inserted at the end of the task list to separate newly created tasks correctly from
newly created tasks of other PEs.

Experiments show that, very often, there are no actual tasks between separators.
This is the case when many tasks do not initiate new tasks, so only separators are
appended at the end of the task list. To reduce memory demands, it is necessary to
keep such groups of separators together in a single entry – associated with a counter.
For the bit-stream, separators are implemented as arrays of pointers to exact bit
positions. Accordingly, equal pointers are kept together and are associated with a
counter.

In this work, a parallel implementation [10, 11] of the well-known SPIHT algo-
rithm [14, 8] is used. In this algorithm, the task list is split into three lists. Each task
is associated with a single wavelet coefficient. Additionally, each list is reread when
its end is reached so as to encode another bit-plane for higher precision. Entries that
may not be processed anymore have to be removed.



Optimization of Bitstream Assembly 3

0
5

10
15
20
25
30
35
40
45
50

10 20 30 40 50 60

S
pe

ed
up

#PE

decomposition
overall
coding

Fig. 3.2. Speedups for method A

3. Method A: Sequential Assembly. The first and most easy-to-implement
way of bit-stream assembly is to collect all bit-stream parts together with their sep-
arators and to put the parts together sequentially on a single PE. This process is
visualized in Figure 3.1. The assembly itself is split into three blocks: The first one
determines the destination position of the bit-stream parts in the output bit-stream.
The second part shifts the bit-stream parts to the correct bit-position, since the bit-
stream parts are not byte-aligned. The last block simply copies the parts together.

The first block - the calculation of the destination positions - can be implemented
as follows:
p← 0
while still separators left

for k in 1 . . . #PE
select new separator from PEk

l← difference to old separator from PEk

if l > 0
output (p, p + l) as destination positions
p← p + l

A first improvement of this algorithm is to reduce the number of iterations of the
“while still separators left” loop. This can be done because, very often, subsequent
separators are equal (and kept together in a single entry). If this is the case for all
PE’s separator lists at the beginning of the loop body, the minimum equal-separator
count can be removed from all lists at once without corrupting the output. This
modification reduces the time for bit-stream assembly (without collection) by about
40%.

Speedup results for the wavelet transform, the SPIHT encoding and the overall
encoding process are shown in Figure 3.2. Although the speedups for the coding part
are not as good as those of the parallel wavelet decomposition, the overall speedups
are quite reasonable.

4. Method B: Parallel Shift. The next approach is to parallelize the shift
operation because it is the most time consuming operation in the process of bit-stream
assembly. To do this, the destination positions have to be distributed to enable the
PEs to determine the correct bit-alignments of the bit-stream parts (see Figure 4.1).
This additional communication step is the main disadvantage of this approach. Thus,



4 R. Kutil

Enc

Enc

Enc

Enc

BS

Sep.

DP Shift Copy

BS

Sep.

BS

Sep.

BS

Sep.

Shift

Shift

Shift

Fig. 4.1. Method B

0
5

10
15
20
25
30
35
40
45
50

10 20 30 40 50 60

S
pe

ed
up

#PE

decomposition
overall
coding

Fig. 4.2. Speedups for method B

the speedups are worse than for method A (see Figure 4.2).

5. Method C: Redundant Calculation of Destination Positions. To avoid
the additional communication step of distributing the destination positions, this
method calculates the destination positions redundantly on every PE. Unfortunately,
this involves n-to-n communication because each PE needs the full separator lists of
each other PE. Therefore, the speedups of this approach are also degraded because of
communication overhead as can be seen in Figure 5.2.

6. Method D: Parallel Calculation of Destination Positions. To calculate
the destination positions for its own bit-stream parts, a PE does not really have to
know all other’s separator lists in detail. It would be sufficient to have a separator list
of a fictive bit-stream in which all other PE’s bit-stream parts are assembled. Such
a separator list can easily be constructed by adding corresponding separators as in
Figure 6.1.

With the help of this construction, it is possible to gather enough information
on each PE by an all-reduce operation as shown in Figure 6.1. If the PE’s are
hypercube-connected, the communication can be performed in parallel as depicted in
Figure 6.1. In this case, this operation has logarithmic complexity.

The speedup results are shown in Figure 6.2. Comparing the results to those
of method A (Figure 3.2), we see that they are approximately equal. This means
that although we have parallelized the bit-stream assembly almost completely, the



Optimization of Bitstream Assembly 5

Enc

Enc

Enc

Enc

BS

Sep.

DP Shift Copy

BS

Sep.

BS

Sep.

BS

Sep.

Shift

Shift

Shift

DP

DP

DP

Fig. 5.1. Method C

0
5

10
15
20
25
30
35
40
45
50

10 20 30 40 50 60

S
pe

ed
up

#PE

decomposition
overall
coding

Fig. 5.2. Speedups for method C

increased communication overhead makes the additional speedup potential vanish.
However, given a better communication bandwidth and/or lower computational power
of processor elements, method D could outperform method A.

7. Conclusions. Four different approaches to efficient bit-stream assembly in
parallel multimedia coding were presented. While method B and C showed major
drawbacks in performance due to significant communication overhead, methods A
and D show similar performance results. The advantage of method A is that it is easy
to implement. However, method D could outperform method A given better commu-
nication bandwidth and/or lower computational power of processor elements. This is
because method D manages to parallelize the bit-stream assembly almost completely
(speedups are primarily degraded by communication overheads) while method A is a
purely sequential approach.

The presented methods can also be used for parallel post-processing of bit-streams
such as adding error correcting codes. Method D is expected to be the optimal choice
for such operations because greater computational demands reduce the share of the
communication overhead.

Acknowledgments. The author was supported by the Austrian Science Fund
FWF, project no. P13903. The author also wants to thank the High-Performance
Computing-Center (HLRS) in Stuttgart for granting access to their computing facil-
ities.



6 R. Kutil

100x2

300

500

200

400x2

600

300

500

700

1100

PE1

PE2

PE3

PE4

PE5

PE6

PE7

PE8

Fig. 6.1. Calculation of destination positions in method D by an all-reduce operation

0
5

10
15
20
25
30
35
40
45
50

10 20 30 40 50 60

S
pe

ed
up

#PE

decomposition
overall
coding

Fig. 6.2. Speedups for method D

REFERENCES

[1] S. Akramullah, I. Ahmad, and M. Liou, A data-parallel approach for real-time MPEG-2
video encoding, Journal of Parallel and Distributed Computing, 30 (1995), pp. 129–146.

[2] L. Chiariglione-Convenor, MPEG-2: Generic coding of moving pictures and associated
audio information. ISO/IEC JTC1/SC29/WG11, July 1996.

[3] G. W. Cook and E. J. Delp, An investigation of JPEG image and video compression using
parallel processing, in Proceedings of the IEEE International Conference on Accoustics,
Speech and Signal Processing, ICASSP ’94, Adelaide, South Australia, Australia, Apr.
1994, pp. 437–440.

[4] C. Creusere, Image coding using parallel implementations of the embedded zerotree wavelet
algorithm, in Digital Video Compression: Algorithms and Technologies 1996, B. Vasudev,
S. Frans, and S. Panchanathan, eds., vol. 2668 of SPIE Proceedings, 1996, pp. 82–92.

[5] J. Falkemeier and G. Joubert, Parallel image compression with JPEG for multimedisa
applications, in High Performance Computing: Technologies, Methods & Applications,
J. Dongarra et al., eds., no. 10 in Advances in Parallel Computing, North Holland, 1995,
pp. 379–394.

[6] J. Fridman and E. Manolakos, On the scalability of 2D discrete wavelet transform algo-
rithms, Multidimensional Systems and Signal Processing, 8 (1997), pp. 185–217.

[7] ISO/IEC JPEG committee, JPEG 2000 image coding system — ISO/IEC 15444-1:2000,
Dec. 2000.

[8] B. Kim and W. Pearlman, An embedded wavelet video coder using three-dimensional set
partitioning in hierarchical trees (SPIHT), in Proceedings Data Compression Conference
(DCC’97), IEEE Computer Society Press, Mar. 1997, pp. 251–259.

[9] R. Koenen, Overview of the MPEG-4 standard. ISO/IEC JTC1/SC29/WG11, July 1996.



Optimization of Bitstream Assembly 7

[10] R. Kutil, Zerotree based video coding on MIMD architectures, in Media Processors 2001,
S. Panchanathan, V. Bove, and S. Sudharsanan, eds., vol. 4313 of SPIE Proceedings, Jan.
2001, pp. 61–68.

[11] , Approaches to zerotree image and video coding on MIMD architectures, Parallel Com-
puting, 28 (2002), pp. 1095–1109.

[12] R. Kutil and A. Uhl, Optimization of 3-d wavelet decomposition on multiprocessors, Journal
of Computing and Information Technology (Special Issue on Parallel Numerics and Parallel
Computing in Image Processing, Video Processing, and Multimedia), 8 (2000), pp. 31–40.

[13] P. Meerwald, R. Norcen, and A. Uhl, Parallel JPEG2000 image coding on multiprocessors,
in Proceedings of the International Parallel & Distributed Processing Symposium 2002
(IPDPS’02), Fort Lauderdale, FL, USA, Apr. 2002, IEEE Computer Society Press, p. 2.

[14] A. Said and W. A. Pearlman, A new, fast, and efficient image codec based on set partitioning
in hierarchical trees, IEEE Transactions on Circuits and Systems for Video Technology, 6
(1996), pp. 243–249.

[15] G. Wallace, The JPEG still picture compression standard, Communications of the ACM, 34
(1991), pp. 30–44.

[16] F. Wheeler and W. Pearlman, Low-memory packetized SPIHT image compression, in Pro-
ceedings of the Asilomar Conference on Signals, Systems, and Computers, Oct. 1999.

[17] M.-L. Woo, Parallel discrete wavelet transform on the Paragon MIMD machine, in Pro-
ceedings of the seventh SIAM conference on parallel processing for scientific computing,
R. Schreiber et al., eds., 1995, pp. 3–8.


