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Motivation

» Daten auf mehrere Server verteilen.
» Schneller Zugriff und gleichmaRige Last.

» Haufige Anderungen der Serveranzahl.
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Klassisches Hashing

Idee:

N = Anzahl der Server
Server-Index = hash(Key) mod N
» Einfach und effizient.

» Problematisch bei Anderung von N (z.B. Server hinzu oder
Ausfall).
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Problem des klassischen Hashings

» Server fillt aus oder kommt hinzu.
> Fast alle Keys werden neu zugewiesen.

» Hoher Netzwerk- und Rechenaufwand.
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Klassisches Hashing: Beispiel

Beispiel: Erh6hung von N =3 auf N =4

Server-Index = hash(Key) mod N

Key N=3 N=4 Ziel-Server
10 10mod3=1 10mod4=2  gedndert
20 20mod3=2 20mod4 =0  geandert
30 30mod3=0 30mod4=2  gedndert
40 40mod3=1 40mod4 =0  geandert

> Fast jeder Key wird einem neuen Server zugewiesen.
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Grundidee von Consistent Hashing

» Hashraum als Kreis (Ring).

» Server und Keys werden gehasht.

» Zuordnung zum nachsten Server im Uhrzeigersinn.
on the World Wide Web"”

Karger et al., “Consistent hashing and random trees: distributed caching protocols for relieving hot spots
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Ring-Darstellung

Server A

zugeordnetzu/’.

Key 75 Key 12

[ ] [ ]
zugeordnet zu B
Server C@ @ Server B
o
Key 55

» Keys werden dem nichsten Server im Uhrzeigersinn
zugewiesen.

Consistent Hashing

» Hash-Bereich (z.B. 0 bis N) wird auf 0° bis 360° abgebildet.
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Hinzufiigen eines Servers
Server A
Server D (NEU) Key 12
°
Wandert von A zu D
Key 75 @
Server C@ ® Server B

°
Key 55

» Keys in allen anderen Abschnitten (A-B, B-C) bleiben
unberiihrt.

Consistent Hashing

» Nur der Bereich zwischen Server C und D wird neu zugeordnet.
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Server-Ausfall

Server A

Key 12
°
Key 75 @

Neu-Zuordnung zu C

(n&chster Nachbar)
Server C@®

@ Server B (Offline)

°
Key 55
» Server B ist nicht mehr erreichbar.

Consistent Hashing

» Anfragen fiir Keys im Bereich (A bis B) landen automatisch
beim ndchsten Knoten im Ring (Server C).
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Warum ist das besser?

» Nur ca. 1/N der Keys werden neu verteilt.
» Weniger Datenbewegung.

» Gute Skalierbarkeit.
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Problem: UngleichmaRige Last

» Zufillige Serverpositionen.

» Manche Server erhalten mehr Keys.
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Virtuelle Knoten

» Jeder Server erscheint mehrfach auf dem Ring.
» GleichmaRigere Lastverteilung.

» Bessere Ausfallsicherheit.

Stoica et al., “Chord: A scalable peer-to-peer lookup service for internet applications”
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Virtuelle Knoten: Lastverteilung beim Ausfall
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» Bei Ausfall von Server B werden die Lasten auf A und C
verteilt.

» Jeder Server tbernimmt nur einen Teil der Last von B.
Consistent Hashing
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Vorteile und Nachteile

Vorteile

» Skalierbar.

» Robust gegeniiber Anderungen.
Nachteile

» Hdohere Komplexitit.

» Verwaltungsaufwand fiir Ring.
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Praxisbeispiele

» Amazon Dynamo.
» Apache Cassandra.

» Redis / Memcached.

DeCandia et al., “Dynamo: Amazon'’s highly available key-value store”
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Vereinfachte Erklarung

> Kreis mit Ablageplatzen.

» Jeder Gegenstand wird dem néchsten Platz im Uhrzeigersinn
zugewiesen.

» Neuer Platz oder Ausfall: nur wenige Gegenstidnde miissen
umverteilt werden.
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Fazit

P Lost ein zentrales Problem verteilter Systeme.
» Minimale Datenbewegung.

» Industriestandard.
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