Consistent Hashing

Skalierbares Hashing fiir verteilte Systeme

David Heigl

January 21, 2026

o = = A
:

Consistent Hashing David Heigl
O

Motivation

» Daten auf mehrere Server verteilen.
» Schneller Zugriff und gleichmaRige Last.

» Haufige Anderungen der Serveranzahl.

o = = E 9DaA
:

Consistent Hashing David Heigl
O

Klassisches Hashing

Idee:

N = Anzahl der Server
Server-Index = hash(Key) mod N
» Einfach und effizient.

» Problematisch bei Anderung von N (z.B. Server hinzu oder
Ausfall).

Consistent Hashing

DA

:
David Heigl

Problem des klassischen Hashings

» Server fillt aus oder kommt hinzu.
> Fast alle Keys werden neu zugewiesen.

» Hoher Netzwerk- und Rechenaufwand.

o = = E 9DaA
:

Consistent Hashing David Heigl
O

Klassisches Hashing: Beispiel

Beispiel: Erh6hung von N =3 auf N =4

Server-Index = hash(Key) mod N

Key N=3 N=4 Ziel-Server
10 10mod3=1 10mod4=2 gedndert
20 20mod3=2 20mod4 =0 geandert
30 30mod3=0 30mod4=2 gedndert
40 40mod3=1 40mod4 =0 geandert

> Fast jeder Key wird einem neuen Server zugewiesen.

u]
@
I
ut
i

QR

:
Consistent Hashing David Heigl

Grundidee von Consistent Hashing

» Hashraum als Kreis (Ring).

» Server und Keys werden gehasht.

» Zuordnung zum nachsten Server im Uhrzeigersinn.
on the World Wide Web"”

Karger et al., “Consistent hashing and random trees: distributed caching protocols for relieving hot spots

o = = E 9DaA
:

Consistent Hashing David Heigl
O

Ring-Darstellung

Server A

zugeordnetzu/’.

Key 75 Key 12

[] []
zugeordnet zu B
Server C@ @ Server B
o
Key 55

» Keys werden dem nichsten Server im Uhrzeigersinn
zugewiesen.

Consistent Hashing

» Hash-Bereich (z.B. 0 bis N) wird auf 0° bis 360° abgebildet.
[m] = = =

DA

:
David Heigl

Hinzufiigen eines Servers
Server A
Server D (NEU) Key 12
°
Wandert von A zu D
Key 75 @
Server C@ ® Server B

°
Key 55

» Keys in allen anderen Abschnitten (A-B, B-C) bleiben
unberiihrt.

Consistent Hashing

» Nur der Bereich zwischen Server C und D wird neu zugeordnet.

[m]

=

DA

:
David Heigl

Server-Ausfall

Server A

Key 12
°
Key 75 @

Neu-Zuordnung zu C

(n&chster Nachbar)
Server C@®

@ Server B (Offline)

°
Key 55
» Server B ist nicht mehr erreichbar.

Consistent Hashing

» Anfragen fiir Keys im Bereich (A bis B) landen automatisch
beim ndchsten Knoten im Ring (Server C).

=

DA

:
David Heigl

Warum ist das besser?

» Nur ca. 1/N der Keys werden neu verteilt.
» Weniger Datenbewegung.

» Gute Skalierbarkeit.

o = = E 9DaA
:

Consistent Hashing David Heigl
O

Problem: UngleichmaRige Last

» Zufillige Serverpositionen.

» Manche Server erhalten mehr Keys.

o = = E 9DaA
:

Consistent Hashing David Heigl
O

Virtuelle Knoten

» Jeder Server erscheint mehrfach auf dem Ring.
» GleichmaRigere Lastverteilung.

» Bessere Ausfallsicherheit.

Stoica et al., “Chord: A scalable peer-to-peer lookup service for internet applications”

o = = E 9DaA
:

Consistent Hashing David Heigl
O

Virtuelle Knoten: Lastverteilung beim Ausfall

S L

B1
B2@ éﬁy “
oC!
C3@
A2@

\;\ A3

B3 = .

B3
» Bei Ausfall von Server B werden die Lasten auf A und C
verteilt.

» Jeder Server tbernimmt nur einen Teil der Last von B.
Consistent Hashing

[m]

=

DA

:
David Heigl

Vorteile und Nachteile

Vorteile

» Skalierbar.

» Robust gegeniiber Anderungen.
Nachteile

» Hdohere Komplexitit.

» Verwaltungsaufwand fiir Ring.

o = = E 9DaA
:

Consistent Hashing David Heigl
O

Praxisbeispiele

» Amazon Dynamo.
» Apache Cassandra.

» Redis / Memcached.

DeCandia et al., “Dynamo: Amazon'’s highly available key-value store”

o = = E 9DaA
:

Consistent Hashing David Heigl
O

Vereinfachte Erklarung

> Kreis mit Ablageplatzen.

» Jeder Gegenstand wird dem néchsten Platz im Uhrzeigersinn
zugewiesen.

» Neuer Platz oder Ausfall: nur wenige Gegenstidnde miissen
umverteilt werden.

o = = E 9DaA
: :
Consistent Hashing David Heigl
O

Fazit

P Lost ein zentrales Problem verteilter Systeme.
» Minimale Datenbewegung.

» Industriestandard.

o = = E 9DaA
:

Consistent Hashing David Heigl
O

Quellen

DeCandia, Giuseppe et al. “Dynamo: Amazon's highly available key-value store”.
In: SIGOPS Oper. Syst. Rev. 41.6 (Oct. 2007), pp. 205-220. 1sSN: 0163-5980.
DOI: 10.1145/1323293.1294281. URL:
https://doi.org/10.1145/1323293.1294281.

Karger, David et al. “Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the World Wide Web". In: Proceedings of the
Twenty-Ninth Annual ACM Symposium on Theory of Computing. STOC '97. El
Paso, Texas, USA: Association for Computing Machinery, 1997, pp. 654—663.
ISBN: 0897918886. DOI: 10.1145/258533.258660. URL:
https://doi.org/10.1145/258533.258660.

Stoica, lon et al. "Chord: A scalable peer-to-peer lookup service for internet
applications”. In: SIGCOMM Comput. Commun. Rev. 31.4 (Aug. 2001),
pp. 149-160. 1sSN: 0146-4833. DOI: 10.1145/964723.383071. URL:
https://doi.org/10.1145/964723.383071.

o = = E E 9DaA
: :
Consistent Hashing David Heigl
O

https://doi.org/10.1145/1323293.1294281
https://doi.org/10.1145/1323293.1294281
https://doi.org/10.1145/258533.258660
https://doi.org/10.1145/258533.258660
https://doi.org/10.1145/964723.383071
https://doi.org/10.1145/964723.383071

	References

