
Consistent Hashing
Skalierbares Hashing für verteilte Systeme

David Heigl

January 21, 2026

Consistent Hashing David Heigl 1 / 18



Motivation

▶ Daten auf mehrere Server verteilen.
▶ Schneller Zugriff und gleichmäßige Last.
▶ Häufige Änderungen der Serveranzahl.

Consistent Hashing David Heigl 2 / 18



Klassisches Hashing

Idee:
N = Anzahl der Server

Server-Index = hash(Key) mod N

▶ Einfach und effizient.
▶ Problematisch bei Änderung von N (z.B. Server hinzu oder

Ausfall).

Consistent Hashing David Heigl 3 / 18



Problem des klassischen Hashings

▶ Server fällt aus oder kommt hinzu.
▶ Fast alle Keys werden neu zugewiesen.
▶ Hoher Netzwerk- und Rechenaufwand.

Consistent Hashing David Heigl 4 / 18



Klassisches Hashing: Beispiel

Beispiel: Erhöhung von N = 3 auf N = 4

Server-Index = hash(Key) mod N

Key N = 3 N = 4 Ziel-Server
10 10 mod 3 = 1 10 mod 4 = 2 geändert
20 20 mod 3 = 2 20 mod 4 = 0 geändert
30 30 mod 3 = 0 30 mod 4 = 2 geändert
40 40 mod 3 = 1 40 mod 4 = 0 geändert

▶ Fast jeder Key wird einem neuen Server zugewiesen.

Consistent Hashing David Heigl 5 / 18



Grundidee von Consistent Hashing

▶ Hashraum als Kreis (Ring).
▶ Server und Keys werden gehasht.
▶ Zuordnung zum nächsten Server im Uhrzeigersinn.

Karger et al., “Consistent hashing and random trees: distributed caching protocols for relieving hot spots
on the World Wide Web”

Consistent Hashing David Heigl 6 / 18



Ring-Darstellung
Server A

Server BServer C

Key 12

zugeordnet zu B

Key 75

zugeordnet zu A

Key 55

▶ Keys werden dem nächsten Server im Uhrzeigersinn
zugewiesen.

▶ Hash-Bereich (z.B. 0 bis N) wird auf 0◦ bis 360◦ abgebildet.

Consistent Hashing David Heigl 7 / 18



Hinzufügen eines Servers
Server A

Server BServer C

Server D (NEU) Key 12

Key 55

Key 75
Wandert von A zu D

▶ Nur der Bereich zwischen Server C und D wird neu zugeordnet.
▶ Keys in allen anderen Abschnitten (A-B, B-C) bleiben

unberührt.

Consistent Hashing David Heigl 8 / 18



Server-Ausfall
Server A

Server C Server B (Offline)

Key 12
Neu-Zuordnung zu C
(nächster Nachbar)

Key 55

Key 75

▶ Server B ist nicht mehr erreichbar.
▶ Anfragen für Keys im Bereich (A bis B) landen automatisch

beim nächsten Knoten im Ring (Server C).

Consistent Hashing David Heigl 9 / 18



Warum ist das besser?

▶ Nur ca. 1/N der Keys werden neu verteilt.
▶ Weniger Datenbewegung.
▶ Gute Skalierbarkeit.

Consistent Hashing David Heigl 10 / 18



Problem: Ungleichmäßige Last

▶ Zufällige Serverpositionen.
▶ Manche Server erhalten mehr Keys.

Consistent Hashing David Heigl 11 / 18



Virtuelle Knoten

▶ Jeder Server erscheint mehrfach auf dem Ring.
▶ Gleichmäßigere Lastverteilung.
▶ Bessere Ausfallsicherheit.

Stoica et al., “Chord: A scalable peer-to-peer lookup service for internet applications”

Consistent Hashing David Heigl 12 / 18



Virtuelle Knoten: Lastverteilung beim Ausfall

A1

A2
A3

B1×
B2×

B3
×

C1

C2

C3

B1 → C1

B2 → C2

B3 → A2

▶ Bei Ausfall von Server B werden die Lasten auf A und C
verteilt.

▶ Jeder Server übernimmt nur einen Teil der Last von B.

Consistent Hashing David Heigl 13 / 18



Vorteile und Nachteile

Vorteile
▶ Skalierbar.
▶ Robust gegenüber Änderungen.

Nachteile
▶ Höhere Komplexität.
▶ Verwaltungsaufwand für Ring.

Consistent Hashing David Heigl 14 / 18



Praxisbeispiele

▶ Amazon Dynamo.
▶ Apache Cassandra.
▶ Redis / Memcached.

DeCandia et al., “Dynamo: Amazon’s highly available key-value store”

Consistent Hashing David Heigl 15 / 18



Vereinfachte Erklärung

▶ Kreis mit Ablageplätzen.
▶ Jeder Gegenstand wird dem nächsten Platz im Uhrzeigersinn

zugewiesen.
▶ Neuer Platz oder Ausfall: nur wenige Gegenstände müssen

umverteilt werden.

Consistent Hashing David Heigl 16 / 18



Fazit

▶ Löst ein zentrales Problem verteilter Systeme.
▶ Minimale Datenbewegung.
▶ Industriestandard.

Consistent Hashing David Heigl 17 / 18



Quellen
DeCandia, Giuseppe et al. “Dynamo: Amazon’s highly available key-value store”.
In: SIGOPS Oper. Syst. Rev. 41.6 (Oct. 2007), pp. 205–220. issn: 0163-5980.
doi: 10.1145/1323293.1294281. url:
https://doi.org/10.1145/1323293.1294281.
Karger, David et al. “Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the World Wide Web”. In: Proceedings of the
Twenty-Ninth Annual ACM Symposium on Theory of Computing. STOC ’97. El
Paso, Texas, USA: Association for Computing Machinery, 1997, pp. 654–663.
isbn: 0897918886. doi: 10.1145/258533.258660. url:
https://doi.org/10.1145/258533.258660.
Stoica, Ion et al. “Chord: A scalable peer-to-peer lookup service for internet
applications”. In: SIGCOMM Comput. Commun. Rev. 31.4 (Aug. 2001),
pp. 149–160. issn: 0146-4833. doi: 10.1145/964723.383071. url:
https://doi.org/10.1145/964723.383071.

Consistent Hashing David Heigl 18 / 18

https://doi.org/10.1145/1323293.1294281
https://doi.org/10.1145/1323293.1294281
https://doi.org/10.1145/258533.258660
https://doi.org/10.1145/258533.258660
https://doi.org/10.1145/964723.383071
https://doi.org/10.1145/964723.383071

	References

