
Git

Crawford Kesy Moderegger

January 25, 2025

Crawford, Kesy, Moderegger Git January 25, 2025 1 / 22

Literature

Title: Pro Git
Author: Scott Chacon and Ben Straub
Edition: 2nd
Year: 2014
Publisher: Apress
URL: https://git-scm.com/book/en/v2

Crawford, Kesy, Moderegger Git January 25, 2025 2 / 22

https://git-scm.com/book/en/v2

Version Control Systems

What is a Version Control System (VCS)?

Tracks changes to files

Centralized vs. Distributed VCS

Centralized: All clients depend on a single server
Distributed: Every client has a full copy of the repository

Advantages of a VCS

Recover lost or overwritten data by reverting to previous versions
Enables collaboration

Crawford, Kesy, Moderegger Git January 25, 2025 3 / 22

Version Control Systems

What is a Version Control System (VCS)?

Tracks changes to files

Centralized vs. Distributed VCS

Centralized: All clients depend on a single server
Distributed: Every client has a full copy of the repository

Advantages of a VCS

Recover lost or overwritten data by reverting to previous versions
Enables collaboration

Crawford, Kesy, Moderegger Git January 25, 2025 3 / 22

Version Control Systems

What is a Version Control System (VCS)?

Tracks changes to files

Centralized vs. Distributed VCS

Centralized: All clients depend on a single server
Distributed: Every client has a full copy of the repository

Advantages of a VCS

Recover lost or overwritten data by reverting to previous versions
Enables collaboration

Crawford, Kesy, Moderegger Git January 25, 2025 3 / 22

Git

A Distributed VCS

Created by Linus Torvalds in 2005

Creates/stores snapshots of your project

Goals of Git

Speed
Simple design
Strong support for non-linear development
Fully distributed
Able to handle large projects

The Git logo

Crawford, Kesy, Moderegger Git January 25, 2025 4 / 22

Git

A Distributed VCS

Created by Linus Torvalds in 2005

Creates/stores snapshots of your project

Goals of Git

Speed
Simple design
Strong support for non-linear development
Fully distributed
Able to handle large projects

The Git logo

Crawford, Kesy, Moderegger Git January 25, 2025 4 / 22

Git

A Distributed VCS

Created by Linus Torvalds in 2005

Creates/stores snapshots of your project

Goals of Git

Speed
Simple design
Strong support for non-linear development
Fully distributed
Able to handle large projects

The Git logo

Crawford, Kesy, Moderegger Git January 25, 2025 4 / 22

Git

A Distributed VCS

Created by Linus Torvalds in 2005

Creates/stores snapshots of your project

Goals of Git

Speed
Simple design
Strong support for non-linear development
Fully distributed
Able to handle large projects

The Git logo

Crawford, Kesy, Moderegger Git January 25, 2025 4 / 22

Git Basics - Get a Repository

To create a new repository, run:

$ git init

This creates a new .git/ directory in the
root of your project

Stores all the data and metadata Git needs
to manage the repository
Losing or corrupting this directory means
losing the repository’s version history

.git/

| config

| description

| HEAD

| hooks/

| info/

| objects/

| refs/

Newly created Git
directory

Crawford, Kesy, Moderegger Git January 25, 2025 5 / 22

Git Basics - Get a Repository

To create a new repository, run:

$ git init

This creates a new .git/ directory in the
root of your project

Stores all the data and metadata Git needs
to manage the repository
Losing or corrupting this directory means
losing the repository’s version history

.git/

| config

| description

| HEAD

| hooks/

| info/

| objects/

| refs/

Newly created Git
directory

Crawford, Kesy, Moderegger Git January 25, 2025 5 / 22

Git Workflow

A basic Git workflow looks like this:

Working directory Staging Area Repository (.git/)

Crawford, Kesy, Moderegger Git January 25, 2025 6 / 22

Git Workflow

A basic Git workflow looks like this:

Working directory Staging Area Repository (.git/)

Staging

Crawford, Kesy, Moderegger Git January 25, 2025 6 / 22

Git Workflow

A basic Git workflow looks like this:

Working directory Staging Area Repository (.git/)

Staging

Committing

Crawford, Kesy, Moderegger Git January 25, 2025 6 / 22

Git Workflow

A basic Git workflow looks like this:

Working directory Staging Area Repository (.git/)

Staging

Committing

Checkout project

Crawford, Kesy, Moderegger Git January 25, 2025 6 / 22

The different File States in Git

Untracked

Tracked

Unmodified Modified Staged

Crawford, Kesy, Moderegger Git January 25, 2025 7 / 22

The different File States in Git

Untracked

Tracked

Unmodified Modified Staged

git add <name>

Crawford, Kesy, Moderegger Git January 25, 2025 7 / 22

The different File States in Git

Untracked

Tracked

Unmodified Modified Staged

git add <name>
git commit

Crawford, Kesy, Moderegger Git January 25, 2025 7 / 22

The different File States in Git

Untracked

Tracked

Unmodified Modified Staged

git add <name>

edit file

git commit

Crawford, Kesy, Moderegger Git January 25, 2025 7 / 22

The different File States in Git

Untracked

Tracked

Unmodified Modified Staged

git add <name>

edit file
git add <name>

git commit

Crawford, Kesy, Moderegger Git January 25, 2025 7 / 22

Git Objects

Objects make up most of the data stored in the repository

They are referenced by a hash
There are three main types of objects

1 Blob
2 Tree
3 Commit

tree

ci

tree blob blob

blob

ci−1 ci+1

.

.

Object hierarchy

Crawford, Kesy, Moderegger Git January 25, 2025 8 / 22

Git Objects

Objects make up most of the data stored in the repository
They are referenced by a hash

There are three main types of objects

1 Blob
2 Tree
3 Commit

tree

ci

tree blob blob

blob

ci−1 ci+1

.

.

Object hierarchy

Crawford, Kesy, Moderegger Git January 25, 2025 8 / 22

Git Objects

Objects make up most of the data stored in the repository
They are referenced by a hash
There are three main types of objects

1 Blob

2 Tree
3 Commit

tree

ci

tree blob blob

blob

ci−1 ci+1

.

.

Object hierarchy

Crawford, Kesy, Moderegger Git January 25, 2025 8 / 22

Git Objects

Objects make up most of the data stored in the repository
They are referenced by a hash
There are three main types of objects

1 Blob
2 Tree

3 Commit

tree

ci

tree blob blob

blob

ci−1 ci+1

.

.

Object hierarchy

Crawford, Kesy, Moderegger Git January 25, 2025 8 / 22

Git Objects

Objects make up most of the data stored in the repository
They are referenced by a hash
There are three main types of objects

1 Blob
2 Tree
3 Commit

tree

ci

tree blob blob

blob

ci−1 ci+1

.

.

Object hierarchy

Crawford, Kesy, Moderegger Git January 25, 2025 8 / 22

Git Objects

Objects make up most of the data stored in the repository
They are referenced by a hash
There are three main types of objects

1 Blob
2 Tree
3 Commit

tree

ci

tree blob blob

blob

ci−1 ci+1

.

.

Object hierarchy

Crawford, Kesy, Moderegger Git January 25, 2025 8 / 22

Git Index

Also referred to as ”Staging Area” or ”Cache”

Stored as binary at the root of .git/

Records a sorted list of path names with corresponding references to
objects

git add <file>
1 Creates a new blob for the contents of <file>
2 Adds the path and the blob’s hash to the index

git commit
1 Writes a new tree object based on the contents in the index
2 The new commit object points to this tree

Crawford, Kesy, Moderegger Git January 25, 2025 9 / 22

Git Index

Also referred to as ”Staging Area” or ”Cache”

Stored as binary at the root of .git/

Records a sorted list of path names with corresponding references to
objects

git add <file>
1 Creates a new blob for the contents of <file>
2 Adds the path and the blob’s hash to the index

git commit
1 Writes a new tree object based on the contents in the index
2 The new commit object points to this tree

Crawford, Kesy, Moderegger Git January 25, 2025 9 / 22

Git Index

Also referred to as ”Staging Area” or ”Cache”

Stored as binary at the root of .git/

Records a sorted list of path names with corresponding references to
objects

git add <file>
1 Creates a new blob for the contents of <file>
2 Adds the path and the blob’s hash to the index

git commit
1 Writes a new tree object based on the contents in the index
2 The new commit object points to this tree

Crawford, Kesy, Moderegger Git January 25, 2025 9 / 22

Git Index

Also referred to as ”Staging Area” or ”Cache”

Stored as binary at the root of .git/

Records a sorted list of path names with corresponding references to
objects

git add <file>
1 Creates a new blob for the contents of <file>
2 Adds the path and the blob’s hash to the index

git commit
1 Writes a new tree object based on the contents in the index
2 The new commit object points to this tree

Crawford, Kesy, Moderegger Git January 25, 2025 9 / 22

Git Index

Also referred to as ”Staging Area” or ”Cache”

Stored as binary at the root of .git/

Records a sorted list of path names with corresponding references to
objects

git add <file>
1 Creates a new blob for the contents of <file>
2 Adds the path and the blob’s hash to the index

git commit
1 Writes a new tree object based on the contents in the index
2 The new commit object points to this tree

Crawford, Kesy, Moderegger Git January 25, 2025 9 / 22

Git Branches

Enables parallel development with little risk

A branch is a pointer to a commit

HEAD

Pointer to (usually) a branch to keep track of current branch
A new commit moves the branch pointer, that HEAD points to, to the
new object

To create a new branch:

$ git branch <name >

To move HEAD to another branch (switching branches):

$ git checkout <branch >

Crawford, Kesy, Moderegger Git January 25, 2025 10 / 22

Git Branches

Enables parallel development with little risk

A branch is a pointer to a commit

HEAD

Pointer to (usually) a branch to keep track of current branch
A new commit moves the branch pointer, that HEAD points to, to the
new object

To create a new branch:

$ git branch <name >

To move HEAD to another branch (switching branches):

$ git checkout <branch >

Crawford, Kesy, Moderegger Git January 25, 2025 10 / 22

Git Branches

Enables parallel development with little risk

A branch is a pointer to a commit

HEAD

Pointer to (usually) a branch to keep track of current branch
A new commit moves the branch pointer, that HEAD points to, to the
new object

To create a new branch:

$ git branch <name >

To move HEAD to another branch (switching branches):

$ git checkout <branch >

Crawford, Kesy, Moderegger Git January 25, 2025 10 / 22

Git Branches

Enables parallel development with little risk

A branch is a pointer to a commit

HEAD

Pointer to (usually) a branch to keep track of current branch
A new commit moves the branch pointer, that HEAD points to, to the
new object

To create a new branch:

$ git branch <name >

To move HEAD to another branch (switching branches):

$ git checkout <branch >

Crawford, Kesy, Moderegger Git January 25, 2025 10 / 22

Git Branches

Enables parallel development with little risk

A branch is a pointer to a commit

HEAD

Pointer to (usually) a branch to keep track of current branch
A new commit moves the branch pointer, that HEAD points to, to the
new object

To create a new branch:

$ git branch <name >

To move HEAD to another branch (switching branches):

$ git checkout <branch >

Crawford, Kesy, Moderegger Git January 25, 2025 10 / 22

Git Branches - An example

c0 c1

master

HEAD

Crawford, Kesy, Moderegger Git January 25, 2025 11 / 22

Git Branches - An example

c0 c1

master

dev

HEAD

$ git branch dev

Crawford, Kesy, Moderegger Git January 25, 2025 11 / 22

Git Branches - An example

c0 c1

master

dev

HEAD

$ git checkout dev

Crawford, Kesy, Moderegger Git January 25, 2025 11 / 22

Git Branches - An example

c0 c1

master

c2

dev

HEAD

...

$ git commit

Crawford, Kesy, Moderegger Git January 25, 2025 11 / 22

Git Branches - An example

c0 c1

master

HEAD

c2

dev

$ git checkout master

Crawford, Kesy, Moderegger Git January 25, 2025 11 / 22

Git Branches - An example

c0 c1

c2

dev

c3

master

HEAD

...

$ git commit

Crawford, Kesy, Moderegger Git January 25, 2025 11 / 22

Merging branches

Reconciling two branches is done by merging one into the other

$ git merge <branch >

This will merge <branch> into HEAD’s branch

A merge most commonly uses a 3-way merge algorithm:
1 The common ancestor is used as the base
2 The tips of the branches are compared with the base to determine the

new changes on each branch
3 Non-conflicting changes are applied
4 Conflicting changes result in a merge conflict, which must be resolved

manually

Crawford, Kesy, Moderegger Git January 25, 2025 12 / 22

Merging branches

Reconciling two branches is done by merging one into the other

$ git merge <branch >

This will merge <branch> into HEAD’s branch

A merge most commonly uses a 3-way merge algorithm:
1 The common ancestor is used as the base
2 The tips of the branches are compared with the base to determine the

new changes on each branch
3 Non-conflicting changes are applied
4 Conflicting changes result in a merge conflict, which must be resolved

manually

Crawford, Kesy, Moderegger Git January 25, 2025 12 / 22

Merging branches

Reconciling two branches is done by merging one into the other

$ git merge <branch >

This will merge <branch> into HEAD’s branch

A merge most commonly uses a 3-way merge algorithm:
1 The common ancestor is used as the base

2 The tips of the branches are compared with the base to determine the
new changes on each branch

3 Non-conflicting changes are applied
4 Conflicting changes result in a merge conflict, which must be resolved

manually

Crawford, Kesy, Moderegger Git January 25, 2025 12 / 22

Merging branches

Reconciling two branches is done by merging one into the other

$ git merge <branch >

This will merge <branch> into HEAD’s branch

A merge most commonly uses a 3-way merge algorithm:
1 The common ancestor is used as the base
2 The tips of the branches are compared with the base to determine the

new changes on each branch

3 Non-conflicting changes are applied
4 Conflicting changes result in a merge conflict, which must be resolved

manually

Crawford, Kesy, Moderegger Git January 25, 2025 12 / 22

Merging branches

Reconciling two branches is done by merging one into the other

$ git merge <branch >

This will merge <branch> into HEAD’s branch

A merge most commonly uses a 3-way merge algorithm:
1 The common ancestor is used as the base
2 The tips of the branches are compared with the base to determine the

new changes on each branch
3 Non-conflicting changes are applied

4 Conflicting changes result in a merge conflict, which must be resolved
manually

Crawford, Kesy, Moderegger Git January 25, 2025 12 / 22

Merging branches

Reconciling two branches is done by merging one into the other

$ git merge <branch >

This will merge <branch> into HEAD’s branch

A merge most commonly uses a 3-way merge algorithm:
1 The common ancestor is used as the base
2 The tips of the branches are compared with the base to determine the

new changes on each branch
3 Non-conflicting changes are applied
4 Conflicting changes result in a merge conflict, which must be resolved

manually

Crawford, Kesy, Moderegger Git January 25, 2025 12 / 22

True Merge

c0 c1

c2

dev

c3

master

HEAD

master

HEAD

Crawford, Kesy, Moderegger Git January 25, 2025 13 / 22

True Merge

c0 c1

c2

dev

c3

master

HEAD

c4

$ git merge dev

Crawford, Kesy, Moderegger Git January 25, 2025 13 / 22

Fast-forward Merge

c0 c1

c2

dev

master

HEAD

master

HEAD

Crawford, Kesy, Moderegger Git January 25, 2025 14 / 22

Fast-forward Merge

c0 c1

master

HEAD

master

HEAD

c2

dev

$ git merge dev

Crawford, Kesy, Moderegger Git January 25, 2025 14 / 22

Git References

References are pointers to a certain commit

They are stored in .git/refs/

.git/refs/

| heads/

| | master

| | dev

| remotes/

$ cat .git/refs/heads/master

98 c7705f ...

$ git log master | head -1

commit 98 c7705f ...

While .git/HEAD is not under .git/refs/, it is a symbolic reference
to another reference

$ cat .git/HEAD

ref: refs/heads/master

Crawford, Kesy, Moderegger Git January 25, 2025 15 / 22

Git References

References are pointers to a certain commit

They are stored in .git/refs/

.git/refs/

| heads/

| | master

| | dev

| remotes/

$ cat .git/refs/heads/master

98 c7705f ...

$ git log master | head -1

commit 98 c7705f ...

While .git/HEAD is not under .git/refs/, it is a symbolic reference
to another reference

$ cat .git/HEAD

ref: refs/heads/master

Crawford, Kesy, Moderegger Git January 25, 2025 15 / 22

Git References

References are pointers to a certain commit

They are stored in .git/refs/

.git/refs/

| heads/

| | master

| | dev

| remotes/

$ cat .git/refs/heads/master

98 c7705f ...

$ git log master | head -1

commit 98 c7705f ...

While .git/HEAD is not under .git/refs/, it is a symbolic reference
to another reference

$ cat .git/HEAD

ref: refs/heads/master

Crawford, Kesy, Moderegger Git January 25, 2025 15 / 22

Git Remotes

References to other repositories hosted remotely

Remote references are used to represent references from the remote

For each branch <branch> from the remote, a remote reference is
created

Denoted as <remote>/<branch>

Not directly accessible

Automatically updated

Stored under .git/refs/remotes

Adding a Remote:

$ git remote add <name > <url >

Crawford, Kesy, Moderegger Git January 25, 2025 16 / 22

Git Remotes

References to other repositories hosted remotely

Remote references are used to represent references from the remote

For each branch <branch> from the remote, a remote reference is
created

Denoted as <remote>/<branch>

Not directly accessible

Automatically updated

Stored under .git/refs/remotes

Adding a Remote:

$ git remote add <name > <url >

Crawford, Kesy, Moderegger Git January 25, 2025 16 / 22

Git Remotes

References to other repositories hosted remotely

Remote references are used to represent references from the remote

For each branch <branch> from the remote, a remote reference is
created

Denoted as <remote>/<branch>

Not directly accessible

Automatically updated

Stored under .git/refs/remotes

Adding a Remote:

$ git remote add <name > <url >

Crawford, Kesy, Moderegger Git January 25, 2025 16 / 22

Git Remotes

References to other repositories hosted remotely

Remote references are used to represent references from the remote

For each branch <branch> from the remote, a remote reference is
created

Denoted as <remote>/<branch>

Not directly accessible

Automatically updated

Stored under .git/refs/remotes

Adding a Remote:

$ git remote add <name > <url >

Crawford, Kesy, Moderegger Git January 25, 2025 16 / 22

Git Remotes - Pushing and Pulling

Pushing changes to a remote:

$ git push <remote > <branch >

This will push all changes from <branch> to the remote repository
<remote>

Also updates the remote branch <remote>/<branch>

Pulling in changes from a remote:

$ git fetch <remote >

This will download all changes and update all remote references

To integrate the changes, merge a remote branch into the current
branch:

$ git merge <remote >/<branch >

Crawford, Kesy, Moderegger Git January 25, 2025 17 / 22

Git Remotes - Pushing and Pulling

Pushing changes to a remote:

$ git push <remote > <branch >

This will push all changes from <branch> to the remote repository
<remote>

Also updates the remote branch <remote>/<branch>

Pulling in changes from a remote:

$ git fetch <remote >

This will download all changes and update all remote references

To integrate the changes, merge a remote branch into the current
branch:

$ git merge <remote >/<branch >

Crawford, Kesy, Moderegger Git January 25, 2025 17 / 22

Git Remotes - Pushing and Pulling

Pushing changes to a remote:

$ git push <remote > <branch >

This will push all changes from <branch> to the remote repository
<remote>

Also updates the remote branch <remote>/<branch>

Pulling in changes from a remote:

$ git fetch <remote >

This will download all changes and update all remote references

To integrate the changes, merge a remote branch into the current
branch:

$ git merge <remote >/<branch >

Crawford, Kesy, Moderegger Git January 25, 2025 17 / 22

Remotes - An Example

Local Remote (”origin”)

c0masterHEAD

$ git remote add origin git@github.com:johnsmith/myrepo.git

Crawford, Kesy, Moderegger Git January 25, 2025 18 / 22

Remotes - An Example

Local Remote (”origin”)

c0 c0masterHEAD master

origin/master

$ git push origin master

Crawford, Kesy, Moderegger Git January 25, 2025 18 / 22

Remotes - An Example

Local Remote (”origin”)

c0

c1

c0 master

origin/master

masterHEAD

...

$ git commit

Crawford, Kesy, Moderegger Git January 25, 2025 18 / 22

Remotes - An Example

Local Remote (”origin”)

c0

c1

c0

c1masterHEAD master

origin/master

$ git push origin master

Crawford, Kesy, Moderegger Git January 25, 2025 18 / 22

Remotes - An Example

Local Remote (”origin”)

c0

c1

c0

c1

c2

masterHEAD

origin/master

master

Crawford, Kesy, Moderegger Git January 25, 2025 18 / 22

Remotes - An Example

Local Remote (”origin”)

c0

c1

c2

c0

c1

c2

masterHEAD

master

origin/master

$ git fetch origin

Crawford, Kesy, Moderegger Git January 25, 2025 18 / 22

Remotes - An Example

Local Remote (”origin”)

c0

c1

c2

c0

c1

c2 master

origin/master

masterHEAD

$ git merge origin/master

Crawford, Kesy, Moderegger Git January 25, 2025 18 / 22

Undo Operations

Most operations in Git are reversible

To undo uncommitted actions:

$ git restore <file >

To undo commits:

$ git reset <commit >

Moves the current branch pointer to <commit>

Does not modify your working directory

git reset can cause partial loss of history

Crawford, Kesy, Moderegger Git January 25, 2025 19 / 22

Undo Operations

Most operations in Git are reversible

To undo uncommitted actions:

$ git restore <file >

To undo commits:

$ git reset <commit >

Moves the current branch pointer to <commit>

Does not modify your working directory

git reset can cause partial loss of history

Crawford, Kesy, Moderegger Git January 25, 2025 19 / 22

Undo Operations

Most operations in Git are reversible

To undo uncommitted actions:

$ git restore <file >

To undo commits:

$ git reset <commit >

Moves the current branch pointer to <commit>

Does not modify your working directory

git reset can cause partial loss of history

Crawford, Kesy, Moderegger Git January 25, 2025 19 / 22

Undo Operations

Most operations in Git are reversible

To undo uncommitted actions:

$ git restore <file >

To undo commits:

$ git reset <commit >

Moves the current branch pointer to <commit>

Does not modify your working directory

git reset can cause partial loss of history

Crawford, Kesy, Moderegger Git January 25, 2025 19 / 22

Undo Operations - An example

Goal: Revert back to state of c0, but keep contents of main.c

new.txt
v1

main.c
// todo

new.txt
v2

c0 c1

masterHEAD

main.c
int main(){}

$ git log

commit 4b76761cd4 ...

...

commit 52 cbc76923 ...

...

Working directory:

new.txt main.c
int main(){}v2

Crawford, Kesy, Moderegger Git January 25, 2025 20 / 22

Undo Operations - An example

Goal: Revert back to state of c0, but keep contents of main.c

new.txt
v1

main.c
// todo

new.txt
v2

c0 c1

main.c
int main(){}

master HEAD

$ git reset 52cb

Working directory:

new.txt main.c
int main(){}v2

Crawford, Kesy, Moderegger Git January 25, 2025 20 / 22

Undo Operations - An example

Goal: Revert back to state of c0, but keep contents of main.c

new.txt
v1

main.c
// todo

new.txt
v2

c0 c1

main.c
int main(){}

c2masterHEAD

new.txt
v1

main.c
int main(){}

$ git add main.c

$ git commit

Working directory:

new.txt main.c
int main(){}v2

Crawford, Kesy, Moderegger Git January 25, 2025 20 / 22

Undo Operations - An example

Goal: Revert back to state of c0, but keep contents of main.c

new.txt
v1

main.c
// todo

new.txt
v2

c0 c1

main.c
int main(){}

c2masterHEAD

new.txt
v1

main.c
int main(){}

$ git restore new.txt

Working directory:

new.txt
v1

main.c
int main(){}

Crawford, Kesy, Moderegger Git January 25, 2025 20 / 22

Git Optimizations

Compression: Git uses zlib to compress objects

References: Git uses references to avoid storing duplicates

Packfiles: Git occasionally creates so-called packfiles

”Loose” objects packed into one file
Also creates corresponding index-files for efficient access

Blob Blob [modified]

Before After

Blob [modified]δ

Packfile

Packfile example

Crawford, Kesy, Moderegger Git January 25, 2025 21 / 22

Git Optimizations

Compression: Git uses zlib to compress objects

References: Git uses references to avoid storing duplicates

Packfiles: Git occasionally creates so-called packfiles

”Loose” objects packed into one file
Also creates corresponding index-files for efficient access

Blob Blob [modified]

Before After

Blob [modified]δ

Packfile

Packfile example

Crawford, Kesy, Moderegger Git January 25, 2025 21 / 22

Git Optimizations

Compression: Git uses zlib to compress objects

References: Git uses references to avoid storing duplicates

Packfiles: Git occasionally creates so-called packfiles

”Loose” objects packed into one file
Also creates corresponding index-files for efficient access

Blob Blob [modified]

Before After

Blob [modified]δ

Packfile

Packfile example

Crawford, Kesy, Moderegger Git January 25, 2025 21 / 22

Git Optimizations

Compression: Git uses zlib to compress objects

References: Git uses references to avoid storing duplicates

Packfiles: Git occasionally creates so-called packfiles

”Loose” objects packed into one file
Also creates corresponding index-files for efficient access

Blob Blob [modified]

Before After

Blob [modified]δ

Packfile

Packfile example

Crawford, Kesy, Moderegger Git January 25, 2025 21 / 22

Git Optimizations

Compression: Git uses zlib to compress objects

References: Git uses references to avoid storing duplicates

Packfiles: Git occasionally creates so-called packfiles

”Loose” objects packed into one file
Also creates corresponding index-files for efficient access

Blob Blob [modified]

Before After

Blob [modified]δ

Packfile

Packfile example

Crawford, Kesy, Moderegger Git January 25, 2025 21 / 22

The Git Directory - Summary

config and description are
self-explanatory

HEAD: Reference to a branch

index: The staging area

hooks/: Scripts triggered by certain
commands

info/: Local configurations

logs/: Records changes made to refs

objects/: All objects

refs/: (Remote) branches

.git/

| config

| description

| HEAD

| index

| hooks/

| info/

| logs/

| objects/

| refs/

Git directory

Crawford, Kesy, Moderegger Git January 25, 2025 22 / 22

The Git Directory - Summary

config and description are
self-explanatory

HEAD: Reference to a branch

index: The staging area

hooks/: Scripts triggered by certain
commands

info/: Local configurations

logs/: Records changes made to refs

objects/: All objects

refs/: (Remote) branches

.git/

| config

| description

| HEAD

| index

| hooks/

| info/

| logs/

| objects/

| refs/

Git directory

Crawford, Kesy, Moderegger Git January 25, 2025 22 / 22

The Git Directory - Summary

config and description are
self-explanatory

HEAD: Reference to a branch

index: The staging area

hooks/: Scripts triggered by certain
commands

info/: Local configurations

logs/: Records changes made to refs

objects/: All objects

refs/: (Remote) branches

.git/

| config

| description

| HEAD

| index

| hooks/

| info/

| logs/

| objects/

| refs/

Git directory

Crawford, Kesy, Moderegger Git January 25, 2025 22 / 22

The Git Directory - Summary

config and description are
self-explanatory

HEAD: Reference to a branch

index: The staging area

hooks/: Scripts triggered by certain
commands

info/: Local configurations

logs/: Records changes made to refs

objects/: All objects

refs/: (Remote) branches

.git/

| config

| description

| HEAD

| index

| hooks/

| info/

| logs/

| objects/

| refs/

Git directory

Crawford, Kesy, Moderegger Git January 25, 2025 22 / 22

The Git Directory - Summary

config and description are
self-explanatory

HEAD: Reference to a branch

index: The staging area

hooks/: Scripts triggered by certain
commands

info/: Local configurations

logs/: Records changes made to refs

objects/: All objects

refs/: (Remote) branches

.git/

| config

| description

| HEAD

| index

| hooks/

| info/

| logs/

| objects/

| refs/

Git directory

Crawford, Kesy, Moderegger Git January 25, 2025 22 / 22

The Git Directory - Summary

config and description are
self-explanatory

HEAD: Reference to a branch

index: The staging area

hooks/: Scripts triggered by certain
commands

info/: Local configurations

logs/: Records changes made to refs

objects/: All objects

refs/: (Remote) branches

.git/

| config

| description

| HEAD

| index

| hooks/

| info/

| logs/

| objects/

| refs/

Git directory

Crawford, Kesy, Moderegger Git January 25, 2025 22 / 22

The Git Directory - Summary

config and description are
self-explanatory

HEAD: Reference to a branch

index: The staging area

hooks/: Scripts triggered by certain
commands

info/: Local configurations

logs/: Records changes made to refs

objects/: All objects

refs/: (Remote) branches

.git/

| config

| description

| HEAD

| index

| hooks/

| info/

| logs/

| objects/

| refs/

Git directory

Crawford, Kesy, Moderegger Git January 25, 2025 22 / 22

The Git Directory - Summary

config and description are
self-explanatory

HEAD: Reference to a branch

index: The staging area

hooks/: Scripts triggered by certain
commands

info/: Local configurations

logs/: Records changes made to refs

objects/: All objects

refs/: (Remote) branches

.git/

| config

| description

| HEAD

| index

| hooks/

| info/

| logs/

| objects/

| refs/

Git directory

Crawford, Kesy, Moderegger Git January 25, 2025 22 / 22

The Git Directory - Summary

config and description are
self-explanatory

HEAD: Reference to a branch

index: The staging area

hooks/: Scripts triggered by certain
commands

info/: Local configurations

logs/: Records changes made to refs

objects/: All objects

refs/: (Remote) branches

.git/

| config

| description

| HEAD

| index

| hooks/

| info/

| logs/

| objects/

| refs/

Git directory

Crawford, Kesy, Moderegger Git January 25, 2025 22 / 22

