Git

Crawford Kesy Moderegger

January 25, 2025

Crawford, Kesy, Moderegger

SECOND EDITION

Title: Pro Git

Author: Scott Chacon and Ben Straub PI‘O
Edition: 2nd =
Year: 2014 G It

Publisher: Apress
URL: https://git-scm.com/book/en/v2

Apress

Crawford, Kesy, Moderegger Git January 25, 2025 2/22

https://git-scm.com/book/en/v2

Version Control Systems

e What is a Version Control System (VCS)?
o Tracks changes to files

Crawford, Kesy, Moderegger i January 25, 2025

Version Control Systems

e What is a Version Control System (VCS)?
o Tracks changes to files

o Centralized vs. Distributed VCS

o Centralized: All clients depend on a single server
o Distributed: Every client has a full copy of the repository

Crawford, Kesy, Moderegger Git January 25, 2025 3/22

Version Control Systems

e What is a Version Control System (VCS)?
o Tracks changes to files

o Centralized vs. Distributed VCS

o Centralized: All clients depend on a single server
o Distributed: Every client has a full copy of the repository

o Advantages of a VCS

o Recover lost or overwritten data by reverting to previous versions
o Enables collaboration

Crawford, Kesy, Moderegger Git January 25, 2025 3/22

o A Distributed VCS

The Git logo

Crawford, Kesy, Moderegger i January 25, 2025

o A Distributed VCS
o Created by Linus Torvalds in 2005

The Git logo

Crawford, Kesy, Moderegger i January 25, 2025

o A Distributed VCS
o Created by Linus Torvalds in 2005

o Creates/stores snapshots of your project

The Git logo

Crawford, Kesy, Moderegger i January 25, 2025

o A Distributed VCS

o Created by Linus Torvalds in 2005

o Creates/stores snapshots of your project

o Goals of Git

o Speed
Simple design

Fully distributed
Able to handle large projects

Crawford, Kesy, Moderegger

Strong support for non-linear development

The Git logo

January 25, 2025

4/22

Git Basics - Get a Repository

o To create a new repository, run:

$ git init

Crawford, Kesy, Moderegger i January 25, 2025

Git Basics - Get a Repository

o To create a new repository, run: -git/ .
| config
$ git init | description
| HEAD
o This creates a new .git/ directory in the | 1}°°ks/
root of your project | info/
. | objects/
o Stores all the data and metadata Git needs | refs/

to manage the repository
o Losing or corrupting this directory means
losing the repository's version history

Newly created Git

directory

Crawford, Kesy, Moderegger Git January 25, 2025 5/22

Git Workflow

@ A basic Git workflow looks like this:

Working directory Staging Area Repository (.git/)

Crawford, Kesy, Moderegger Git January 25, 2025 6/22

Git Workflow

@ A basic Git workflow looks like this:

Working directory Staging Area Repository (.git/)

Staging

Crawford, Kesy, Moderegger Git January 25, 2025 6/22

Git Workflow

@ A basic Git workflow looks like this:

Working directory Staging Area Repository (.git/)

Staging

Committing

Crawford, Kesy, Moderegger Git January 25, 2025 6/22

Git Workflow

@ A basic Git workflow looks like this:

Working directory Staging Area Repository (.git/)
Checkout project
Staging
Committing

Crawford, Kesy, Moderegger Git January 25, 2025 6/22

The different File States in Git

Tracked

Untracked

Unmodified Modified Staged

Crawford, Kesy, Moderegger Git January 25, 2025 7/22

The different File States in Git

Tracked

Untracked

Unmodified Modified Staged

git add <name>

Crawford, Kesy, Moderegger Git January 25, 2025 7/22

The different File States in Git

Tracked

Untracked

Unmodified Modified Staged

git commit

git add <name>

Crawford, Kesy, Moderegger Git January 25, 2025 7/22

The different File States in Git

Tracked

Untracked

Unmodified Modified Staged

git commit

git add <name>

edit file

Crawford, Kesy, Moderegger Git January 25, 2025 7/22

The different File States in Git

Tracked

Untracked

Unmodified Modified Staged

git commit

git add <name>

edit file

git add <name>

Crawford, Kesy, Moderegger Git January 25, 2025 7/22

@ Objects make up most of the data stored in the repository

Crawford, Kesy, Moderegger i January 25, 2025

@ Objects make up most of the data stored in the repository
o They are referenced by a hash

Crawford, Kesy, Moderegger i January 25, 2025

@ Objects make up most of the data stored in the repository
o They are referenced by a hash
@ There are three main types of objects

Q Blob

Crawford, Kesy, Moderegger i January 25, 2025

@ Objects make up most of the data stored in the repository
o They are referenced by a hash
@ There are three main types of objects

Q Blob

Q Tree

Crawford, Kesy, Moderegger i January 25, 2025

@ Objects make up most of the data stored in the repository
o They are referenced by a hash
@ There are three main types of objects

Q Blob

Q Tree

©Q Commit

Crawford, Kesy, Moderegger Git January 25, 2025 8/22

@ Objects make up most of the data stored in the repository

o They are referenced by a hash
@ There are three main types of objects

O Blob

Q Tree
Q Commit

tree
v

tree blob blob

v

blob

Object hierarchy

Crawford, Kesy, Moderegger Git January 25, 2025 8/22

Git Index

o Also referred to as "Staging Area” or " Cache”

Crawford, Kesy, Moderegger i January 25, 2025

o Also referred to as "Staging Area” or " Cache”

o Stored as binary at the root of .git/

Crawford, Kesy, Moderegger i January 25, 2025

o Also referred to as "Staging Area” or " Cache”
o Stored as binary at the root of .git/

@ Records a sorted list of path names with corresponding references to
objects

Crawford, Kesy, Moderegger Git January 25, 2025 9/22

Also referred to as " Staging Area” or " Cache”

Stored as binary at the root of .git/

Records a sorted list of path names with corresponding references to
objects

git add <file>

@ Creates a new blob for the contents of <file>
@ Adds the path and the blob’s hash to the index

Crawford, Kesy, Moderegger Git January 25, 2025 9/22

o Also referred to as "Staging Area” or " Cache”
o Stored as binary at the root of .git/

@ Records a sorted list of path names with corresponding references to
objects

@ git add <file>
@ Creates a new blob for the contents of <file>
@ Adds the path and the blob's hash to the index

@ git commit
@ Writes a new tree object based on the contents in the index
@ The new commit object points to this tree

Crawford, Kesy, Moderegger Git January 25, 2025 9/22

o Enables parallel development with little risk

Crawford, Kesy, Moderegger i January 25, 2025 10 /22

o Enables parallel development with little risk

@ A branch is a pointer to a commit

Crawford, Kesy, Moderegger i January 25, 2025 10 /22

o Enables parallel development with little risk
@ A branch is a pointer to a commit
o HEAD

o Pointer to (usually) a branch to keep track of current branch
o A new commit moves the branch pointer, that HEAD points to, to the
new object

Crawford, Kesy, Moderegger Git January 25, 2025 10 /22

o Enables parallel development with little risk

@ A branch is a pointer to a commit
@ HEAD

o Pointer to (usually) a branch to keep track of current branch
o A new commit moves the branch pointer, that HEAD points to, to the
new object

@ To create a new branch:

$ git branch <name>

Crawford, Kesy, Moderegger Git January 25, 2025 10 /22

o Enables parallel development with little risk

@ A branch is a pointer to a commit
@ HEAD

o Pointer to (usually) a branch to keep track of current branch
o A new commit moves the branch pointer, that HEAD points to, to the
new object

@ To create a new branch:

$ git branch <name>

@ To move HEAD to another branch (switching branches):

$ git checkout <branch>

Crawford, Kesy, Moderegger Git January 25, 2025 10 /22

Git Branches - An example

HEAD

master

Crawford, Kesy, Moderegger i January 25, 2025 11/22

Git Branches - An example

HEAD

master

dev

$ git branch dev

Crawford, Kesy, Moderegger i January 25, 2025 11/22

Git Branches - An example

master

$ git checkout dev

Crawford, Kesy, Moderegger i January 25, 2025 11/22

Git Branches - An example

master

HEAD

$ git commit

Crawford, Kesy, Moderegger Git January 25, 2025 11/22

Git Branches - An example

HEAD

master

$ git checkout master

Crawford, Kesy, Moderegger Git January 25, 2025 11/22

Git Branches - An example

HEAD

master

dev

$ git commit

Crawford, Kesy, Moderegger Git January 25, 2025 11/22

Merging branches

o Reconciling two branches is done by merging one into the other

Crawford, Kesy, Moderegger i January 25, 2025 12 /22

Merging branches

o Reconciling two branches is done by merging one into the other

$ git merge <branch>

o This will merge <branch> into HEAD's branch

Crawford, Kesy, Moderegger Git January 25, 2025 12 /22

Merging branches

o Reconciling two branches is done by merging one into the other

$ git merge <branch>

o This will merge <branch> into HEAD's branch

o A merge most commonly uses a 3-way merge algorithm:
@ The common ancestor is used as the base

Crawford, Kesy, Moderegger Git January 25, 2025 12 /22

Merging branches

o Reconciling two branches is done by merging one into the other

$ git merge <branch>

o This will merge <branch> into HEAD's branch

o A merge most commonly uses a 3-way merge algorithm:

@ The common ancestor is used as the base
@ The tips of the branches are compared with the base to determine the
new changes on each branch

Crawford, Kesy, Moderegger Git January 25, 2025 12 /22

Merging branches

o Reconciling two branches is done by merging one into the other

$ git merge <branch>

o This will merge <branch> into HEAD's branch

o A merge most commonly uses a 3-way merge algorithm:
@ The common ancestor is used as the base
@ The tips of the branches are compared with the base to determine the
new changes on each branch
© Non-conflicting changes are applied

Crawford, Kesy, Moderegger Git January 25, 2025 12 /22

Merging branches

o Reconciling two branches is done by merging one into the other

$ git merge <branch>

o This will merge <branch> into HEAD's branch

o A merge most commonly uses a 3-way merge algorithm:
@ The common ancestor is used as the base
@ The tips of the branches are compared with the base to determine the
new changes on each branch
© Non-conflicting changes are applied
© Conflicting changes result in a merge conflict, which must be resolved
manually

Crawford, Kesy, Moderegger Git January 25, 2025 12 /22

True Merge

HEAD

master

dev

Crawford, Kesy, Moderegger Git January 25, 2025 13 /22

HEAD

master

dev

$ git merge dev

Crawford, Kesy, Moderegger Git January 25, 2025 13 /22

Fast-forward Merge

HEAD

master

Crawford, Kesy, Moderegger i January 25, 2025

Fast-forward Merge

HEAD

master

$ git merge dev

Crawford, Kesy, Moderegger Git January 25, 2025 14 /22

Git References

o References are pointers to a certain commit

Crawford, Kesy, Moderegger

Git Re ces

o References are pointers to a certain commit

@ They are stored in .git/refs/

commit 98c7705f ...

.gi f

th£::dz; $ cat .git/refs/heads/master
| | master 98c7705f . ..
|| dev $ git log master | head -1
I

remotes/

Crawford, Kesy, Moderegger Git January 25, 2025 15 /22

Git Re ces

o References are pointers to a certain commit

@ They are stored in .git/refs/

commit 98c7705f ...

.git f

gT ﬁ::dz; $ cat .git/refs/heads/master
| | master 98c7705f . ..
|| dev $ git log master | head -1
I

remotes/

@ While .git/HEAD is not under .git/refs/, it is a symbolic reference
to another reference

$ cat .git/HEAD
ref: refs/heads/master

Crawford, Kesy, Moderegger Git January 25, 2025 15 /22

Git Remotes

o References to other repositories hosted remotely

Crawford, Kesy, Moderegger

Git Remotes

o References to other repositories hosted remotely

@ Remote references are used to represent references from the remote

Crawford, Kesy, Moderegger Git January 25, 2025 16 /22

o References to other repositories hosted remotely
@ Remote references are used to represent references from the remote

@ For each branch <branch> from the remote, a remote reference is
created
o Denoted as <remote>/<branch>
o Not directly accessible
o Automatically updated
o Stored under .git/refs/remotes

Crawford, Kesy, Moderegger Git January 25, 2025 16 /22

Git Remotes

o References to other repositories hosted remotely
@ Remote references are used to represent references from the remote

@ For each branch <branch> from the remote, a remote reference is
created

o Denoted as <remote>/<branch>
o Not directly accessible

o Automatically updated

o Stored under .git/refs/remotes

o Adding a Remote:

$ git remote add <name> <url>

Crawford, Kesy, Moderegger Git January 25, 2025 16 /22

Git Remotes - Pushing and Pulling

o Pushing changes to a remote:

$ git push <remote> <branch>

o This will push all changes from <branch> to the remote repository
<remote>
o Also updates the remote branch <remote>/<branch>

Crawford, Kesy, Moderegger Git January 25, 2025 17 /22

Git Remotes - Pushing and Pulling

o Pushing changes to a remote:

$ git push <remote> <branch>
o This will push all changes from <branch> to the remote repository
<remote>

o Also updates the remote branch <remote>/<branch>

o Pulling in changes from a remote:

$ git fetch <remote>

o This will download all changes and update all remote references

Crawford, Kesy, Moderegger Git January 25, 2025 17 /22

Git Remotes - Pushing and Pulling

o Pushing changes to a remote:

$ git push <remote> <branch>

o This will push all changes from <branch> to the remote repository
<remote>

o Also updates the remote branch <remote>/<branch>
o Pulling in changes from a remote:
$ git fetch <remote>

o This will download all changes and update all remote references

o To integrate the changes, merge a remote branch into the current
branch:

$ git merge <remote>/<branch>

Crawford, Kesy, Moderegger Git January 25, 2025 17 /22

Remotes - An Example

Local Remote (" origin”)

HEAD—»master

$ git remote add origin git@github.com: johnsmith/myrepo.git

Crawford, Kesy, Moderegger Git January 25, 2025 18 /22

Remotes - An Example

Local Remote (" origin”)
origin/master
HEAD—»master ° ° master

$ git push origin master

Crawford, Kesy, Moderegger Git January 25, 2025 18 /22

Remotes - An Example

Local Remote (" origin”)

HEAD—»master °
origin/master
0 master

$ git commit

Crawford, Kesy, Moderegger Git January 25, 2025 18 /22

Remotes - An Example

Remote (" origin”)

Local

origin/master

HEAD—»master °

$ git push origin master

Crawford, Kesy, Moderegger

master

January 25, 2025 18 /22

Remotes - An Example

Local Remote (" origin”)

master

origin/master

HEAD—»master °

Crawford, Kesy, Moderegger Git January 25, 2025 18 /22

Remotes - An Example

Remote (" origin”)

Local

origin/master

HEAD—»master °

$ git fetch origin

Crawford, Kesy, Moderegger

master

January 25, 2025 18 /22

Remotes - An Example

Remote (" origin”)

Local

origin/master

HEAD—»master e

$ git merge origin/master

Crawford, Kesy, Moderegger

master

January 25, 2025 18 /22

Undo Operations

@ Most operations in Git are reversible

Crawford, Kesy, Moderegger

@ Most operations in Git are reversible
o To undo uncommitted actions:

$ git restore <file>

Crawford, Kesy, Moderegger i January 25, 2025 19 /22

Undo Operations

@ Most operations in Git are reversible
o To undo uncommitted actions:

$ git restore <file>

@ To undo commits:

$ git reset <commit>

o Moves the current branch pointer to <commit>

o Does not modify your working directory

Crawford, Kesy, Moderegger Git January 25, 2025 19 /22

Undo Operations

@ Most operations in Git are reversible
o To undo uncommitted actions:

$ git restore <file>
@ To undo commits:
$ git reset <commit>

o Moves the current branch pointer to <commit>

o Does not modify your working directory

@ git reset can cause partial loss of history

Crawford, Kesy, Moderegger Git January 25, 2025 19 /22

Undo Operations - An example

o Goal: Revert back to state of ¢y, but keep contents of main.c

HEAD —»master
new.txt
V]. \
| new.txt
main.c — v2
// todo ~ mailn.c
int main(){}
$ git log Working directory:

commit 4b76761cd4...

. new.txt main.c
commit 52cbc76923. .. v2 int main(){}

Crawford, Kesy, Moderegger Git January 25, 2025 20/22

Undo Operations - An example

o Goal: Revert back to state of ¢y, but keep contents of main.c

master«+—HEAD
new.txt
vl ~_
| new.txt
main.c — v2
// todo ~ mailn.c
int main(){}
Working directory:
$ git reset 52chb new.txt main.c

v2 int main(){}

Crawford, Kesy, Moderegger Git January 25, 2025 20/22

Undo Operations - An example

o Goal: Revert back to state of ¢y, but keep contents of main.c

new.txt
vl

~~[main.c
int main(){}

new.txt
. - 0 °
| new.txt
main.c — v2
// todo ~

mailn.c
int main(){}

HEAD —»master—»

Working directory:

$ g?t add I.nain.c new.txt| [main.c
$ git commit v2 int main(){}

Crawford, Kesy, Moderegger Git January 25, 2025 20/22

Undo Operations - An example

o Goal: Revert back to state of ¢y, but keep contents of main.c

new.txt
vl

~~[main.c
int main(){}

new.txt
. - 0 °
| new.txt
main.c — v2
// todo ~

mailn.c
int main(){}

HEAD —»master—»

Working directory:

$ git restore new.txt new.txt main.c
vl int main(){}

Crawford, Kesy, Moderegger Git January 25, 2025 20/22

Git Optimizations

Crawford, Kesy, Moderegger i January 25

o Compression: Git uses zlib to compress objects

Crawford, Kesy, Moderegger i January 25, 2025 21/22

Git Optimizations

o Compression: Git uses zlib to compress objects

o References: Git uses references to avoid storing duplicates

Crawford, Kesy, Moderegger Git January 25, 2025 21/22

Git Optimizations

o Compression: Git uses zlib to compress objects

o References: Git uses references to avoid storing duplicates
o Packfiles: Git occasionally creates so-called packfiles

o "Loose" objects packed into one file
o Also creates corresponding index-files for efficient access

Crawford, Kesy, Moderegger Git January 25, 2025 21/22

Git Optimizations

o Compression: Git uses zlib to compress objects

o References: Git uses references to avoid storing duplicates
o Packfiles: Git occasionally creates so-called packfiles

o "Loose" objects packed into one file
o Also creates corresponding index-files for efficient access

Before After
Packfile

Blob Blob [modified]) Blob [modified]

Packfile example

Crawford, Kesy, Moderegger Git January 25, 2025 21/22

The Git Directory - Summary

Crawford, Kesy, Moderegger

.git/

config
description
HEAD

index
hooks/
info/

logs/
objects/
refs/

Git directory

January 25, 2025 22/22

The Git Directory - Summary

o config and description are

self-explanatory

Crawford, Kesy, Moderegger

.git/

config
description
HEAD

index
hooks/
info/

logs/
objects/
refs/

Git directory

January 25, 2025 22/22

The Git Directory - Summary

o config and description are

self-explanatory
o HEAD: Reference to a branch

Crawford, Kesy, Moderegger

.git/

config
description
HEAD

index
hooks/
info/

logs/
objects/
refs/

Git directory

January 25, 2025 22/22

The Git Directory - Summary

o config and description are

self-explanatory
o HEAD: Reference to a branch

o index: The staging area

Crawford, Kesy, Moderegger

.git/

config
description
HEAD

index
hooks/
info/

logs/
objects/
refs/

Git directory

January 25, 2025 22/22

The Git Directory - Summary

o config and description are
self-explanatory

o HEAD: Reference to a branch
o index: The staging area

@ hooks/: Scripts triggered by certain
commands

Crawford, Kesy, Moderegger Git

.git/

config
description
HEAD

index
hooks/
info/

logs/
objects/
refs/

Git directory

January 25, 2025 22/22

The Git Directory - Summary

o config and description are
self-explanatory

o HEAD: Reference to a branch
o index: The staging area

@ hooks/: Scripts triggered by certain
commands

@ info/: Local configurations

Crawford, Kesy, Moderegger Git

.git/

config
description
HEAD

index
hooks/
info/

logs/
objects/
refs/

Git directory

January 25, 2025 22/22

The Git Directory - Summary

o config and description are

self-explanatory Jeagd
| config
o HEAD: Reference to a branch | description
o index: The staging area I HEAD
) .) | index
@ hooks/: Scripts triggered by certain | hooks/
commands | info/
. . | 1 /
o info/: Local configurations | ngzcts/
o logs/: Records changes made to refs | refs/

Crawford, Kesy, Moderegger Git

Git directory

January 25, 2025 22/22

The Git Directory - Summary

o config and description are

self-explanatory Jeagd
| config
o HEAD: Reference to a branch | description
o index: The staging area I HEAD
) .) | index
@ hooks/: Scripts triggered by certain | hooks/
commands | info/
. . | 1 /
o info/: Local configurations | ngzcts/
o logs/: Records changes made to refs | refs/

o objects/: All objects

Crawford, Kesy, Moderegger Git

Git directory

January 25, 2025 22/22

The Git Directory - Summary

config and description are
self-explanatory e

| config
HEAD: Reference to a branch | description
index: The staging area ' HEAD

| index
hooks/: Scripts triggered by certain | hooks/
commands | info/

. . | 1 /

info/: Local configurations | ngzcts/
logs/: Records changes made to refs | refs/

objects/: All objects

refs/: (Remote) branches

Crawford, Kesy, Moderegger Git

Git directory

January 25, 2025 22/22

