
Nesting irregular polygons within a polygon

Rei Kaçani Anas Assel

12 Jan 2024



Table of Contents

1 Introduction

2 Properties of Polygons

3 Software and Tools

4 Geometry in nesting optimization



Table of Contents

1 Introduction

2 Properties of Polygons

3 Software and Tools

4 Geometry in nesting optimization



Introduction 1

The nesting problem generally refers to the problem of placing a number
of shapes within the bounds of some material such that no pair of shapes
overlap. The objective is to minimize the size of the material which is
equivalent to maximizing the utilization of the material.

1Nielsen [2007]



Real world applications of nesting problem 1,2

Significance of the nesting problem:

Industry: fitting irregular materials (metal, wood, fabric) within a
larger container reduces waste and production costs: shipping,
aeronautics, woodworking, and footwear etc . . .

Efficient storage and transportation: by effective nesting in
containers or trucks

Architecture, Engineering, and Design: for example by nesting
columns or panels efficiently, structural integrity is improved and
construction costs are reduced; important in design for creating
visually appealing compositions

1Nielsen [2007]
2Bennell and Oliveira [2008]



Table of Contents

1 Introduction

2 Properties of Polygons

3 Software and Tools

4 Geometry in nesting optimization



Polygon

Polygonal curve (Polygonzug) 3

A sequence of finetly many vertices connected by straight line segments
such that each segment (except for the first) starts at the end of the
previous segment.

Polygon 3

A polygon with vertices p0, p1, p2 . . . pn for n ∈ N with n ≥ 3 is a
polygonal curve such that p0 = pn.

A polygon is called simple if no point of the plane belongs to more than
two edges of the polygon and the only points which belong to precisely
two edges are the vertices. 4

3Held [2023]
4Shermer [1989]



Polygon 3

Figure: Polygonal Curve

3Held [2023]



Polygon 3

Figure: Non-Simple Polygon

3Held [2023]



Polygon 3

Figure: Planar Straight Line Graph

3Held [2023]



Polygon 3

Figure: Simple Polygon

3Held [2023]



Irregular Polygons

Properties:

polygons that have unequal sides and unequal angles

can be convex or concave

Convex 3

Let S be the set of points of polygon P. pq denotes the straight line
segment between p and q. Polygon P ist convex if ∀p, q ∈ S , pq ⊂ S

can be orthogonal (all of its sides are either horizontal or vertical)

Examples:
rectangle, trapezium, kite, scalane triangle and other polygons with
different number of unequal sides and angles.

3Held [2023]



Table of Contents

1 Introduction

2 Properties of Polygons

3 Software and Tools

4 Geometry in nesting optimization



No-fit polygon concept (NFP) as a heuristic nesting
algorithm 5

NFP determines all arrangements that two arbitrary polygons may take
such that the polygons touch but do not overlap.
Goal: find an optimal arrangement of objects inside a bigger object to
make space usage maximal

5Burke and Kendall [1999]



No-fit polygon concept (NFP) as a heuristic nesting
algorithm

Procedure: P1 and P2 are polygons that do not rotate.
P1 remains stationary while P2 orbits around P1, staying in contact with it
but never intersecting it. The reference point (filled circle) of P2 becomes
the boundary of NFP.
So the NFP of pieces P1 and P2, denoted by NFPP1,P2 , is the region in
which the reference point of polygon P2 cannot be placed because it would
overlap polygon P1.

P1

P2



NFP in nesting problem

Convex hull 3

The convex hull of a set of points is the smallest convex set that contains
the points.

Polygon P1 is the stationary polygon

The reference point of P2 is placed on each vertex of the NFPP1,P2

and for each position the convex hull for the two polygons is
calculated.

Convex hull that has the minimum area is returned as the best
packing of the two polygons.

This larger polygon now becomes the stationary polygon and the next
polygon is used as the orbiting polygon. This process is repeated until
all polygons have been processed.

3Held [2023]



Bottom-left strategy 6

The small pieces are sorted in a decreasing order according to their surface
size and are placed as far to the left as possible.
Notations:

reference point of a piece is the bottom-left corner of the enclosing
rectangle of the shape

(0,0) Reference point

(xi , yi ) and (xj , yj) are respectively the reference points for the fixed
piece i and the moving piece j

6Dowsland et al. [2001]



Bottom-left strategy

E is the set of edges from the set of NFPi ,j

(x∗m, y
∗
m) is the leftmost point on edge-m, such that

(x∗m, y
∗
m) /∈ interior(NFPk,j) for any fixed piece k, where

k=1. . . i − 1, k ̸= j .

wj is the width of the enclosing rectangle of piece j

W is the total width of the container

M is larger than the maximum packing length

,



Bottom-left strategy

Procedure

1. Place the reference point of first piece i at (0,0). Set j=2 for the
second piece

2. Set (xj , yj) = (∞,∞)

3. Let E = e1, e2, . . . , ek be the list of NFP edges from NFPi ,j

4. Let ek+1 be the left edge corresponding to the left edge of the sheet.
Let E = E ∪ ek+1

5. Clip the edges in E against the region (0, 0,M,W − wi )

6. For m = 1 . . . k + 1 find (x∗m, y
∗
m);

set (xj , yj) = (x∗m min, y
∗
m min) : x

∗
m min ≤ x∗m ∀em ∈ E (in case of a tie

in values of x∗m, choose the one with minimum y∗m)

7. Set j=j+1. If j ≤ n goto Step 2 , else STOP.



Bottom-left strategy

P1(0, 0)

P2

NFPij

j

j

i

ek+1 = P1P2



Bottom-left strategy

1

2

3

4

5



Bottom-left strategy

1

2

3

4

5



Bottom-left strategy

1

2

3

4

5



Bottom-left strategy

1

2

3

4

5



Bottom-left strategy

1

2

3

4

5



A constructive algorithm: The TOPOS Algorithm 7

In each iteration, characterized by the current partial solution, all the
different pieces still available are placed in all admissible orientations,
generating several new alternative partial solutions.

The best new partial solution (which corresponds to minimal area) is
selected to be the current partial solution for the next iteration.

The algorithm stops when all pieces are placed

Notations:
P(i,j) - Piece of type i with an orientation j
PS - Partial solution
S - Set of pieces to place
n - number of different pieces
m - number of admissible orientations
waste – the difference between the area of the rectangular enclosure of PS
and the area of all pieces already placed, including the one that is under
evaluation

7Oliveira et al. [2000]



A constructive algorithm: The TOPOS Algorithm

1: PS ← {}
2: while S ̸= {} do ▷ until no more pieces to place
3: for i = 1 to n do ▷ iterate over each piece type i
4: if pieces available of type(i) = TRUE then
5: for j = 1 to m do ▷ each orientation of the current piece type i
6: NFP ← no fit polygon(PS ,P(i , j))
7: placement point ← area minimization(PS ,P(i , j),NFP)
8: waste ← waste evaluation function(PS ,P(i , j), placement point)
9: if waste < best value then

10: best value← waste
11: best piece← i
12: best orientation← j
13: best placement point← placement point
14: end if
15: end for
16: S ← S − {best piece}
17: PS ← join(PS ,P(best piece, best orientation), best placement point)
18: end if
19: end for
20: end while



A constructive algorithm: The TOPOS Algorithm

1

1

2

NFP1,2 at different orientations of piece 2 is calculated:

1

2

NFP1,2 at different orientations of piece 2 is calculated:
1

2

NFP1,2 at different orientations of piece 2 is calculated:

2

Best position and orientation of piece 2, PS = {1, 2}

2

1

2
NFPPS ,3 at different orientations of 3 is calculated:

3

2

1

2
NFPPS ,3 at different orientations of 3 is calculated:

3

2

Best position and orientation of piece 3 and PS = {1, 2, 3}

3



A constructive algorithm: The TOPOS Algorithm

1

1

2

NFP1,2 at different orientations of piece 2 is calculated:

1

2

NFP1,2 at different orientations of piece 2 is calculated:

1

2

NFP1,2 at different orientations of piece 2 is calculated:

2

Best position and orientation of piece 2, PS = {1, 2}

2

1

2
NFPPS ,3 at different orientations of 3 is calculated:

3

2

1

2
NFPPS ,3 at different orientations of 3 is calculated:

3

2

Best position and orientation of piece 3 and PS = {1, 2, 3}

3



A constructive algorithm: The TOPOS Algorithm

1

1

2

NFP1,2 at different orientations of piece 2 is calculated:
1

2

NFP1,2 at different orientations of piece 2 is calculated:

1

2

NFP1,2 at different orientations of piece 2 is calculated:

2

Best position and orientation of piece 2, PS = {1, 2}

2

1

2
NFPPS ,3 at different orientations of 3 is calculated:

3

2

1

2
NFPPS ,3 at different orientations of 3 is calculated:

3

2

Best position and orientation of piece 3 and PS = {1, 2, 3}

3



A constructive algorithm: The TOPOS Algorithm

1

1

2

NFP1,2 at different orientations of piece 2 is calculated:
1

2

NFP1,2 at different orientations of piece 2 is calculated:
1

2

NFP1,2 at different orientations of piece 2 is calculated:

2

Best position and orientation of piece 2, PS = {1, 2}

2

1

2
NFPPS ,3 at different orientations of 3 is calculated:

3

2

1

2
NFPPS ,3 at different orientations of 3 is calculated:

3

2

Best position and orientation of piece 3 and PS = {1, 2, 3}

3



A constructive algorithm: The TOPOS Algorithm

1

1

2

NFP1,2 at different orientations of piece 2 is calculated:
1

2

NFP1,2 at different orientations of piece 2 is calculated:
1

2

NFP1,2 at different orientations of piece 2 is calculated:

2

Best position and orientation of piece 2, PS = {1, 2}

2

1

2
NFPPS ,3 at different orientations of 3 is calculated:

3

2

1

2
NFPPS ,3 at different orientations of 3 is calculated:

3

2

Best position and orientation of piece 3 and PS = {1, 2, 3}

3



A constructive algorithm: The TOPOS Algorithm

1

1

2

NFP1,2 at different orientations of piece 2 is calculated:
1

2

NFP1,2 at different orientations of piece 2 is calculated:
1

2

NFP1,2 at different orientations of piece 2 is calculated:

2

Best position and orientation of piece 2, PS = {1, 2}

2

1

2
NFPPS ,3 at different orientations of 3 is calculated:

3

2

1

2
NFPPS ,3 at different orientations of 3 is calculated:

3

2

Best position and orientation of piece 3 and PS = {1, 2, 3}

3



A constructive algorithm: The TOPOS Algorithm

1

1

2

NFP1,2 at different orientations of piece 2 is calculated:
1

2

NFP1,2 at different orientations of piece 2 is calculated:
1

2

NFP1,2 at different orientations of piece 2 is calculated:

2

Best position and orientation of piece 2, PS = {1, 2}

2

1

2
NFPPS ,3 at different orientations of 3 is calculated:

3

2

1

2
NFPPS ,3 at different orientations of 3 is calculated:

3

2

Best position and orientation of piece 3 and PS = {1, 2, 3}

3



Table of Contents

1 Introduction

2 Properties of Polygons

3 Software and Tools

4 Geometry in nesting optimization



ϕ Function 8

→describes the interaction between two geometrical objects in such a way
that the positions of the objects are the input and a real value is the
output.
Example: ϕ Function for circles
ϕ(x1, y1; x2, y2) =

√
(x2 − x1)2 + (y2 − y1)2 − (r + R)

pieces overlap if ϕ(x1, y1; x2, y2) < 0

pieces touch each other if ϕ(x1, y1; x2, y2) = 0

pieces are separated if ϕ(x1, y1; x2, y2) > 0

R
r

8Timmerman [2013]



Direct trigonometry/ The D-function 8

Direct trigonometry uses the polygons directly. It consists of tests for
calculating if two lines intersect.
D-function is used to calculate overlap between two polygons using
trigonometry.

DA,P,B = (XA − XB) ∗ (YA − YP)− (YA − YB) ∗ (XA − XP) (1)

where A and B stand for the beginning and ending points of the line and P
a point in space.
P on the right of AB if DA,P,B < 0

P on AB if DA,P,B = 0

P on the left of AB if DA,P,B > 0

v

A

BP

DA,B,P > 0

8Timmerman [2013]



Pixel/Raster method 8

Representation: existing space(1), empty space(0), overlapping space(> 1)

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0

0 0 0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 0 0

0 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0
Pixel representation

Rasterrepresentation
8Timmerman [2013]



Conclusion

When placing polygons inside another polygon is necessary to
minimize the gaps between actual nested polygons, so more polygons
can be nested and the utilization of space or material is maximized

used in industry, design, architecture, transportation etc

No-Fit Polygon (NFP), Bottom Left Strategy, constructive algorithms

Pixel/Raster method and D function make nesting process more
optimal



Thank you for your attention!



References I

Julia A. Bennell and Jose F. Oliveira. The geometry of nesting problems:
A tutorial. European Journal of Operational Research, 184(2):397–415,
Jan 2008.

Edmund Burke and Graham Kendall. Applying ant algorithms and the no
fit polygon to the nesting problem. In Australasian Joint Conference on
Artificial Intelligence, volume 1747, page 453–464, Sydney, Australia,
Dec 1999.

Kathryn A. Dowsland, Subodh Vaid, and William B. Dowsland. An
algorithm for polygon placement using a bottom-left strategy. European
Journal of Operational Research, 141:371–381, May 2001.

Martin Held. Computational geometry. pages 32–35,101–102, Aug 2023.



References II

Benny K. Nielsen. An efficient solution method for relaxed variants of the
nesting problem. In Joachim Gudmundsson and C. Barry Jay, editors,
Theory of Computing 2007. Proceedings of the Thirteenth Computing:
The Australasian Theory Symposium (CATS2007). January 30 -
Febuary 2, 2007, Ballarat, Victoria, Australia, Proceedings, volume 65
of CRPIT, pages 123–130. Australian Computer Society, 2007.

Jose Fernando Oliveira, A. Miguel Gomes, and Jose Soeiro Ferreira. Topos
– a new constructive algorithm for nesting problems. pages 263–284,
Jan 2000.

Thomas C. Shermer. Visibility properties of polygons. page 18, Jun 1989.

Mattijs Timmerman. Optimization methods for nesting problems.
page 49, 2013.


	Introduction
	Properties of Polygons
	Software and Tools
	Geometry in nesting optimization
	References

