Neural Network	Convolutional Network	One Shot Learning	Triplet Loss	Face Net

Siamese Network and Triplet Loss

Lukas Lamminger, Filip Vecek

January 31,2020

Neural Network	Convolutional Network	One Shot Learning	Triplet Loss	Face Net

Schedule

1 Neural Network

- 2 Convolutional Network
- 3 One Shot Learning

4 Triplet Loss

5 Face Net

Neural Network	Convolutional Network	One Shot Learning	Triplet Loss	Face Net
•00				

Neural Network

Neural Network	Convolutional Network	One Shot Learning	Triplet Loss	Face Net
000				

Neural Network

- Neural networks are a set of algorithms, that are designed to recognize patterns.
- The patterns they recognize are numerical, contained in vectors into which all the real-life data must be translated.
- They are composed of several layers, which in turn are composed out of several nodes.

Neural Network	Convolutional Network	One Shot Learning	Triplet Loss	Face Net

Structure

Schematic of Rosenblatt's perceptron.

- The neural network receives the input data in the first so-called input layer. The data is then processed in the subsequent hidden layers until the final result is received in the output layer.
- Each specific node acts as a function to process the received data, before it sends the data to the next node to be processed.

https://sebastianraschka.com/Articles/2015_singlelayer_neurons.html

Neural Network	Convolutional Network	One Shot Learning	Triplet Loss	Face Net
	000000			

Convolutional Network

Neural Network	Convolutional Network	One Shot Learning 00000	Triplet Loss	Face Net
Convolution	al Network			

- Several drawbacks to traditional neural networks (multilayer perceptron or MLP)
- Since we use one perceptron for each input, the amount of weights quickly becomes unimaginably large
- Another problem is that the MLP will react differently to an input and its shifted version

As a result one will want to use a different kind of network for image processing

Neural Network	Convolutional Network	One Shot Learning	Triplet Loss	Face Net
	000000			

Convolutional Network

- Convolutional Networks are the best choice for image processing since they are translation invariant and each pixel position and neighborhood has semantic meaning
- This influence of nearby pixels is mainly done through the use of a filter, that we move across the picture from the top left to bottom right

https://towardsdatascience.com/simple-introduction-to-convolutional-neural-networks-cdf8d3077bac

Neural Network	Convolutional Network	One Shot Learning	Triplet Loss	Face Net
	000000			

- As result we significantly reduce the number of weights the neural network must learn in comparison to a MLP
- The change in location for the key features also doesn't throw the network off
- The specific filters for different features also get continuously updated through the training process, so the chance of two features having the same filter is extremely low

https://towardsdatascience.com/simple-introduction-to-convolutional-neural-networks-cdf8d3077bac

Neural Network	Convolutional Network	One Shot Learning	Triplet Loss	Face Net
	000000			

- After the filters have passed through the image a feature map is created, each corresponding to the results of a filter
- In turn these feature maps can be used as input for the next convolutional layer again
- Another option would be to create a pooling layer, where the "best" feature maps are pooled together to be used as the next input

https://towardsdatascience.com/simple-introduction-to-convolutional-neural-networks-cdf8d3077bac

Neural Network	Convolutional Network	One Shot Learning	Triplet Loss	Face Net
000	000000	00000	000000	000000

Padding

- Since we apply the filters through convolutions the output would obviously be downsized compared to the input - to prevent this one can use padding
- Padding is usually used to retain the size of the input in the feature maps or at least keep them from being too small in very deep networks

https://towardsdatascience.com/simple-introduction-to-convolutional-neural-networks-cdf8d3077bac

Neural Network	Convolutional Network	One Shot Learning	Triplet Loss	Face Net
		00000		

One Shot Learning

Neural Network	Convolutional Network	One Shot Learning	Triplet Loss	Face Net
		00000		

One Shot Learning

- One shot learning is the technique of learning representations from a single image.
- In the case of face verification, a model or system may only have one example of a persons face on record and must correctly verify new photos of that person, perhaps each day.
- Therefore, face recognition is a common example of an one-shot learning task.

Neural Network	Convolutional Network	One Shot Learning	Triplet Loss	Face Net
		00000		

One Shot Learning

- Since there isn't enough data to build a CNN, one could build a similarity function that compares the images on the right with all images on the left
- The similarity function will return a value and if that value is lesser than or equal to a threshold value the images are similar, else they are not

Neural Network	Convolutional Network	One Shot Learning	Triplet Loss	Face Net
		00000		

Siamese Network

Siamese network

In Siamese networks, we take an input image of a person and find out the encodings of that image, then, we take the same network without performing any updates on weights or biases and input an image of a different person and again predict it's encodings.

Now, we compare these two encodings to check whether there is a similarity between the two images

Neural Network	Convolutional Network	One Shot Learning	Triplet Loss	Face Net
		00000		

Siamese Network

Neural Network	Convolutional Network	One Shot Learning	Triplet Loss	Face Net
			00000	

Neural Network	Convolutional Network	One Shot Learning	Triplet Loss	Face Net
			00000	

- The network gets trained by taking an anchor image and comparing it with a positive and a negative sample
- The similarity between the anchor and positive sample must be high
- The similarity between the anchor and the negative sample must be low

Anchor

Positive

Negative

Neural Network	Convolutional Network	One Shot Learning	Triplet Loss	Face Net
			000000	

https://omoindrot.github.io/assets/triplet_loss/triplet_loss.png

Neural Network	Convolutional Network	One Shot Learning	Triplet Loss	Face Net
			000000	

Requirements of the Loss Function

- distance(A,P) < distance(A,N)</p>
- distance(A,P) distance(A,N) < 0</p>
- In order to avoid trivial solutions we will add a margin

Triplet Loss Function

$$L = max(d(a, p) - d(a, n) + margin, 0)$$

Neural Network	Convolutional Network	One Shot Learning	Triplet Loss	Face Net
			000000	

FaceNet: A Unified Embedding for Face Recognition and Clustering, 2015.

Neural Network	Convolutional Network	One Shot Learning	Triplet Loss	Face Net
			00000	

Triplet Loss Code

import tensorflow as tf

```
1
  def triplet loss(y true, y pred, N=3):
     anchor output = tf.convert to tensor(y \text{ pred}[:,0:N])
2
3
     positive output = tf.convert to tensor(y pred[:,N:N*2])
     negative output = tf.convert to tensor(v pred[: N*2:N*31)
4
5
6
    d pos = tf.reduce sum(tf.square(tf.subtract(anchor output, positive output)), 1)
7
    d neg = tf.reduce sum(tf.square(tf.subtract(anchor output, negative output)). 1)
8
9
10
    loss = tf.maximum(0., 0.5 + d pos - d neg)
11
    loss = tf.reduce mean(loss)
    return loss
12
```

Neural Network	Convolutional Network	One Shot Learning	Triplet Loss	Face Net
				•00000

Face Net

Neural Network	Convolutional Network	One Shot Learning	Triplet Loss	Face Net
				000000

Face Net

- FaceNet is a face recognition system that was described by Florian Schroff, et al. at Google in their 2015 paper titled "FaceNet: A Unified Embedding for Face Recognition and Clustering."
- It is a system that, given a picture of a face, will extract high-quality features from the face and predict a 128 element vector representation these features, called a face embedding.

Neural Network	Convolutional Network	One Shot Learning	Triplet Loss	Face Net
				000000

Labelled Faces in the Wild

- Labeled Faces in the Wild (LFW) is a database of face photographs designed for studying the problem of unconstrained face recognition.
- This database was created and maintained by researchers at the University of Massachusetts, Amherst.
- 13,233 images of 5,749 people were detected and centered by the Viola Jones face detector and collected from the web.
- 1,680 of the people pictured have two or more distinct photos in the dataset.

Neural Network	Convolutional Network	One Shot Learning	Triplet Loss	Face Net
				000000

Positive Pairs in LFW

Labeled Faces in the Wild

Abel_Pacheco

Dick_Vermeil

Hamzah_Haz

Kristin_Davis

Akhmed Zakayev

Bill_Frist

Candice_Bergen

George_Galloway

Jessica_Lange

Nursultan_Nazarbayev

Elinor_Caplan

Isaiah_Washington

Laurent_Jalabert

Jacques_Rogge

Martin_Sheen

Neural Network	Convolutional Network	One Shot Learning	Triplet Loss	Face Net
				000000

Face Verification on Labeled Faces in the Wild

METHOD	ACCURACY	PAPER TITLE	YEAR
ArcFace + MS1MV2 + R100,	99.83%	ArcFace: Additive Angular Margin Loss for Deep Face Recognition	2018
CosFace	99.73%	CosFace: Large Margin Cosine Loss for Deep Face Recognition	2018
FaceNet	99.63%	FaceNet: A Unified Embedding for Face Recognition and Clustering	2015
Ring loss	99.52%	Ring loss: Convex Feature Normalization for Face Recognition	2018
DeepId2+	99.47%	Deeply learned face representations are sparse, selective, and robust	2014
SphereFace	99.42%	SphereFace: Deep Hypersphere Embedding for Face Recognition	2017
	METHOD ArcFace + MS1MV2 + R100, CosFace FaceNet Ring loss DeepId2+ SphereFace	METHOD ACCURACY ArcFace + MS1MV2 + R100, 99.83% CosFace 99.73% FaceNet 99.63% Ring loss 99.52% DeepId2+ 99.42%	METHODACCURACYPARER TITLEArcFace + MS1MV2 + R100,99.83%ArcFace: Additive Angular Margin Loss for Deep Face RecognitionCosFace99.73%CosFace: Large Margin Cosine Loss for Deep Face RecognitionFaceNet99.63%FaceNet: A Unified Embedding for Face Recognition and ClusteringRing Ioss99.52%Ring Joss: Convex Feature Normalization for Face RecognitionDeepId2+99.47%Deeply Learned face representations are sparse, selective, and robustSphereFace99.42%SphereFace: Deep Hypersphere Embedding for Face

https://paperswithcode.com/sota/face-verification-on-labeled-faces-in-the

Neural Network	Convolutional Network	One Shot Learning	Triplet Loss	Face Net
				000000

Sources

- https://algorithmia.com/blog/introduction-to-loss-functions
- https://towardsdatascience.com/siamese-network-triplet-loss-b4ca82c1aec8
- https://medium.com/@susmithreddyvedere/triplet-loss-b9da35be21b8
- https://medium.com/@crimy/one-shot-learning-siamese-networks-and-triplet-losswith-keras-2885ed022352
- FaceNet: A Unified Embedding for Face Recognition and Clustering, 2015.
- https://towardsdatascience.com/simple-introduction-to-convolutional-neuralnetworks-cdf8d3077bac