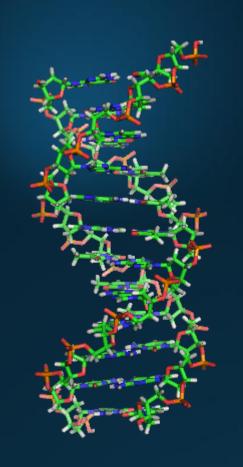
## **DNA-Computing**

Markus Miksch Michael Miksch Philipp Göschl





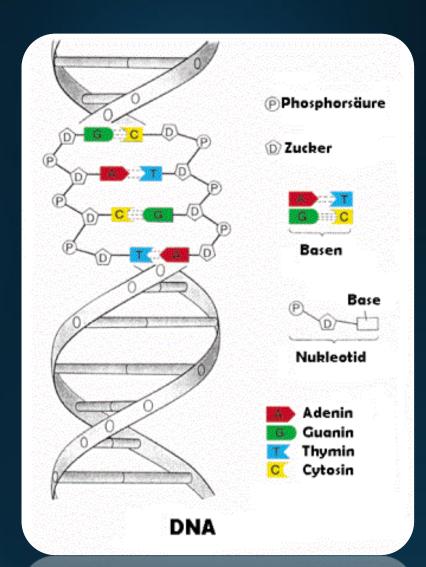
## Übersicht


- Einführung DNA
- DNA-Computer Idee
- Bisherige Errungenschaften
- Probleme

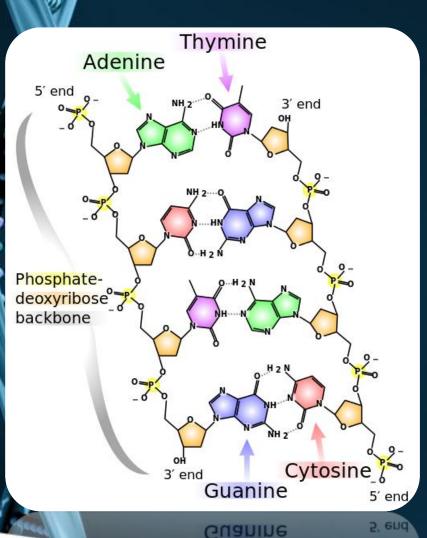




## DNA (Desoxyribonukleinsäure)

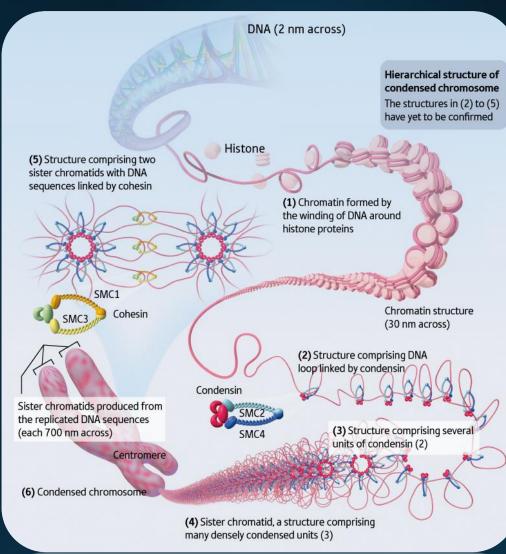

- Enthält "Instruktionen" für den Zusammenbau von Zellen
- Bauplan für sämtliche Lebewesen
- Jede Zelle hat gesamte DNA






### **DNA Struktur**

- Doppelhelix
- Zucker-Phosphatrückgrat
- Nukleinsäuren, langes Kettenmoleküle aus
   4 Nukleotiden
- Phosphat-Rest
   Zucker Desoxyribose
   organische Base

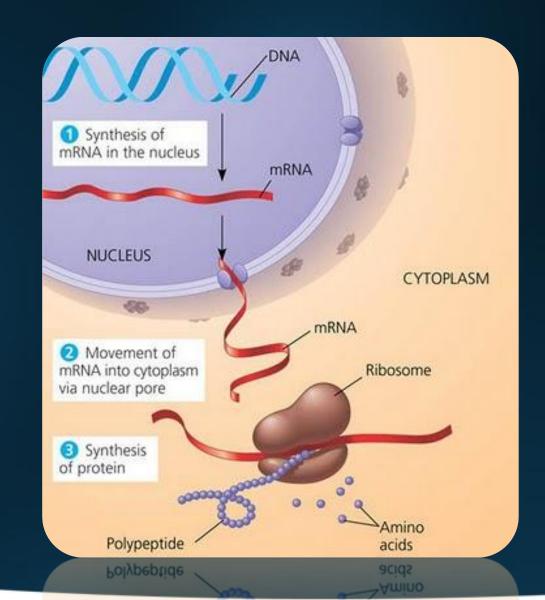



#### **DNA Struktur**



ena

Cytosine




(4) Sister chromatid, a structure comprising many densely condensed units (3)



## DNA zu Protein (Genexpression)

- Transkription
- RNA –Prozessierung
- Translation





## Wieso DNA in Computer?

- Extreme Speicherkapazität:
  - $1 Gramm DNA = 10^{18} Byte = 512 Exabyte$
- Massiv parallel:
  - Jede Operation an Reagenzglas wird von jedem Strang parallel ausgeführt!
  - Billionen Stränge im Reagenzglas
    - 10<sup>6</sup> Transistoren/cm<sup>2</sup> 10<sup>20</sup> Stränge/cm<sup>2</sup>
    - 1 Tera-Operation/s 10<sup>6</sup> Tera-Operationen/s



## Wieso DNA in Computer?

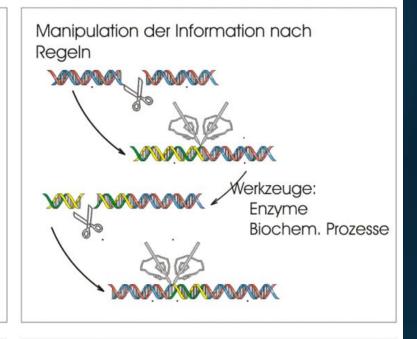
- Energieeffizienz
  - DNA Polymer enthält signifikante Menge an Energie
  - DNA-Computer verwendet diese für Berechnungen
  - 10<sup>19</sup> Operationen pro Joule
- Keine Viren
  - Virus attackiert Paare von DNA
  - Diverse Autokorrekturmechanismen für DNA-Paare
- Verfügbarkeit
  - In beinahe unbegrenztem Maße verfügbar
  - Sehr billig



## Wieso DNA in Computer?

- Langlebigkeit
  - unter geeigneten Bedingungen beliebig lange konservierbar
  - eignet sich als persistentes Speichermedium
- Elektrische Ladung
  - Stränge elektrisch negativ geladen
  - Elektrophoretische Analysemethoden anwendbar
- Umweltfreundlich
  - DNA in hohem Maße recyclingfähig
  - Nicht giftig




### **DNA-Computer**

Eingabeinformation codiert durch Zahl 3626

Manipulation der Information nach Regeln

Ausgabeinformation codiert durch Zahl 518

Eingabeinformation codiert durch DNA



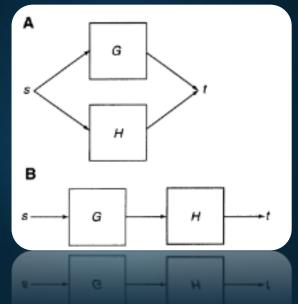
Ausgabeinformation codiert durch neuen DNA-Strang

218

coaler aurch zahl

codien dulen neuen DNA-sirang



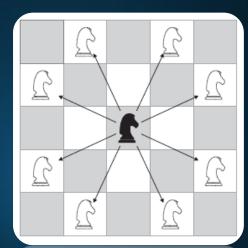

- (1994) Adleman → Konzept von DNA-Computing
- Artikel "Molecular Computations of Solutions to Combinatorial Problems"
- TT-100: Reagenzglas mit 100µl DNA-Lösung
- Durch freie Reaktion der DNA einfache mathematische Probleme gelöst

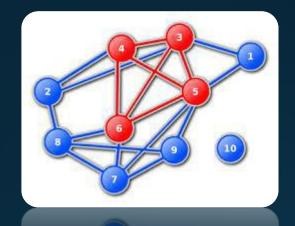
Lipton's Algorithmus

Löst das Erfüllbarkeitsproblem der Aussagenlogik

→ "Lässt sich diese aussagenlogische Formel erfüllen?"

$$\neg (A \lor B) \& (\neg C \lor D)$$





- Alle möglichen Werte für Variablen werden in Graphen beschrieben
- Ähnlich dem Adleman Algorithmus wird Graph in DNA-Stränge übersetzt
- Basen mit der Länge 20 im Reagenzglas lösen Problem in linearer Zeit



## Bisherige Errungenschaften Weitere Algorithmen

- Springerproblem
  - leeres Schachbrett der Größe n x m
  - Route, bei der Springer jedes
     Feld einmal besucht
- Cliquenproblem
  - Entscheidungsproblem der Graphentheorie
  - Graph G , Zahl n
  - Gibt es in G zumindest n Knoten, die alle untereinander paarweise verbunden sind?







- Japanische Forscher stellen ersten DNA Computer vor "world's first DNA computer for gene analysis"
- Vollautomatischer DNA Computer
  - riesiger Rechenspeicher
  - wenig Energieverbrauch
  - massive Parallelberechnung
  - automatisches Erzeugen der Menge an Lösungen
- Künstliche DNA → gleiches Verhalten wie echte DNA
- Magtration-Technology
  - präzise Trennung von DNA mittels magnetischen Mikropartikeln



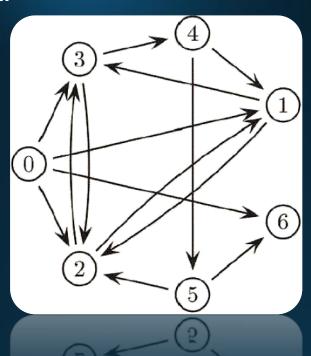
### Bisherige Errungenschaften Berechnendes Erbgut

Israelische Forscher entwickeln leistungsfähigen DNA Computer Bestandteile: DNA + 2 Enzyme

- Restriktionsenzym spaltet DNA-Moleküle
- Ligase fügt 2 zueinander passende Fragmente zusammen

Input → synthetische DNA-Moleküle mit bekannter Sequenz Rechenoperationen → kurze DNA-Fragmente

Auslesen → DNA Fragmente + bestimmte Markermoleküle


Verwendung in der Zukunft:

- aufwendige Verschlüsselungen
- Diagnose von Krankheiten direkt im Körper



#### Hamiltonscher Pfad


- Vorgabe: Anordnung von N Knoten mit Verbindungswegen zwischen je zwei Knoten (Graph)
- Problem: finde bei vorgegebenem Startknoten den Pfad der jeden Knoten genau einmal durchläuft.
- Kein Algorithmus bekannt, der das Problem in polynomialer Zeit löst. Laufzeit exponentiell von N abhängig
  - bei N=73 Knoten, t=2<sup>28</sup> h
     (entspricht Zeitraum bis zur nächsten Eiszeit)



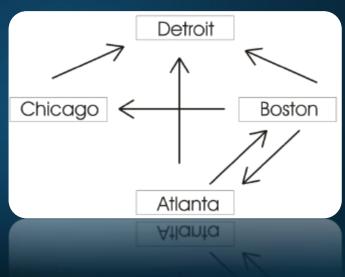


Hamiltonscher Pfad – DNA-Verbindungen

- Zwei Doppelstränge können zusammengefügt werden, falls sie über eine Phosphorgruppe verfügen : "Blunt Ends"
- Komplementäre Basenfolgen erlauben gezielte
   Aneinanderfügen spezifischer Stränge: "Sticky Ends".
   Das Zusammenfügen ist gegenüber Blunt Ends erleichtert



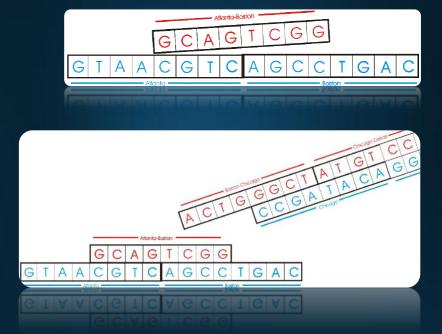



#### Hamiltonscher Pfad - Realisierung

- Codierung der Knoten ("Städte") durch DNA-Sequenzen
- Codierung der Wege ("Flugverbindungen") durch DNA-Sequenzen
- "Sticky Ends" der Flugverbindungen jeweils komplementär zu Start und Ziel
- Alle Wege und Knoten werden in Reagenzglas gegeben ca. 10<sup>14</sup> Moleküle jedes Typs
- Durch Anlagerungen der Knoten und Wege werden automatisch Pfade generiert

Hamiltonscher Pfad

Brute Force!


| Atlanta | ACTTGAG  | TG | AΑ | СТ | C   |
|---------|----------|----|----|----|-----|
| Boston  | TCGGACTG | AG | CO | TG | AC  |
| Chicago | GGCTATGT | CC | GΑ | TA | CA  |
| Detroit | CCGAGCAA | GG | CŢ | CC | GTT |
| Detroit | CCGAGCAA | GG |    | CC | SIT |




|                 | / \      |
|-----------------|----------|
| Atlanta-Boston  | GCAGTCGG |
| Atlanta-Detroit | GCAGCCGA |
| Boston-Chicago  | ACTGGGCT |
| Boston-Detroit  | ACTGCCGA |
| Boston-Atlanta  | ACTGACTT |
| Chicago-Detroit | ATGTCCGA |
| Chicago-Detroit | ATGTCCGA |
|                 |          |

## Bisherige Errungenschaften Hamiltonscher Pfad

Anlagerung des Weges
 Atlanta-Boston an Knoten
 Boston und Atlanta

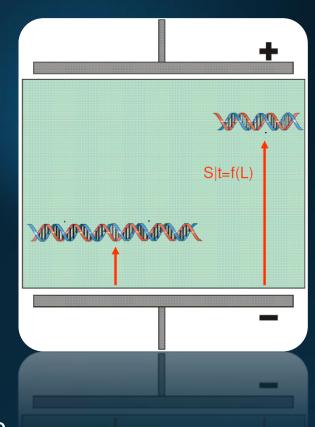


Pfad: Atlanta-Boston-Chicago-Detroit





**Hamiltonscher Pfad** 


Eliminieren der "falschen" Pfade:

- Durch geeignetes Polymerase-Enzym werden die Pfade mit Startpunkt "Atlanta" vervielfältigt
  - → PCR: polymerase chain reaction
- Da jeder Knoten genau einmal besucht wird, muss korrekter Pfad Länge n haben
  - → Separation dieser Pfade durch Gel-Elektrophorese



Hamiltonscher Pfad - Gelelektrophorese

- DNA wird in Gel (Agarose)
   einem Elektrischen Feld
   ausgesetzt
- die Strecke ist abhängig von Länge der DNA und der Porengröße im Gel
- Fragmente unterschiedlicher
   Länge können mit Genauigkeit von
   bis zu 10 Basenpaaren getrennt werden







Hamiltonscher Pfad – Finden der Lösung

#### "Aussieben" der Pfade:

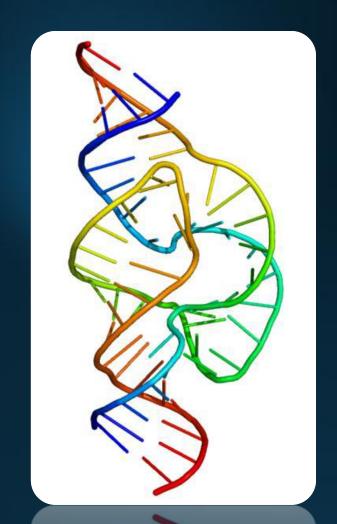
 Durch Zentrifugieren oder magnetische Einwirkung k\u00f6nnen Pfade von \u00fcbrigen getrennt werden

#### Auslesen der Daten:

 Durch DNA-Sequenzanalyse wird die im Lösungsstrang enthaltene Information "zurück-übersetzt"

Das "Sieben" und Auslesen der Daten erfordert zeitaufwendige Verfahren




Fortschritte in der Krebsbehandlung

- 2001, Weizmann Institut → erster autonomer, programmierbarer DNA-Computer
- Extrem klein, eine Billion davon passen in Wassertropfen
- einfache Kalkulationen möglich
- 2004 modernere Version des Geräts
- identifizierte bereits Krebs in Reagenzglas und sonderte Molekül ab, um ihn zu vernichten



### Bisherige Errungenschaften Logische Gatter

- Oktober 2008, Logische Gatter aus Ribonukleinsäure
- katalytisch wirkendes RNS-Molekül (Hammerhead-Ribozym), kann andere RNS-Stränge zerteilen
- Erweiterung um weitere
   RNS → Eigenschaft eines Schalters
- Antibiotikum Tetracyclin, um Hammerhead-Eigenschaften gezielt abzuschalten





# Bisherige Errungenschaften Logische Gatter

- Hammerhead-Ribozym an zwei Stellen erweiterbar → ließ
   Molekül auf zwei unterschiedliche Botenstoffe reagieren
  - AND- und OR-Gatter sind geboren!
- Durch Kopplung solcher Bausteine → biologischen Computer
- Auf biologische oder umweltbedingte Signale gleichzeitig ansprechen
  - Sensor fürs Aufspüren von Tumorzellen
  - entscheiden, welche modifizierten Gene bei Krebstherapie an-, oder abzuschalten wären



## Bisherige Errungenschaften DNA als Speichermedium

- "I have a dream"-Rede von Marin Luther, JPEG-Foto, PDF-Datei, TXT-Datei mit Sonetten von Shakespeare
- Gesamt 739 Kilobyte
- im DNA-Molekül verschlüsselt und später fehlerfrei wieder entschlüsselt
- theoretisch können Daten auf DNA Tausende Jahre unbeschadet überdauern
- Vgl. USB-Stick 10-15 Jahre, nur 100.000 Schreibzyklen pro Speicherzelle garantiert → häufig benutzte Speicherstellen immer wieder wechselnde Bereiche



DNA "denkt" Syllogismus des Aristoteles / Compiler

- 2009: DNA-Computer entwickelt, der den klassischen Syllogismus von Aristoteles beherrscht und Eingaben in höherer Programmiersprache versteht
- Kann komplexe Berechnungen und komplizierte Datenabfragen durchführen
- Compilerprogramm für DNA-Computercode: Sterblich (Sokrates)?. → richtige Antwort



#### Probleme

- Stärke ist nicht die schiere Rechenkraft, sondern mit einer biologischen Umgebung zu interagieren.
  - Ziel: DNA-Computer nicht nur im Reagenzglas, sondern auch in lebender Zelle
    - Bräuchte maßgeschneiderter synthetischer Enzyme
    - könnte noch mehrere Jahrzehnte dauern
- Oft hoher Aufwand zur Auswertung der Ergebnisse erforderlich
- Computer muss auf spezifisches Problem "zugeschnitten" werden
  - Jeder Algorithmus erfordert andere Enzyme und Analyseverfahren
     → "universeller" DNA-Computer derzeit Zukunftsvision,
     tatsächliche Realisierbarkeit strittig



#### Quellen

- www.wikipedia.org
- http://www.youtube.com/watch?v=D3fOXt4MrO
- www.heise.de/home/-/journal\_content/56/12054/1038796/
- www.wissenschaft.de/home/-/journal\_content/56/12054/1038796/
- www.scinexx.de/wissen-aktuell-10290-2009-08-04.html
- cs.stanford.edu/people/eroberts/courses/soco/projects/2003-04/dna-computing/history.htm



## Ende

Vielen Danke für ihre Aufmerksamkeit!