Überblick Geschichte Technik Segmente Ablauf

GPS - Global Positioning System

Christine Kendlbacher, Willi Mann, Johann Taferl

27.Jänner.2005

- Vortragspunkte
- Geschichte der Navigationssysteme
- 3 Grundlegende Technik
 - Voraussetzungen
 - einfachster Fall (1-D)
 - Sender und Empfänger nicht synchron (1-D)
 - Berechnung in der Ebene (2-D)
 - Übergang in den Raum (3-D)
- Segmente von GPS
 - Space-Segment
 - Ground-Segment
 - User-Segment
- 6 Ablauf einer Messung
 - Überblick
 - Kaltstart
 - Normalstart

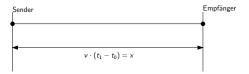
• Sextant, Geschwindigkeitslot, Magnetkompass

- Sextant, Geschwindigkeitslot, Magnetkompass
- 2. Weltkrieg
 - LORAN
 - Sonne

- Sextant, Geschwindigkeitslot, Magnetkompass
- 2. Weltkrieg
 - LORAN
 - Sonne
- seit 1960
 - LORAN-C
 - OMEGA
 - TRANSIT
 - TSIKADA

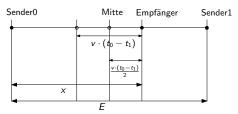
- Sextant, Geschwindigkeitslot, Magnetkompass
- 2. Weltkrieg
 - LORAN
 - Sonne
- seit 1960
 - LORAN-C
 - OMEGA
 - TRANSIT
 - TSIKADA
- 1973: Beginn der Entwicklung von NAVSTAR-GPS.

- Sextant, Geschwindigkeitslot, Magnetkompass
- 2. Weltkrieg
 - LORAN
 - Sonne
- seit 1960
 - LORAN-C
 - OMEGA
 - TRANSIT
 - TSIKADA
- 1973: Beginn der Entwicklung von NAVSTAR-GPS.
- Neueste Entwicklung: Galileo



Grundlegende Technik

- basiert auf Laufzeitmessung
- Voraussetzungen
 - Senderposition bekannt
 - Senderuhren synchronisiert
 - Signalausbreitungsgeschwindigkeit bekannt
 - Signalbestandteile: Zeit, Sender-ID
 - Zeit vergeht gleich schnell.


einfachster Fall

- synchronisierte Zeit von Sender und Empfänger
- Signallaufzeit aus Empfangs- Sendezeit

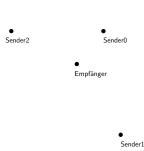
Sender und Empfänger nicht synchron

- 2. Sender wird benötigt
- liegen auf gleicher Linie

- $x = \frac{E}{2} + \frac{v \cdot (t_0 t_1)}{2}$
- Ergebnis nur gültig, wenn $|v \cdot (t_0 t_1)| \neq E$

Begriff: Pseudo-Range

- vom Empfänger gemessene Laufzeitdifferenz in zurückgelegter Entfernung: $v \cdot (t_1 t_0)$, bezogen auf zwei eintreffende Signale.
- leider kein eindeutiger Begriff


Übergang in die Ebene

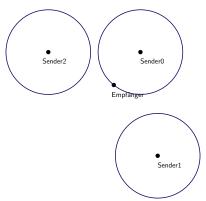
- 2 Sender nicht genug
- 3. Sender wird benötigt

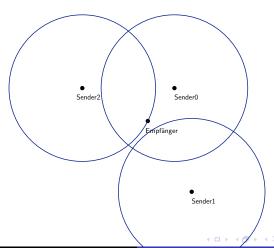
Voraussetzungen einfachster Fall (1-D) Sender und Empfänger nicht synchron (1-D) Berechnung in der Ebene (2-D) Übergang in den Raum (3-D)

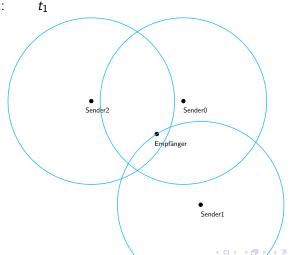
Animation

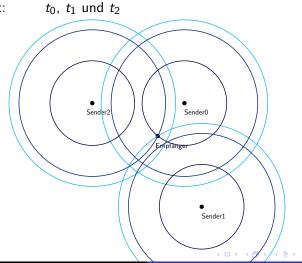
Zeitpunkt: T

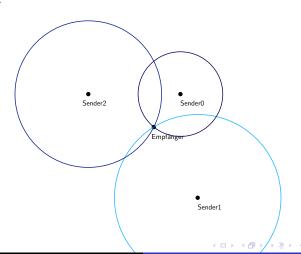
Zeitpunkt: T + ...




Empfänger


Zeitpunkt: t_0


Zeitpunkt: t_2


Zeitpunkt:

Zeitpunkt:

Zeitpunkt:

• Radien unbekannt, aber $r_0 = L + PR_0$, $r_1 = L + PR_1$ und $r_2 = L + PR_2$

- Radien unbekannt, aber $r_0 = L + PR_0$, $r_1 = L + PR_1$ und $r_2 = L + PR_2$
- Kreisgleichung $r^2 = \overline{MX}^2 = (\overline{X} \overline{M})^2$

- Radien unbekannt, aber $r_0 = L + PR_0$, $r_1 = L + PR_1$ und $r_2 = L + PR_2$
- Kreisgleichung $r^2 = \overline{MX}^2 = (\overline{X} \overline{M})^2$
- Gleichungssystem:

$$r_0^2 = (\overline{X} - \overline{S_0})^2 \tag{1}$$

$$r_1^2 = (\overline{X} - \overline{S_1})^2 \tag{2}$$

$$r_2^2 = (\overline{X} - \overline{S_2})^2 \tag{3}$$

- Radien unbekannt, aber $r_0 = L + PR_0$, $r_1 = L + PR_1$ und $r_2 = L + PR_2$
- Kreisgleichung $r^2 = \overline{MX}^2 = (\overline{X} \overline{M})^2$
- Gleichungssystem:

$$r_0^2 = (\overline{X} - \overline{S_0})^2 \tag{1}$$

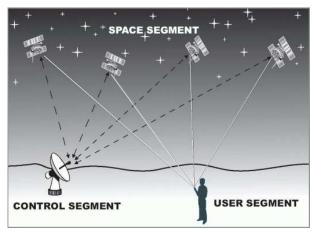
$$r_1^2 = (\overline{X} - \overline{S_1})^2 \tag{2}$$

$$r_2^2 = (\overline{X} - \overline{S_2})^2 \tag{3}$$

bzw.

$$(L + PR_0)^2 = (x - x_{S_0})^2 + (y - y_{S_0})^2$$
 (4)

$$(L + PR_1)^2 = (x - x_{S_1})^2 + (y - y_{S_1})^2$$
 (5)


$$(L + PR2)2 = (x - xS2)2 + (y - yS2)2$$
 (6)

Übergang in den Raum

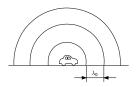
- 3 Sender nicht genug
- 4. Sender wird benötigt
- analog zu Berechnung in Ebene

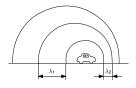
Segmente von GPS

Quelle: http://jm.leglas.free.fr/windsurf/gps/quoi.htm

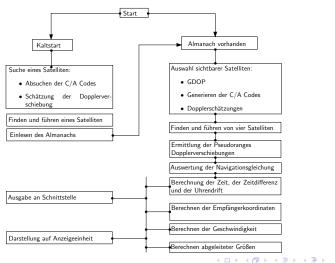
Space-Segment

- mindestens 4 Satelliten im Sichtfeld
- Umlaufzeit der Satelliten 12 Stunden
- Höhe 20.000 km
- 21 + 3 Satelliten
- Gesendete Daten
 - ID-Code
 - Uhrzeit
 - Position

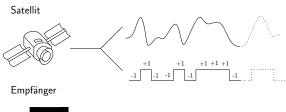

Ground-Segment



User-Segment


- Entwicklung der Empfänger
 - 1980 1 Empfänger 100.000 \$
 - 1993 ca. 300 Empfänger 500 \$ bis 60.000 \$
 - heute unzählige Empfänger ab 100 \$
- Arten von Empfängern
 - Empfänger für zivile Nutzung
 - Empfänger für militärische Nutzung
 - Geodäsie Empfänger

Dopplereffekt



Grundsätzlicher Ablauf

Start ohne Almanach

$$AKF = \frac{1}{N} \sum_{i=1}^{N} x_i x_{i-j}$$

Beispiel:

$$AKF = \frac{1}{10} \left\{ (-1)(-1) + (+1)(+1) - (-1)(-1) + (-1)(+1) + \ldots \right\} \neq 1$$

Start ohne Almanach

- Dopplerverschiebung beachten
- 2D Suche
- Almanach einlesen

Satellitenwahl

- Satellitenwahl
- Pseudo Ranging

- Satellitenwahl
- Pseudo Ranging
- Navigationsgleichung

- Satellitenwahl
- Pseudo Ranging
- Navigationsgleichung
- Geschwindigkeit
 - Ortsänderung pro Zeit
 - Errechnung aus Dopplerverschiebung

Ende des Vortrages

Danke für Ihre Aufmerksamkeit!