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Legal Fine Print and Disclaimer

To the best of our knowledge, these slides do not violate or infringe upon somebody
else’s copyrights. If copyrighted material appears in these slides then it was
considered to be available in a non-profit manner and as an educational tool for
teaching at an academic institution, within the limits of the “fair use” policy. For
copyrighted material we strive to give references to the copyright holders (if known).
Of course, any trademarks mentioned in these slides are properties of their respective
owners.

Please note that these slides are copyrighted. The copyright holder(s) grant you the
right to download and print it for your personal use. Any other use, including non-profit
instructional use and re-distribution in electronic or printed form of significant portions
of it, beyond the limits of “fair use”, requires the explicit permission of the copyright
holder(s). All rights reserved.

These slides are made available without warrant of any kind, either express or
implied, including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. In no event shall the copyright holder(s) and/or their
respective employers be liable for any special, indirect or consequential damages or
any damages whatsoever resulting from loss of use, data or profits, arising out of or in
connection with the use of information provided in these slides.
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Propositional Logic

Goal: specification of a language for formally expressing theorems and proofs.

Aka: propositional calculus, logic of statements, statement logic;

Dt.: Aussagenlogik.

Definition 1 (Proposition, Dt.: Aussage)

A proposition is a statement that is either true or false.

Propositions can be atomic,
like “The sun is shining”,

or compound,
like “The sun is shining and the temperature is high”.

In the latter case, the proposition is a composition of atomic or compound
propositions by means of logical connectives.
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Language of Propositional Logic

Definition 2 (Propositional formula, Dt.: aussagenlogische Formel)

A propositional formula is constructed inductively from a set of

propositional variables (typically p, q, r or p1, p2, . . .);

connectives (operators): ¬,∧,∨,⇒,⇔;

parentheses: (, );

constants (truth values): ⊥,⊤ (or F ,T );

based on the following rules:

A propositional variable is a propositional formula.

The constants ⊥ and ⊤ are propositional formulas.

If ϕ1 and ϕ2 are propositional formulas then so are the following:

(¬ϕ1), (ϕ1 ∧ ϕ2), (ϕ1 ∨ ϕ2), (ϕ1 ⇒ ϕ2), (ϕ1 ⇔ ϕ2).
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Precedence Rules

Precedence rules (Dt.: Vorrangregeln) are used frequently to avoid the burden of
too many parentheses. From highest to lowest precedence, the following order is
common.

¬, ∧, ∨, ⇒
⇔

Unfortunately, different precedence rules tend to be used by different authors.

Thus, make it clear which order you use, or in case of doubt, insert parentheses!

It is common to represent the truth values of a proposition under all possible
assignments to its variables by means of a truth table.

In addition to the standard connectives we also define another operator, NAND,
denoted by |.
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Truth Tables

p q ¬p p ∧ q p ∨ q p ⇒ q p ⇔ q p | q
T T F T T T T F
T F F F T F F T
F T T F T T F T
F F T F F T T T

Common names for the operators in natural language:
¬p: NOT, negation;
p ∧ q: AND, conjunction;
p ∨ q: OR, disjunction;
p ⇒ q: IMPLIES, conditional, if p then q, q if p, p sufficient for q, q necessary
for p;
p ⇔ q: IFF, equivalence, biconditional, p if and only if q, p necessary and
sufficient for q.

Note: The truth table (Dt.: Wahrheitstabelle) of a formula with n variables has 2n

rows.

© M. Held (Univ. Salzburg) Predicate Logic (WS 2022/23) 9



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Tautologies, Contradictions

Definition 3 (Tautology, Dt.: Tautologie)

A propositional formula is a tautology if it is true under all truth assignments to its
variables.

Definition 4 (Contradiction, Dt.: Widerspruch)

A propositional formula is a contradiction if it is false under all truth assignments to its
variables.

Standard examples: (p ∨ ¬p) and (p ∧ ¬p).

Easy to prove: The negation of a tautology yields a contradiction, and vice versa.
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UNIVERSITÄT SALZBURG

Logical Equivalence

Definition 5 (Logical equivalence, Dt.: logische Äquivalenz)

Two propositional formulas are logically equivalent if they have the same truth table.
Logical equivalence of formulas ϕ1, ϕ2 is commonly denoted by ϕ1 ≡ ϕ2.

Theorem 6

Two propositional formulas ϕ1, ϕ2 are logically equivalent iff ϕ1 ⇔ ϕ2 is a tautology.

Definition 7 (Complete set of connectives, Dt.: vollständige Junktorenmenge)

A set S of connectives is said to be complete (or truth-functionally
adequate/complete) if, for any given propositional formula, a logically equivalent one
can be written using only connectives of S.

Note: The set {|} is a complete set of connectives.
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Laws for Logical Equivalence

Theorem 8

Let ϕ1, ϕ2 be propositional formulas. Then the following equivalences hold:
Identity: ϕ1 ∧ T ≡ ϕ1 ϕ1 ∨ F ≡ ϕ1

Domination: ϕ1 ∨ T ≡ T ϕ1 ∧ F ≡ F
Idempotence: ϕ1 ∨ ϕ1 ≡ ϕ1 ϕ1 ∧ ϕ1 ≡ ϕ1

Double negation: ¬¬ϕ1 ≡ ϕ1

Commutativity: ϕ1 ∧ ϕ2 ≡ ϕ2 ∧ ϕ1 ϕ1 ∨ ϕ2 ≡ ϕ2 ∨ ϕ1

ϕ1 ⇔ ϕ2 ≡ ϕ2 ⇔ ϕ1

Distributivity: (ϕ1 ∨ ϕ2) ∧ ϕ3 ≡ (ϕ1 ∧ ϕ3) ∨ (ϕ2 ∧ ϕ3)
(ϕ1 ∧ ϕ2) ∨ ϕ3 ≡ (ϕ1 ∨ ϕ3) ∧ (ϕ2 ∨ ϕ3)

Associativity: (ϕ1 ∨ ϕ2) ∨ ϕ3 ≡ ϕ1 ∨ (ϕ2 ∨ ϕ3)
(ϕ1 ∧ ϕ2) ∧ ϕ3 ≡ ϕ1 ∧ (ϕ2 ∧ ϕ3)

De Morgan’s laws: ¬(ϕ1 ∧ ϕ2) ≡ ¬ϕ1 ∨ ¬ϕ2

¬(ϕ1 ∨ ϕ2) ≡ ¬ϕ1 ∧ ¬ϕ2

Trivial tautology: ϕ1 ∨ ¬ϕ1 ≡ T
Trivial contradiction: ϕ1 ∧ ¬ϕ1 ≡ F

Contraposition: ¬ϕ1 ⇔ ¬ϕ2 ≡ ϕ1 ⇔ ϕ2 ¬ϕ2 ⇒ ¬ϕ1 ≡ ϕ1 ⇒ ϕ2

Implication as Disj.: ϕ1 ⇒ ϕ2 ≡ ¬ϕ1 ∨ ϕ2
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Logical Implication and Proofs

Definition 9 (Logical implication, Dt.: logische Implikation)

A formula ϕ1 logically implies ϕ2, denoted by ϕ1 |= ϕ2, if ϕ1 ⇒ ϕ2 is a tautology.

Definition 10 (Proof, Dt.: Beweis)

A proof of ψ based on premises ϕ1, . . . , ϕn is a finite sequence of propositions that
ends in ψ such that each proposition is either a premise or a logical implication of the
previous proposition.

Note: Logical implication rather than logical equivalence!

Thus,
note that it need not be possible to revert a proof!
pay close attention to which steps are actual equivalences if you intend to
argue both ways!
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Rules of Inference

Aka: proof rules (Dt.: Schlußregeln).

In addition to the following inference rules for propositional formulas ϕ1, ϕ2, all the
equivalence rules apply: Each equivalence can be written as two inference rules
since they are valid in both directions.

ϕ1 ∧ ϕ2

ϕ1

ϕ1

ϕ1 ∨ ϕ2

ϕ1 ⇒ ϕ2

¬ϕ2 ⇒ ¬ϕ1
(CONTRAPOSITION)

ϕ1 ϕ1 ⇒ ϕ2

ϕ2
(MODUS PONENS)

¬ϕ1 ϕ1 ∨ ϕ2

ϕ2
(MODUS TOLLENDO PONENS)

ϕ1 ⇒ ϕ2 ¬ϕ1 ⇒ ϕ2

ϕ2
(RULE OF CASES)

ϕ1 ⇒ ϕ2 ϕ2 ⇒ ϕ3

ϕ1 ⇒ ϕ3
(CHAIN RULE)
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Satisfiability

Definition 11 (Satisfiability, Dt.: Erfüllbarkeit)

A formula ϕ is satisfiable if there exists at least one truth assignment to the variables
of ϕ that makes ϕ true.

Definition 12 (Satisfiability equivalent)

Two formulas are satisfiability equivalent if both formulas are either satisfiable or not
satisfiable.
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Conjunctive Normal Form

In mathematics, normal forms are canonical representations of objects such that
all equivalent objects have the same representation.

Definition 13 (Literal, Dt.: Literal)

A literal is a propositional variable or the negation of a propositional variable. A clause
is a disjunction of literals.

E.g., if p, q are variables then p and ¬q are literals, and (p ∨ ¬q) is a clause.

Definition 14 (Conjunctive normal form, Dt.: konjunktive Normalform)

A propositional formula is in (general) conjunctive normal form (CNF) if it is a
conjunction of clauses.

E.g., ¬p1 ∧ (p2 ∨ p5 ∨ ¬p6) ∧ (¬p3 ∨ p4 ∨ ¬p6) is a CNF formula.

Definition 15 (k -CNF)

A CNF formula is a k -CNF formula if every clause contains at most k literals.
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Conjunctive Normal Form

Note: Some textbooks demand exactly k literals rather than at most k literals.

Note: It is common to demand that no variable may appear more than once in a
clause.

Note: For k ≥ 3, a general CNF formula can easily be converted in polynomial
time (in the number of literals) into a k -CNF formula with exactly k literals per
clause such that no variable appears more than once in a clause and such that
the two formulas are satisfiability equivalent.
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Predicate Logic

Definition 16 (n-place relation, Dt.: n-stellige Relation)

Let A1,A2, . . . ,An be sets, for some n ∈ N. An n-place relation R on A1,A2, . . . ,An is
a subset of their Cartesian product, i.e., R ⊆ A1 × A2 × · · · × An.

Definition 17 (n-place function, Dt.: n-stellige Funktion)

Let A1,A2, . . . ,An,B be sets, for some n ∈ N. An n-place function F from
A1 × A2 × · · · × An to B is an (n + 1)-place relation on A1,A2, . . . ,An,B such that for
any (a1, a2, . . . , an) ∈ A1 × A2 × · · · × An there exists a unique b ∈ B such that
(a1, a2, . . . , an, b) ∈ F .

It is common to write y = F(a1, . . . , an) for “pick y such that (a1, . . . , an, y) ∈ F ”.
The set A1 × A2 × · · · × An is called the domain and the set B is called the
codomain of F .
An n-place relation/function over a set A is a relation/function where
A1 = A2 = . . . = An = A, i.e., A1 × A2 × · · · × An = An. It is also called an n-ary
relation/function.
An 1-ary relation/function is called unary, and a 2-ary relation/function is called
binary.
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Predicate Logic: Predicates

Definition 18 (Predicate, Dt.: Prädikat)

For an n-ary relation R over A, an n-ary predicate over A is the n-ary function
fR : An → {T ,F}, where

fR(a1, . . . , an) :=

{
T if (a1, . . . , an) ∈ R,
F otherwise.

Thus, a predicate is a Boolean function.

Note: This is a slight abuse of notation since the symbols “:” and “→” in
“f : M → N” actually form already a 3-ary predicate!

An 1-ary predicate is called unary, and a 2-ary predicate is called binary.

A sample unary predicate on R is

“x is non-negative” :=
{

T if x ≥ 0,
F otherwise.

Dt.: Prädikatenlogik.
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Language of Predicate Logic

Definition 19 (Predicate vocabulary, Dt.: Symbolmenge)

A predicate vocabulary consists of

a set C of constant symbols,

a set F of function symbols,

a set V of variables, typically {x1, x2, . . .} or {a, b, . . .},

a set P of predicate symbols, including the 0-ary predicate symbols (truth values)
⊥,⊤ or F ,T ,

together with

logical connectives ¬,∧,∨,⇒,⇔,

quantifiers ∃,∀,

parentheses.
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Language of Predicate Logic

Definition 20 (Term)

A term over (C,V,F) is defined inductively as follows:

Every constant c ∈ C is a term.

Every variable x ∈ V is a term.

If t1, . . . , tn are terms and f is an n-ary function symbol then f (t1, . . . , tn) is a term.

Note: Constants can be thought of as 0-ary function symbols. Thus, a set C of
constants need not be considered when defining the language of predicate logic.
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UNIVERSITÄT SALZBURG

Language of Predicate Logic

Definition 21 (Formulas)

The set of formulas over (C,V,F ,P) is defined inductively as follows:

⊥ and ⊤ are formulas.

If t1, . . . , tn are terms and P ∈ P is an n-ary predicate, then P(t1, . . . , tn) is a
(so-called atomic) formula.

If ϕ and ψ are formulas then (¬ϕ), (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ⇒ ψ) and (ϕ⇔ ψ) are
formulas.

If ϕ is a formula then (∀x ϕ) and (∃x ϕ) are formulas. In both cases, the scope
of the quantifier is given by the formula ϕ to which the quantifier is applied.

Definition 22 (Quantifier-free formula, Dt.: quantorenfreie Formel)

A quantifier-free formula is a formula which does not contain a quantifier.
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Quantifiers

Definition 23 (Universe of discourse, Dt.: Wertebereich, Universum)

The universe of discourse specifies the set of values that the variable x may assume
in (∀x ϕ) and (∃x ϕ).

Definition 24 (Universal quantifier, Dt.: Allquantor)

(∀x P(x)) is the statement
“P(x) is true for all x (in the universe of discourse)”.

Definition 25 (Existential quantifier, Dt.: Existenzquantor)

(∃x P(x)) is the statement
“there exists x (in the universe of discourse) such that P(x) is true”.

The notation (∃!x P(x)) is a convenience short-hand for
“there exists exactly one x such that P(x) is true”,

i.e., for denoting existence and uniqueness of a suitable x .
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Precedence Rules for Quantified Formulas

No universally accepted precedence rule exists.

Thus, you have to make your specific order very clear.

Even better, use parentheses or (significant!) spaces between coherent parts of
the expression.

First-order logic versus higher-order logic: In first-order predicate logic, predicate
quantifiers or function quantifiers are not permitted, and variables are the only
objects that may be quantified. Also, predicates are not allowed to have
predicates as arguments.
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Free Variables

Definition 26 (Free variables, Dt.: freie Variable)

The free variables of a formula ϕ or a term t , denoted by FV (ϕ) and FV (t), are
defined inductively as follows:

For a constant c ∈ C: FV (c) := {};
For a variable x ∈ V: FV (x) := {x};
For a term f (t1, . . . , tn): FV (f (t1, . . . , tn)) := FV (t1) ∪ . . . ∪ FV (tn);
For a formula P(t1, . . . , tn): FV (P(t1, . . . , tn)) := FV (t1) ∪ . . . ∪ FV (tn);
Also, FV (⊥) := {},

FV (⊤) := {};
For formulas ϕ and ψ: FV ((¬ϕ)) := FV (ϕ),

FV ((ϕ ∧ ψ)) := FV (ϕ) ∪ FV (ψ),
FV ((ϕ ∨ ψ)) := FV (ϕ) ∪ FV (ψ),

FV ((ϕ⇒ ψ)) := FV (ϕ) ∪ FV (ψ),
FV ((ϕ⇔ ψ)) := FV (ϕ) ∪ FV (ψ);

For a formula ϕ: FV ((∀x ϕ)) := FV (ϕ) \ {x},
FV ((∃x ϕ)) := FV (ϕ) \ {x}.
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UNIVERSITÄT SALZBURG

Bound Variables

Definition 27 (Bound variables, Dt.: gebundene Variable)

The bound variables of a formula ϕ or a term t , denoted by BV (ϕ) and BV (t), are
defined inductively as follows:

For a constant c ∈ C: BV (c) := {};
For a variable x ∈ V: BV (x) := {};
For a term f (t1, . . . , tn): BV (f (t1, . . . , tn)) := {};
For a formula P(t1, . . . , tn): BV (P(t1, . . . , tn)) := {};
Also, BV (⊥) := {},

BV (⊤) := {};
For formulas ϕ and ψ: BV ((¬ϕ)) := BV (ϕ),

BV ((ϕ ∧ ψ)) := BV (ϕ) ∪ BV (ψ),
BV ((ϕ ∨ ψ)) := BV (ϕ) ∪ BV (ψ),

BV ((ϕ⇒ ψ)) := BV (ϕ) ∪ BV (ψ),
BV ((ϕ⇔ ψ)) := BV (ϕ) ∪ BV (ψ);

For a formula ϕ: BV ((∀x ϕ)) := BV (ϕ) ∪ {x},
BV ((∃x ϕ)) := BV (ϕ) ∪ {x}.
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Free and Bound Variables

Note: Technically speaking, one variable symbol may denote both a free and a
bound variable of a formula!

However, common sense dictates to use a different symbol if a different variable
is meant, even if not required by the syntax of predicate logic:

Do not use the same symbol for bound and free variables! E.g.,

(P(x) ⇒ (∀x Q(x)))

is syntactically correct but extremely difficult to parse for a human.
Also, do not re-use symbols of bound variables inside nested quantifiers!
E.g.,

(∀x (P(x) ⇒ (∀x Q(x))))

is syntactically correct but horrible to parse.

Definition 28 (Sentence, Dt.: geschlossener Ausdruck)

A formula ϕ is a sentence if FV (ϕ) = {}.
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Substitutions

Definition 29 (Substitution, Dt.: Ersetzung)

For a formula ϕ, variable x and term t , we obtain the substitution of x by t , denoted as
ϕ[t/x ], by replacing each free occurrence of x in ϕ by t .

Definition 30 (Valid substitution, Dt.: gültige Ersetzung)

A substitution of t for x in a formula ϕ is valid if and only if no free variable of t ends
up being bound in ϕ[t/x ].

Not a valid substitution of x : ϕ ≡ (∃y ∈ N y > 10 ∧ x < y) and t := 2y + 5.

Again, it is very poor practice to substitute x by t if t contains any variable that
also is a bound variable of ϕ!
ϕ ≡ (∀z ∈ N z2 > 0) ∨ (∃y ∈ N y > 10 ∧ x < y) and t := 2z + 5.
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Equivalence Rules

Theorem 31

Let x be a variable, and ϕ and ψ be formulas which normally contain x as a free
variable. Then the following equivalences hold:

De Morgan’s laws: (¬(∀x ϕ)) ≡ (∃x (¬ϕ))
(¬(∃x ϕ)) ≡ (∀x (¬ϕ))

Trivial conjunction: (∀x (ϕ ∧ ψ)) ≡ ((∀x ϕ) ∧ (∀x ψ))

Only if x ̸∈ FV (ψ): (∀x (ϕ ∧ ψ)) ≡ ((∀x ϕ) ∧ ψ)
(∀x (ϕ ∨ ψ)) ≡ ((∀x ϕ) ∨ ψ)
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Rules of Inference

Let x , y be variables and ϕ, ψ be propositional formulas. The following inference
rules allow to deduce new formulas.
((∀x ϕ) ∨ (∀x ψ))

(∀x (ϕ ∨ ψ))
(∃x (ϕ ∧ ψ))

(∃x ϕ) ∧ (∃x ψ)
(∃x (∀y ϕ))
(∀y (∃x ϕ))

Note that the other direction does not hold for any of these inference rules!

In addition to these three inference rules all the equivalence rules apply: Each
equivalence can be written as two inference rules since they are valid in both
directions.
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1 Review of Propositional and Predicate Logic
Propositional Logic
Predicate Logic
Special Quantifiers
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Special Quantifiers

What is the syntactical meaning of

n∑
i=m

f (i) ?

Apparently, this is the common short-hand notation for

n∑
i=m

f (i) =
∑

m≤i≤n

f (i) =
∑

P(i,m,n)

f (i) = f (m) + f (m + 1) + · · ·+ f (n − 1) + f (n),

where f (i) is a term with the free variable i and (m ≤ i ≤ n) is a formula with free
variables i,m, n, and P(i,m, n) :⇔ [(i ≥ m) ∧ (i ≤ n)].
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UNIVERSITÄT SALZBURG

Special Quantifiers

Thus, the
∑

-quantifier takes a predicate, P(i,m, n), and and a term, f (i), and
converts it to the new term

(f (m) + f (m + 1) + f (m + 2) + · · ·+ f (n − 1) + f (n)),

By convention, the variable i is bound inside of
∑n

i=m f (i), while m and n remain
free.

Similarly,

n∏
i=m

f (i) := f (m) · f (m + 1) · f (m + 2) · . . . · f (n − 1) · f (n).

Again, by convention, if n < m then

n∑
i=m

f (i) := 0 and
n∏

i=m

f (i) := 1.

Union (∪) and intersection (∩) of several sets are further examples of special
quantifiers: ∪n

i=1Ai .
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Special Quantifiers: Sets

Standard notation for a set with a finite number of elements: { , , . . . , };
e.g., {1, 2, 3, 4}.

Obvious disadvantage: explicit enumeration of all elements of a set allows to
specify only finite sets!

Infinite sets require us to give a statement A to specify a characteristic property
of the set:

S := {x : A} or S := {f (x) : A},

where S shall contain those elements x , or those terms f (x), for some universe
of discourse, for which the statement A holds.

Typically, x will be a free variable of A.

Thus, the three symbols “{” and “:” and “}” together act as a quantifier that binds
x .
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Convenient Short-Hand Notations

The following short-hand notations are convenient for using the predicate x ∈ X
in conjunction with sets or quantifiers:

{x ∈ X : A(x)} is a short-hand notation for {x : x ∈ X ∧ A(x)}

(∀x ∈ X A(x)) is a short-hand notation for (∀x (x ∈ X ⇒ A(x)))

(∃x ∈ X A(x)) is a short-hand notation for (∃x (x ∈ X ∧ A(x)))

If x is a typed variable – e.g., a real number – and P is a “simple” unary predicate
– e.g., P(x) :⇔ (x > 3) then the following notations are also used commonly:

(∀P(x) A(x)) is a short-hand notation for (∀x (P(x) ⇒ A(x)))

(∃P(x) A(x)) is a short-hand notation for (∃x (P(x) ∧ A(x)))

Another wide-spread notation is to drop the parentheses:

∀x P(x) instead of (∀x P(x))
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