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Personalia

Instructor: M. Held.
Email: held@cs.sbg.ac.at.

Base-URL: www.cosy.sbg.ac.at/~held.
Office: PLUS, FB Informatik, Rm. 1.20, Jakob-Haringer Str. 2,

5020 Salzburg-Itzling.
Phone number (office): (0662) 8044-6304.
Phone number (secr.): (0662) 8044-6300.
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Formalia

URL of course: . . ./teaching/geom_rechnen/geom_rechnen.html.

Lecture times: Thursday 745–1045.

Venue: PLUS, FB Informatik, T05, Jakob-Haringer Str. 2, 5020
Salzburg-Itzling.

Note: — UV is graded according to continuous-assessment mode!

— regular attendance is compulsory!
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Electronic Slides and Online Material

In addition to these slides, you are encouraged to consult the WWW home-page of
this lecture:

www.cosy.sbg.ac.at/~held/teaching/geom_rechnen/geom_
rechnen.html.

In particular, this WWW page contains links to online manuals, slides, and code.

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 4/379

www.cosy.sbg.ac.at/~held/teaching/geom_rechnen/geom_rechnen.html
www.cosy.sbg.ac.at/~held/teaching/geom_rechnen/geom_rechnen.html


Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

A Few Words of Warning

I hope that these slides will serve as a practice-minded introduction to the
mathematics of geometric computing. I would like to warn you explicitly not to
regard these slides as the sole source of information on the topics of my course.
It may and will happen that I’ll use the lecture for talking about subtle details that
need not be covered in these slides! In particular, the slides won’t contain all
sample calculations, proofs of theorems, demonstrations of algorithms, or
solutions to problems posed during my lecture. That is, by making these slides
available to you I do not intend to encourage you to attend the lecture on an
irregular basis.

See also In Praise of Lectures by T.W. Körner.
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Legal Fine Print and Disclaimer

To the best of our knowledge, these slides do not violate or infringe upon somebody
else’s copyrights. If copyrighted material appears in these slides then it was
considered to be available in a non-profit manner and as an educational tool for
teaching at an academic institution, within the limits of the “fair use” policy. For
copyrighted material we strive to give references to the copyright holders (if known).
Of course, any trademarks mentioned in these slides are properties of their respective
owners.

Please note that these slides are copyrighted. The copyright holder(s) grant you the
right to download and print it for your personal use. Any other use, including non-profit
instructional use and re-distribution in electronic or printed form of significant portions
of it, beyond the limits of “fair use”, requires the explicit permission of the copyright
holder(s). All rights reserved.

These slides are made available without warrant of any kind, either express or
implied, including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. In no event shall the copyright holder(s) and/or their
respective employers be liable for any special, indirect or consequential damages or
any damages whatsoever resulting from loss of use, data or profits, arising out of or in
connection with the use of information provided in these slides.
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Recommended Textbooks

G.E. Farin, D. Hansford.
Practical Linear Algebra: A Geometry Toolbox.
A K Peters/CRC Press, 4th edition, 2021; ISBN 978-0367507848.

M.E. Mortenson.
Mathematics for Computer Graphics Applications.
Industrial Press, 2nd rev. edition, 1999; ISBN 978-0831131111.

J. Ström, K. Åström, and T. Akenine-Möller.
immersive linear algebra.
ISBN 978-91-637-9354-7;
https://immersivemath.com/ila.
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1 Introduction
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Basis of a Vector Space

Consider the following four polynomials (in the variable x):

p1(x) := (1 − x)3 p2(x) := 3x(1 − x)2 p3(x) := 3x2(1 − x) p4(x) := x3

Question: Can we write every polynomial p(x) of degree at most three as

p(x) = λ1 · p1(x) + λ2 · p2(x) + λ3 · p3(x) + λ4 · p4(x)

for suitable λ1, λ2, λ3, λ4 ∈ R?

Answer: Yes — because p1(x), p2(x), p3(x), p4(x) form a basis of the vector
space of polynomials (in x) of degree at most three.

What is a vector space? What is a basis? And what is a polynomial?
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Complex Numbers for Generating Pretty Images

How can we generate such an image?

Answer: This looks like a visualization of a Julia set. Similar to the Mandelbrot
set, Julia sets can be generated via visualizing properties of series of complex
numbers.

What is a complex number?
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Area of a Triangle

Consider the triangle (in the plane) with corners (2, 1), (7, 2) and (3, 5).

x

y

A

Question: How can we compute the area A of that triangle?

The area of that triangle can be obtained by a simple determinant computation:

A =
1
2
· det

2 1 1
7 2 1
3 5 1

 =
19
2

What is a determinant? And why is this claim true?
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Orthogonal Frame

Assume that the vector ν1 := (1, 2, 3) is a tangent vector to the curve γ at the
point γ(6).

Question: How can we quickly find two other vectors ν2 and ν3 that form an
orthogonal frame with ν1?

Answer: An orthogonal frame can be obtained by taking a vector cross-product of
two suitable vectors:

ν2 :=

−2
1
0

 and ν3 :=

1
2
3

×

−2
1
0

 =

−3
−6
5


Then ν1 ⊥ ν2, ν1 ⊥ ν3 and ν2 ⊥ ν3.

By the way, what is a curve? And what does orthogonal mean?
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UNIVERSITÄT SALZBURG

Rotation About a Line

Question: How can we compute a rotation about a line ℓ (through the origin) with
direction vector u by an angle φ?

uz

x

y`

ϕ

Answer: We set up a new frame C′ and reduce the rotation about ℓ to a rotation
about a coordinate axis.
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uz

x

y` 0 = 0′

x′

y′

z′
ϕ
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Basic Topology

Question: What is an important topological difference between the following sets?
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Basic Topology

Question: What is an important topological difference between the following sets?

not path-connected , multiply-connectedpath-connected
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UNIVERSITÄT SALZBURG

Computation with Floating-Point Arithmetic

Consider
n∑

i=1

1
i

for some n ∈ N.

Question: How shall be compute this sum on a computer? In particular, does it
matter whether we start summing with the smallest or the largest summand?

1 +
1
2
+

1
3
+ . . .+

1
n − 1

+
1
n

?
=

1
n
+

1
n − 1

+ . . .+
1
3
+

1
2
+ 1

Answer: Yes, it does matter! We’ll get back to this question when we’ll talk about
floating-point arithmetic and numerical issues.
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Applied Linear Algebra for Solving a Putnam Problem

Choose four points p1, p2, p3, p4 independently at random (relative to a uniform
distribution) on a sphere (in 3D).

Consider the tetrahedron T formed by p1, p2, p3, p4.

What is the probability that the center of the sphere lies inside T?

Answer: The probability is 1/4 in 2D and 1/8 in 3D.

Visualization of that problem in 2D (for three random points on a circle):
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Gain a Better Understanding of Geometry and the Underlying Math

Consider a mountain that is shaped
like a (perfect) right circular cone.

A shortest-length railroad track is
supposed to start at A, wind around
the mountain once, and end in B.

The height h of the cone is 40
√

2, its
base radius r is 20, and the distance
between A and B is 10.

Your task:
1 Prove that the shortest-length

railroad track from A to B that
winds around the mountain once
consists of an uphill portion and
of a downhill portion.

2 Compute the length of the
downhill portion.

h

r

s

[Problem credit: Presh Talwalkar’s “Mind Your Decisions” YouTube Channel]
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Another Challenge Problem

Consider an equilateral triangle and
pick a random point P strictly in its
interior.

Draw a straight-line segment from
each vertex to P.

Your task:

1 Prove that these three line
segments form a new triangle if
rotated and translated properly.

2 Choose any two of the three
angles at P induced by these line
segments, say α and β, and
assume that they are known.
What are the new triangle’s three
interior angles in terms of α and
β?

P

[Problem credit: Tanya Khovanova’s “Math coffin problems”.]
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Notation

The set {1, 2, 3, . . .} of natural numbers is denoted by N, with N0 := N ∪ {0},
while Z denotes the integers (positive and negative) and R the reals. The
non-negative reals are denoted by R+

0 , and the positive reals by R+.

Open or closed intervals I ⊂ R are denoted using square brackets: e.g.,
I1 = [a1, b1] or I2 = [a2, b2[, with a1, a2, b1, b2 ∈ R, where the right-hand “[”
indicates that the value b2 is not included in I2.

We use Greek letters like λ, µ and letters in italics to denote scalar values: s, t .

Points are denoted by capital or lower-case letters written in italics: e.g., A and P
or a and p.

We use lower-case letters for denoting vectors, including position vectors of
points. (Frequently we do not distinguish between a point and its position vector.)

The coordinates of a vector are denoted by using indices (or numbers): e.g.,
a = (ax , ay , az) for a ∈ R3, or a = (a1, a2, . . . , an) for a ∈ Rn.

In order to state a ∈ Rn in vector form we will mix column and row vectors freely
unless a specific form is required, such as for matrix multiplication.
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Notation

For two points p and q, the term pq denotes the vector from p to q. That is,
pq := q − p.

The dot product of two vectors a and b is denoted by ⟨a,b⟩.
Their vector cross-product is denoted by a cross: a × b.

The length of a vector a is denoted by ∥a∥.

If two vectors a and b are perpendicular then we will write a ⊥ b.

The straight-line segment between the points p and q is denoted by pq.

Bold capital letters, such as M, are reserved for matrices.

The set of all elements x ∈ S with property P(x), for some set S and some
predicate P, is denoted by

{x ∈ S : P(x)} or {x : x ∈ S ∧ P(x)}

or

{x ∈ S| P(x)} or {x |x ∈ S ∧ P(x)}.

Quantifiers: The universal quantifier is denoted by ∀, and ∃ denotes the
existential quantifier.

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 24/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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UNIVERSITÄT SALZBURG

Notation

For two points p and q, the term pq denotes the vector from p to q. That is,
pq := q − p.

The dot product of two vectors a and b is denoted by ⟨a,b⟩.
Their vector cross-product is denoted by a cross: a × b.

The length of a vector a is denoted by ∥a∥.

If two vectors a and b are perpendicular then we will write a ⊥ b.

The straight-line segment between the points p and q is denoted by pq.

Bold capital letters, such as M, are reserved for matrices.

The set of all elements x ∈ S with property P(x), for some set S and some
predicate P, is denoted by

{x ∈ S : P(x)} or {x : x ∈ S ∧ P(x)}

or

{x ∈ S| P(x)} or {x |x ∈ S ∧ P(x)}.

Quantifiers: The universal quantifier is denoted by ∀, and ∃ denotes the
existential quantifier.

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 24/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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2 Order-theoretic and Algebraic Concepts
Extreme Elements and Bounds
Algebraic Structures
Real Numbers and Vector Space Rn

Complex Numbers C
Polynomials
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UNIVERSITÄT SALZBURG

Extreme Elements

Definition 1 (Minimal element, Dt.: minimales Element)

Let (S,⪯) be a poset and T ⊆ S. An element a ∈ T is a minimal element of T if no
b ∈ T \ {a} exists such that b ⪯ a.

Definition 2 (Least element, Dt.: kleinstes Element, Minimum)

Let (S,⪯) be a poset and T ⊆ S. An element a ∈ T is a least element (or minimum)
of T if ∀b ∈ T \ {a} a ⪯ b.

Definition 3 (Maximal element, Dt.: maximales Element)

Let (S,⪯) be a poset and T ⊆ S. An element a ∈ T is a maximal element of T if no
b ∈ T \ {a} exists such that a ⪯ b.

Definition 4 (Greatest element, Dt.: größtes Element, Maximum)

Let (S,⪯) be a poset and T ⊆ S. An element a ∈ T is a greatest element (or
maximum) of T if ∀b ∈ T \ {a} b ⪯ a.
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Infimum

Definition 5 (Lower bound, Dt.: untere Schranke)

Let (S,⪯) be a partially ordered set and let T ⊆ S. The set T is bounded below if
there exists an element s ∈ S, a lower bound of T , such that

∀t ∈ T s ⪯ t .

Definition 6 (Greatest lower bound, infimum, Dt.: Infimum, größte untere
Schranke)

Let (S,⪯) be a partially ordered set and let T ⊆ S. An element s ∈ S is called
greatest lower bound (or infimum of T ), and denoted by inf(T ), if

∀t ∈ T s ⪯ t and ∀s′ ∈ S
(
(∀t ∈ T s′ ⪯ t) ⇒ s′ ⪯ s

)
.

Mind the difference!

The terms “minimum” and “infimum” have different meanings!
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Let (S,⪯) be a partially ordered set and let T ⊆ S. The set T is bounded below if
there exists an element s ∈ S, a lower bound of T , such that

∀t ∈ T s ⪯ t .
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Schranke)
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Infimum and Supremum

Lemma 7

Let (S,⪯) be a partially ordered set and let T ⊆ S.
(1) If the infimum of T exists then it is unique.

(2) If the infimum of T belongs to T then it is also the minimum of T .

The definitions of upper bound and supremum are obtained by replacing terms
like “lower” by “upper” in these definitions.

Similar to minimal and minimum, note the difference between optimal and
optimum.
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2 Order-theoretic and Algebraic Concepts
Extreme Elements and Bounds
Algebraic Structures

Vector Space
Basis

Real Numbers and Vector Space Rn

Complex Numbers C
Polynomials
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Vector Space

Definition 8 (Vector space, Dt.: Vektorraum)

A set V together with an “addition” ⊕ : V × V → V and a scalar “multiplication”
⊙ : F × V → V defines a vector space over a field (F ,+, ·), with multiplicative neutral
element 1, if the following conditions hold:

1 (V ,⊕) is an Abelian group.
2 Distributivity: λ⊙ (a ⊕ b) = (λ⊙ a)⊕ (λ⊙ b) ∀λ ∈ F , ∀a, b ∈ V .
3 Distributivity: (λ+ µ)⊙ a = (λ⊙ a)⊕ (µ⊙ a) ∀λ, µ ∈ F , ∀a ∈ V .
4 Associativity: λ⊙ (µ⊙ a) = (λ · µ)⊙ a ∀λ, µ ∈ F , ∀a ∈ V .
5 Neutral element: 1 ⊙ a = a ∀a ∈ V .

In the sequel we use the same symbols + and · for both types of operations.

Furthermore, we postulate the standard precedence rules.

The multiplication sign is often dropped if the meaning is clear within a specific
context: λa rather than λ⊙ a.
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UNIVERSITÄT SALZBURG

Vector Space F n

Definition 9 (Cartesian product, Dt.: Mengenprodukt, kartesisches Produkt)

For a field F and n ∈ N, we define

F n := F × F × · · · × F︸ ︷︷ ︸
n times

:=


x1

...
xn

 : x1, . . . , xn ∈ F

 .

Named after the latinized version of the name of René Descartes (1596–1650).

Well-known sample: Rn, i.e., F := R. You may find it convenient to “visualize” F n

as Rn.

It is trivial to generalize this definition to F1 × F2 × · · · × Fn for n (possibly
different) fields F1, . . . ,Fn.
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Vector Space F n

Definition 10

Let F be a field. For a :=

a1
...

an

 ∈ F n and b :=

b1
...

bn

 ∈ F n, we use

−a1
...

−an

 as the

additive inverse −a.

Furthermore, we use

0
...
0

 as zero vector 0 of F n, and define the

multiplication of a by a scalar λ ∈ F and the addition of a and b as follows:

λ · a := λa :=

λ · a1
...

λ · an

 a + b :=

a1 + b1
...

an + bn


Theorem 11

Let F be a field. Then F n with addition and scalar multiplication as defined above
constitutes a vector space over F for every n ∈ N.
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“Exotic” Vector Spaces: Functions, Sequences

Lemma 12

The set of all real-valued functions f : R → R forms a vector space over R.

Lemma 13

The set of all infinite sequences (tn)n∈N of real numbers forms a vector space over R.

Caveats

Subsets of functions characterized by an additional property — e.g., positive, not
continuous — need not form a vector space.

Subsets of sequences characterized by an additional property — e.g., divergent
sequences, monotonic sequences — need not form a vector space!
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UNIVERSITÄT SALZBURG

“Exotic” Vector Spaces: Functions, Sequences

Lemma 12

The set of all real-valued functions f : R → R forms a vector space over R.

Lemma 13

The set of all infinite sequences (tn)n∈N of real numbers forms a vector space over R.

Caveats

Subsets of functions characterized by an additional property — e.g., positive, not
continuous — need not form a vector space.

Subsets of sequences characterized by an additional property — e.g., divergent
sequences, monotonic sequences — need not form a vector space!

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 34/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Subspace

Definition 14 (Subspace, Dt.: Teilraum, Unterraum)

A subset S of a vector space V over a field F is called a subspace of V if

1 the zero vector belongs to S; i.e., 0 ∈ S;
2 ∀a, b ∈ S a + b ∈ S (S is said to be closed under vector addition);
3 ∀a ∈ S ∀λ ∈ F λa ∈ S (S is said to be closed under scalar multiplication).

Lemma 15

The set of all continous (real-valued) functions f : R → R and the set of all linear
functions form subspaces of the vector space of all (real-valued) functions.
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Linear Combination

Definition 16 (Linear combination, Dt.: Linearkombination)

Let V be a vector space over F , and ν1, . . . , νk ∈ V and λ1, . . . , λk ∈ F , for some
k ∈ N. The vector

ν := λ1ν1 + λ2ν2 + · · ·+ λkνk

is called a linear combination of the vectors ν1, . . . , νk .

Definition 17 (Linear hull, Dt.: lineare Hülle)

For S ⊆ V , with V being a vector space over F ,

[S] := {λ1ν1 + · · ·+ λkνk : k ∈ N, ν1, . . . , νk ∈ S, λ1, . . . , λk ∈ F}

forms the linear hull of S.

Note: Any linear combination is formed by a finite number of vectors, even if we
are allowed to pick those vectors from an infinite set!

Lemma 18
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UNIVERSITÄT SALZBURG

Linear Combination

Definition 16 (Linear combination, Dt.: Linearkombination)

Let V be a vector space over F , and ν1, . . . , νk ∈ V and λ1, . . . , λk ∈ F , for some
k ∈ N. The vector

ν := λ1ν1 + λ2ν2 + · · ·+ λkνk

is called a linear combination of the vectors ν1, . . . , νk .

Definition 17 (Linear hull, Dt.: lineare Hülle)

For S ⊆ V , with V being a vector space over F ,

[S] := {λ1ν1 + · · ·+ λkνk : k ∈ N, ν1, . . . , νk ∈ S, λ1, . . . , λk ∈ F}

forms the linear hull of S.

Note: Any linear combination is formed by a finite number of vectors, even if we
are allowed to pick those vectors from an infinite set!

Lemma 18

For S ⊆ V , with S ̸= /0, the linear hull [S] forms a subspace of the vector space V .

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 36/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Linear Independence

Definition 19 (Linear independence, Dt.: lineare Unabhängigkeit)

The vectors ν1, ν2, . . . , νk of a vector space V over F are linearly dependent if there
exist scalars λ1, . . . , λk ∈ F , not all zero, such that

λ1ν1 + λ2ν2 + · · ·+ λkνk = 0.

Otherwise, the vectors ν1, ν2, . . . , νk are linearly independent.

Lemma 20

If the vectors ν1, ν2, . . . , νk of a vector space V are linearly independent then

λ1ν1 + λ2ν2 + · · ·+ λkνk = 0 ⇒ λ1 = λ2 = · · · = λk = 0.

Lemma 21

The vectors ν1, ν2, . . . , νk of a vector space V are linearly independent if and only if
none of them can be expressed as a linear combination of the other vectors.
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UNIVERSITÄT SALZBURG

Linear Independence

Definition 19 (Linear independence, Dt.: lineare Unabhängigkeit)

The vectors ν1, ν2, . . . , νk of a vector space V over F are linearly dependent if there
exist scalars λ1, . . . , λk ∈ F , not all zero, such that

λ1ν1 + λ2ν2 + · · ·+ λkνk = 0.

Otherwise, the vectors ν1, ν2, . . . , νk are linearly independent.

Lemma 20

If the vectors ν1, ν2, . . . , νk of a vector space V are linearly independent then

λ1ν1 + λ2ν2 + · · ·+ λkνk = 0 ⇒ λ1 = λ2 = · · · = λk = 0.

Lemma 21

The vectors ν1, ν2, . . . , νk of a vector space V are linearly independent if and only if
none of them can be expressed as a linear combination of the other vectors.

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 37/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Basis of a Vector Space

Definition 22 (Basis)

The vectors ν1, ν2, . . . , νn ∈ V form a basis of the vector space V over F if

1 ν1, . . . , νn are linearly independent;
2 [{ν1, . . . , νn}] = V .

Definition 23 (Finite dimension)

A vector space V is said to have finite dimension if their exists a basis of V that has
finitely many vectors.

Theorem 24

Every basis of a finite vector space has the same number of basis vectors.

The number of vectors of a basis is called the dimension of the vector space.

Theorem 25

If ν1, . . . , νn form a basis for V over F then for all ν ∈ V exist uniquely determined
λ1, . . . , λn ∈ F such that ν = λ1ν1 + λ2ν2 + · · ·+ λnνn.
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2 Order-theoretic and Algebraic Concepts
Extreme Elements and Bounds
Algebraic Structures
Real Numbers and Vector Space Rn

Points and Vectors in Rn

Canonical Basis
Standard Coordinate Systems
Convex Combinations and Convexity

Complex Numbers C
Polynomials
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Rn: Points and Vectors

A point is a location in a (vector) space. From a mathematical point of view it
does not have any size or any other property besides its location.

A vector has a direction and a length as its main properties.

The position vector (Dt.: Ortsvektor) of a point is the vector that points from the
origin of the space to the point.

It is common not to make a clean distinction between a point and its position
vector.

Note that vectors can be regarded both as column matrices and as row matrices.

While it does not matter for most applications whether or not to specify a vector
as a column or row matrix, there exist a few applications for which it does matter!
(E.g., multiplication of a matrix and a vector.)

Thus, pay close attention to how vectors are treated when studying a textbook or
using a graphics package.
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Vector Algebra

Adding and subtracting two 2D vectors a and b:

a + b =

(
ax

ay

)
+

(
bx

by

)
:=

(
ax + bx

ay + by

)

x

y

a

b

Similarly for vectors in Rn, for n ≥ 3.
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Canonical Basis

In Rn we define the n vectors

e1 :=


1
0
...
0

 ∈ Rn, e2 :=


0
1
...
0

 ∈ Rn, . . . , en :=


0
0
...
1

 ∈ Rn.

The vectors e1, . . . , en are linearly independent since λ1e1 + · · ·+ λnen = 0
impliesλ1

...
λn

 =

0
...
0

 , i.e., λ1 = 0, . . . , λn = 0.

Let a ∈ Rn. We get

a :=


a1

a2
...

an

 = a1


1
0
...
0

+a2


0
1
...
0

+· · ·+an


0
0
...
1

 = a1 ·e1+a2 ·e2+· · ·+an ·en.
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0

 , i.e., λ1 = 0, . . . , λn = 0.

Let a ∈ Rn. We get

a :=


a1

a2
...

an

 = a1


1
0
...
0

+a2


0
1
...
0

+· · ·+an


0
0
...
1

 = a1 ·e1+a2 ·e2+· · ·+an ·en.
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Canonical Basis

For a ∈ R2 we get a = a1 · e1 + a2 · e2.
E.g.:(

2
3

)
= 2e1 + 3e2

= 2
(

1
0

)
+ 3

(
0
1

)

x

y

a
(

2
3

)

e1

e2

But this is not the only possible basis
for R2.

E.g.:(
2
3

)
[e1,e2]

= 2v + w

=

(
2
1

)
[v,w ]
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Standard Coordinate Systems in R2 and R3

Cartesian coordinates: (a, b, c).

Polar coordinates (in R2): (ρ, α), with α ∈ [0, 2π[.

Cylindrical coordinates: (ρ, α, c), with α ∈ [0, 2π[.

Spherical coordinates: (r , α, β), with α ∈ [0, 2π[ and β ∈ [−π
2 ,

π
2 ].

x

y

z
(a,b, c)

(a,b)
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Geographic Coordinates: Longitude and Latitude

The z-axis of the coordinate system is aligned with the spin axis of the earth, with
the coordinate origin at the earth’s center.

The equator is defined as the intersection of the xy -plane (“fundamental plane”)
of this coordinate system with the earth.

Two angles are measured from the center of the earth: latitude (Dt. “Breite”)
measures the angle between any point and the equator. The other angle,
longitude (Dt. “Länge”), measures the angle along the equator from an arbitrary
point on the earth. Greenwich, England, is the generally accepted zero-longitude
point (Prime Meridian, Dt. “Nullmeridian”).

A position on the earth is specified as α degrees East or West, and β degrees
North or South. Thus, α ∈ [0, 180], and β ∈ [0, 90].

Lines of constant latitude are called parallels, with the equator having latitude 0.

Lines of constant longitude are halves of great circles that intersect at the poles;
they are called meridians.

Hence, geographical coordinates are nothing but (a variant of) a spherical
coordinate system.
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Affine and Convex Combinations

Definition 26 (Affine combination, Dt.: Affinkombination)

Let p1, p2, . . . , pk be k points in Rn. An affine combination of p1, . . . , pk is given by

k∑
i=1

λi pi with
k∑

i=1

λi = 1,

where λ1, λ2, . . . , λk ∈ R are scalars.

Definition 27 (Convex combination, Dt.: Konvexkombination)

Let p1, p2, . . . , pk be k points in Rn. A convex combination of p1, . . . , pk is given by

k∑
i=1

λi pi with
k∑

i=1

λi = 1 and ∀(1 ≤ i ≤ k) λi ≥ 0,

where λ1, λ2, . . . , λk ∈ R are scalars.
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Affine Hull

Definition 28 (Affine hull, Dt.: affine Hülle)

Let p1, p2, . . . , pk be k points in Rn. The affine hull of p1, . . . , pk is the set

{
k∑

i=1

λi pi : λ1, . . . λk ∈ R and
k∑

i=1

λi = 1}.

For a set S ⊆ Rn (with possibly infinitely many points), the affine hull of S is the set

{
k∑

i=1

λi pi : k ∈ N and p1, p2, . . . , pk ∈ S and λ1, . . . λk ∈ R and
k∑

i=1

λi = 1}.
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Convex Hull

Definition 29 (Convex hull, Dt.: konvexe Hülle)

Let p1, p2, . . . , pk be k points in Rn. The convex hull of p1, . . . , pk is the set

{
k∑

i=1

λi pi : λ1, . . . λk ∈ R+
0 and

k∑
i=1

λi = 1}.

For a set S ⊆ Rn (with possibly infinitely many points), the convex hull of S is the set

{
k∑

i=1

λi pi : k ∈ N and p1, p2, . . . , pk ∈ S and λ1, . . . λk ∈ R+
0 and

k∑
i=1

λi = 1}.

The convex hull of S is commonly denoted by CH(S).
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Convexity

Definition 30 (Convex set, Dt.: konvexe Menge)

A set S ⊆ Rn is called convex if for all p, q ∈ S

pq ⊆ S

where pq denotes the straight-line segment between p and q.

Lemma 31

For S ⊆ Rn, the convex hull CH(S) of S is a convex set.
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Convexity

Definition 32 (Convex superset)

A set B ⊆ Rn is called a convex superset of a set A ⊆ Rn if

A ⊆ B and B is convex.

Lemma 33

For A ⊆ Rn, the following definitions are equivalent to Def. 29:

CH(A) is the smallest convex superset of A.

CH(A) is the intersection of all convex supersets of A.

The definition of a convex hull (and of convexity) is readily extended from Rn to
other vector spaces over R.
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2 Order-theoretic and Algebraic Concepts
Extreme Elements and Bounds
Algebraic Structures
Real Numbers and Vector Space Rn

Complex Numbers C
Definition and Basics
Formulas by de Moivre and Euler
Mandelbrot and Julia

Polynomials
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Complex Numbers

Definition 34 (Complex numbers, Dt.: komplexe Zahlen)

The complex numbers, C, are formed by the set of ordered pairs of real numbers
together with operations +: C× C → C and · : C× C → C defined as follows:

(a, b) + (c, d) := (a + c, b + d) ∀a, b, c, d ∈ R,

(a, b) · (c, d) := (a · c − b · d , b · c + a · d) ∀a, b, c, d ∈ R.

The addition and multiplication of real numbers follow standard rules of R.

Lemma 35

Commutativity, associativity and distributivity hold for (C,+, ·).

Alternate view: A complex number (a, b) is regarded as the sum of a real and an
imaginary part: a + b · i , with i2 := −1.

Applying standard rules of algebra used when multiplying real numbers (and the
symbol i) is consistent with the definitions above: E.g.,

(2 + 3i) · (1 − 2i) = 2 · 1 + (3 · 1)i − (2 · 2)i − (3 · 2)i2 = 8 − i
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together with operations +: C× C → C and · : C× C → C defined as follows:

(a, b) + (c, d) := (a + c, b + d) ∀a, b, c, d ∈ R,

(a, b) · (c, d) := (a · c − b · d , b · c + a · d) ∀a, b, c, d ∈ R.

The addition and multiplication of real numbers follow standard rules of R.

Lemma 35

Commutativity, associativity and distributivity hold for (C,+, ·).

Alternate view: A complex number (a, b) is regarded as the sum of a real and an
imaginary part: a + b · i , with i2 := −1.

Applying standard rules of algebra used when multiplying real numbers (and the
symbol i) is consistent with the definitions above: E.g.,

(2 + 3i) · (1 − 2i) = 2 · 1 + (3 · 1)i − (2 · 2)i − (3 · 2)i2 = 8 − i
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Complex Numbers and Complex Plane

The complex plane, aka Gauss plane, is a modification of the standard Cartesian
plane, with a real axis and an imaginary axis that intersect in a right angle at the
point (0, 0). That is, real numbers run left-right and imaginary numbers run
bottom-top.

Re

Im

︸ ︷︷ ︸ ︸
︷︷

︸
a

b

a + bi
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Complex Numbers

Definition 36 (Absolute value)

The absolute value |z| (or modulus or magnitude) of a complex number
z := a + bi ∈ C is given by

|z| :=
√

a2 + b2.

Definition 37 (Complex conjugate, Dt.: konjugiert-komplexe Zahl)

The complex conjugate z of the complex number z := a + bi ∈ C is given by

z := a − bi.

Definition 38 (Multiplicative inverse)

The multiplicative inverse for z ∈ C, with z ̸= 0 is defined as

z−1 := z|z|−2 =
z
|z|2 .
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Complex Numbers

Lemma 39

Easy to check for all z1, z2 ∈ C:

z1 + z2 = z1 + z2 z1 · z2 = z1 · z2 z1 = z1

|z1| = |z1| z1 · z−1
1 = 1 |z1|2 = z1 · z1

Theorem 40

The complex numbers (C,+, ·) form a field.
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Complex Numbers and de Moivre’s Formula

A complex number z := a + bi , for a, b ∈ R, can also be written as

z = a + bi = r(cosφ+ i sinφ),

with r := |a + bi| and φ such that a = r cosφ and b = r sinφ.

By applying standard trigonometric identities, we get

z1 · z2 = r1r2[cos(φ1 + φ2) + i sin(φ1 + φ2)],

z1/z2 = r1/r2[cos(φ1 − φ2) + i sin(φ1 − φ2)].

Thus, the multiplication of one complex number with another complex number
can be seen as a simultaneous rotation and stretching.

Lemma 41 (de Moivre)

Let z := r(cosφ+ i sinφ). Then

zn = r n(cos nφ+ i sin nφ)

for all n ∈ N.
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Complex Numbers and Euler’s Formula

Theorem 42 (Euler)

For any φ ∈ R,

eiφ = cosφ+ i sinφ.

Thus, eiφ traces out the unit circle
in the complex plane as φ runs
from 0 to 2π.

Important application: Modeling
(electric) signals that vary
periodically over time.

Corollary 43

eiπ = −1.
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︸
︷︷

︸

sinϕ

eiϕ

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 57/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Complex Numbers and Euler’s Formula

Sketch of Proof of Theorem 42 : The theory of Taylor/Maclaurin series tells us that,
for all x ∈ R:

cos x =
∞∑

k=0

(−1)k x2k

2k !
= 1 − x2

2!
+

x4

4!
− x6

6!
+

x8

8!
− . . .

sin x =
∞∑

k=1

(−1)k−1 x2k−1

(2k − 1)!
= x − x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− . . .

ex =
∞∑

k=0

xk

k !
= 1 + x +

x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+

x6

6!
+ . . .

Recall that i2 = −1. Hence, i3 = −i , i4 = 1, i5 = i , etc. If we replace x by ix in the
series for ex then we get

eix =
∞∑

k=0

(ix)k

k !
=

∞∑
k=0

ik xk

k !
= 1 + ix +

i2x2

2!
+

i3x3

3!
+

i4x4

4!
+

i5x5

5!
+

i6x6

6!
+ . . .

=

(
1 − x2

2!
+

x4

4!
− x6

6!
+

x8

8!
− . . .

)
+ i
(

x − x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− . . .

)
= cos x + i sin x .
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k !
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2!
+

i3x3

3!
+

i4x4

4!
+

i5x5

5!
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i6x6

6!
+ . . .

=

(
1 − x2

2!
+

x4

4!
− x6

6!
+

x8

8!
− . . .

)
+ i
(

x − x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− . . .

)
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UNIVERSITÄT SALZBURG

Mandelbrot Set

The Mandelbrot set is the locus of complex numbers c for which the sequence
(z0, z1, z2, . . .), with

zn :=

{
(0, 0) if n = 0,
zn−1 · zn−1 + c if n > 0,

does not diverge.

If we regard the real and imaginary parts
of c as pixel coordinates, then pixels can
be colored according to the number of
iterations after which the sequence
(z0, z1, z2, . . .) crosses an arbitrarily
chosen threshold.

Typically, black is used for the values of c
for which the sequence has not crossed
the threshold after a predetermined
number of iterations.

[Image credit: Michael Bradshad]
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Mandelbrot Set

[Image credit: https://commons.wikimedia.org/wiki/File:
Mandelbrot_set_2500px.png]
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Julia Set

A Julia set, for some constant c ∈ C, is the locus of complex numbers z for which
the sequence (z0, z1, z2, . . .), with

zn :=

{
z if n = 0,
zn−1 · zn−1 + c if n > 0,

does not diverge.
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2 Order-theoretic and Algebraic Concepts
Extreme Elements and Bounds
Algebraic Structures
Real Numbers and Vector Space Rn

Complex Numbers C
Polynomials

Definition
Arithmetic
Roots
Evaluation
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Polynomials

Definition 44 (Monomial, Dt.: Monom)

For m ∈ N, a (real) monomial in m variables x1, x2, . . . , xm is a product of a coefficient
c ∈ R and powers of the variables xi with exponents ki ∈ N0:

c
m∏

i=1

xki
i = c · xk1

1 · xk2
2 · . . . · xkm

m .

The degree of the monomial is given by
∑m

i=1 ki .

Definition 45 (Polynomial, Dt.: Polynom)

For m ∈ N, a (real) polynomial in m variables x1, x2, . . . , xm is a finite sum of
monomials in x1, x2, . . . , xm.
A polynomial is univariate if m = 1, bivariate if m = 2, and multivariate otherwise.

Definition 46 (Degree, Dt.: Grad)

The degree of a polynomial is the maximum degree of its monomials.
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Polynomials

Hence, a univariate polynomial over R with variable x is a term of the form

anxn + an−1xn−1 + · · ·+ a1x + a0,

with coefficients a0, . . . , an ∈ R and an ̸= 0.

It is a convention to drop all monomials whose coefficients are zero.

Univariate polynomials are usually written according to a decreasing order of
exponents of their monomials.

In that case, the first term is the leading term which indicates the degree of the
polynomial; its coefficient is the leading coefficient.

Univariate polynomials of degree
0 are called constant polynomials,
1 are called linear polynomials,
2 are called quadratic polynomials,
3 are called cubic polynomials,
4 are called quartic polynomials,
5 are called quintic polynomials.
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Polynomial Arithmetic

We define the addition of (univariate) polynomials based on the pairwise addition
of corresponding coefficients:(

n∑
i=0

aix i

)
+

(
n∑

i=0

bix i

)
:=

n∑
i=0

(ai + bi)x i

The multiplication of polynomials is based on the multiplication within R,
distributivity, and the rules

ax = xa and xm · xk = xm+k

for all a ∈ R and m, k ∈ N:(
n∑

i=0

aix i

)
·

 m∑
j=0

bjx j

 :=
n∑

i=0

m∑
j=0

(aibj)x i+j

Elementary properties of polynomials: One can prove easily that the addition,
multiplication and composition of two polynomials as well as their derivative and
antiderivative (indefinite integral) again yield a polynomial.

Same for multivariate polynomials.
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Polynomial Arithmetic

Instead of R any commutative ring (R,+, ·) and symbols x , y , . . . that are not
contained in R would do. E.g.,

a2,3x2y3 + a1,1xy + a0,1y + a0,0 with a2,3, a1,1, a0,1, a0,0 ∈ R.

Lemma 47

The set of all polynomials with coefficients in the commutative ring (R,+, ·) and a
symbol (variable) x ̸∈ R forms a commutative ring, the ring of polynomials over R,
commonly denoted by R[x ].

Multivariate polynomials can also be seen as univariate polynomials with
coefficients out of a ring of polynomials. E.g.,

a2,3x2y3 + a1,1xy + a0,1y + a0,0 = (a2,3x2)y3 + (a1,1x + a0,1)y + a0,0

is an element of R[x , y ] := (R[x ])[y ].

Definition 48

Two polynomials are equal if and only if the sequences of their coefficients (arranged
in some specific order) are equal.
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is an element of R[x , y ] := (R[x ])[y ].

Definition 48

Two polynomials are equal if and only if the sequences of their coefficients (arranged
in some specific order) are equal.
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Polynomials: Vector Space

Theorem 49

The univariate polynomials of R[x ] form an infinite vector space over R. The so-called
power basis of this vector space is given by the monomials 1, x , x2, x3, . . ..

The n + 1 monomials 1, x , x2, x3, . . . , xn form a basis of the vector space of
polynomials of degree up to n over R, for all n ∈ N0.
The power basis is not the only meaningful basis of the polynomials R[x ]: See,
e.g., the Bernstein polynomials that are used to form Bézier curves.

Definition 50 (Bernstein polynomials)

The n + 1 Bernstein polynomials of degree n, for n ∈ N0, are defined as

Bk,n(x) :=

(
n
k

)
xk (1 − x)n−k for k ∈ {0, 1, . . . , n},with 00 := 1.

Theorem 51

The Bernstein polynomials of degree n form a basis of the vector space of
polynomials of degree up to n over R, for all n ∈ N0.

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 67/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Polynomials: Roots

Definition 52 (Polynomial equation)

A polynomial equation (aka algebraic equation) is an equation in which a polynomial
is set equal to another polynomial.

Definition 53 (Root, Dt.: Wurzel)

The polynomial p ∈ R[x ] has a root (aka zero) r ∈ R if (x − r) divides p.

Hence, if r is a root of p then p = (x − r) · p1 for some p1 ∈ R[x ], and p(r) = 0.

Definition 54 (Multiplicity, Dt.: Vielfachheit)

A root r of a polynomial p in x is of multiplicity k if k ∈ N is the maximum integer such
that (x − r)k divides p.

Theorem 55 (Fundamental Theorem of Algebra)

The number of (complex) roots of a polynomial with real coefficients may not exceed
its degree. It equals the degree if all roots are counted with their multiplicities.
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Polynomials: Roots

Recall the quadratic formula taught in secondary school for solving
second-degree polynomial equations: For a ∈ R \ {0} and b, c ∈ R,

x1,2 :=
−b ±

√
b2 − 4ac
2a

yields the two (possibly complex) roots x1 and x2 of ax2 + bx + c.

Similar (albeit more complex) formulas exist for cubic and quartic polynomials.

Theorem 56 (Abel-Ruffini 1824)

No algebraic solution for the roots of an arbitrary polynomial of degree five or higher
exists.

An algebraic solution is a closed-form expressions in terms of the coefficients of
the polynomial that relies only on addition, subtraction, multiplication, division,
raising to integer powers, and computing k -th roots (square roots, cube roots,
and other integer roots).

A closed-form expression is an expression that can be evaluated in a finite
number of operations.
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Polynomials: Roots

Lemma 57

For a, b, c ∈ R, the roots r1, r2 of the quadratic polynomial ax2 + bx + c satisfy

r1 + r2 = −b
a

r1 · r2 =
c
a
.

Lemma 58

For a, b, c, d ∈ R, the roots r1, r2, r3 of the cubic polynomial ax3 + bx2 + cx + d satisfy

r1 + r2 + r3 = −b
a

r1 · r2 + r1 · r3 + r2 · r3 =
c
a

r1 · r2 · r3 = −d
a
.

These two lemmas are special cases of a general theorem by François Viète
(Franciscus Vieta, 1540–1603).
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Polynomials: Function

Definition 59 (Polynomial function; Dt.: Polynomfunktion)

A (univariate real) function f : I → R, for an interval I ⊆ R, is a polynomial function
over I if there exist n ∈ N0 and a0, a1, . . . , an ∈ R such that

f (x) = anxn + an−1xn−1 + · · ·+ a1x + a0 for all x ∈ I.

As usual, two (polynomial) functions over an interval I ⊆ R are identical if their
values are identical for all arguments in I.

Note: Two different polynomials may result in the same polynomial function!
(E.g., over finite fields.)

While some branches of mathematics (e.g., abstract algebra) make a clear
distinction between polynomials and polynomial functions, we will freely mix
these two terms. Also, unless noted explicitly, we will only deal with polynomials
over R.

Note: Polynomial functions may come in disguise: f (x) := cos(2 arccos(x)) is a
polynomial function over [−1, 1] since we have f (x) = 2x2 − 1 for all x ∈ [−1, 1].
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Polynomial Evaluation: Horner’s Algorithm

Consider a polynomial p ∈ R[x ] of degree n with coefficients a0, a1, . . . , an ∈ R,
with an ̸= 0:

p(x) :=
n∑

i=0

aix i = a0 + a1x + a2x2 + . . .+ an−1xn−1 + anxn.

A straightforward polynomial evaluation of p for a given parameter x0 results in k
multiplications for a monomial of degree k , plus a total of n additions.
Hence, we would get

0 + 1 + 2 + . . .+ n =
n(n + 1)

2

multiplications (and n additions).
Can we do better?
Obviously, we can reduce the number of multiplications to O(n log n) by resorting
to exponentiation by squaring:

xn =

{
x (x2)

n−1
2 if n is odd,

(x2)
n
2 if n is even.

Can we do even better?
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Polynomial Evaluation: Horner’s Algorithm

Horner’s Algorithm: The idea is to rewrite the polynomial such that

p(x) = a0 + x
(

a1 + x
(
a2 + . . .+ x(an−1 + x an) . . .

))

and compute the result h0 = p(x0) as follows:

hn := an

hi := x0 · hi+1 + ai for i = 0, 1, 2, ..., n − 1

Lemma 60

Horner’s Algorithm consumes n multiplications and n additions to evaluate a
polynomial of degree n.

Caveat

Subtractive cancellation could occur at any time, and there is no easy way to
determine a priori whether and for which data it will indeed occur.
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3 Basic Linear Algebra
Matrices
Linear Equations
Determinants
Eigenvalues and Eigenvectors
Dot Product and Norm
Vector Cross-Product
Quaternions H
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3 Basic Linear Algebra
Matrices

Basic Definitions
Matrix Algebra
Inversion and Transpose
Special Matrices
Fast Matrix Multiplication

Linear Equations
Determinants
Eigenvalues and Eigenvectors
Dot Product and Norm
Vector Cross-Product
Quaternions H
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Matrices

Definition 61 (Matrix)

For m, n ∈ N, an m × n matrix A is a scheme of m · n numbers aij from a field F , with
1 ≤ i ≤ m, 1 ≤ j ≤ n, arranged as follows:

A :=

a11 · · · a1n
...

. . .
...

am1 · · · amn



The numbers aij are called the coefficients of the matrix A.
The m horizontal n-tuples (ai1 · · · ain) are called rows of the matrix, while the n vertical
m-tuples (aij · · · amj) are called columns of the matrix.

The collection of all m × n matrices over F is denoted by Mm×n(F ), or simply by
Mm×n if the field is obvious or irrelevant. Short-hand notation: A = [aij ]

m, n
i=1,j=1, or

simply A = [aij ].

Definition 62 (Size)

The numbers m and n in Def. 61 describe the size of the matrix A. The matrix A is
square if m = n.
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Matrices

Definition 63 (Zero matrix, Dt.: Nullmatrix)

For m, n ∈ N, the matrix in Mm×n(F ) with all elements equal to 0 is called the zero
matrix (of size m × n), and is denoted by the symbol 0.

Definition 64 (Identity matrix, Dt.: Einheitsmatrix)

For n ∈ N, the n × n matrix I := [δij ], defined by δij := 1 if i = j and δij := 0 otherwise,
is called the n × n identity matrix.

Of course, the elements 0 and 1 are the additive and multiplicative neutral
elements of F .

E.g., for 4 × 4 matrices we have

0 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 and I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
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Matrices

Definition 65 (Matrix identity)

Two matrices A and B over the same field F are said to be equal if A and B have the
same size and if corresponding elements are equal; that is, A,B ∈ Mm×n(F ) and
A = [aij ],B = [bij ], with aij = bij for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Definition 66 (Sparse, Dt.: dünn besetzt)

For m, n ∈ N, the m × n matrix A is called sparse if k ≪ m · n holds for the number k
of non-zero coefficients of A.

Note: Storing an n × n matrix consumes O(n2) space, unless special precautions
are taken (e.g., in the case of sparse matrices)!
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Matrix Algebra

Definition 67 (Matrix addition)

Let A,B ∈ Mm×n(F ) be matrices of the same size. Then A + B is the matrix obtained
by adding corresponding elements of A and B; that is,

A + B = [aij ] + [bij ] :=


a11 + b11 a12 + b12 · · · a1n + b1n

a21 + b21 a22 + b22 · · · a2n + b2n
...

...
. . .

...
am1 + bm1 am2 + bm2 · · · amn + bmn

 .

Definition 68 (Scalar multiplication)

Consider a matrix A ∈ Mm×n(F ) and λ ∈ F . (Thus, λ is a scalar.) Then λA is the
matrix obtained by multiplying all elements of A by λ; that is,

λA = λ[aij ] :=


λa11 · · · λa1n

λa21 · · · λa2n
...

. . .
...

λam1 · · · λamn

 .
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Matrix Algebra

Definition 69 (Additive inverse)

Consider a matrix A ∈ Mm×n(F ). Then

−A = [−aij ] :=


−a11 · · · −a1n

−a21 · · · −a2n
...

. . .
...

−am1 · · · −amn


is taken as the additive inverse of A.

Theorem 70

Mm×n(F ), with addition and scalar multiplication as defined in Defs. 67+68, forms a
vector space over F for all m, n ∈ N.
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Matrix Algebra

Lemma 71

The matrix operations of addition, scalar multiplication, additive inverse and
subtraction satisfy the usual laws of arithmetic. (In what follows, A,B,C are matrices
of the same size over the same field F , and λ, µ are scalars out of F .)

1 Associativity: (A + B) + C = A + (B + C);
2 Commutativity: A + B = B + A;
3 Neutral element: 0 + A = A;
4 Inverse element: A + (−A) = 0;
5 Distributivity: (λ+ µ)A = λA + µA;
6 Distributivity: λ(A + B) = λA + λB;
7 Associativity: λ(µA) = (λµ)A;
8 1A = A;
9 0A = 0;

10 (−1)A = −A;
11 λA = 0 ⇒ λ = 0 or A = 0.
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of the same size over the same field F , and λ, µ are scalars out of F .)

1 Associativity: (A + B) + C = A + (B + C);
2 Commutativity: A + B = B + A;
3 Neutral element: 0 + A = A;
4 Inverse element: A + (−A) = 0;
5 Distributivity: (λ+ µ)A = λA + µA;
6 Distributivity: λ(A + B) = λA + λB;
7 Associativity: λ(µA) = (λµ)A;

8 1A = A;
9 0A = 0;

10 (−1)A = −A;
11 λA = 0 ⇒ λ = 0 or A = 0.
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UNIVERSITÄT SALZBURG

Matrix Algebra

Lemma 71

The matrix operations of addition, scalar multiplication, additive inverse and
subtraction satisfy the usual laws of arithmetic. (In what follows, A,B,C are matrices
of the same size over the same field F , and λ, µ are scalars out of F .)

1 Associativity: (A + B) + C = A + (B + C);
2 Commutativity: A + B = B + A;
3 Neutral element: 0 + A = A;
4 Inverse element: A + (−A) = 0;
5 Distributivity: (λ+ µ)A = λA + µA;
6 Distributivity: λ(A + B) = λA + λB;
7 Associativity: λ(µA) = (λµ)A;
8 1A = A;
9 0A = 0;

10 (−1)A = −A;
11 λA = 0 ⇒ λ = 0 or A = 0.

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 81/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Matrix Algebra

Definition 72 (Matrix multiplication)

Let A be a matrix of size m × n and B be a matrix of size n × p over the same field F ;
that is, the number of columns of A equals the number of rows of B. Then A ·B, or AB
for sake of brevity, is the m × p matrix C = [cik ] whose (i, k)-th element is defined as

cik :=
n∑

j=1

aijbjk = ai1b1k + · · ·+ ainbnk .

Lemma 73

Matrix multiplication obeys the standard laws of arithmetic except for commutativity:
1 (AB)C = A(BC) if A,B,C are m × n, n × p, p × q, respectively;
2 λ(AB) = (λA)B = A(λB) if A,B are m × n, n × p, respectively;
3 A(−B) = (−A)B = −(AB) if A,B are m × n, n × p, respectively;
4 (A + B)C = AC + BC if A,B are m × n and C is n × p;
5 D(A + B) = DA + DB if A,B are m × n and D is p × m.

Note: AB ̸= BA even if A,B are square. Also, AB = 0 ̸⇒ [A = 0 or B = 0].
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Inversion of a Matrix

Definition 74 (Invertible, Dt.: invertierbar)

An n × n matrix A is invertible (or non-singular ) if there exists an n × n matrix B such
that

A · B = B · A = I.

If A is invertible then the inverse matrix is denoted by A−1.

Theorem 75

If A has inverse matrices B,C then B = C.

Note that A−1 can be obtained (if it exists) by solving Axi = ei for 1 ≤ i ≤ n; the
vectors xi form the columns of A−1.

Theorem 76

If A,B are invertible matrices of the same size then A · B is invertible, and

(A · B)−1 = B−1 · A−1,

i.e., the inverse of the product equals the product of the inverses in the reverse order.
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Transpose of a Matrix

Definition 77 (Transpose, Dt.: transponiert)

Consider an m × n matrix A. The transpose of A is the matrix At obtained by
interchanging the rows and columns of A.

Consequently, At is an n × m matrix:
(

1 2 3
4 5 6

)t

=

1 4
2 5
3 6

.

Lemma 78

The transpose operation has the following properties for all matrices A,B of suitable
sizes:

1 (At)t = A;
2 (A + B)t = At + Bt ;
3 (λA)t = λAt for a scalar λ.
4 (A · B)t = Bt · At ;
5 If A is invertible then At is also invertible and we have (At)−1 = (A−1)t .
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Special Matrices

Definition 79 (Symmetric, Dt.: symmetrisch)

A matrix A is called symmetric if At = A.

Definition 80 (Diagonal matrix, Dt.: Diagonalmatrix)

A square matrix A is called diagonal if aij = 0 for i ̸= j .

Definition 81 (Upper-triangular, Dt.: obere Dreiecksmatrix)

A square matrix A is called upper-triangular if aij = 0 for i > j .

Definition 82 (Orthogonal, Dt.: orthogonal)

A square matrix A is called orthogonal if A · At = I = At · A.

Lemma 83

If a square matrix A is orthogonal then A−1 = At .
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UNIVERSITÄT SALZBURG

Block Matrices

Definition 84 (Block matrix)

Let m, n ∈ N and A,B,C,D ∈ Mm×n(F ). Then the 2m × 2n matrix X with

xi,j :=


ai,j if 1 ≤ i ≤ m, 1 ≤ j ≤ n,
bi,j−n if 1 ≤ i ≤ m, n + 1 ≤ j ≤ 2n,
ci−m,j if m + 1 ≤ i ≤ 2m, 1 ≤ j ≤ n,
di−m,j−n if m + 1 ≤ i ≤ 2m, n + 1 ≤ j ≤ 2n

is a block matrix with component matrices A,B,C,D.

X =



a11 . . . a1n b11 . . . b1n
...

. . .
...

...
. . .

...
am1 . . . amn bm1 . . . bmn

c11 . . . c1n d11 . . . d1n
...

. . .
...

...
. . .

...
cm1 . . . cmn dm1 . . . dmn



It is common to regard A,B,C,D
as “coefficients” of X and write

X =

(
A B
C D

)
,

or simply

X =

(
A B
C D

)
.
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bi,j−n if 1 ≤ i ≤ m, n + 1 ≤ j ≤ 2n,
ci−m,j if m + 1 ≤ i ≤ 2m, 1 ≤ j ≤ n,
di−m,j−n if m + 1 ≤ i ≤ 2m, n + 1 ≤ j ≤ 2n

is a block matrix with component matrices A,B,C,D.

X =



a11 . . . a1n b11 . . . b1n
...

. . .
...

...
. . .

...
am1 . . . amn bm1 . . . bmn

c11 . . . c1n d11 . . . d1n
...

. . .
...

...
. . .

...
cm1 . . . cmn dm1 . . . dmn



It is common to regard A,B,C,D
as “coefficients” of X and write

X =

(
A B
C D

)
,

or simply

X =

(
A B
C D

)
.
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Block Matrices

Lemma 85

For m, n, p ∈ N, let A11,A12,A21,A22 ∈ Mm×n(F ), B11,B12,B21,B22 ∈ Mn×p(F ), and

A :=

(
A11 A12

A21 A22

)
and B :=

(
B11 B12

B21 B22

)
.

Then

A · B =

(
A11 · B11 + A12 · B21 A11 · B12 + A12 · B22

A21 · B11 + A22 · B21 A21 · B12 + A22 · B22

)
.
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Block Matrices

Lemma 85
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Block Matrices

Lemma 86

Let n ∈ N and A,B,D ∈ Mn×n(F ). Then the 2n × 2n matrix X with

X :=

(
A B
0 D

)
is invertible if and only if A and D are invertible. In this case we get

X−1 =

(
A−1 −A−1 · B · D−1

0 D−1

)
.
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Fast Matrix Multiplication

Standard multiplication of two n × n matrices results in Θ(n3) many arithmetic
operations.

Theorem 87 (Strassen (1969))

Seven multiplications of scalars suffice to compute the multiplication of two 2 × 2
matrices. In general, O(nlog2 7) ≈ O(n2.807...) arithmetic operations suffice for
multiplying two n × n matrices.

Theorem 88 (Coppersmith&Winograd (1990))

O(n2.37547...) arithmetic operations suffice for multiplying two n × n matrices.

Lemma 89 (Williams (2011, 2012), Le Gall (2014), Alman&Williams (2021))

O(n2.37285...) arithmetic operations suffice for multiplying two n × n matrices.

Strassen’s algorithm is more complex and numerically less stable than the
standard naïve algorithm. But it is considerably more efficient for large n, i.e.,
roughly when n > 100, and it is very useful for large matrices over finite fields.
Open problem: What is the true lower bound?
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Fast Matrix Multiplication

Sketch of Proof of Theorem 87 : For A,B ∈ M2×2(R), we compute C = A · B via

p1 := (a1,2 − a2,2)(b2,1 + b2,2)
p2 := (a1,1 + a2,2)(b1,1 + b2,2)
p3 := (a1,1 − a2,1)(b1,1 + b1,2)
p4 := (a1,1 + a1,2)b2,2

p5 := a1,1(b1,2 − b2,2)
p6 := a2,2(b2,1 − b1,1)
p7 := (a2,1 + a2,2)b1,1

and set

c1,1 := a1,1b1,1 + a1,2b2,1 = p1 + p2 − p4 + p6

c1,2 := a1,1b1,2 + a1,2b2,2 = p4 + p5

c2,1 := a2,1b1,1 + a2,2b2,1 = p6 + p7

c2,2 := a2,1b1,2 + a2,2b2,2 = p2 − p3 + p5 − p7.

This uses seven multiplications and O(1) additions/subtractions.

Use block matrices to apply this concept recursively for n > 2. This yields the
recurrence relation T (n) = 7 · T

( n
2

)
+ O(n2) for the time complexity T , and the bound

claimed follows from the Master Theorem.
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3 Basic Linear Algebra
Matrices
Linear Equations

Linear Equations and Matrices
Solving Systems of Linear Equations
Gauss-Jordan Algorithm
Application: Bernstein Polynomials as Basis

Determinants
Eigenvalues and Eigenvectors
Dot Product and Norm
Vector Cross-Product
Quaternions H
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Linear Equations

Definition 90 (Linear equation, Dt.: lineare Gleichung)

A linear equation in n unknowns x1, x2, . . . , xn is an equation of the form

a1x1 + a2x2 + · · ·+ anxn = b,

where a1, . . . , an, b are given (real) numbers.

Definition 91 (System of linear equations, Dt.: lineares Gleichungssystem)

A system of m linear equations in n unknowns x1, x2, . . . , xn is a family of linear
equations

a11x1 + · · · + a1nxn = b1,
...

. . .
...

...
am1x1 + · · · + amnxn = bm,

where a11, . . . , amn, b1, . . . , bm are given (real) numbers.
The system is called homogeneous if b1 = b2 = · · · = bm = 0.
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Matrices and Linear Equations

Of course, a system of m linear equations in n unknowns x1, x2, . . . , xn,

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

...
. . .

...
...

am1x1 + am2x2 + · · · + amnxn = bm

can also be seen as one vector-valued equation:
a11x1 + a12x2 + · · · + a1nxn

a21x1 + a22x2 + · · · + a2nxn
...

...
. . .

...
am1x1 + am2x2 + · · · + amnxn

 =


b1

b2
...

bm


With A := [aij ]

m,n
i=1,j=1, b := (b1, . . . , bm) ∈ Rm and x := (x1, . . . , xn) ∈ Rn, this

system can be written concisely as Ax = b:

Ax =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 ·


x1

x2
...

xn

 =


b1

b2
...

bm

 = b
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Matrices and Linear Equations

So, we have

Ax =


a11 · · · a1n

a21 · · · a2n
...

. . .
...

am1 · · · amn

 ·


x1

x2
...

xn

 =


b1

b2
...

bm

 = b.

The matrix


a11 · · · a1n

a21 · · · a2n
...

. . .
...

am1 · · · amn

 is called the coefficient matrix of the system.

The matrix


a11 · · · a1n b1

a21 · · · a2n b2
...

. . .
...

am1 · · · amn bm

 is called the augmented matrix of the
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Geometric Interpretation of Linear Equations

A system of m linear equations in n unknowns can be interpreted as follows:

We seek the intersection of m lines (for n = 2) or hyper-planes (for n > 2) in Rn,
where the i-th line/plane is given by the equation

ai1x1 + ai2x2 + · · ·+ ainxn = bi .

See Slide 163.

We regard the m × n matrix A as a transformation matrix and seek that vector
x ∈ Rn which gets mapped to the vector b ∈ Rm:

Ax = b

See Slide 234.
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Solutions of Linear Equations

Definition 92

A system of linear equations in n unknowns is called consistent if it has a solution,
i.e., if there exist (real) numbers x1, x2, . . . , xn that satisfy all equations simultaneously.

A homogeneous system is always consistent, since x1 = x2 = · · · = xn = 0
always is a solution, which is called trivial solution. Any other solution of a
homogeneous system is called a non-trivial solution.

Theorem 93

A homogeneous system of m linear equations in n unknowns always has a non-trivial
solution if m < n.
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Solutions of Linear Equations

Definition 94 (Rank, Dt.: Rang)

The (column) rank of a matrix A, denoted by rank(A), is the number of linearly
independent columns of A.

Theorem 95

The system Ax = b is consistent if and only if the rank of the coefficient matrix equals
the rank of the augmented matrix.

Theorem 96

Assume that the system Ax = b is consistent. This system has a unique solution if
and only if the rank of the coefficient matrix equals the number of unknowns.
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Elementary Row Operations

Lemma 97

The following three types of elementary row operations may be performed on a matrix
without changing its rank:

1 Interchanging two rows;

2 Multiplying a row by a nonzero scalar;
3 Adding a multiple of one row to another row.

Definition 98

A matrix A is row-equivalent to a matrix B if B is obtained from A by a sequence of
elementary row operations.

Theorem 99

If A and B are row-equivalent augmented matrices of two systems of linear equations,
then the two systems have the same solution sets.
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UNIVERSITÄT SALZBURG

Elementary Row Operations

Definition 100 (Reduced row-echelon form, Dt.: Treppennormalform)

A matrix is in reduced row-echelon form if
1 all zero rows (if any) are at the bottom of the matrix;

2 if two successive rows are nonzero then the second row starts with more zeros
than the first (moving from left to right and top to bottom);

3 the leading (leftmost nonzero) entry in each nonzero row is 1;
4 all other elements of the column in which the leading entry 1 occurs are zeros.

Sample matrix in reduced row-echelon form:
0 1 ∗ 0 0 ∗ ∗ 0 ∗
0 0 0 1 0 ∗ ∗ 0 ∗
0 0 0 0 1 ∗ ∗ 0 ∗
0 0 0 0 0 0 0 1 ∗
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


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Gauss-Jordan Algorithm

The following algorithm transforms an augmented matrix A into a row-equivalent
matrix A′ that is in reduced row-echelon form, using elementary row operations:

Initially, k := 1.
If the rows k , . . . ,m all are zero then the matrix is in reduced row-echelon
form.
Otherwise, suppose that the first column which has a non-zero element in
the rows below the first k − 1 rows is column ck . By interchanging the rows
below the first k − 1 rows, if necessary, we ensure that the element ak,ck is
nonzero. Convert ak,ck to 1. By adding suitable multiples of row k to the
remaining rows, where necessary, we ensure that all remaining elements in
column ck are zero.
If k < m, repeat this process for k := k + 1.

This process will eventually stop after r steps, either because we run out of rows
(if k = m), or because we run out of non-zero columns.

In general, the final matrix A′ will be in reduced row-echelon form and will have r
non-zero rows, with leading entries 1 in columns c1, . . . , cr , respectively.

By swapping columns (and updating the solution vector x accordingly) we can
guarantee that the r non-zero rows have their leading 1’s in columns 1, . . . , r .
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Gauss-Jordan Algorithm

Thus, the Gauss-Jordan algorithm transforms an augmented matrix A into a
matrix A′ of the following form:

1 0 a′
1,r+1 · · · a′

1n b′
1

. . .
...

...
...

0 1 a′
r,r+1 · · · a′

rn b′
r

b′
r+1

0
...

b′
m



If r = n + 1 then the system is inconsistent. (The last row reads
0 · x ′

1 + 0 · x ′
2 + . . .+ 0 · x ′

n = 1, which has no solutions.)

If r ≤ n then the system is inconsistent unless b′
r+1 = b′

r+2 = . . . = b′
m = 0.

If r = n and b′
r+1 = b′

r+2 = . . . = b′
m = 0, then there exists a unique solution

x ′
1 = b′

1, x
′
2 = b′

2, . . . , x
′
n = b′

n.
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If r < n and b′

r+1 = b′
r+2 = . . . = b′

m = 0, then there are infinitely many solutions:

x ′
1 = b′

1 − a′
1,r+1x ′

r+1 − a′
1,r+2x ′

r+2 − . . .− a′
1nx ′

n,

...

x ′
r = b′

r − a′
r,r+1x ′

r+1 − a′
r,r+2x ′

r+2 − . . .− a′
rnx ′

n.

The independent unknowns x ′
r+1, . . . , x

′
n may take on arbitrary values.
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Sample Linear System

{
x1 + x2 + 2x3 + 3x4 = 4

2x1 + 2x2 + 3x3 + 4x4 = 5

(A|b) =
(

1 1 2 3 4
2 2 3 4 5

)
+ I · (−2) ;

(
1 1 2 3 4
0 0 −1 −2 −3

)
·(−1)

;

(
1 1 2 3 4
0 0 1 2 3

)
x2 ↔ x3 ;

(
1 2 1 3 4
0 1 0 2 3

)
+ II · (−2)

;

(
1 0 1 −1 −2
0 1 0 2 3

)
;

{
x1 + x2 − x4 = −2

x3 + 2x4 = 3

;

{
x1 = −2 − x2 + x4

x3 = 3 − 2x4

; Solution:




−2
0
3
0

+ λ1


−1

1
0
0

+ λ2


1
0

−2
1

 : λ1, λ2 ∈ R


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·(−1)

;

(
1 1 2 3 4
0 0 1 2 3

)
x2 ↔ x3 ;

(
1 2 1 3 4
0 1 0 2 3

)
+ II · (−2)

;

(
1 0 1 −1 −2
0 1 0 2 3

)
;

{
x1 + x2 − x4 = −2

x3 + 2x4 = 3

;
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x1 = −2 − x2 + x4

x3 = 3 − 2x4

; Solution:




−2
0
3
0

+ λ1


−1

1
0
0

+ λ2


1
0

−2
1

 : λ1, λ2 ∈ R


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Application: Bernstein Polynomials as Basis

Proof of Theorem 51 for n:=3 : The four Bernstein polynomials are given by

B0,3(x) := (1−x)3 B1,3(x) := 3x(1−x)2 B2,3(x) := 3x2(1−x) B3,3(x) := x3.

We get the following relation:
1 −3 3 −1
0 3 −6 3
0 0 3 −3
0 0 0 1

 ·


1
x
x2

x3

 =


B0,3(x)
B1,3(x)
B2,3(x)
B3,3(x)


Inversion of this matrix yields

1 1 1 1
0 1

3
2
3 1

0 0 1
3 1

0 0 0 1

 ·


B0,3(x)
B1,3(x)
B2,3(x)
B3,3(x)

 =


1
x
x2

x3

 ,

i.e., the fact that 1, x , x2, x3 of the power basis can be expressed in terms of
B0,3(x),B1,3(x),B2,3(x),B3,3(x).
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3 Basic Linear Algebra
Matrices
Linear Equations
Determinants

Definition and Laplace Expansion
2 × 2 and 3 × 3 Determinants
Properties of Determinants
Calculating Determinants
Determinants and Linear Systems
Geometric Interpretation of Determinants

Eigenvalues and Eigenvectors
Dot Product and Norm
Vector Cross-Product
Quaternions H
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Determinants

Definition 101 (Submatrix, Dt.: Untermatrix)

Let A ∈ Mn×n(R), with n ≥ 2. Let Aij(A), or simply Aij if there is no ambiguity, denote
the (n − 1)× (n − 1) submatrix of A formed by deleting the i-th row and j-th column of
A.

Example:

A :=

1 0 1
2 1 2
0 4 4

 A12 =

(
2 2
0 4

)
A33 =

(
1 0
2 1

)

Definition 102 (Determinant)

The determinant, det(A), of an n × n matrix A ∈ Mn×n(R), for n ∈ N, is defined
recursively by the so-called first-row Laplace expansion:

det(A) :=

{
a11 if n = 1,∑n

j=1(−1)1+ja1j · det(A1j) if n > 1.
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Determinants

Note that the term |A| is also commonly used for denoting the determinant of an
n × n matrix A, for n ∈ N.

E.g., it is common to write∣∣∣∣a b
c d

∣∣∣∣ and

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
instead of

det

(
a b
c d

)
and det

a11 a12 a13

a21 a22 a23

a31 a32 a33

 .
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Laplace Expansion

One can prove (albeit the proof is not entirely straightforward) that a determinant
can be obtained by using any row or column for expansion if the following
chessboard-like pattern is used for determining the signs of the summands:

+ − + · · ·
− + − · · ·
+ − + · · ·
...

...
...

. . .



E.g.,

det(A) =
∑n

j=1(−1)1+ja1j · det(A1j) . . . first row
=
∑n

j=1(−1)ja2j · det(A2j) . . . second row
=
∑n

i=1(−1)i+1ai1 · det(Ai1) . . . first column
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2 × 2 and 3 × 3 Determinants

Lemma 103

Determinant of a 2 × 2 matrix: For all a, b, c, d ∈ R,

det

(
a b
c d

)
= ad − bc.

Determinant of a 3 × 3 matrix: For all a11, a12, a13, a21, a22, a23, a31, a32, a33 ∈ R,

det

a11 a12 a13

a21 a22 a23

a31 a32 a33


= a11 · det

(
a22 a23

a32 a33

)
− a21 · det

(
a12 a13

a32 a33

)
+ a31 · det

(
a12 a13

a22 a23

)
= a11(a22a33 − a23a32)− a21(a12a33 − a13a32) + a31(a12a23 − a13a22)

= a11a22a33 + a21a13a32 + a31a12a23 − a11a23a32 − a21a12a33 − a31a13a22.
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Mnemonic for Computing 3 × 3 Determinants (Sarrus)

det

a11 a12 a13

a21 a22 a23

a31 a32 a33


= a11a22a33 + a12a23a31 + a13a21a32 − a31a22a13 − a32a23a11 − a33a21a12.
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Properties of Determinants

Lemma 104

If a row (or column) of a matrix is zero, then its determinant is zero.

Lemma 105

The determinant is a linear function of each row and each column.

Lemma 106

If a multiple of a row is added to another row, then the value of the determinant
remains unchanged. Same for columns.

Lemma 107

If two rows or columns of a matrix are equal then the determinant is zero.

Lemma 108

If two columns or rows of a matrix are interchanged, then the determinant changes
sign (if it is not zero), but its absolute value does not change.
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Properties of Determinants

Lemma 109

The determinant of the product of two (square) matrices is the product of the
determinants of the matrices:

det(AB) = det(A) det(B)

for all A,B ∈ Mn×n.

Lemma 110

A matrix and its transpose have equal determinants, i.e., for all (square) matrices A,

det(At) = det(A).

Lemma 111

The determinant of an orthogonal matrix is ±1.

Theorem 112

The (square) matrix A is invertible if and only if det(A) ̸= 0.
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Properties of Determinants

Lemma 113

The determinant of an upper-triangular matrix

A =



a11 ∗ · · · · · · ∗

0 a22
...

...
. . .

...
...

. . . ∗
0 · · · · · · 0 ann


is given by the product of its diagonal elements: det(A) =

∏n
i=1 aii .

Corollary 114

An upper-triangular matrix is invertible if and only if all its diagonal elements are
non-zero.
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Properties of Determinants

Lemma 115

Let n ∈ N and A,B,D ∈ Mn×n(R). Then the determinant det(X) of the 2n × 2n block
matrix X with

X :=

(
A B
0 D

)
is given by

det(X) = det(A) · det(D).

Corollary 116

Let n ∈ N and A,B,D ∈ Mn×n(R). Then the 2n × 2n block matrix X with

X :=

(
A B
0 D

)
is invertible if and only if the matrices A and D are invertible.
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Calculating Determinants Manually

Make sure to make good use of the lemmas stated on the previous slides!

det


1 2 −1 3
0 1 4 2
0 1 0 4
1 0 2 1

 I−IV
= det


0 2 −3 2
0 1 4 2
0 1 0 4
1 0 2 1

 Expansion by first column
=

= (−1)1+4 · 1 · det

2 −3 2
1 4 2
1 0 4

 = − det

0 −3 −6
0 4 −2
1 0 4


= −(−1)1+3 · 1 · det

(
−3 −6
4 −2

)
= −((−3 · (−2))− (−6 · 4)) = −30.
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Implementing Determinant Calculations

The recursive formula results in a horrendous algorithmic complexity: If T (n)
denotes the number of multiplications needed for computing the determinant of
an n×n matrix, with T (2) := 2, then T (n) = n+n ·T (n−1) and, thus, T (n) > n!.

Hence, the recursive formula is not suitable for anything but small matrices.

Standard alternative: Apply Gaussian elimination in order to transform the input
matrix into an upper-triangular matrix, at a cost of Θ(n3) operations.

Unfortunately, this transformation introduces divisions.

Bird (IPL 111(21–22), 2011) presents a simple method that requires O(n · M(n))
additions and multiplications for an n × n matrix, where M(n) is the number of
arithmetic operations consumed by multiplying two n × n matrices.

If naïve matrix multiplication is used then we get Θ(n4).

No Θ(n3) division-free determinant calculation is known.
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Determinants and Linear Systems

Lemma 117

The linear system Ax = b, with A ∈ Mn×n, has a unique solution if and only if
det(A) ̸= 0.

Lemma 118 (Cramer’s Rule)

If det(A) ̸= 0, for A ∈ Mn×n(R), then the solution of Ax = b is given by

x1 =
det(A1)

det(A)
, x2 =

det(A2)

det(A)
, . . . , xn =

det(An)

det(A)
,

where Ai is the matrix formed by replacing the i-th column of the coefficient matrix A
by the right-hand side b.
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Geometric Interpretation of Determinants: Orientation and Area

Theorem 119

Let a, b, c, d ∈ R. Consider the 2D vectors

v1 :=

(
a
c

)
and v2 :=

(
b
d

)
and let T :=

(
a b
c d

)
.

Then det(T) gives the signed area of the parallelogram spanned by v1, v2. The
determinant is positive if v1, v2 form a right-handed coordinate system for R2, zero if
they are collinear, and negative otherwise.

Proof : Let v1, v2 form a right-handed coordinate system. We have det(T) = ad − bc.

Now consider the parallelogram defined by v1 and
v2

and observe that its area A equals ad − bc:

A = (a + b)(c + d)− ac − bd − 2bc

= ad − bc.

Interchanging v1 and v2 flips their handedness and
changes the sign of the determinant.
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Geometric Interpretation of Determinants: Orientation and Area

Theorem 119

Let a, b, c, d ∈ R. Consider the 2D vectors

v1 :=

(
a
c

)
and v2 :=

(
b
d

)
and let T :=

(
a b
c d

)
.

Then det(T) gives the signed area of the parallelogram spanned by v1, v2. The
determinant is positive if v1, v2 form a right-handed coordinate system for R2, zero if
they are collinear, and negative otherwise.

Proof : Let v1, v2 form a right-handed coordinate system. We have det(T) = ad − bc.

︸ ︷︷ ︸︸︷︷︸

︸ ︷︷ ︸︸︷︷︸

︸︷︷
︸

︸︷︷︸︸︷︷
︸︸︷︷
︸

a b

c

d

d

c

b a

ac
2

bc

bc
bd
2

bd
2

ac
2

A

Now consider the parallelogram defined by v1 and
v2 and observe that its area A equals ad − bc:

A = (a + b)(c + d)− ac − bd − 2bc

= ad − bc.

Interchanging v1 and v2 flips their handedness and
changes the sign of the determinant.

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 118/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Geometric Interpretation of Determinants: Orientation and Area
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Geometric Interpretation of Determinants: Orientation

Lemma 120

For points p1 := (x1, y1) and p2 := (x2, y2) in R2,

det

(
x1 y1

x2 y2

)
is positive if the triangle formed by the origin O := (0, 0) and the points p1 and p2 has
counter-clockwise (CCW) orientation.

It is negative for a clockwise (CW) orientation.
This determinant is zero if p1, p2 and O are collinear.

Lemma 121

For points p1 := (x1, y1), p2 := (x2, y2) and p3 := (x3, y3) in R2,

det

x1 y1 1
x2 y2 1
x3 y3 1


is positive if the triangle ∆(p1, p2, p3) formed by p1, p2, p3 has CCW orientation. It is
negative for a CW orientation, and zero if p1, p2 and p3 are collinear.
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Geometric Interpretation of Determinants: Orientation
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Geometric Interpretation of Determinants: Orientation
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Geometric Interpretation of Determinants: Orientation
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Geometric Interpretation of Determinants: Area

Lemma 122

For points p1 := (x1, y1) and p2 := (x2, y2) in R2,

1
2

∣∣∣∣det(x1 y1

x2 y2

)∣∣∣∣
corresponds to the area of the triangle ∆(O, p1, p2).

Lemma 123

For points p1 := (x1, y1), p2 := (x2, y2) and p3 := (x3, y3) in R2,

1
2

∣∣∣∣∣∣det
x1 y1 1

x2 y2 1
x3 y3 1

∣∣∣∣∣∣
corresponds to the area of the triangle ∆(p1, p2, p3).
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Geometric Interpretation of Determinants: Area
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Geometric Interpretation of Determinants: Area

Consider the triangle (in the plane) with corners (2, 1), (7, 2) and (3, 5).

x

y

A

The area of that triangle is given by

A =
1
2
· det

2 1 1
7 2 1
3 5 1

 =
1
2
· det

2 1 1
5 1 0
1 4 0

 =
1
2
· (5 · 4 − 1 · 1) =

19
2
.
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Geometric Interpretation of Determinants: Volume

Lemma 124

Let a, b, c ∈ R3. Then∣∣∣∣∣∣det
ax ay az

bx by bz

cx cy cz

∣∣∣∣∣∣
corresponds to the volume of the parallelepiped spanned by the three vectors a, b, c.
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Geometric Interpretation of Determinants: Volume

Lemma 125

For points p1 := (x1, y1, z1), p2 := (x2, y2, z2), p3 := (x3, y3, z3) in R3,

1
6

∣∣∣∣∣∣det
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣
corresponds to the volume of the tetrahedron with corners p1, p2, p3 and the origin as
fourth corner.

Lemma 126

For points p1 := (x1, y1, z1), p2 := (x2, y2, z2), p3 := (x3, y3, z3) and p4 := (x4, y4, z4) in
R3,

1
6

∣∣∣∣∣∣∣∣det


x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1


∣∣∣∣∣∣∣∣

corresponds to the volume of the tetrahedron with corners p1, p2, p3, p4.
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UNIVERSITÄT SALZBURG

Geometric Interpretation of Determinants: Volume

Lemma 125

For points p1 := (x1, y1, z1), p2 := (x2, y2, z2), p3 := (x3, y3, z3) in R3,

1
6

∣∣∣∣∣∣det
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣
corresponds to the volume of the tetrahedron with corners p1, p2, p3 and the origin as
fourth corner.

Lemma 126

For points p1 := (x1, y1, z1), p2 := (x2, y2, z2), p3 := (x3, y3, z3) and p4 := (x4, y4, z4) in
R3,

1
6

∣∣∣∣∣∣∣∣det


x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1


∣∣∣∣∣∣∣∣

corresponds to the volume of the tetrahedron with corners p1, p2, p3, p4.

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 123/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

3 Basic Linear Algebra
Matrices
Linear Equations
Determinants
Eigenvalues and Eigenvectors

Basics
Principal Components Analysis

Dot Product and Norm
Vector Cross-Product
Quaternions H
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Eigenvalues and Eigenvectors

Definition 127 (Eigenvalue, Dt.: Eigenwert)

Consider a square n × n matrix A ∈ Mn×n(R). A scalar λ ∈ R is called eigenvalue of
A if a vector v ∈ Rn exists such that

Av = λv and v ̸= 0.

Such a vector v is called eigenvector of A.

Lemma 128

A scalar λ is an eigenvalue of matrix A if and only if the homogeneous linear system
of equations

(A − λI)v = 0

has a non-trivial solution. This is the case if and only if (A − λI) is singular, that is, if
and only if

det(A − λI) = 0.
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Eigenvalues and Eigenvectors

Thus, the eigenvalues of a matrix A are the zeros of the characteristic polynomial

pA(λ) := det(A − λI).

An n × n matrix can have at most n eigenvalues.

While this approach works for any n × n matrix, it becomes tedious for n > 4.

Sample application of eigenvalues and eigenvectors: Principal Components
Analysis.
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Principal Components Analysis (PCA)

Suppose that we are given a cloud of points in R3. Somebody tells us that all
points lie inside of an (unknown) ellipsoid. How would we rotate/translate those
points such that the main axes of the ellipsoid coincide with the coordinate axes?

Roughly, Principal Components Analysis (PCA, Dt.: Hauptkomponentenanalyse)
is a statistical method for finding “structure” in such a point cloud.

PCA starts with subtracting the mean of all points from every point. This is
equivalent to translating the points such that their centroid matches the origin.
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Principal Components Analysis (PCA)

Then, PCA chooses the first PCA axis as that line which goes through the
centroid of the point cloud, but also minimizes the (average) squared distance of
each point to that line. Thus, the line is as close to all of the points as possible.
Equivalently, the line goes through the maximum variation in the point cloud.

The second PCA axis also goes through the centroid, and also goes through the
maximum variation in the points in a direction that is orthogonal to the first axis.

Similarly for the third axis.

mean
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Principal Components Analysis (PCA)

In d dimensions, PCA can be thought of as fitting a d-dimensional
(hyper-)ellipsoid to the data such that each axis of the ellipsoid represents a
principal component.

If some axis of the ellipsoid is short then the variance along that axis is also small.

Hence, one would lose only a rather small amount of information if one would
omit that axis and its corresponding principal component from the representation
of the dataset.

second principal component

first principal component

mean
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Principal Components Analysis (PCA)

Consider n points pi := (xi , yi , zi) ∈ R3.

Then the PCA axes can be computed by finding the eigenvalues and
eigenvectors of the covariance matrix Cov of the coordinates of the n points:

Cov(x , y , z) :=

cov(x , x) cov(x , y) cov(x , z)
cov(y , x) cov(y , y) cov(y , z)
cov(z, x) cov(z, y) cov(z, z)

 ,

where

x̄ :=
1
n

n∑
i=1

xi and ȳ :=
1
n

n∑
i=1

yi and z̄ :=
1
n

n∑
i=1

zi

and

cov(x , y) :=
∑n

i=1(xi − x̄)(yi − ȳ)
n − 1

.

Similarly for the other entries of the covariance matrix.

The origin of the PCA axes is given by the mean point (x̄ , ȳ , z̄).
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n − 1

.

Similarly for the other entries of the covariance matrix.

The origin of the PCA axes is given by the mean point (x̄ , ȳ , z̄).
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n − 1

.

Similarly for the other entries of the covariance matrix.

The origin of the PCA axes is given by the mean point (x̄ , ȳ , z̄).
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3 Basic Linear Algebra
Matrices
Linear Equations
Determinants
Eigenvalues and Eigenvectors
Dot Product and Norm

Dot Product
Norm
Standard Dot Product on Rn

Angle and Projection
Vector Cross-Product
Quaternions H
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Dot Product

Definition 129 (Dot product, Dt.: Skalarprodukt, inneres Produkt)

Consider a vector space V over a field F , where F is either R or C. A mapping

⟨, ⟩ : V × V → F

(a, b) 7→ ⟨a,b⟩

is called a dot product (or inner product) on V if

for all a, b, c ∈ V and all λ1, λ2 ∈ F
1 ⟨λ1a + λ2b, c⟩ = λ1⟨a,c⟩+ λ2⟨b,c⟩;
2 ⟨a,b⟩ = ⟨b,a⟩;
3 ⟨a,a⟩ ≥ 0;
4 ⟨a,a⟩ = 0 ⇒ a = 0.

Note that Condition 2 ensures that ⟨a,a⟩ ∈ R.

If F is R then commutativity holds. (In the sequel we will assume F to be R.)

Be warned that the notation is not uniform: a · b and (a | b) are two other
common notations for denoting the dot product of a and b.

Note the difference between a · b for a, b ∈ V , and λ · a for λ ∈ F and a ∈ V !
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Norm and Triangle Inequality

Definition 130 (Length)

Based on a dot product on V (over R), we can define the length (or norm) of a vector
a ∈ V induced by that dot product as the following mapping ∥.∥ from V to R:

∥a∥ :=
√

⟨a,a⟩.

Definition 131 (Unit vector, Dt.: Einheitsvektor)

A vector a is said to be a unit vector if ∥a∥ = 1.

Lemma 132

We get the following standard properties of a norm for ∥.∥ for all a, b ∈ V :
1 ∥a∥ ≥ 0;
2 ∥a∥ = 0 =⇒ a = 0;
3 ∥λa∥ = |λ| · ∥a∥ ∀λ ∈ R;
4 Triangle Inequality (Dt.: Dreiecksungleichung):

∥a + b∥ ≤ ∥a∥+ ∥b∥.
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4 Triangle Inequality (Dt.: Dreiecksungleichung):
∥a + b∥ ≤ ∥a∥+ ∥b∥.
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Norm and Triangle Inequality
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Cauchy-Schwarz Inequality

Lemma 133 (Cauchy-Schwarz Inequality)

∀a, b ∈ V |⟨a,b⟩| ≤ ∥a∥ · ∥b∥.

Note that, for a, b ̸= 0, the Cauchy-Schwarz inequality implies

−1 ≤ ⟨a,b⟩
∥a∥ · ∥b∥ ≤ 1.

We will make use of this fact when defining angles between vectors.

Lemma 134 (Pythagoras)

For a, b ∈ V ,
⟨a,b⟩ = 0 ⇒ ∥a + b∥2 = ∥a∥2 + ∥b∥2.

Proof : Let a, b ∈ V with ⟨a,b⟩ = 0. Then

∥a + b∥2 = ⟨a + b,a + b⟩ = ⟨a,a⟩+ ⟨a,b⟩+ ⟨b,a⟩+ ⟨b,b⟩

= ⟨a,a⟩+ ⟨b,b⟩ = ∥a∥2 + ∥b∥2.

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 134/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Cauchy-Schwarz Inequality

Lemma 133 (Cauchy-Schwarz Inequality)

∀a, b ∈ V |⟨a,b⟩| ≤ ∥a∥ · ∥b∥.

Note that, for a, b ̸= 0, the Cauchy-Schwarz inequality implies

−1 ≤ ⟨a,b⟩
∥a∥ · ∥b∥ ≤ 1.

We will make use of this fact when defining angles between vectors.

Lemma 134 (Pythagoras)

For a, b ∈ V ,
⟨a,b⟩ = 0 ⇒ ∥a + b∥2 = ∥a∥2 + ∥b∥2.

Proof : Let a, b ∈ V with ⟨a,b⟩ = 0. Then

∥a + b∥2 = ⟨a + b,a + b⟩ = ⟨a,a⟩+ ⟨a,b⟩+ ⟨b,a⟩+ ⟨b,b⟩

= ⟨a,a⟩+ ⟨b,b⟩ = ∥a∥2 + ∥b∥2.

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 134/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Standard Dot Product and Standard Norm on Rn

ForV := Rn for some n ∈ N, and a :=

a1
...

an

 ∈ Rn and b :=

b1
...

bn

 ∈ Rn, it is

easy to prove that

⟨a,b⟩ :=
n∑

i=1

ai · bi = a1 · b1 + a2 · b2 + . . .+ an · bn

does indeed yield a dot product on Rn.

In the sequel, unless stated otherwise, we will always use this dot product when
referring to “the dot product” on Rn or writing ⟨a,b⟩ for a, b ∈ Rn.
Note that this definition of a dot product and its corresponding norm on Rn

matches our intuitive notion of the distance, d(p, q), of two points p and q in Rn:
Their distance is given by the length of the vector from p to q, i.e.,

d(p, q) := ∥q − p∥ =
√

⟨q − p,q − p⟩ =

√√√√ n∑
i=1

(qi − pi) · (qi − pi)

=
√

(q1 − p1)2 + (q2 − p2)2 + · · ·+ (qn − pn)2.
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Other Widely Used Norms on Rn

The norm

∥a − b∥ =
√

(a1 − b1)2 + (a2 − b2)2 + · · ·+ (an − bn)2

is also called L2-norm and then denoted by ∥a − b∥2,

1L2
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Other Widely Used Norms on Rn

The norm

∥a − b∥ =
√

(a1 − b1)2 + (a2 − b2)2 + · · ·+ (an − bn)2

is also called L2-norm and then denoted by ∥a − b∥2, in order to distinguish it
from other well-known norms on Rn, such as the L1-norm (Manhattan metric)

∥a − b∥1 := |a1 − b1|+ |a2 − b2|+ · · ·+ |an − bn|,

L11 1L2

unit ”circles”
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√

(a1 − b1)2 + (a2 − b2)2 + · · ·+ (an − bn)2

is also called L2-norm and then denoted by ∥a − b∥2, in order to distinguish it
from other well-known norms on Rn, such as the L1-norm (Manhattan metric)

∥a − b∥1 := |a1 − b1|+ |a2 − b2|+ · · ·+ |an − bn|,

or the L∞-norm (maximum norm)

∥a − b∥∞ := max
1≤i≤n

|ai − bi |.

L∞ L111 1L2

unit ”circles”
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Angle

Definition 135 (Angle between vectors)

The angle, α, between non-zero vectors a, b ∈ Rn is given by

cosα :=
⟨a,b⟩

∥a∥ · ∥b∥ .

Definition 136 (Perpendicular, Dt.: senkrecht)

The vectors a, b ∈ Rn are said to be perpendicular (or orthogonal), denoted by a ⊥ b,
if

⟨a,b⟩ = 0.

〈a, b〉 > 0 〈a, b〉 = 0 〈a, b〉 < 0

a a a

b
b b
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Angle and Projection

Definition 137 (Parallel)

The non-zero vectors a, b ∈ Rn are said to be parallel, denoted by a ∥ b, if there exists
λ ∈ R such that

a = λb.

Lemma 138

The length of the orthogonal projection of a vector b onto a non-zero vector a is given
by

⟨a,b⟩
∥a∥ .

︸ ︷︷ ︸
a1

a

b︸︷︷︸b1

We have

⟨a,b⟩ = ∥a∥ · a1 = ∥b∥ · b1.

This symmetry is obvious for vectors of the same length, but
it holds even for vectors of different lengths: Scaling one
vector scales either its length or its projection! See Slide 242.
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Orthonormal Basis of a Vector Space

Definition 139 (Orthogonal basis)

The vectors a1, . . . , an form an orthogonal basis of a vector space V over R if

1 the vectors a1, . . . , an form a basis of V ;
2 ∀(1 ≤ i, j ≤ n) [i ̸= j ⇒ ⟨ai ,aj⟩ = 0].

Definition 140 (Orthonormal basis)

The vectors a1, . . . , an form an orthonormal basis of a vector space V over R if
1 the vectors a1, . . . , an form a basis of V ;
2 ∀(1 ≤ i, j ≤ n) ⟨ai ,aj⟩ = δij .

The algorithm by Gram-Schmidt can be used to transform an arbitrary basis into
an orthonormal basis.

Lemma 141

An n × n matrix A ∈ Mn×n(R) is orthogonal if and only if its columns form an
orthonormal basis of Rn.
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Definition 140 (Orthonormal basis)

The vectors a1, . . . , an form an orthonormal basis of a vector space V over R if
1 the vectors a1, . . . , an form a basis of V ;
2 ∀(1 ≤ i, j ≤ n) ⟨ai ,aj⟩ = δij .

The algorithm by Gram-Schmidt can be used to transform an arbitrary basis into
an orthonormal basis.

Lemma 141

An n × n matrix A ∈ Mn×n(R) is orthogonal if and only if its columns form an
orthonormal basis of Rn.
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3 Basic Linear Algebra
Matrices
Linear Equations
Determinants
Eigenvalues and Eigenvectors
Dot Product and Norm
Vector Cross-Product
Quaternions H
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Vector Cross-Product in R3

Definition 142 (Cross-product, Dt.: Kreuzprodukt)

Let a = (ax , ay , az), b = (bx , by , bz) ∈ R3. The (vector) cross-product of a and b is
given by

a × b :=



det

(
ay by

az bz

)
− det

(
ax bx

az bz

)
det

(
ax bx

ay by

)


=

ay · bz − az · by

az · bx − ax · bz

ax · by − ay · bx

 .

This cross-product is only defined in R3!

Some authors like to define a “cross-product” for two vectors a, b ∈ R2, with
a := (ax , ay ) and b := (bx , by ), as follows:

a × b := det

(
ax bx

ay by

)
= ax · by − ay · bx

Note, however, that its properties are different from those of Definition 142.
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Properties of the Cross-Product: Orientation of the Resulting Vector

Right-hand rule (Dt.: Drei-Finger-Regel)

The orientation of the vector a × b can be memorized by the right-hand rule: Point the
forefinger of your right hand into direction a and point the middle finger into direction
b. Then your thumb will point into the direction of a × b.

[Image credit: en.wikipedia.org.]
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Properties of the Cross-Product

Lemma 143

The following properties of the vector cross-product follow from the properties of 2 × 2
and 3 × 3 determinants:

1 e1 × e2 = e3, e2 × e3 = e1, e3 × e1 = e2;

2 a × a = 0;
3 a × b = −(b × a) = −b × a;
4 a × (b + c) = a × b + a × c;
5 (λa)× (µb) = λµ(a × b);

6 ⟨a,b × c⟩ = det

ax bx cx

ay by cy

az bz cz

 = ⟨a × b,c⟩;

7 ⟨a,a × b⟩ = 0 = ⟨b,a × b⟩;
8 ∥a × b∥ =

√
∥a∥2∥b∥2 − (⟨a,b⟩)2;

9 For non-zero vectors a,b, if α is the angle between a and b, then

sinα =
∥a × b∥
∥a∥ · ∥b∥ .
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Properties of the Cross-Product

In particular, a × b is perpendicular on both a and b!

Lemma 144

If u, v ,w are distinct non-collinear points in R3, then the area of the triangle ∆(u, v ,w)
equals

1
2
∥uv × uw∥.

This is not completely surprising since, for points in R2 with uz = vz = wz := 0,
this is nothing but a re-statement of Theorem 119. We will later on resort to linear
transformations to shed some additional light onto this claim.

Lemma 145

If u, v ,w are distinct non-collinear points in R3, then the distance d of w from the line
through u and v is given by

d =
∥uv × uw∥

∥uv∥ .
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Orthogonal Frame

Assume that the vector ν1 := (1, 2, 3) is a tangent vector to a curve at the point p.

An orthogonal frame at p can be obtained by taking a vector cross-product of two
suitable vectors:

ν2 :=

−2
1
0



ν3 :=

1
2
3

×

−2
1
0

 =



∣∣∣∣2 1
3 0

∣∣∣∣
−
∣∣∣∣1 −2
3 0

∣∣∣∣∣∣∣∣1 −2
2 1

∣∣∣∣

 =

−3
−6
5



Then ν1 ⊥ ν2, ν1 ⊥ ν3 and ν2 ⊥ ν3.
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3 Basic Linear Algebra
Matrices
Linear Equations
Determinants
Eigenvalues and Eigenvectors
Dot Product and Norm
Vector Cross-Product
Quaternions H
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Quaternions H

Definition 146 (Quaternions)

The set of quaternions, H, is given by quadrupels of real numbers together with
operations +: H×H → H and · : H×H → H defined as follows for all P1,P2 ∈ H,
with P1 := (s1, v1) and P2 := (s2, v2) where s1, s2 ∈ R and v1, v2 ∈ R3:

P1 + P2 := (s1 + s2, v1 + v2),

P1 · P2 := (s1s2 − ⟨v1,v2⟩, s1v2 + s2v1 + v1 × v2).

Definition 147 (Pure quaternion)

A quaternion (s, v), with s ∈ R and v ∈ R3, is called pure if its real part s equals zero.

We identify the set {(s, 0) ∈ H : s ∈ R} with R, and {(0, v) ∈ H : v ∈ R3} with R3.

Discovered by William R. Hamilton in 1843 at Dublin, Ireland:
Here as he walked by on the 16th of October 1843, Sir William Rowan Hamil-
ton in a flash of genius discovered the fundamental formula for quaternion
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Quaternions H

Lemma 148

A quaternion P can also be regarded as an extension of complex numbers as follows:

P := s + ia + jb + kc, with s, a, b, c ∈ R,

where standard arithmetic for real numbers is applied and where the multiplication of
the imaginary elements i , j , and k is defined as

i2 = j2 = k2 := −1 and ijk := −1.

Lemma 149

Lemma 148 implies for i, j, k that

jk = −kj = i and ki = −ik = j and ij = −ji = k .

Hence, a quaternion P can be seen as either (s, (a, b, c)) or s + ia + jb + kc, with
s, a, b, c ∈ R.

It is common to switch between the two notations depending on which one is
more suitable for a particular application.
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Quaternions

Definition 150 (Conjugate, Dt.: konjugiertes Quaternion)

The conjugate of a quaternion P = (s, v) = (s, (a, b, c)) ∈ H is defined as

P := (s,−v) = s − ia − jb − kc.

Definition 151 (Unit quaternion, Dt.: Einheitsquaternion)

The norm of a quaternion P = (s, v) = (s, (a, b, c)) ∈ H is defined as

∥P∥ :=
√

s2 + ∥v∥2 =
√

s2 + a2 + b2 + c2.

A unit quaternion is a quaternion whose norm is 1.

Definition 152 (Multiplicative inverse)

The multiplicative inverse P−1 of a quaternion P = (s, v) ∈ H, with P ̸= 0, is defined
as

P−1 :=
P

∥P∥2 =
1

∥P∥2 (s,−v).
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Quaternion Algebra

Lemma 153

The quaternion (1, 0) ∈ H is the neutral element of quaternion multiplication.

Lemma 154

The multiplication of quaternions is associative and distributive (over addition) but not
commutative.

Lemma 155

For every quaternion P ∈ H with P ̸= 0, we have

P−1 · P = (1, 0) = P · P−1.

Lemma 156

For all P,Q ∈ H, we have

P = P and P +Q = Q+ P and P · Q = Q · P.
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Quaternion Algebra

Lemma 157

For all P,Q ∈ H with P,Q ≠ 0, we have

(P−1)−1 = P and (P · Q)−1 = Q−1 · P−1.

Lemma 158

The inverse of a unit quaternion and the product of unit quaternions are themselves
unit quaternions.

A unit quaternion can be represented by (cosϕ, u sinϕ), where u ∈ R3 with
∥u∥ = 1.

Important application in graphics: Modeling and interpolating spatial rotations.

See https://eater.net/quaternions for a neat set of videos on
“visualizing quaternions”.
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UNIVERSITÄT SALZBURG

Quaternion Algebra

Lemma 157

For all P,Q ∈ H with P,Q ≠ 0, we have
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4 Geometric Objects
Lines and Planes
Circles and Spheres
Conics
Curves and Surfaces
Polygons and Polyhedra
Triangulations
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Lines and Planes

Line
Plane
Half-Plane and Half-Space

Circles and Spheres
Conics
Curves and Surfaces
Polygons and Polyhedra
Triangulations
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Lines

Definition 159 (Straight line, Dt.: Gerade)

For two distinct points p, q ∈ Rn, the straight line defined by p, q is the set

ℓ(p, q) := {p + λ · pq : λ ∈ R}.

Recall that pq := q − p.
Since, for all λ ∈ R,

p + λ · pq = p + λ · (q − p) = (1 − λ) · p + λ · q,

we have

ℓ(p, q) = {α · p + β · q : α, β ∈ R with α+ β = 1}.

Hence, ℓ(p, q) is the set of all affine combinations of p and q.
p + λ · pq is the so-called parametric representation of ℓ(p, q).

Definition 160 (Ray, Dt.: Strahl, Halbgerade)

For two distinct points p, q ∈ Rn, the ray starting at p through q is the set

{p + λ · pq : λ ∈ R+
0 }.
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UNIVERSITÄT SALZBURG

Lines

Definition 159 (Straight line, Dt.: Gerade)

For two distinct points p, q ∈ Rn, the straight line defined by p, q is the set

ℓ(p, q) := {p + λ · pq : λ ∈ R}.

Recall that pq := q − p.
Since, for all λ ∈ R,

p + λ · pq = p + λ · (q − p) = (1 − λ) · p + λ · q,

we have

ℓ(p, q) = {α · p + β · q : α, β ∈ R with α+ β = 1}.

Hence, ℓ(p, q) is the set of all affine combinations of p and q.
p + λ · pq is the so-called parametric representation of ℓ(p, q).

Definition 160 (Ray, Dt.: Strahl, Halbgerade)

For two distinct points p, q ∈ Rn, the ray starting at p through q is the set

{p + λ · pq : λ ∈ R+
0 }.

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 154/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Lines and Straight-Line Segments

Definition 161 (Straight-line segment, Dt.: Geradensegment, Strecke)

For two distinct points p, q ∈ Rn, the (closed) straight-line segment defined by p, q is
the set

pq := {p + λ · pq : λ ∈ [0, 1]}.

Since, for all λ ∈ [0, 1],

p + λ · pq = (1 − λ) · p + λ · q,

we have

pq = {α · p + β · q : α, β ∈ R+
0 with α+ β = 1}.

Hence, pq is the set of all convex combinations of p and q.

Definition 162 (Open straight-line segment)
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Lines in R2

Lemma 163

For every pair of distinct points p, q ∈ R2, there exist n ∈ R2 and c ∈ R such that

ℓ(p, q) = {u ∈ R2 : ⟨u,n⟩ = c}.

The equation ⟨u,n⟩ = c is the so-called equational representation of ℓ(p, q), aka
implicit form.

Note that ⟨n,pq⟩ = 0 holds for every such n. That is, the vector n is a normal
vector of ℓ(p, q). We have

n = λ

(
−pqy

pqx

)
for some non-zero scalar λ ∈ R.

Standard formulation according to high school math:

a · x + b · y = c, with n :=

(
a
b

)
and u :=

(
x
y

)
.
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Lines in R2

Definition 164 (Hessian normal form, Dt.: Hessische Normalform)

A line equation ⟨u,n⟩ = c for ℓ(p, q), as specified in Lem. 163, is said to be in Hessian
normal form if n is a unit vector.

Lemma 165

The (signed) minimum distance d of a point a ∈ R2 from ℓ(p, q), with
ℓ(p, q) = {u ∈ R2 : ⟨u,n⟩ = c}, is given by

d =
⟨a,n⟩ − c

∥n∥ .

The signed distance of point a ∈ R2 from ℓ(p, q) = {u ∈ R2 : ⟨u,n⟩ = c} is
positive if a is on that side of ℓ(p, q) into which n points.
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Planes in R3

Definition 166 (Plane, Dt.: Ebene)

For three distinct and non-collinear points p, q, r ∈ R3, the plane defined by p, q, r is
the set

ε(p, q, r) := {p + λ · pq + µ · pr : λ, µ ∈ R}.

p + λ · pq + µ · pr is the so-called parametric representation of ε(p, q, r).

Since, for all λ, µ ∈ R,

p+λ ·pq +µ ·pr = p+λ · (q −p)+µ · (r −p) = (1−λ−µ) ·p+λ ·q +µ · r ,

we have

ε(p, q, r) := {α · p + β · q + γ · r : α, β, γ ∈ R with α+ β + γ = 1}.

Hence, ε(p, q, r) is the set of all affine combinations of p, q and r .
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Planes in R3

Lemma 167

For every triple of distinct and non-collinear points p, q, r ∈ R3, there exist n ∈ R3 and
c ∈ R such that

ε(p, q, r) = {u ∈ R3 : ⟨u,n⟩ = c}.

The equation ⟨u,n⟩ = c is the so-called equational representation of ε(p, q, r).

Note that ⟨n,pq⟩ = ⟨n,pr⟩ = 0 holds for every such n. That is, the vector n is a
normal vector of ε(p, q, r). We have

n = λ(pq × pr) for some non-zero scalar λ ∈ R.
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Planes in R3

Definition 168 (Hessian normal form, Dt.: Hessische Normalform)

A plane equation ⟨u,n⟩ = c for ε(p, q, r), as specified in Lem. 167, is said to be in
Hessian normal form if n is a unit vector.

Lemma 169

The (signed) minimum distance d of a point a ∈ R3 from ε(p, q, r), with
ε(p, q, r) = {u ∈ R3 : ⟨u,n⟩ = c}, is given by

d =
⟨a,n⟩ − c

∥n∥ .

The signed distance of a ∈ R3 from ε(p, q, r) = {u ∈ R3 : ⟨u,n⟩ = c} is positive if
a is on that side of ε(p, q, r) into which n points.
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Line/Plane Equation via Determinant

Lemma 170

The equation of the line through two distinct points p and q in R2 is given by

det

 x y 1
px py 1
qx qy 1

 = 0.

Lemma 171

The equation of the plane through three distinct and non-collinear points p, q, r in R3

is given by

det


x y z 1
px py pz 1
qx qy qz 1
rx ry rz 1

 = 0.
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Half-Plane and Half-Space

The line ℓ(p, q) = {u ∈ R2 : ⟨u,n⟩ = c} partitions R2 into three disjoint sets: the
actual line and the two (open) half-planes {u ∈ R2 : ⟨u,n⟩ − c < 0} and
{u ∈ R2 : ⟨u,n⟩ − c > 0}.

x

y

−x + y − 1 > 0

−x + y − 1 < 0

 −1
1



p

q

−x + y − 1 = 0

Similarly for a plane in R3 and half-spaces.
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Intersections of Lines and Planes

The intersection of two lines a1x + b1y = c1 and a2x + b2y = c2 in R2 is given by
the solution(s) of the following system of two linear equations:

a1x + b1y = c1

a2x + b2y = c2

That is,

Au = c with A :=

(
a1 b1

a2 b2

)
u :=

(
x
y

)
c :=

(
c1

c2

)
.

Similarly for the intersection of m (hyper-)planes in Rn:

a11x1 + · · · + a1nxn = b1
...

. . .
...

...
am1x1 + · · · + amnxn = bm
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4 Geometric Objects
Lines and Planes
Circles and Spheres

Definitions
Equations and Parametrizations
Putnam Problem: Points on a Sphere

Conics
Curves and Surfaces
Polygons and Polyhedra
Triangulations
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Circles in R2 and Spheres in R3

Definition 172 (Sphere, Dt.: Sphäre, Kugeloberfläche)

The (hyper-)sphere in Rn with radius r ∈ R centered at point c ∈ Rn, under the
Euclidean distance d(·, ·), is the set

S(c, r) := {u ∈ Rn : d(u, c) = r}.

Conventionally, a hyper-sphere is called a circle in R2 and a sphere in R3.

Definition 173 (Disk, Dt.: Kreisscheibe)

The (closed) disk in R2 with radius r ∈ R centered at point c ∈ R2 is the set

{u ∈ R2 : d(u, c) ≤ r}.

Definition 174 (Open disk)

The open disk in R2 with radius r ∈ R centered at point c ∈ R2 is the set

{u ∈ R2 : d(u, c) < r}.

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 165/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Definition 174 (Open disk)

The open disk in R2 with radius r ∈ R centered at point c ∈ R2 is the set

{u ∈ R2 : d(u, c) < r}.
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Circles in R2 and Spheres in R3
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Circles in R2 and Spheres in R3

Definition 175 (Ball, Dt.: Kugel)

The (closed) ball in R3 with radius r ∈ R centered at point c ∈ R3 is the set

B(c, r) := {u ∈ R3 : d(u, c) ≤ r}.

Definition 176 (Open ball)

The open ball in R3 with radius r ∈ R centered at point c ∈ R3 is the set

{u ∈ R3 : d(u, c) < r}.

Of course, these definitions can be generalized to distances other than the
standard Euclidean distance (based on the L2-norm).

In mathematics, a terminological distinction is made between a sphere, which is
a two-dimensional closed surface embedded in R3, and a ball, which is a shape
(“solid”) in R3 that includes the interior of its associated sphere.

In mathematics, for n ∈ N, an n-sphere of radius r is the set of points in
(n + 1)-dimensional Euclidean space which are at distance r from the origin, with
r := 1 for the unit n-sphere Sn.
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UNIVERSITÄT SALZBURG

Circles in R2 and Spheres in R3

Definition 175 (Ball, Dt.: Kugel)

The (closed) ball in R3 with radius r ∈ R centered at point c ∈ R3 is the set

B(c, r) := {u ∈ R3 : d(u, c) ≤ r}.

Definition 176 (Open ball)

The open ball in R3 with radius r ∈ R centered at point c ∈ R3 is the set

{u ∈ R3 : d(u, c) < r}.

Of course, these definitions can be generalized to distances other than the
standard Euclidean distance (based on the L2-norm).

In mathematics, a terminological distinction is made between a sphere, which is
a two-dimensional closed surface embedded in R3, and a ball, which is a shape
(“solid”) in R3 that includes the interior of its associated sphere.

In mathematics, for n ∈ N, an n-sphere of radius r is the set of points in
(n + 1)-dimensional Euclidean space which are at distance r from the origin, with
r := 1 for the unit n-sphere Sn.

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 166/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Circle Equation

Lemma 177

The equation of a circle in R2 (under the Euclidean distance) with radius r ∈ R+
0

centered at point c ∈ R2 is given by

(cx − x)2 + (cy − y)2 = r 2.

Lemma 178

For points p1 := (x1, y1), p2 := (x2, y2) and p3 := (x3, y3) in R2, the equation of the
circle (under the Euclidean distance) through p1, p2 and p3 is given by

det


x2 + y2 x y 1
x2

1 + y2
1 x1 y1 1

x2
2 + y2

2 x2 y2 1
x2

3 + y2
3 x3 y3 1

 = 0.

This can be used to check whether a fourth point p4 := (x4, y4) lies inside the
circle defined by three points p1, p2, p3 arranged in CCW order: The point p4 lies
inside that circle if and only if the determinant is greater than zero (when x and y
are replaced by x4 and y4).
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Sphere Equation

Lemma 179

The equation of a sphere in R3 (under the Euclidean distance) with radius r ∈ R+
0

centered at point c ∈ R3 is given by

(cx − x)2 + (cy − y)2 + (cz − z)2 = r 2.

Lemma 180

For points p1 := (x1, y1, z1), p2 := (x2, y2, z2), p3 := (x3, y3, z3) and p4 := (x4, y4, z4) in
R3, the equation of the sphere (under the Euclidean distance) through p1, p2, p3 and
p4 is given by

det


x2 + y2 + z2 x y z 1
x2

1 + y2
1 + z2

1 x1 y1 z1 1
x2

2 + y2
2 + z2

2 x2 y2 z2 1
x2

3 + y2
3 + z2

3 x3 y3 z3 1
x2

4 + y2
4 + z2

4 x4 y4 z4 1

 = 0.

This formula generalizes to any number of dimensions.
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Parametrization of a Circle

Lemma 181

The parametrization of a circle in R2 with radius r ∈ R+
0 centered at point c ∈ R2 is

given by(
cx + r cosφ
cy + r sinφ

)
with φ ∈ [0, 2π[.

x

y

ϕ︸ ︷︷ ︸ ︸︷︷
︸

sinϕ

cosϕ
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Parametrization of a Sphere

Lemma 182

The parametrization of a sphere in R3 with radius r ∈ R+
0 centered at point c ∈ R3 is

given bycx + r cos δ cosφ
cy + r cos δ sinφ

cz + r sin δ

 with φ ∈ [0, 2π[ and δ ∈ [−π

2
,
π

2
].

x

y

z

ϕ

δ

r
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Sphere via Ratios of Distances

Lemma 183 (Appolonius of Perga)

Consider two distinct points p, q ∈ Rn and a constant k ∈ R+. Then

{u ∈ Rn :
d(u, p)
d(u, q)

= k}

forms a (hyper-)sphere.

p q

u

r

d(u,p)
d(u,q) = k := 2
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Putnam Problem: Points on a Sphere

Choose four points p1, p2, p3, p4 independently at random (relative to a uniform
distribution) on a sphere (in R3).

Consider the tetrahedron T formed by p1, p2, p3, p4.

What is the probability that the center of the sphere lies inside T ?

We start with considering the problem in 2D: three random points on a circle.
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Putnam Problem: Points on a Sphere

Choose four points p1, p2, p3, p4 independently at random (relative to a uniform
distribution) on a sphere (in R3).

Consider the tetrahedron T formed by p1, p2, p3, p4.

What is the probability that the center of the sphere lies inside T ?

We start with considering the problem in 2D: three random points on a circle.

p1 p2

p3no!
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Putnam Problem: Points on a Sphere

W.l.o.g., the point p1 is at the north pole of the circle, centered at the origin.

We can select p2 by picking a random angle within [0, 360[, or by picking a
random angle within [0, 180[ — thus fixing a line ℓ2 through the origin — and then
flipping a coin to choose between p′

2 and p′′
2 .

Same for ℓ3 and p′
3 and p′′

3 as candidates for p3.

With probability one, we have ℓ2 ̸= ℓ3 and p1 ̸∈ ℓ2 and p1 ̸∈ ℓ3.

The four possible triangles
∆(p1, p′

2, p
′
3)

∆(p1, p′
2, p

′′
3 )

∆(p1, p′′
2 , p

′
3)

∆(p1, p′′
2 , p

′′
3 )

are equally likely.

We know that at most two vectors can be
linearly independent in R2.

Hence, there exist λ1, λ2, λ3 ∈ R such that

0 = λ1 · p1 + λ2 · p2 + λ3 · p3,

and not all of λ1, λ2, λ3 are zero.

p1
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p1 p′
2

p′′
2

`2

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 173/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Putnam Problem: Points on a Sphere

W.l.o.g., the point p1 is at the north pole of the circle, centered at the origin.

We can select p2 by picking a random angle within [0, 360[, or by picking a
random angle within [0, 180[ — thus fixing a line ℓ2 through the origin — and then
flipping a coin to choose between p′

2 and p′′
2 .

Same for ℓ3 and p′
3 and p′′

3 as candidates for p3.

With probability one, we have ℓ2 ̸= ℓ3 and p1 ̸∈ ℓ2 and p1 ̸∈ ℓ3.

The four possible triangles
∆(p1, p′

2, p
′
3)

∆(p1, p′
2, p

′′
3 )

∆(p1, p′′
2 , p

′
3)

∆(p1, p′′
2 , p

′′
3 )

are equally likely.

We know that at most two vectors can be
linearly independent in R2.

Hence, there exist λ1, λ2, λ3 ∈ R such that

0 = λ1 · p1 + λ2 · p2 + λ3 · p3,

and not all of λ1, λ2, λ3 are zero.

p1 p′
2

p′′
2

`2

p′
3

p′′
3

`3

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 173/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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UNIVERSITÄT SALZBURG

Putnam Problem: Points on a Sphere

W.l.o.g., the point p1 is at the north pole of the circle, centered at the origin.

We can select p2 by picking a random angle within [0, 360[, or by picking a
random angle within [0, 180[ — thus fixing a line ℓ2 through the origin — and then
flipping a coin to choose between p′

2 and p′′
2 .

Same for ℓ3 and p′
3 and p′′

3 as candidates for p3.

With probability one, we have ℓ2 ̸= ℓ3 and p1 ̸∈ ℓ2 and p1 ̸∈ ℓ3.

The four possible triangles
∆(p1, p′

2, p
′
3)

∆(p1, p′
2, p

′′
3 )

∆(p1, p′′
2 , p

′
3)

∆(p1, p′′
2 , p

′′
3 )

are equally likely.

We know that at most two vectors can be
linearly independent in R2.

Hence, there exist λ1, λ2, λ3 ∈ R such that

0 = λ1 · p1 + λ2 · p2 + λ3 · p3,

and not all of λ1, λ2, λ3 are zero.

p1 p′
2

p′′
2

`2

p′
3

p′′
3

`3

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 173/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Putnam Problem: Points on a Sphere

Actually, we have λ1, λ2, λ3 all non-zero. W.l.o.g., λ1 > 0.

If

0 = λ1 · p1 + λ2 · p′
2 + λ3 · p3

then

0 = λ1 · p1 − λ2 · p′′
2 + λ3 · p3.

Hence, we get the origin as a linear combination
with positive coefficients of the three corners of
a triangle for exactly one of the four triangles.

If λ1, λ2, λ3 ∈ R+ then we may assume
λ1 + λ2 + λ3 = 1, thus obtaining a convex
combination.

Hence, a random triangle contains the
center of the circle with probability 1/4.

Similarly, a random tetrahedron contains
the center of the sphere with probability 1/8.

p1 p′
2

p′′
2

`2

p′
3

p′′
3

`3
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UNIVERSITÄT SALZBURG

Putnam Problem: Points on a Sphere

Actually, we have λ1, λ2, λ3 all non-zero. W.l.o.g., λ1 > 0.

If

0 = λ1 · p1 + λ2 · p′
2 + λ3 · p3

then

0 = λ1 · p1 − λ2 · p′′
2 + λ3 · p3.

Hence, we get the origin as a linear combination
with positive coefficients of the three corners of
a triangle for exactly one of the four triangles.

If λ1, λ2, λ3 ∈ R+ then we may assume
λ1 + λ2 + λ3 = 1, thus obtaining a convex
combination.

Hence, a random triangle contains the
center of the circle with probability 1/4.

Similarly, a random tetrahedron contains
the center of the sphere with probability 1/8.

p1 p′
2

p′′
2

`2

p′
3

p′′
3

`3

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 174/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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4 Geometric Objects
Lines and Planes
Circles and Spheres
Conics

Cone and Conics
Ellipse
Ellipsoid

Curves and Surfaces
Polygons and Polyhedra
Triangulations
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Cone

Definition 184 (Cone, Dt.: Kegel)

A (right circular) cone is formed by a set
of line segments (or lines) which connect
a common point, called the apex, to all
the points of a circular base, where the
apex lies on a perpendicular through the
center of the circle. This line is called axis
of the cone.

The axis is the axis of symmetry of
the cone.

A cone is characterized by its height
h and base radius r .

The Pythagorean theorem implies√
h2 + r 2 for the slant height s.

The intercept theorem implies that all
cross sections of a cone parallel to
the base will be similar to the base,
i.e., they will also be circles.

h

r

s
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Railroad Track on Cone Mountain

Consider a mountain that is shaped
like a right circular cone.

A shortest-length railroad track is
supposed to start at A, wind around
the mountain once, and end in B.

The height h of the cone is 40
√

2, its
base radius r is 20, and the distance
between A and B is 10.

Your task:
1 Prove that the shortest-length

railroad track from A to B that
winds around the mountain once
consists of an uphill portion and
of a downhill portion.

2 Compute the length of the
downhill portion.

A

B h

r

s
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Railroad Track on Cone Mountain

The key insight is that the lateral surface (Dt.: Mantel) of the cone forms a circular
disk sector with radius s =

√
r 2 + h2 = 60.

Since the base circle has a circumference of 2rπ = 40π, while a circle with radius
60 has circumference 120π, the opening angle of the disk sector is 120o.
The shortest distance from A to B is a straight-line segment.
The law of cosines,

d(A,B)2 = s2 + (s − 10)2 + 2s(s − 10) cos 120,

yields d(A,B) = 10
√

91.

Let x be the length of the downhill
portion of the track. We have

(s − 10)2 = h2 + x2

and

s2 = h2 + (d(A,B)− x)2.

We get x = 400/
√

91 as length of the
downhill portion of the track.

s
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Conics

Conic sections (Dt.: Kegelschnitte) are formed by the intersection of a (double
circular right) cone and a plane.

parabola ellipse, circle hyperbola

[Image credit: https://en.wikipedia.org.]
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Ellipse

Definition 185 (Ellipse)

Consider two points f1, f2 and a distance a ∈ R+ such that 2a ≥ d(f1, f2). Then the
ellipse defined by f1, f2 and a is given as follows:

{u ∈ R2 : d(u, f1) + d(u, f2) = 2a}

major axis

minor axis

f1

f2

u

︸ ︷︷ ︸
a
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Ellipse

Lemma 186

The standard (axis-aligned) ellipse with width 2a and height 2b has the equation

x2

a2 +
y2

b2 = 1.

If a ≥ b then c =
√

a2 − b2.

major axis

minor axis

f1

f2

u

x

y

︸ ︷︷ ︸︸
︷︷

︸
a

b

︷ ︸︸ ︷c
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Ellipse

Lemma 187

The standard (axis-aligned) ellipse with width 2a and height 2b can be parametrized
as (

a · cosφ
b · sinφ

)
with φ ∈ [0, 2π[.

major axis

minor axis

f1

f2

u

x

y

︸ ︷︷ ︸︸
︷︷

︸
a

b

︷ ︸︸ ︷c

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 182/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Ellipsoid

An ellipsoid is a quadric surface in R3 that has three pairwise perpendicular axes
of symmetry which intersect at the so-called center of the ellipsoid. The line
segments that are delimited on the axes of symmetry by the ellipsoid are called
the principal axes and are commonly denoted by a, b and c.

The standard (axis-aligned) ellipsoid centered at the origin has the equation

x2

a2 +
y2

b2 +
z2

c2 = 1.

We get a sphere for a = b = c.

A parametrization is given bya · sin δ cosφ
b · sin δ sinφ

c cos δ

 with φ ∈ [0, 2π[ and δ ∈ [−π

2
,
π

2
].
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4 Geometric Objects
Lines and Planes
Circles and Spheres
Conics
Curves and Surfaces
Polygons and Polyhedra
Triangulations
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Curves

Intuitively, a curve in R2 is generated by a continuous motion of a pencil on a
sheet of paper.

A formal mathematical definition is not entirely straightforward, and the term
“curve” is associated with two closely related notions: kinematic and geometric.

In the kinematic setting, a (parameterized) curve is a function of one real variable.

In the geometric setting, a curve, also called an arc, is a 1-dimensional subset of
space.

Both notions are related: the image of a parameterized curve describes an arc.
Conversely, an arc admits a parametrization.

Since the kinematic setting is easier to introduce, we resort to a kinematic
definition of “curve”.

Note that fairly counter-intuitive curves exist: e.g., space-filling curves like the
Sierpinski curve.
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Sierpinski Curves

Sierpinski curves are a sequence of recursively defined continuous and closed
curves Sn in R2.

Sierpinski curve S1 of order 1:

Their limit curve, the Sierpinski curve, is a space-filling curve: In the limit, for
n → ∞, it fills the unit square completely!

Its length grows exponentially and unboundedly as n grows.

Other space-filling curves exist: E.g., Peano curve, Hilbert curve.
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Sierpinski Curves

Sierpinski curves are a sequence of recursively defined continuous and closed
curves Sn in R2.

Sierpinski curve S2 of order 2:

Their limit curve, the Sierpinski curve, is a space-filling curve: In the limit, for
n → ∞, it fills the unit square completely!

Its length grows exponentially and unboundedly as n grows.

Other space-filling curves exist: E.g., Peano curve, Hilbert curve.
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Sierpinski Curves

Sierpinski curves are a sequence of recursively defined continuous and closed
curves Sn in R2.

Sierpinski curve S3 of order 3:

Their limit curve, the Sierpinski curve, is a space-filling curve: In the limit, for
n → ∞, it fills the unit square completely!

Its length grows exponentially and unboundedly as n grows.

Other space-filling curves exist: E.g., Peano curve, Hilbert curve.
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Sierpinski Curves

Sierpinski curves are a sequence of recursively defined continuous and closed
curves Sn in R2.

Sierpinski curve S4 of order 4:

Their limit curve, the Sierpinski curve, is a space-filling curve: In the limit, for
n → ∞, it fills the unit square completely!

Its length grows exponentially and unboundedly as n grows.

Other space-filling curves exist: E.g., Peano curve, Hilbert curve.
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Curves in Rn

Definition 188 (Curve, Dt.: Kurve)

Let I ⊆ R be an interval of the real line. A continuous (vector-valued) mapping
γ : I → Rn is called a parametrization of γ(I) or a parametric curve.

Well-known examples of parameterized curves include a straight-line segment, a
circular arc, and a helix.
E.g., γ : [0, 1] → R3 with

γ(t) :=

px + t · (qx − px)
py + t · (qy − py )
pz + t · (qz − pz)


maps [0, 1] to a straight-line segment from point p to q.
The interval I is called the domain of γ, and γ(I) is called image (Dt.: Bild, Spur).

Definition 189 (Plane curve, Dt.: ebene Kurve)

For γ : I → Rn, the curve γ(I) is plane if γ(I) ⊆ R2 or if γ(I) lies within a plane. A
non-plane curve is called a skew curve (Dt.: Raumkurve).

An algebraic plane curve is the zero set of a polynomial in two variables.
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Curves in Rn

Definition 190 (Start and end point)

If I is a closed interval [a, b], for some a, b ∈ R, then we call γ(a) the start point and
γ(b) the end point of the curve γ : I → Rn.

Definition 191 (Closed, Dt.: geschlossen)

A parametrization γ : I → Rn is said to be closed (or a loop) if I is a closed interval
[a, b], for some a, b ∈ R, and γ(a) = γ(b).

Definition 192 (Simple, Dt.: einfach)

A parametrization γ : I → Rn is said to be simple if γ(t1) = γ(t2) for t1 ̸= t2 ∈ I implies
{t1, t2} = {a, b} and I = [a, b], for some a, b ∈ R.

Hence, if γ : I → Rn is simple then it is injective on ]a, b[.
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Curves in Rn

Many properties of curves can also be stated independently of a specific
parametrization. E.g., we can regard a curve C to be simple if there exists one
parametrization of C that is simple.

In daily math, the standard meaning of a “curve” is the image of the equivalence
class of all paths under a certain equivalence relation. (Roughly, two paths are
equivalent if they are identical up to re-parametrization.)

Hence, the distinction between a curve and (one of) its parametrizations is often
blurred.

For the sake of simplicity, we will not distinguish between a curve C and one of its
parametrizations γ if the meaning is clear.

Similarly, we will frequently call γ a curve.

For instance, we will frequently speak about a closed curve rather than about a
closed parametrization of a curve.
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Convex Curve in R2

Definition 193 (Supporting line, Dt.: Stützgerade)

In R2, a line ℓ is a supporting line of a curve C if
1 ℓ passes through a point of C,
2 C lies completely in one of the two closed half-planes induced by ℓ.

There may be many supporting lines for a curve at a given point.

If a tangent exists at a given point, then it is the unique supporting line at this
point if it does not separate the curve.

Definition 194 (Convex curve)

In R2, a curve is convex if it has a supporting line through each of its points.

Lemma 195

Every convex curve is a subset of the boundary of its own convex hull.

It is straightforward to extend the notion of convexity from R2 to plane curves.
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Jordan Curve in R2

Definition 196 (Jordan curve, Dt.: Jordankurve)

A set C ⊂ R2 (which is not a single point) is called a Jordan curve if there exists a
simple and closed parametrization γ : I → R2 that parameterizes C.

Theorem 197 (Jordan 1887)

Every Jordan curve C partitions R2 \ C into two disjoint open regions, a (bounded)
“interior” region and an (unbounded) “exterior” region, with C as the (topological)
boundary of both of them.

Although this theorem — the so-called Jordan Curve Theorem (Dt.: Jordanscher
Kurvensatz) — seems obvious, a proof is not entirely trivial.

Theorem 198 (Schönflies 1906)

For every Jordan curve C there exists a homeomorphism from the plane to itself that
maps C to the unit sphere S1.

Roughly, a homeomorphism is a bijective continuous stretching and bending of
one space into another space such that the inverse function also is continuous.
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Tangent Vector for a Curve in Rn

Definition 199 (Tangent vector, Dt.: Tangentenvektor)

Consider a differentiable parametrization γ : I → Rn of a curve C. For t ∈ I, a tangent
vector at γ(t) with respect to γ is given by γ ′(t).

Note that γ ′(t) is a vector-valued function!

It is straightforward to extend the definition of a tangent vector to
parametrizations that are piecewise differentiable.
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Frenet Frame for Curves in R3

Definition 200 (Frenet frame, Dt.: begleitendes Dreibein)

Let γ : I → R3 be a C2 curve that is regular of order two. Then the Frenet frame (aka
moving trihedron) at γ(t) is defined as an orthonormal basis of vectors
T (t),N(t),B(t) as follows:

T (t) := γ′(t)
∥γ′(t)∥ unit tangent;

N(t) := T ′(t)
∥T ′(t)∥ unit (principal) normal;

B(t) := T (t)× N(t) unit binormal.

Lemma 201

Let γ : I → R3 be a C2 curve that is regular of order two, and define T ,N,B as in
Def. 200. We get for all t ∈ I:

N(t) is normal to T (t), and

B(t) is a unit vector.
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Surfaces in R3

Definition 202 (Parametric surface)

Let Ω ⊆ R2. A continuous mapping α : Ω → R3 is called a parametrization of α(Ω),
and α(Ω) is called the (parametric) surface parameterized by α.

Ω

For instance, every point on the surface of Earth can be described by the
geographic coordinates longitude and latitude.

Note that parametrizations of a surface (regarded as a set S ⊂ R3) need not be
unique: two different parametrizations α and β may exist such that
S = α(Ω1) = β(Ω2).
For simplicity, we will not distinguish between a surface and one of its
parametrizations if the meaning is clear.
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unique: two different parametrizations α and β may exist such that
S = α(Ω1) = β(Ω2).
For simplicity, we will not distinguish between a surface and one of its
parametrizations if the meaning is clear.
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Sample Parametric Surface: Frustum of a Paraboloid

α : [0, 1]× [0, 2π] → R3

α(u, v) :=

u cos v
u sin v

2u2


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Sample Parametric Surface: Torus

α : [0, 2π]2 → R3

α(u, v) :=

(2 + cos v) cos u
(2 + cos v) sin u

sin v


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Surfaces in R3

Lemma 203

Consider a differentiable parametrization α : Ω → R3 of a surface S. For (s, t) ∈ Ω,
tangent vectors at α(s, t) with respect to α are given by ∂α

∂s (s, t) and ∂α
∂t (s, t).

Definition 204 (Normal vector, Dt.: Normalvektor)

Consider a differentiable parametrization α : Ω → R3 of a surface S. A normal vector
nα(s, t) at α(s, t) with respect to α is given by

nα(s, t) :=
∂α

∂s
(s, t)× ∂α

∂t
(s, t).

The vector nα(s, t) is indeed a normal vector of the tangential plane at α(s, t).
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4 Geometric Objects
Lines and Planes
Circles and Spheres
Conics
Curves and Surfaces
Polygons and Polyhedra

Polygon
Planar Straight-Line Graph
Polyhedron

Triangulations
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Polygonal Curve

Definition 205 (Polygonal curve, Dt.: Polygonzug)

Consider the sequence of points p0, p1, p2, . . . , pn ∈ Rd , for some d , n ∈ N. The
polygonal curve (or polygonal chain, polygonal profile) specified by these points
(“vertices”) is given by γ : [0, n] → Rd with

γ(t) := pi + (t − i) · (pi+1 − pi) if t ∈ [i, i + 1] for some i ∈ {1, 2, . . . , n − 1}.

Hence, a polygonal curve is a sequence of finitely many vertices connected by
straight-line segments such that each segment (except for the first) starts at the
end of the previous segment.

It is common to extend this definition by allowing n = 0, in which case we get a
single point.

Unless stated otherwise, we will always assume that all vertices of a polygonal
curve are co-planar, i.e., that the polygonal curve is plane. The default plane is
R2.

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 199/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Polygon

Definition 206 (Polygon)

For n ∈ N with n ≥ 3, a polygon with vertices p0, p1, p2, . . . , pn ∈ Rd , aka n-gon, is a
polygonal curve such that p0 = pn.

Definition 207 (Simple polygon, Dt.: einfaches Polygon)

A polygon is simple if it admits a simple parametrization.

If a plane polygon P is simple then, by the Jordan Curve Theorem, it splits the
plane into two regions, one of which is bounded.

In this case it is common to be a bit liberal and use the term “polygon” for either
the (simple) polygonal curve P or for the entire (closed) region bounded by P;
the actual meaning has to be inferred from the context.

If P is regarded to be only the simple polygonal curve then the bounded region
(without P itself) is called the polygon’s interior, and points within that region are
said to be inside of P.
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Connectedness

Definition 208 (Path-connected, Dt.: wegzusammenhängend)

A set S ⊂ Rn is path-connected if for every pair of points p, q ∈ S there exists a curve
that is completely contained in S and that links p and q.
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Connectedness

Definition 208 (Path-connected, Dt.: wegzusammenhängend)

A set S ⊂ Rn is path-connected if for every pair of points p, q ∈ S there exists a curve
that is completely contained in S and that links p and q.

Definition 209 (Simply-connected and multiply-connected)

A path-connected set S ⊂ R2 is simply-connected if every simple closed curve
entirely contained within S encloses only points of S. Otherwise, S is called
multiply-connected (or not simply-connected).

not path-connected , multiply-connectedpath-connected
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Polygonal Region

Definition 210 (Polygonal region)

A polygonal region is a (possibly) multiply-connected but connected subset of R2 that
is bounded by k simple polygons P1,P2, . . . ,Pk , for some k ∈ N, such that

1 no pair of polygons (seen as curves) intersect,
2 the polygons P2, . . . ,Pk lie in the interior of P1,
3 for 2 ≤ i, j ≤ k , the polygon Pi does not lie in the interior of the polygon Pj .

The polygon P1 is called outer polygon and the polygons P2, . . . ,Pk are called islands
or holes.
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Area and Orientation of a Polygon

Theorem 211 (Meister (1769), Gauß (1795))

Consider a simple plane polygon P := (p0, p1, p2, . . . , pn), with p0 = pn, and pick a
point q in the plane. Then the (signed) area of P is given by the sum of the signed
areas of the individual triangles ∆(q, pi−1, pi).

That is, the (signed) area of P equals

n∑
i=1

A∆(q, pi−1, pi) =
1
2
· [(x0y1 − x1y0) + (x1y2 − x2y1) + · · ·+ (xn−1y0 − x0yn−1)],

where pi :=
( xi

yi

)
.

The signed area of P is positive if and only if P is oriented CCW.

Aka: Shoelace formula or surveyor’s formula in
English textbooks.

If multiple polygons bound a polygonal domain
then all contours need to be oriented
consistently!
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UNIVERSITÄT SALZBURG

Area and Orientation of a Polygon

Theorem 211 (Meister (1769), Gauß (1795))

Consider a simple plane polygon P := (p0, p1, p2, . . . , pn), with p0 = pn, and pick a
point q in the plane. Then the (signed) area of P is given by the sum of the signed
areas of the individual triangles ∆(q, pi−1, pi). That is, the (signed) area of P equals

n∑
i=1

A∆(q, pi−1, pi) =
1
2
· [(x0y1 − x1y0) + (x1y2 − x2y1) + · · ·+ (xn−1y0 − x0yn−1)],

where pi :=
( xi

yi

)
. The signed area of P is positive if and only if P is oriented CCW.

Aka: Shoelace formula or surveyor’s formula in
English textbooks.

If multiple polygons bound a polygonal domain
then all contours need to be oriented
consistently!

q

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 203/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Planar Straight-Line Graph

Definition 212 (Planar straight-line graph)

A planar straight-line graph (PSLG) is a finite collection of isolated vertices and
straight-line segments such that

each two segments intersect only in vertices shared by both of them,

no segment passes through a vertex other than one of its two end-points.

Hence, a PSLG is an embedding of a planar graph such that all its edges are
drawn as straight-line segments.

Aka: Plane geometric graph.

Hence, simple polygonal curves and simple polygons are special PSLGs.

Of course, Euler’s Theorem applies to the faces, edges and vertices of a PSLG.
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Sample Polygonal Chains and PSLGs

polygonal curve polygon, not simple

simple polygonplanar straight-line graph
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Polyhedron

Unfortunately, even in R3 there there is no universal agreement over how to
define the analogue to a polygon in R3 . . .

Grünbaum (1994)

“The Original Sin in the theory of polyhedra goes back to Euclid, . . . and many others,
. . . at each stage . . . the writers failed to define what are the polyhedra.”

Definition 213 (Polyhedron, Dt.: Polyeder)

A polyhedron in R3 is either

a (possibly unbounded) solid given by the intersection of finitely many
halfspaces, or

a connected bounded solid whose boundary is formed by a finite collection of
plane polygons (“faces”) such that

1 each vertex is incident to at least three edges and faces,
2 each edge is shared by exactly two faces,
3 each two faces intersect only in vertices and edges shared by both of them,
4 the faces that share a vertex form a cyclic chain of polygons in which every

pair of consecutive polygons shares an edge.
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Polyhedron

Polyhedron versus Polytope

1 For convex solids, some authors (in some fields of mathematics) prefer to use the
term “polytope” for a bounded polyhedron, whereas “polyhedron” is a generic
convex object.

2 From this point of view, a polyhedron is the intersection of a finite number of
halfspaces and is defined by its faces whereas a polytope is the convex hull of a
finite number of points and is defined by its vertices.

The situation gets worse once different fields of mathematics and computer
science are considered!

Note: Plural of “polyhedron” is “polyhedra”.

Recall that Euler’s Formula v − e + f = 2 holds for the vertices, edges and faces
of a polyhedron.
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4 Geometric Objects
Lines and Planes
Circles and Spheres
Conics
Curves and Surfaces
Polygons and Polyhedra
Triangulations
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Triangulation

Definition 214 (Triangulation)

Let S = {P1, P2, . . . , Pk} be a set of k points in R2.

A planar straight-line graph T is
called a triangulation of S if

S forms the vertex set of T ,

all bounded faces of T are triangles,

the union of the bounded triangular faces forms the convex hull of S.
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Constrained Triangulation

Definition 215 (Constrained triangulation)

Let S = {P1, P2, . . . , Pk} be a set of k points in R2,

and E be a set of line segments
that link points of S and that do not intersect pairwise except at common end-points.
A planar straight-line graph T is called a constrained triangulation of S if

S forms the vertex set of T ,

all bounded faces of T are triangles,

the union of the bounded triangular faces forms the convex hull of S,

all segments of E are edges of T .
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5 Basic Concepts of Topology
Metric Space
Topological Properties of Sets
Topological Properties of Surfaces and Solids
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Metric Space and Open Ball

Definition 216 (Metric space, Dt.: metrischer Raum)

A metric space is a set of points X with an associated distance function (aka metric)
d : X × X → R such that the following conditions hold for all x , y , z ∈ X :

1 d(x , y) ≥ 0.
2 Identity of indiscernibles: d(x , y) = 0 ⇒ x = y .
3 Reflexivity: d(x , x) = 0.
4 Symmetry: d(x , y) = d(y , x).
5 Triangle inequality: d(x , z) ≤ d(x , y) + d(y , z).

Easy to check: En, i.e., Rn with the Euclidean distance, is a metric space.
Easy to check: Every normed vector space is a metric space by defining
d(x , y) := ||x − y ||.

Definition 217 (Open ball, Dt.: offene Kugel)

Consider a metric space X with metric d . For x ∈ X and r ∈ R+ we define the
(generalized) open ball (relative to the metric d) with radius r centered at x as

B(x , r) := {y ∈ X : d(x , y) < r}.
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UNIVERSITÄT SALZBURG

Metric Space and Open Ball

Definition 216 (Metric space, Dt.: metrischer Raum)

A metric space is a set of points X with an associated distance function (aka metric)
d : X × X → R such that the following conditions hold for all x , y , z ∈ X :

1 d(x , y) ≥ 0.
2 Identity of indiscernibles: d(x , y) = 0 ⇒ x = y .
3 Reflexivity: d(x , x) = 0.
4 Symmetry: d(x , y) = d(y , x).

5 Triangle inequality: d(x , z) ≤ d(x , y) + d(y , z).

Easy to check: En, i.e., Rn with the Euclidean distance, is a metric space.
Easy to check: Every normed vector space is a metric space by defining
d(x , y) := ||x − y ||.

Definition 217 (Open ball, Dt.: offene Kugel)

Consider a metric space X with metric d . For x ∈ X and r ∈ R+ we define the
(generalized) open ball (relative to the metric d) with radius r centered at x as

B(x , r) := {y ∈ X : d(x , y) < r}.

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 213/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Easy to check: En, i.e., Rn with the Euclidean distance, is a metric space.
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5 Basic Concepts of Topology
Metric Space
Topological Properties of Sets
Topological Properties of Surfaces and Solids
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Interior, Exterior and Closure

Consider a space X that has a metric, and a set S ⊆ X . (E.g., Rn and the
Euclidean metric, and any subset S of Rn.)

Definition 218 (Interior point, Dt.: innerer Punkt)

A point x ∈ X is an interior point of S if there exists a radius r > 0 such that the open
ball with center x and radius r is completely contained in S, i.e., B(x , r) ⊆ S.

Definition 219 (Interior, Dt.: Inneres)

The set of all interior points of S is the interior of S, often denoted by int(S) or S◦.

Lemma 220

We have int(S) ⊆ S for all S ⊆ X .

Lemma 221

For all x ∈ X , the interior of an open ball B(x , r) ⊆ X is the open ball itself.
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Interior, Exterior and Closure

Definition 222 (Exterior point, Dt.: äußerer Punkt)

A point y ∈ X is an exterior point of S if there exists a radius r > 0 such that the open
ball with center y and radius r is completely contained in the complement of S (with
respect to X ), i.e., B(y , r) ⊆ (X \ S).

Definition 223 (Exterior, Dt.: Äußeres)

The set of all exterior points of S is the exterior of S, denoted by ext(S).

Definition 224 (Boundary, Dt.: Rand)

All points of X that are neither in the interior nor in the exterior of S form the
boundary, ∂S, of S.
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Interior, Exterior and Closure

In the figure, relative to the standard Euclidean distance in R2, A is an interior
point, B is on the boundary, and C is an exterior point.

A

B

C

Lemma 225

For all S ⊆ X , the union of the interior, the exterior and the boundary of S constitutes
the whole space X .
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Interior, Exterior and Closure

Definition 226 (Closure, Dt.: Abschluss)

The closure S of a set S is the union of the interior and the boundary of S.

Lemma 227

The closure S of a set S is given by all points of X that are not in the exterior of S.

Definition 228 (Open, Dt.: offen)

A set S ⊆ X is called open if int(S) = S.

Definition 229 (Closed, Dt.: abgeschlossen)

A set S ⊆ X is called closed if the complement of S (relative to X ) is open.

Note that there exist spaces X and subsets S ⊂ X such that the interior or the
exterior or the boundary of S are empty.

Definition 230 (Compact)

A subset of a Euclidean space is called compact if it is bounded and closed.

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 218/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Interior, Exterior and Closure

Consider a ball in E3 with radius r centered at the origin:

{(x , y , z) ∈ R3 : x2 + y2 + z2 ≤ r 2}.

The interior of the ball is

{(x , y , z) ∈ R3 : x2 + y2 + z2 < r 2}.

The closure of the ball is

{(x , y , z) ∈ R3 : x2 + y2 + z2 ≤ r 2}.

The exterior of the ball is

{(x , y , z) ∈ R3 : x2 + y2 + z2 > r 2}.

The boundary of the ball is

{(x , y , z) ∈ R3 : x2 + y2 + z2 = r 2}.
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5 Basic Concepts of Topology
Metric Space
Topological Properties of Sets
Topological Properties of Surfaces and Solids
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Manifolds

Informally speaking, 2-manifolds are surfaces in 3D that are locally
two-dimensional, i.e., that locally (at each point of the manifold) resemble a “bent
copy of a rubber plane”.

Definition 231 (Manifold, Dt.: Mannigfaltigkeit)

A set S ⊂ R3 is a 2-manifold (or simply a “manifold”) if for every point x ∈ S there
exists an open neighborhood of x in S which is homeomorphic to an open disk.

Roughly, a homeomorphism is a bijective function between two spaces that is
continuous and that also has a continuous inverse. It establishes a “topological
equivalence” between the spaces and, by a continuous stretching and bending,
between their objects.

� �� �
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Genus

The topologically simplest connected closed 2-manifold in 3D is a sphere.

By adding a “handle” to the sphere we get a torus.

It is well-known that every manifold surface can be obtained by adding a certain
number of handles to the sphere.

Definition 232 (Genus, Dt.: Geschlecht)

A connected orientable manifold surface is said to have genus k if it can be cut along
k non-intersecting closed simple curves without causing the resultant manifold to
become disconnected.

Equivalently, a manifold of genus k can be obtained by adding k handles to the
sphere.

Note that a general surface can also be obtained by “punching holes” through a
sphere.

However, it is not difficult to see that, topologically, adding a handle is equivalent
to opening a hole on a surface.
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Orientable Surface

Definition 233 (Orientable, Dt.: orientierbar)

A 2-manifold is orientable if a unit normal vector can be defined consistently for every
point on the surface such that it varies continuously over the surface.

Gluing the ends of a strip of paper together after a twist yields a one-sided
surface called a Möbius strip (Dt.: Möbiusband), which is not orientable.

See https://www.youtube.com/watch?v=AmgkSdhK4K8 for a cool
application of topology and, in particular, of Möbius strips.
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6 Transformations
Linear Transformations
Classification of Transformations
Coordinate Transformations in R2

Coordinate Transformations in R3

Transformation of Coordinate Systems
Applications of Coordinate (System) Transformations
Rotations Revisited
Projections
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Linear Transformations

Definition 234 (Linear transformation, Dt.: lineare Abbildung)

Let V ,W be vector spaces over R.

A transformation g : V → W is called a linear
transformation if

1 g(v1 + v2) = g(v1) + g(v2) ∀v1, v2 ∈ V ,
2 g(λv) = λg(v) ∀v ∈ V , ∀λ ∈ R.

E.g., V := Rn and W := Rm for some m, n ∈ N.

Lemma 235

Every linear transformation maps

a line to a line (or a point),

the coordinate origin of V to the coordinate origin of W .

Sketch of Proof : A line {p + λv : λ ∈ R} is mapped as follows:

g({p + λv : λ ∈ R}) = {g(p + λv) : λ ∈ R} = {g(p) + λg(v) : λ ∈ R}
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Linear Transformations

Hence, a transformation from V to W
is linear if and only if

1 every regular grid in V gets
mapped to a regular grid in W ,

2 the coordinate origin of V lands
on the coordinate origin of W .

linear
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UNIVERSITÄT SALZBURG

Linear Transformations

Hence, a transformation from V to W
is linear if and only if

1 every regular grid in V gets
mapped to a regular grid in W ,

2 the coordinate origin of V lands
on the coordinate origin of W .

linear

not linear

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 227/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Linear Transformations

Theorem 236

Let e1, . . . , en be a basis of V , and e′
1, . . . , e

′
m be a basis of W . A linear transformation

g : V → W is uniquely determined by the images of the basis vectors ej relative to e′
i .

It has a corresponding m × n transformation matrix whose n columns are given by the
images of the basis vectors e1, . . . , en.

Sketch of Proof : For v :=
∑n

j=1 vjej and w :=
∑m

i=1 wie′
i , with w = g(v), we get

w = g(v) = g(
n∑

j=1

vjej) =
n∑

j=1

vjg(ej) =
n∑

j=1

vj(
m∑

i=1

aije′
i ) =

m∑
i=1

(
n∑

j=1

aijvj)e′
i

= Av ,

where A = [aij ]
m,n
i=1,j=1 and aij equals the i-th coordinate of g(ej).

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 228/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Linear Transformations

Suppose that we know that a linear transformation g maps e1 of R2 to the vector(
2
0

)
of R2, and e2 to the vector

(
1
1

)
.

The transformation g maps the point
(

1
2

)
to the point

(
4
2

)
:

g
((

1
2

))
= g

(
1 ·
(

1
0

)
+ 2 ·

(
0
1

))
= 1 · g

((
1
0

))
+ 2 · g

((
0
1

))
= 1 ·

(
2
0

)
+ 2 ·

(
1
1

)
=

(
4
2

)

=

(
2 1
0 1

)
·
(

1
2

)

Thus, g has the following matrix:(
2 1
0 1

)

x

y y

x
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UNIVERSITÄT SALZBURG

Linear Transformations

Suppose that we know that a linear transformation g maps e1 of R2 to the vector(
2
0

)
of R2, and e2 to the vector

(
1
1

)
.

The transformation g maps the point
(

1
2

)
to the point

(
4
2

)
:

g
((

1
2

))
= g

(
1 ·
(

1
0

)
+ 2 ·

(
0
1

))
= 1 · g

((
1
0

))
+ 2 · g

((
0
1

))
= 1 ·

(
2
0

)
+ 2 ·

(
1
1

)
=

(
4
2

)
=

(
2 1
0 1

)
·
(

1
2

)

Thus, g has the following matrix:(
2 1
0 1

)

g

x

y y

x

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 229/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Linear Transformations

Sample linear transformations in R2: rotation about origin, stretching, reflection
(about coordinate axis or origin), shear transformation.

Note: Translation is not linear!

Lemma 237

If a linear transformation has an inverse transformation then the inverse
transformation is also linear.

Lemma 238

If a linear transformation g has an inverse transformation then the matrix which
corresponds to g is invertible.

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 230/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Composition of Linear Transformations

Definition 239 (Composition, Dt.: Zusammensetzung)

Consider two linear transformations g : U → V and h : V → W . The composition h ◦ g
is a transformation from U to W such that every u ∈ U is mapped to h(g(u)) ∈ W .

Warning

There is absolutely no consensus in the literature on whether (h ◦ g)(x) shall mean
h(g(x)) or g(h(x))!

Lemma 240

The composition of two linear transformations is a linear transformation.

Hence, if A is the matrix of g and B is the matrix of h then B · A is the matrix of
h ◦ g.
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Combining Matrix Transformations

Suppose that p′ is obtained by applying the matrix transformation T1 to p, and p′′

is obtained from p′ via T2, and so on till p(n):(
x ′

y ′

)
= T1 ·

(
x
y

) (
x ′′

y ′′

)
= T2 ·

(
x ′

y ′

)
. . .

(
x (n)

y (n)

)
= Tn ·

(
x (n−1)

y (n−1)

)
.

Then the dependence of p(n) on p can be expressed as(
x (n)

y (n)

)
= Tn ·

(
Tn−1 ·

(
...

(
T2 ·

(
T1 ·

(
x
y

)))))
=

= (Tn · Tn−1 · ... · T2 · T1) ·
(

x
y

)
=

= T ·
(

x
y

)
,

where T := Tn · Tn−1 · ... · T2 · T1.

Caveats

Note the order of the matrix multiplications!

Recall that matrix multiplication is associative but not commutative!
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Order of Transformations Matters

T : Translate by (5, 0); R: Rotate about origin by π/4.

x

y

T

RT
R

x

y

TR
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Linear Transformations and Linear Equations

So far we were concerned with determining g(x) for a linear transformation g and
a vector x , i.e., the image vector of x under the linear transformation g.

If A is the matrix that represents g then, via matrix multiplication,

g(x) = Ax .

However, we can also revert the question and specify the image vector b, and
seek the vector x which gets mapped to b by g.

Then the answer is provided by solving the following system of linear equations
for the unknown vector x :

Ax = b.
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Geometric Interpretation of the Determinant of a Transformation Matrix

Consider the linear transformation g with transformation matrix

T :=

(
2 1
0 1

)
.

Remember that its columns represent the images of the unit vectors.

Hence, the unit square gets mapped by g to a parallelogram of twice the area.

Now note that det(T) = 2.
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T :=

(
2 1
0 −1

)
.

Remember that its columns represent the images of the unit vectors.

Hence, the unit square gets mapped by g to a parallelogram of twice the area.

Now note that det(T) = −2, and that g changed the handedness of the unit
vectors.
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Geometric Interpretation of the Determinant of a Transformation Matrix

Theorem 241

The absolute value of the determinant of a (square) transformation matrix A gives the
scale factor for the area/volume of the image of the unit (hyper-)cube. If det(A) is
negative then the handedness of the unit vectors has changed, i.e., the orientation of
space has been inverted.

Sketch of Proof : Theorem 119 settles this claim for 2 × 2 matrices.

If the matrix A is
a diagonal matrix then the i-th side of the unit (hyper-)cube gets scaled by the factor
aii . Hence, its volume changes by the factor

∏n
i=1 aii = det(A).

If A is an upper-triangular matrix then we get a shear transformation, but its
determinant still equals

∏n
i=1 aii . And the shear does not change the volume!
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UNIVERSITÄT SALZBURG

Geometric Interpretation of the Determinant of a Transformation Matrix

Theorem 241

The absolute value of the determinant of a (square) transformation matrix A gives the
scale factor for the area/volume of the image of the unit (hyper-)cube. If det(A) is
negative then the handedness of the unit vectors has changed, i.e., the orientation of
space has been inverted.

Sketch of Proof : Theorem 119 settles this claim for 2 × 2 matrices. If the matrix A is
a diagonal matrix then the i-th side of the unit (hyper-)cube gets scaled by the factor
aii . Hence, its volume changes by the factor

∏n
i=1 aii = det(A).

If A is an upper-triangular matrix then we get a shear transformation, but its
determinant still equals

∏n
i=1 aii . And the shear does not change the volume!

(
3 0
0 1/2

)y

x

y

x

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 237/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Geometric Interpretation of the Determinant of a Transformation Matrix

Recall Theorem 112: A square matrix A is invertible if and only if det(A) ̸= 0.

Now regard the square matrix A as the n × n matrix of a linear transformation g
(of Rn). If A is invertible then, for every vector u ∈ Rn,

A−1w = u for w := Au.

Of course, mapping the image g(u) =: w of u back to u can work if and only if g
maps Rn to all of Rn rather than to some subspace of Rn, like a line or
(hyper-)plane. (Otherwise, we would have to restore Rn from, say, a line!)

This bijection from Rn to all of Rn happens precisely if g maps no basis vector of
Rn to a linear combination of images of other basis vectors.

And precisely in this case the unit (hyper-)cube transformed by g has a non-zero
volume.

Now recall that the volume of the transformed (hyper-)cube is given by det(A).

We understand that A is invertible if and only if det(A) ̸= 0.

If det(A) = 0 then a solution to the linear equation Au = b exists if and only if b
lies within the subspace g(Rn) of Rn.
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Geometric Interpretation of the Rank of a Transformation Matrix

Definition 242 (Image, Dt.: Bild)

The image (or column space) of an m × n matrix A (of a linear transformation g) is the
set of all vectors Au for u ∈ Rn, i.e., it equals g(Rn) ⊂ Rm.

A solution to the linear equation Au = b exists if and only if b lies within the
image of A.

Recall Definition 94: The rank of an m × n matrix A is the number of linearly
independent columns of A.

1 If g squashes Rn to a line then the rank of A equals 1.
2 If g squashes Rn to a plane then the rank of A equals 2.
3 . . .

Hence, the rank of A equals the dimension of the image of A.

Note that the image g(Rn) forms a subspace of Rm.

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 239/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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UNIVERSITÄT SALZBURG

Geometric Interpretation of the Rank of a Transformation Matrix

Definition 242 (Image, Dt.: Bild)

The image (or column space) of an m × n matrix A (of a linear transformation g) is the
set of all vectors Au for u ∈ Rn, i.e., it equals g(Rn) ⊂ Rm.

A solution to the linear equation Au = b exists if and only if b lies within the
image of A.

Recall Definition 94: The rank of an m × n matrix A is the number of linearly
independent columns of A.

1 If g squashes Rn to a line then the rank of A equals 1.
2 If g squashes Rn to a plane then the rank of A equals 2.
3 . . .

Hence, the rank of A equals the dimension of the image of A.

Note that the image g(Rn) forms a subspace of Rm.

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 239/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Rank, Image and Kernel of a Transformation Matrix

Definition 243 (Kernel, Dt.: Kern)

The kernel (or null space) of an m × n matrix A (of a linear transformation g) is the set
of all vectors u ∈ Rn which get mapped by g to the zero vector of Rm.

Hence, if u0 ∈ Rn is a solution of Au = b then u0 + w is also a solution of Au = b
for all w in the kernel of A.

The kernel of an m × n matrix forms a subspace of Rn.

Definition 244 (Corank, Dt.: Defekt)

The corank (nullity) of an m × n matrix A, denoted by corank(A), is the dimension of
the kernel of A.

Theorem 245 (Rank-nullity theorem, Dt.: Rangsatz, Dimensionssatz)

Consider an m × n matrix A. Then

rank(A) + corank(A) = n.
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The kernel of an m × n matrix forms a subspace of Rn.

Definition 244 (Corank, Dt.: Defekt)

The corank (nullity) of an m × n matrix A, denoted by corank(A), is the dimension of
the kernel of A.

Theorem 245 (Rank-nullity theorem, Dt.: Rangsatz, Dimensionssatz)

Consider an m × n matrix A. Then

rank(A) + corank(A) = n.
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Geometric Interpretation of the Dot Product

Recall that ⟨a,b⟩ := ax · bx + ay · by + . . .+ an · bn for a, b ∈ Rn.

In Lemma 138 we claimed that the length of the orthogonal projection of a vector
b onto a non-zero vector a is given by

⟨a,b⟩
∥a∥ .

We consider n := 2. Let a ∈ R2 be arbitrary but fixed, with ∥a∥ = 1.

Then we can regard ⟨a,b⟩ as a linear transformation by a 1 × 2 matrix A that
maps every b ∈ R2 to a value in R:

⟨a,b⟩ = ax · bx + ay · by =
(
ax ay

)
·
(

bx

by

)
= A · b with A :=

(
ax ay

)
We know that a linear transformation is fully specified by the images of the unit
vectors.

So, how do the unit vectors e1, e2 of R2 get mapped by this transformation? And
what is the geometric interpretation of this transformation? That is, what is the
geometric interpretation of the dot product?
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Geometric Interpretation of the Dot Product

Elementary math shows ⟨a,e1⟩ = ax and ⟨a,λ · e1⟩ = λ · ax for λ ∈ R, where e1 is
the unit vector of the x-axis. Similarly, ⟨a,e2⟩ = ay and ⟨a,λ · e2⟩ = λ · ay .

The length s of the orthogonal projection of e1 onto a equals the x-coordinate of
a:

Since ∥a∥ = ∥e1∥ = 1, due to symmetry, s = ax !

By the same argument, the length of the orthogonal projection of the unit vector
e2 (of the y -axis) onto a equals the y -coordinate ay of a.

It remains to observe that the length d of the projection of b onto a equals the
sum of the lengths of the projections of bx · e1 and by · e2 onto a.

Hence, for ∥a∥ = 1,

d = ⟨a,bx · e1⟩+ ⟨a,by · e2⟩ = bx · ax + by · ay = ⟨a,b⟩.
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UNIVERSITÄT SALZBURG

Geometric Interpretation of the Dot Product

Elementary math shows ⟨a,e1⟩ = ax and ⟨a,λ · e1⟩ = λ · ax for λ ∈ R, where e1 is
the unit vector of the x-axis. Similarly, ⟨a,e2⟩ = ay and ⟨a,λ · e2⟩ = λ · ay .

The length s of the orthogonal projection of e1 onto a equals the x-coordinate of
a: Since ∥a∥ = ∥e1∥ = 1, due to symmetry, s = ax !

By the same argument, the length of the orthogonal projection of the unit vector
e2 (of the y -axis) onto a equals the y -coordinate ay of a.

It remains to observe that the length d of the projection of b onto a equals the
sum of the lengths of the projections of bx · e1 and by · e2 onto a.

Hence, for ∥a∥ = 1,

d = ⟨a,bx · e1⟩+ ⟨a,by · e2⟩ = bx · ax + by · ay = ⟨a,b⟩.

a

e1

e2

x

y

︷ ︸︸
︷

s

︸ ︷︷ ︸
ax

α
α︷

︸︸
︷

ay

a

x

y

b

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 242/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Duality: Vector and Linear Transformation

Note the duality between vectors in Rn and linear transformations from Rn to R by
1 × n matrices!

Every linear transformation g : Rn → R that maps a vector of Rn to R— i.e., to a
scalar value — has a corresponding dual vector out of Rn, and vice versa:

Let A be the matrix of the linear transformation g.
Then A ∈ M1×n, i.e.,

A = [a11a12 . . . a1n].

Hence, we may consider g to be dual to

a :=


a11

a12
...

a1n

 ∈ Rn,

since g(u) = Au = ⟨a,u⟩.
On the other hand, every vector of Rn induces a dot product and, thus,
corresponds to a linear transformation from Rn to R.
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Geometric Interpretation of the Cross Product

Consider ∥a × b∥ for two vectors a, b ∈ R3. We will
define a linear transformation g : R3 → R that involves a and b,
consider its dual vector c, and
explain why c equals a × b, thus getting a geometric insight into ∥a × b∥.

We define the transformation g : R3 → R as

g(u) := det

ux ax bx

uy ay by

uz az bz

 .

Remember Lemma 124: This determinant equals the (signed) volume of the
parallelepiped spanned by the three vectors u, a, b ∈ R3.

Note that g is a linear transformation from R3 to R for every pair of fixed vectors
a, b ∈ R3.

By duality, there exists a vector c such that

det

ux ax bx

uy ay by

uz az bz

 = g(u) =
(
cx cy cz

)
·

ux

uy

uz

 = ⟨c,u⟩.
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consider its dual vector c, and
explain why c equals a × b, thus getting a geometric insight into ∥a × b∥.

We define the transformation g : R3 → R as

g(u) := det

ux ax bx

uy ay by

uz az bz

 .

Remember Lemma 124: This determinant equals the (signed) volume of the
parallelepiped spanned by the three vectors u, a, b ∈ R3.

Note that g is a linear transformation from R3 to R for every pair of fixed vectors
a, b ∈ R3.

By duality, there exists a vector c such that

det

ux ax bx

uy ay by

uz az bz

 = g(u) =
(
cx cy cz

)
·

ux

uy

uz

 = ⟨c,u⟩.
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Geometric Interpretation of the Cross Product

Hence, for all u ∈ R3,

cx ·ux+cy ·uy+cz ·uz = ux ·(ay ·bz−az ·by )+uy ·(az ·bx−ax ·bz)+uz ·(ax ·by−ay ·bx),

which implies

c =

cx

cy

cz

 =

ay · bz − az · by

az · bx − ax · bz

ax · by − ay · bx

 Def. 142
= a × b.

Elementary geometry tells us that the volume V of the parallelepiped spanned by
a, b and a third vector u can be obtained in the following way:

Multiply the area A
of the parallelogram spanned by a and b with the height of the parallelepiped,
i.e., with the length of that component of u that is perpendicular onto a, b. Hence,

V = A · ⟨a × b,u⟩
∥a × b∥ =

A
∥a × b∥ · ⟨a × b,u⟩.

On the other hand, we derived g(u) = V = ⟨c,u⟩ = ⟨a × b,u⟩.
We conclude that

A = ∥a × b∥,

i.e., that the length of a × b equals the area of the parallelogram spanned by a, b.
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6 Transformations
Linear Transformations
Classification of Transformations
Coordinate Transformations in R2

Coordinate Transformations in R3

Transformation of Coordinate Systems
Applications of Coordinate (System) Transformations
Rotations Revisited
Projections
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Classification of Transformations

Consider a mapping g : Rn → Rn and a distance metric d : Rn × Rn → R.

E.g., take n := 2 and the standard Euclidean distance

d(p, q) :=
√

(px − qx)2 + (py − qy )2.

Definition 246 (Isometry, Dt.: Isometrie)

A mapping g : Rn → Rn is called an isometry if it maps pairs of points to points the
same distance apart. That is, if

∀(p, q ∈ Rn) d(g(p), g(q)) = d(p, q).

Another widely-used term for characterizing an isometry is distance-preserving
transformation.

In planar Euclidean geometry such a mapping is also called a congruence, and
two objects A and B are said to be congruent if there exists an isometry that
maps A to B.

E.g., two triangles which are congruent have corresponding sides of equal length.
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Classification of Transformations

Definition 247 (Rigid motion, Dt.: Bewegung)

An isometry g is called a rigid motion if it preserves handedness.

Two objects A and B are said to be equal if there exists a rigid motion that maps
A to B.

Caveat

Several authors regard “rigid motion” as a synonym for “isometry”.

But there is a difference also when seen from a practical point of view: A rigid
motion preserves the shape of an object, while an isometry may change the
shape: Left glove versus right glove!
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Classification of Transformations

Definition 248 (Orthogonal transformation, Dt.: orthogonale Transformation)

A linear mapping that preserves distance is called orthogonal transformation. (And
the class of all such transformations on Rn forms the orthogonal group of Rn.)

Hence, an orthogonal transformation is a special isometry.

Lemma 249

The group of all isometries on Rn is given by composites of a translation and an
orthogonal transformation.

Lemma 250

The group of all rigid motions on Rn is given by composites of a translation and a
rotation.
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Classification of Transformations

Lemma 251

With respect to an orthonormal basis of Rn, an orthogonal transformation has a
corresponding orthogonal matrix, i.e., a matrix whose columns and rows are
orthonormal vectors.

Corollary 252

With respect to an orthonormal basis of Rn, an orthogonal transformation is invertible:
If its matrix is A then the inverse transformation has matrix At . Furthermore,
detA = ±1.

Lemma 253

A 2 × 2 orthogonal matrix A is the matrix of a rotation about the origin if and only if
detA = 1. If detA = −1 then it is the matrix of a reflection.

Lemma 254

A 3 × 3 orthogonal matrix A is the matrix of a rotation about a straight line through the
origin if and only if detA = 1.
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Classification of Transformations

Definition 255 (Similarity mapping, Dt.: Ähnlichkeitsabbildung)

A mapping g is called a similarity mapping if it preserves distance ratios and angles.

E.g., two triangles which are similar have identical angles, and their sides are "in
proportion".

Lemma 256

A distance-preserving transformation is a similarity mapping, i.e., it preserves angles.

Definition 257 (Conformal, Dt.: winkeltreu)

A mapping is called conformal if it preserves angles between directed curves.
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Classification of Transformations

Definition 258 (Affine transformation, Dt.: affine Abbildung)

A mapping g is called affine transformation (or affinity ) if it is a composite of a
translation and a linear transformation.

Affine transformations need not preserve distance, angle, area or volume.

Lemma 259

If g is an affine transformation and p, q, r are collinear, then g(p), g(q), g(r) are
collinear. That is, affine transformations preserve lines.

Lemma 260

An affine transformation preserves ratios of lengths of intervals on any line.

Corollary 261

An affine transformation maps parallel lines to parallel lines.
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UNIVERSITÄT SALZBURG

Classification of Transformations

Definition 258 (Affine transformation, Dt.: affine Abbildung)

A mapping g is called affine transformation (or affinity ) if it is a composite of a
translation and a linear transformation.

Affine transformations need not preserve distance, angle, area or volume.

Lemma 259

If g is an affine transformation and p, q, r are collinear, then g(p), g(q), g(r) are
collinear. That is, affine transformations preserve lines.

Lemma 260

An affine transformation preserves ratios of lengths of intervals on any line.

Corollary 261

An affine transformation maps parallel lines to parallel lines.
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Group Hierarchy of Transformations

orthogonal

isometry

similarity

affine

projective
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6 Transformations
Linear Transformations
Classification of Transformations
Coordinate Transformations in R2

Rotation in R2

Stretching in R2

Shear Transformation in R2

Reflection in R2

Translation in R2

Homogeneous Coordinates
Transformation Matrices Based on Homogeneous Coordinates

Coordinate Transformations in R3

Transformation of Coordinate Systems
Applications of Coordinate (System) Transformations
Rotations Revisited
Projections
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Rotation in R2

Rotation of point p by θ about the origin yields point p′.

Polar coordinates: px := r cosφ, py := r sinφ.

p′
x = r cos(θ + φ)

= r cos θ cosφ− r sin θ sinφ
= px cos θ − py sin θ.

p′
y = r sin(θ + φ)

= px sin θ + py cos θ.

p

p′

x

y
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Rotation as a Matrix Transformation

We have(
p′

x

p′
y

)
=

(
px cos θ − py sin θ
px sin θ + py cos θ

)
for a rotation about the origin by the angle θ.

This relation can also be expressed by means of a rotation matrix Rot(θ):(
p′

x

p′
y

)
=

(
cos θ − sin θ
sin θ cos θ

)
︸ ︷︷ ︸

=:Rot(θ)

·
(

px

py

)
;

that is

Rot(θ) :=
(
cos θ − sin θ
sin θ cos θ

)
.

Lemma 262

Rotation matrices are orthogonal: Rot(θ)−1 = Rot(θ)t .
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General Rotation in R2

Rotation of point p by θ about point a, with a :=

(
ax

ay

)
, yields point p′.

ϕ
θ

a
p

p′

x

y
r

r

px = ax + r cosφ thus, r cosφ = px − ax

py = ay + r sinφ thus, r sinφ = py − ay

p′
x = ax + r cos(θ + φ)

= ax + r cos θ cosφ− r sin θ sinφ

= ax + (px − ax) cos θ − (py − ay ) sin θ

p′
y = ay + (px − ax) sin θ + (py − ay ) cos θ
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Stretching in R2

(
p′

x

p′
y

)
=

(
λ1 0
0 λ2

)
︸ ︷︷ ︸
=:S(λ1,λ2)

·
(

px

py

)

If λ1 = λ2: (uniform) scaling;

If λ1 ̸= λ2: non-uniform scaling or stretching.

λ1 := 2

λ2 := 1

λ1 := 2

λ2 := 2
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Shear Transformation in R2

Suppose that we want to map a point p to a point p′ such that

p′
x = px + a · py and p′

y = py .

Hence, a horizontal segment at height y is shifted in the x-direction by a · y .

The corresponding transformation matrix is given by

SHx(a) =
(

1 a
0 1

)
.

x

y y

x

SHx(0.5)
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Reflection in R2

Reflection about x-axis:(
p′

x

p′
y

)
=

(
1 0
0 −1

)
·
(

px

py

)

Reflection about y -axis:(
p′

x

p′
y

)
=

(
−1 0
0 1

)
·
(

px

py

)
Reflection about origin:(

p′
x

p′
y

)
=

(
−1 0
0 −1

)
·
(

px

py

)
That is, a reflection about the origin is identical to a rotation about the origin by π.
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Translation in R2

Translation: Move a point p along a vector v from its original location p to its new
location p′.

p :=

(
px

py

)
v :=

(
vx

vy

)
p′ :=

(
p′

x

p′
y

)

p′
x = px + vx , p′

y = py + vy , p′ = p + v

(
p′

x

p′
y

)
=

(
px

py

)
+

(
vx

vy

) p

p′

x

y

vx

vy
v
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Translation of a Rigid Body

Translate every point of ∆ by v :

∆′ = {p + v : p ∈ ∆}.

For polygons and polytopes it suffices to translate the vertices.

x

y

∆

∆′

v
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Translation as a Matrix Transformation

Question

What is the matrix of a translation?

Answer

No n × n matrix is the matrix of a (non-trivial) translation in Rn!

Why? Since the fixed point set of every matrix transformation includes the origin,
but the origin is not invariant under a translation.

We will resort to homogeneous coordinates, which is a concept borrowed from
projective geometry.
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Homogeneous Coordinates: Motivation

A rational number x
y is an equivalence class of appropriate pairs (x ′, y ′).

1
3

x

y

(1,0) (3,0)

(1,3)

(4,2)(2,1)

2

2 ≃ (2, 1), (4, 2), . . .

1/3 ≃ (1/3, 1), (1, 3), (2, 6), . . .

Not a unique representation: All points on a particular line through the origin
represent the same rational number.

Canonical representative at the intersection of that line with the line y = 1.

Infinity does not need to be treated separately:
∞ ≃ (1, 0), (2, 0), . . .
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Homogeneous Coordinates in R2

R2

is embedded into R3 by identifying it with the plane z = 1.

We identify the point
(

x
y

)
∈ R2 with

x
y
1

 ∈ R3

or with

w · x
w · y

w

 ∈ R3 for w ̸= 0.

Same for other points.

All points on a particular
line through the origin in R3

represent the same point in
R2.x

y
0

 can be regarded as

the point at infinity on the

line through

x
y
1

.

x

y
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We identify the point
(

x
y

)
∈ R2 with

x
y
1

 ∈ R3 or with

w · x
w · y

w

 ∈ R3 for w ̸= 0.

Same for other points.

All points on a particular
line through the origin in R3

represent the same point in
R2.x

y
0

 can be regarded as

the point at infinity on the

line through

x
y
1

.

0

y

x

x

y

z
(z=1)-plane
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UNIVERSITÄT SALZBURG

Homogeneous Coordinates in R2

Homogeneous coordinates allow us to express translation, rotation and scaling in
R2 by means of one 3 × 3 transformation matrix.

Homogeneous coordinates support scaling in a natural way, and build the basis
of projective geometry.

Note that the plane z = 1 of R3 is invariant under matrix transformations of the
forma11 a12 a13

a21 a22 a23

0 0 1

 .
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Homogeneous Coordinates in R2

Definition 263 (Homogeneous coordinates, Dt.: homogene Koordinaten)

Homogeneous coordinates of
(

x
y

)
∈ R2 are given by

w · x
w · y

w

 ∈ R3, for w ̸= 0, while

the inhomogeneous coordinates of

x
y
w

 ∈ R3 are given by
(

x/w
y/w

)
∈ R2.

Thus, for w ̸= 0,

u
v
w

 ∈ R3 are homogeneous coordinates of
(

x
y

)
∈ R2, and

(
x
y

)
∈ R2 are the inhomogeneous coordinates of

u
v
w

 ∈ R3

⇐⇒ x =
u
w

and y =
v
w
.

We will find it convenient to assume that w = 1.
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Transformation Matrices Based on Homogeneous Coordinates for R2

Translation: x ′

y ′

1

 =

1 0 vx

0 1 vy

0 0 1


︸ ︷︷ ︸
=:Trans(vx ,vy )

·

x
y
1



We get Trans(vx , vy )
−1 = Trans(−vx ,−vy ).

Stretching: x ′

y ′

1

 =

λ1 0 0
0 λ2 0
0 0 1


︸ ︷︷ ︸

=:S(λ1,λ2)

·

x
y
1



We get S(λ1, λ2)
−1 = S( 1

λ1
, 1
λ2
).
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Transformation Matrices Based on Homogeneous Coordinates for R2

Rotation: x ′

y ′

1

 . =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1


︸ ︷︷ ︸

=:Rot(θ)

·

x
y
1



We get Rot(θ)−1 = Rot(−θ) = Rot(θ)t .

Rotation involves either trigonometric functions or square roots.

Power series may be used to approximate the terms of a rotation matrix for small
values of θ.
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6 Transformations
Linear Transformations
Classification of Transformations
Coordinate Transformations in R2

Coordinate Transformations in R3

Rotation in R3

Transformation Matrices for R3

Linear Transformations and Eigenvectors
Transformation of Coordinate Systems
Applications of Coordinate (System) Transformations
Rotations Revisited
Projections
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Homogeneous Coordinates and Transformations in R3

Homogeneous coordinates in R3:

(x , y , z,w) ≃ (
x
w
,

y
w
,

z
w
).

For a right-hand coordinate system the positive (CCW) rotation about a
coordinate axis is defined as follows:

Look along the axis towards the origin from +∞;
Counter-clockwise rotation about axis by angle 90◦ transforms one axis to
another, obeying the cyclic order x → y → z → x .

x

y

z
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Rotation about z-Axis

A rotation about the z-axis can be regarded as a rotation in R2 about the origin
that is extended to R3. That is,

x ′ = x cos θ − y sin θ,

y ′ = x sin θ + y cos θ,

z′ = z.

x

y

z
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Rotation about x-Axis

Rotation about the x-axis: Substitute x → y , y → z, z → x in the equations for
the rotation about z.

y ′ = y cos θ − z sin θ,

z′ = y sin θ + z cos θ,

x ′ = x .

x

y

z
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Rotation about x-Axis

Rotation about the x-axis: Substitute x → y , y → z, z → x in the equations for
the rotation about z.

y ′ = y cos θ − z sin θ,

z′ = y sin θ + z cos θ,

x ′ = x .

x

y

z

y

z

x

x y z x
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Rotation about y -Axis

Similarly for a rotation about the y -axis: Substitute x → y , y → z, z → x in the
previous equations.

z′ = z cos θ − x sin θ,

x ′ = z sin θ + x cos θ,

y ′ = y .

z

x

y

x

y

z

y

z

x

x y z x x y z x
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Transformation Matrices for R3

Rotation (about x-Axis):


x ′

y ′

z′

1

 =


1 0 0 0
0 cosϕ − sinϕ 0
0 sinϕ cosϕ 0
0 0 0 1

 ·


x
y
z
1



Rotation (about y -Axis):


x ′

y ′

z′

1

 =


cosϕ 0 sinϕ 0

0 1 0 0
− sinϕ 0 cosϕ 0

0 0 0 1

 ·


x
y
z
1



Rotation (about z-Axis):


x ′

y ′

z′

1

 =


cosϕ − sinϕ 0 0
sinϕ cosϕ 0 0

0 0 1 0
0 0 0 1

 ·


x
y
z
1


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Transformation Matrices for R3

Translation:


x ′

y ′

z′

1

 =


1 0 0 vx

0 1 0 vy

0 0 1 vz

0 0 0 1

 ·


x
y
z
1



Stretching/Scaling:


x ′

y ′

z′

1

 =


λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 1

 ·


x
y
z
1


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Linear Transformations and Eigenvectors

Question: How can we find the axis of rotation (through the origin) if we only
know the rotation matrix T?

Answer: Since all points on the axis of rotation are invariant under the rotation, it
suffices to look for a non-zero vector v such that

Tv = v ,

i.e., for an eigenvector of T with eigenvalue 1 since rotations never stretch or
squish anything.

Question: How can we determine the plane of reflection (through the origin) if we
only know the transformation matrix T?

Answer: It suffices to look for two (linearly independent) eigenvectors u,v . These
two vectors span the plane sought.
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6 Transformations
Linear Transformations
Classification of Transformations
Coordinate Transformations in R2

Coordinate Transformations in R3

Transformation of Coordinate Systems
Mathematics of Coordinate System Transformations
Inverse Transformation
Sample Transformation

Applications of Coordinate (System) Transformations
Rotations Revisited
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Transformation of Coordinate Systems

Space has no intrinsic coordinate system!

Basis vectors need not have unit length.

Hence, a point will have different coordinates in different coordinate systems of
the same vector space.

E.g., C := [e1, e2] is not the only possible basis for R2:

(
2
3

)
[e1,e2]

=

(
2
1

)
[v,w ]

Our next task is to convert between different coordinate systems.
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UNIVERSITÄT SALZBURG

Transformation of Coordinate Systems
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Basis vectors need not have unit length.

Hence, a point will have different coordinates in different coordinate systems of
the same vector space.

E.g., C := [e1, e2] is not the only possible basis for R2:

(
2
3

)
[e1,e2]

=

(
2
1

)
[v,w ]

Our next task is to convert between different coordinate systems.

x

y

a
(

2
3

)

︸ ︷︷ ︸

︸︷︷︸

2

3

C := [e1,e2]

e2 e1
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x

y

a
(

2
3

)

︸ ︷︷ ︸

︸︷︷︸

2

3

C := [e1,e2]

e2 e1 x

y

a︸︷︷︸1 ︸ ︷︷
︸

2

(
2
1

)

C′ := [v,w]

v
w
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UNIVERSITÄT SALZBURG

Transformation of Coordinate Systems

So, what are the coordinates pC′ :=

x ′

y ′

z′


C′

of a point pC :=

x
y
z

 relative to a

new coordinate system C′?

x

y

z

δ

x ′

y ′
z′

0 0′

C

C ′
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UNIVERSITÄT SALZBURG

Transformation of Coordinate Systems

We assume that the mapping from C to C′ is an isometry.

Consider an untranslated copy C′′ of C′ whose axes vectors are identical but
whose origin 0′′ is at the origin of C. That is, x ′′ ∥ x ′ and y ′′ ∥ y ′ and z′′ ∥ z′.

We construct the matrix

TC :=

(
e′

1 e′
2 e′

3 δ

0 0 0 1

)
,

where e′
1 represents the unit vector of the x ′′-axis of C′′ in terms of C. Of course,

e′
1 is also the unit vector of the x ′-axis of C′. Analogously for e′

2, e
′
3.

We know that [e′
1, e

′
2, e

′
3] is an orthogonal matrix if e1, e2, e3 are orthonormal.

x

y

z

δ

x ′

y ′
z′

0 0′

C

C ′
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C ′

x ′′

y ′′
z′′

=0′′

C ′′
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Transformation of Coordinate Systems

We have


1
0
0
1

 TC7−→
(

e′
1 + δ

1

)
,


0
1
0
1

 TC7−→
(

e′
2 + δ

1

)
,


0
0
1
1

 TC7−→
(

e′
3 + δ

1

)
,


0
0
0
1

 TC7−→
(

δ

1

)
,

that is


x ′

y ′

z′

1

 TC7−→
(

x ′e′
1 + y ′e′

2 + z′e′
3 + δ

1

)
=:


x
y
z
1


C

.

We understand that the coordinates of a point specified relative to C′ are
converted by TC to coordinates relative to C:

Theorem 264

With TC as defined on the previous slide, we get

pC = TC · pC′ and pC′ = T−1
C · pC .
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Inverse Transformation

If T is the matrix of an isometry then, by Lemma 249,

T =


1 0 0
0 1 0 v
0 0 1
0 0 0 1

 ·


0

R 0
0

0 0 0 1

 ,

where R is an orthogonal matrix, and v describes the translation.

Since (A · B)−1 = B−1 · A−1, we get

T−1 =


0

R−1 0
0

0 0 0 1

 ·


1 0 0
0 1 0 -v
0 0 1
0 0 0 1

 .

Since R is orthogonal, we have R−1 = Rt and get

T−1 =


0

Rt 0
0

0 0 0 1

 ·


1 0 0
0 1 0 -v
0 0 1
0 0 0 1

 .
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Inverse Transformation

Theorem 265

If [n, o, a] is orthogonal then we get

T−1 =


nx ny nz −⟨v ,n⟩
ox oy oz −⟨v ,o⟩
ax ay az −⟨v ,a⟩
0 0 0 1


for

T :=


nx ox ax vx

ny oy ay vy

nz oz az vz

0 0 0 1

 .

Recall that the matrix of a general affine transformation is not orthogonal!

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 284/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Sample Coordinate System Transformation

For the scenario shown below we get

T =


√

2
2 −

√
2

2 4√
2

2

√
2

2 2
0 0 1

 and, thus, T−1 =


√

2
2

√
2

2 −3
√

2
−

√
2

2

√
2

2

√
2

0 0 1

 .

Hence,

T−1 · pC = T−1 ·

4
3
1

 =


√

2
2√
2

2
1

 = pC′ and T · pC′ = T ·


√

2
2√
2

2
1

 = pC .

x

y
x′

y′

δ

C

C′

p
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UNIVERSITÄT SALZBURG

Sample Coordinate System Transformation

For the scenario shown below we get

T =


√

2
2 −

√
2

2 4√
2

2

√
2

2 2
0 0 1

 and, thus, T−1 =


√

2
2

√
2

2 −3
√

2
−

√
2

2

√
2

2

√
2

0 0 1

 .

Hence,

T−1 · pC = T−1 ·

4
3
1

 =


√

2
2√
2

2
1

 = pC′ and T · pC′ = T ·


√

2
2√
2

2
1

 = pC .

x

y
x′

y′

δ

C

C′

p

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 285/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

6 Transformations
Linear Transformations
Classification of Transformations
Coordinate Transformations in R2

Coordinate Transformations in R3

Transformation of Coordinate Systems
Applications of Coordinate (System) Transformations

Rotation About a General Axis
Local Coordinate Systems
Kinematics

Rotations Revisited
Projections
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Rotation About a General Axis

What is the matrix of the rotation about a line ℓ (through the origin) with direction
vector u by an angle φ?

uz

x

y`

ϕ

We set up a new frame C′ = [e′
1, e

′
2, e

′
3] such that

0 = 0′,
e′

3 = u/||u||,
⟨e′

2,e
′
3⟩ = 0 and ∥e′

2∥ = 1,
e′

1 := e′
2 × e′

3.

We know that ∥e′
1∥ = 1

and consider the transformation matrix

T :=

(
e′

1 e′
2 e′

3 0
0 0 0 1

)
.
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Rotation About a General Axis

We know that


x ′

y ′

z′

1

 = T−1 ·


x
y
z
1

 .

Thus, we get the following decomposition for Rot(u, φ):

Rot(u, φ) = T︸︷︷︸
from C’

back to C

·


cosφ − sinφ 0 0
sinφ cosφ 0 0

0 0 1 0
0 0 0 1


︸ ︷︷ ︸

rotation about z′-axis

· T−1︸︷︷︸
from C
to C’

Simple algebraic operations yield

Rot(u, φ) =


ux ux vers φ+ cosφ uy ux vers φ− uz sinφ uzux vers φ+ uy sinφ 0

ux uy vers φ+ uz sinφ uy uy vers φ+ cosφ uzuy vers φ− ux sinφ 0
ux uz vers φ− uy sinφ uy uz vers φ+ ux sinφ uzuz vers φ+ cosφ 0

0 0 0 1


where vers φ := 1 − cosφ.
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Rotation About a General Axis

Given an (orthogonal) rotation matrix T, how can we find an axis u through the
origin and an angle φ such that Rot(u, φ) = T?

Rot(u, φ) ?
= T :=


nx ox ax 0
ny oy ay 0
nz oz az 0
0 0 0 1

 .

Some calculations yield

tanφ =

√
(oz − ay )2 + (ax − nz)2 + (ny − ox)2

nx + oy + az − 1
,

which defines φ within [0, π].
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UNIVERSITÄT SALZBURG

Rotation About a General Axis

Given an (orthogonal) rotation matrix T, how can we find an axis u through the
origin and an angle φ such that Rot(u, φ) = T?

Rot(u, φ) ?
= T :=


nx ox ax 0
ny oy ay 0
nz oz az 0
0 0 0 1

 .

Some calculations yield

tanφ =

√
(oz − ay )2 + (ax − nz)2 + (ny − ox)2

nx + oy + az − 1
,

which defines φ within [0, π].

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 289/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Rotation About a General Axis

Furthermore,

ux = sign(oz − ay )

√
nx − cosφ

1 − cosφ
,

uy = sign(ax − nz)

√
oy − cosφ

1 − cosφ
,

uz = sign(ny − ox)

√
az − cosφ

1 − cosφ
.

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 290/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Local Coordinate Systems

Typically, objects are not modeled in world coordinates. Rather, local coordinate
systems are used.

In order to transform the object it suffices to fix the position and orientation of the
local coordinate system relative to the world coordinate system, or relative to
some other system.

e1

e′2

e′′1

e2”(0,0)

(2,1)

(2,3)(1,3)
(4,2)

(6,3)

(6,5)(5,5)

x
x

y

y

(2,−2)
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Kinematics

We consider an articulated mechanism that consists of rigid links connected by
joints.

Every joint connects exactly two links, and describes the motion of one link
relative to the other link.

The most important joints are prismatic and rotatory joints.

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 292/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Kinematic Chain

A mechanism can be represented as a graph, a so-called kinematic chain, where
the links form the nodes, and
the joints form the edges.

Link 4

Link 3

Link 2

Link 1

A mechanism is called an open kinematic chain if this graph has no cycles;
closed kinematic chain, otherwise.

Depending on how detailed a human is modeled, a human skeleton represents
either an open or a closed kinematic chain.
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Local Coordinate Frames

It is common to assign two local coordinate frames Fi1 and Fi2 to link i such that
the z-axis coincides with the joint axis,
the x-axis coincides with the link axis, and
the y -axis is chosen appropriately to form a right-handed frame.

x

y

z

x

y

z

x

y

z
x

y

z

x

y

z
Link 1 Link 2 Link 3 Link 4

F12
F22

F21

F32

F31
F41
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Denavit-Hartenberg Parameters

Find a transformation matrix i−1
i A to express a point of Fi,2 in terms of Fi−1,2.

A-Matrix :
i−1
i A := Rot(z, θ) · Trans(0, 0, d) · Trans(a, 0, 0) · Rot(x , α)

=


cos θ − sin θ cosα sin θ sinα a cos θ
sin θ cos θ cosα − cos θ sinα a sin θ

0 sinα cosα d
0 0 0 1

 ,

where a . . . link length,
α . . . link twist,
d . . . link offset,
θ . . . link angle,

 Denavit-Hartenberg parameters.
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Forward and Inverse Kinematics

Forward Kinematics:
Given: joint vector.
Compute: Frame T of the end-effector relative to the base frame.
Solution:

T = 0
1A · 1

2A · . . . · n−1
n A.

Inverse Kinematics:
Given: Frame T of the end-effector relative to the base frame.
Compute: all admissible joint vectors.
Solution: not trivial, requires solving a set of non-linear equations!
Symbolic solution preferred over numerical solution.
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Inverse Kinematics

Truly all admissible joint vectors have to be computed!
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Inverse Kinematics

Truly all admissible joint vectors have to be computed!

Obstacle
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6 Transformations
Linear Transformations
Classification of Transformations
Coordinate Transformations in R2

Coordinate Transformations in R3

Transformation of Coordinate Systems
Applications of Coordinate (System) Transformations
Rotations Revisited

Linear Transformations and Eigenvectors
Rotation Group
Quaternions and Rotations

Projections
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Geometric Interpretation of Eigenvectors

Recall Def. 127: A vector v ∈ Rn is an eigenvector of the n × n matrix A if

Av = λv and v ̸= 0.

The vector Au is some vector of Rn obtained by applying a linear transformation
g, whose matrix equals A, to u.

Hence, v ̸= 0 is an eigenvector of A if and only if g(v) equals v up to scaling,
where the scale factor is given by the corresponding eigenvalue.

That is, v ̸= 0 is an eigenvector of A if and only if g(v) lies within the span of v ,
i.e., the line that passes through its origin and its tip.

Linearity of the transformation implies that every other (non-zero) vector within
the span of v also forms an eigenvector of A.

Note that A might have just one eigenvalue while all vectors of Rn are
eigenvectors: E.g., let A be the n × n diagonal matrix with all diagonal elements
equal to 2.

A matrix need not have even just one eigenvalue: E.g., consider the matrix that
corresponds to a rotation by 90o about the origin in R2.
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UNIVERSITÄT SALZBURG

Geometric Interpretation of Eigenvectors

Recall Def. 127: A vector v ∈ Rn is an eigenvector of the n × n matrix A if

Av = λv and v ̸= 0.

The vector Au is some vector of Rn obtained by applying a linear transformation
g, whose matrix equals A, to u.

Hence, v ̸= 0 is an eigenvector of A if and only if g(v) equals v up to scaling,
where the scale factor is given by the corresponding eigenvalue.

That is, v ̸= 0 is an eigenvector of A if and only if g(v) lies within the span of v ,
i.e., the line that passes through its origin and its tip.

Linearity of the transformation implies that every other (non-zero) vector within
the span of v also forms an eigenvector of A.

Note that A might have just one eigenvalue while all vectors of Rn are
eigenvectors: E.g., let A be the n × n diagonal matrix with all diagonal elements
equal to 2.

A matrix need not have even just one eigenvalue: E.g., consider the matrix that
corresponds to a rotation by 90o about the origin in R2.

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 299/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Rotation Group

Definition 266 (2D rotation group, Dt.: Kreisgruppe)

The 2D rotation group, which is often denoted by SO(2), is the set of all rotations
about the origin of R2 under the operation of composition.

Definition 267 (3D rotation group, Dt.: Drehgruppe)

The 3D rotation group, which is often denoted by SO(3), is the set of all rotations
about the origin of R3 under the operation of composition.

Lemma 268

The rotation groups SO(n) are non-Abelian groups for n ≥ 3, while SO(2) is Abelian.

Recall that rotations are linear transformations of R3 which (relative to an
orthonormal base of R3) can be represented by orthogonal 3 × 3 matrices with
determinant 1.
Hence, the group SO(3) can be identified with the group of these matrices under
matrix multiplication.
These matrices are known as “special orthogonal matrices”, thus explaining the
term SO(3).
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Euler’s Rotation Theorem

Lemma 269 (Soccer Ball Lemma)

Suppose that a soccer ball is a ball with a perfectly spherical surface. Then in every
soccer game and for every pair of consecutive (ideally perfect) placements of the
soccer ball at the kick-off point there exist two points on the surface of the soccer ball
which have the same coordinates relative to some coordinate system of the soccer
field.

Proof : We note that we may ignore any tumbling motion and focus just on the finitely
many points in time when the ball does not move. Hence, the movement of a soccer
ball during the game can be modelled as a sequence of finitely many rotations (about
its center).
Since rotations belong to SO(3), a sequence of finitely many rotations can be
modelled by one rotation:

R := Rn · . . . · R2 · R1

We will now show that there exists a vector v such that Rv = v . We see that the
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Euler’s Rotation Theorem

Proof of Lem. 269 (cont’d) : We use

det(−(R − I)) = − det(R − I) and det(R−1) = 1

and obtain

det(R − I) = det
(
(R − I)t

)
= det

(
Rt − I

)
= det

(
R−1 − R−1R

)
= det

(
R−1(I − R)

)
= det

(
R−1

)
det(−(R − I)) = − det(R − I).

Thus, det(R − I) = 0. Hence, there is at least one non-zero vector v such that
Rv = v . The intersection points of the soccer ball with the line through its center with
direction vector v are the two points claimed to remain invariant.

Theorem 270 (Euler’s Rotation Theorem 1775)

Every displacement of a rigid body such that a point on the rigid body is kept fixed is
equivalent to a single rotation about some axis that runs through the fixed point.
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UNIVERSITÄT SALZBURG

Euler’s Rotation Theorem

Proof of Lem. 269 (cont’d) : We use

det(−(R − I)) = − det(R − I) and det(R−1) = 1

and obtain

det(R − I) = det
(
(R − I)t

)
= det

(
Rt − I

)
= det

(
R−1 − R−1R

)
= det

(
R−1(I − R)

)
= det

(
R−1

)
det(−(R − I)) = − det(R − I).

Thus, det(R − I) = 0. Hence, there is at least one non-zero vector v such that
Rv = v . The intersection points of the soccer ball with the line through its center with
direction vector v are the two points claimed to remain invariant.

Theorem 270 (Euler’s Rotation Theorem 1775)

Every displacement of a rigid body such that a point on the rigid body is kept fixed is
equivalent to a single rotation about some axis that runs through the fixed point.

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 302/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Quaternions and Rotation

Lemma 271

Let Q be a quaternion that is not zero and P be a pure quaternion. Then
P ′ := QPQ−1 is a pure quaternion, too.

This quaternion operation maps the set of all pure quaternions onto itself.

This set forms a 3-dimensional sub-space of the space of all quaternions.

Theorem 272

Let p be a point in R3 and consider an axis through the origin with direction vector u,
with ∥u∥ = 1. Let p′ denote the rotation of p about that axis by the angle 2φ. Now
consider the pure quaternions P := (0, p) and P ′ := (0, p′). We have

P ′ = QPQ−1 for Q := (cosφ, u sinφ).

Lemma 273

Consider the setting of Theorem 272 and let s := cosφ, v := u sinφ. Then

p′ = s2p + ⟨p,v⟩v + 2s(v × p) + v × (v × p).
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Quaternions and Rotation

We conclude that every rotation about an axis (through the origin) in R3

corresponds to a unit quaternion.

Conversely, every unit quaternion represents a rotation about an axis in R3.

Theorem 274

There is a one-to-one correspondence between unit quaternions and rotations about
axes (through the origin) in R3.

Lemma 275

The inverse quaternion models the opposite rotation.

Proof : We have

Q−1(QPQ−1)Q = P.

Geometric interpretation of this fact: Since Q−1 = (s,−u) for a unit quaternion
Q := (s, u), the inverse of Q rotates by the same angle, but the rotation axis
points in the opposite direction. Hence, by inverting the axis, the direction of
rotation is reversed!
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Quaternions and Rotation

Lemma 276

If Q is a unit quaternion then Q and −Q represent the same rotation.

Sketch of Proof : A rotation about the axis u by the angle 2φ equals a rotation about
the (inversely oriented) axis −u by the angle −2φ.

Lemma 277

The square Q2 of a unit quaternion Q is a rotation by twice the angle about the same
axis.

Lemma 278

The orthogonal matrix that corresponds to a rotation by the unit quaternion
Q = (s, (a, b, c)) is given bys2 + a2 − b2 − c2 2ab − 2sc 2ac + 2sb

2ab + 2sc s2 − a2 + b2 − c2 2bc − 2sa
2ac − 2sb 2bc + 2sa s2 − a2 − b2 + c2

 .
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UNIVERSITÄT SALZBURG

Quaternions and Rotation

Lemma 276

If Q is a unit quaternion then Q and −Q represent the same rotation.

Sketch of Proof : A rotation about the axis u by the angle 2φ equals a rotation about
the (inversely oriented) axis −u by the angle −2φ.

Lemma 277

The square Q2 of a unit quaternion Q is a rotation by twice the angle about the same
axis.

Lemma 278

The orthogonal matrix that corresponds to a rotation by the unit quaternion
Q = (s, (a, b, c)) is given bys2 + a2 − b2 − c2 2ab − 2sc 2ac + 2sb

2ab + 2sc s2 − a2 + b2 − c2 2bc − 2sa
2ac − 2sb 2bc + 2sa s2 − a2 − b2 + c2

 .

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 305/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Quaternions and Rotation: SLERP

Suppose that we are given two unit quaternions Q0,Q1 and would like to
interpolate the rotations specified by these quaternions linearly.

Recall that a unit quaternion can be regarded as a point on the unit sphere in R4.

Hence, a natural approach to a linear interpolation of two quaternions is a
spherical linear interpolation (Slerp) along the shorter arc of the great circle
defined by Q0 := (s0, (a0, b0, c0)) and Q1 := (s1, (a1, b1, c1)):

Theorem 279 (Shoemake 1985)

Consider two unit quaternions Q0 := (s0, (a0, b0, c0)) and Q1 := (s1, (a1, b1, c1)). Let
Θ such that

cosΘ = s0 · s1 + a0 · a1 + b0 · b1 + c0 · c1.

Then, for t ∈ [0, 1],

Slerp(Q0,Q1, t) :=
1

sinΘ

(
sin((1 − t)Θ)Q0 + sin(tΘ)Q1

)
corresponds to the interpolated quaternion at time t ∈ [0, 1]. The Slerp interpolation
function achieves constant angular velocity.
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UNIVERSITÄT SALZBURG

Quaternions and Rotation: SLERP

Suppose that we are given two unit quaternions Q0,Q1 and would like to
interpolate the rotations specified by these quaternions linearly.

Recall that a unit quaternion can be regarded as a point on the unit sphere in R4.

Hence, a natural approach to a linear interpolation of two quaternions is a
spherical linear interpolation (Slerp) along the shorter arc of the great circle
defined by Q0 := (s0, (a0, b0, c0)) and Q1 := (s1, (a1, b1, c1)):

Theorem 279 (Shoemake 1985)

Consider two unit quaternions Q0 := (s0, (a0, b0, c0)) and Q1 := (s1, (a1, b1, c1)). Let
Θ such that

cosΘ = s0 · s1 + a0 · a1 + b0 · b1 + c0 · c1.

Then, for t ∈ [0, 1],

Slerp(Q0,Q1, t) :=
1

sinΘ

(
sin((1 − t)Θ)Q0 + sin(tΘ)Q1

)
corresponds to the interpolated quaternion at time t ∈ [0, 1]. The Slerp interpolation
function achieves constant angular velocity.

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 306/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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6 Transformations
Linear Transformations
Classification of Transformations
Coordinate Transformations in R2

Coordinate Transformations in R3

Transformation of Coordinate Systems
Applications of Coordinate (System) Transformations
Rotations Revisited
Projections

Basics of Projections
Perspective Projection
Parallel Projection
Projecting Curved Objects
Perspective Normalization
Stereographic Projection
Inversion
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Projections

Virtually all output devices are two-dimensional.

To draw a 3D scene, the scene has to be projected onto a 2D viewing plane.

z

y

x
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Projections: History

Plan from Mesopotamia, ≈ 2000 BCE.

Early Greeks: Agatharchus (≈ 500 BCE), Apollonius of Perga (≈ 262 BCE till ≈
190 BCE) studied projections of quadrics.

Romans: Vitruvius wrote De Architectura, published specifications of plan and
elevation drawings, and perspective.

Early Renaissance period: Emphasis on point of view, interpretation of world.
Dürer
Giotto,
Mossacio,
Raphael,
Vinci.

Leon Battista Alberti wrote the first treatise on perspective, “Della Pittura”, in 1435.
“A painting is the intersection of a visual pyramid at a given distance, with a
fixed center and a definite position of light, represented by art with lines and
colors on a given surface.”

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 309/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Geometric Projections

Projectors: Rays emanating from the center of projection and passing through
points of the object.

Projection: Intersection of projectors with projection plane Π.

Non-geometric projections used in cartography. E.g., Mercator projection.

Perspective:
Center of projection is at a finite
distance from Π.
Perspective foreshortening.

Parallel:
Center of projection is at ∞.
Defined by a direction v .
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Geometric Projections: Different Types

(plan)

Perspective

Planar geometric projection

Parallel

Two-point

Three-point

Other

Other
elevation

Side

Isometric

Axonometric
elevation
Front

Top

Orthographic One-pointOblique

Cabinet

Cavalier
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UNIVERSITÄT SALZBURG

Three-Dimensional View Volume

When formulating the mathematics of projections it is customary to place the
viewpoint at (0, 0,−d), in the case of a perspective projection, and to assume
that the projection plane Π is the xy -plane.

viewpoint
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Three-Dimensional View Volume

When formulating the mathematics of projections it is customary to place the
viewpoint at (0, 0,−d), in the case of a perspective projection, and to assume
that the projection plane Π is the xy -plane.

viewpoint

x

y
z
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Perspective Projection

Perspective foreshortening gives a realistic view of 3D objects.

Used for advertising, fine art, architecture.

Foreshortening is not uniform.

Parallel edges do not remain parallel; angles, scales and other geometric
properties are not preserved.

A vanishing point (Dt.: Fluchtpunkt) is a point in the image plane where the
projections of mutually parallel lines that are not parallel to the image plane
converge.

Since buildings tend to have one to three sets of parallel lines, we get one-point
perspective, two-point perspective, or three-point perspective.
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One Vanishing Point

Π parallel to two principal axes of the cube: one vanishing point.
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Two Vanishing Points

Π is parallel to only one principal axis of the cube: two vanishing points.
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Three Vanishing Points

Π is not parallel to any principal axis of the cube: three vanishing points.
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Mathematics of Perspective Projection

Due to the similarity of the triangles △(Z ,O,P′
xz) and △(Z ,Pz ,Pxz) we get

x ′ : d = x : (z + d), i.e., x ′ =
d · x
z + d

.

Analogously,

y ′ =
d · y
z + d

.

0

x

z

yP(x, y, z)

Pxz(x,0, z)

P′xz(x ′,0,0)

Z (0,0,−d)Pz(0,0, z)

P′(x ′, y ′,0)

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 317/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Matrix of a Perspective Projection

Let P :=


1 0 0 0
0 1 0 0
0 0 0 0
0 0 1

d 1

.

We get

P · p =


px

py

0
pz+d

d

 ≡


d·px
pz+d

d·py
pz+d

0
1

 =:


p′

x

p′
y

0
1

 .

Apply transformation of coordinate system if the projection plane differs from
z = 0, or if the eye point is not at (0, 0,−d).
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Parallel Projection: Orthographic

Orthographic: Projectors are perpendicular to the projection plane.

→ Pxy :=


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 .

Front, top, side views: Projectors parallel to one of the principal axes.
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Parallel Projection: Oblique

Oblique: Projectors not perpendicular to the projection plane.

With d := cotβ we get

x ′ = x + z · d cosα,

y ′ = y + z · d sinα,

z′ = 0.

Thus,

P :=


1 0 d cosα 0
0 1 d sinα 0
0 0 0 0
0 0 0 1

 .
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z

y
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p′

d

d sinα
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Special Oblique Projections

Cavalier projection:
Angle β between projectors and projection plane is 45o; i.e., d = 1.
The length of a segment normal to the projection plane equals the length of
the projection of that segment.

Cabinet projection:
Angle β between projectors and projection plane is tan−1 2 ≈ 63.4o; i.e.,
d = 1

2 .
The length of a segment normal to the projection plane equals twice the
length of the projection of that segment.
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Projecting Curved Objects

It does not suffice to project the vertices and edges of an object if the object is
bounded by curved surfaces.

Rather, we also have to project the silhouette curves of the object.

A silhouette curve consists of all those points of the object such that the line
through the point and the center of projection is tangential to the object.

Note that the silhouette curves need not lie in one plane!
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Perspective Normalization

For computing silhouette curves, hidden-surface elimination, ray tracing, and
many other algorithms, it is convenient to transform the view pyramid into a view
box, while maintaining the depth ordering.

Consider N =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1

d 1

.

We get

N ·


0
0
0
1

 =


0
0
0
1

 ; N ·


1
0
0
1

 =


1
0
0
1

 ; N ·


0
1
0
1

 =


0
1
0
1

 ;

that is, the xy -plane is invariant under N.
The center of projection is mapped to the point at infinity on the negative z-axis:

N ·


0
0
−d
1

 =


0
0
−d
0

 .
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1

 =


0
0
−d
0

 .
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Perspective Normalization
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Perspective Normalization

Summarizing, we get

O · N = P,

where O is the matrix of an orthogonal projection, and P is the matrix of the
corresponding perspective projection.

N maps

cylinder, cone → cylinder or cone (possibly with non-circular cross-section),
line → line,
plane → plane,
sphere → ellipsoid, elliptical paraboloid, two-sheet hyperboloid,
quadric → quadric.

We can modify N such that all z-coordinates are scaled to lie between 0 and 1.
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Stereographic Projection

A stereographic projection maps a sphere onto a plane.

Default setting: Mapping of S2 onto the xy -plane z = 0, with the north pole
n := (0, 0, 1) serving as projection point.

Lemma 280

For any point p on S2 other than n, the line through n and p intersects z = 0 in exactly
one point p′.
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Stereographic Projection

A stereographic projection maps a sphere onto a plane.
Default setting: Mapping of S2 onto the xy -plane z = 0, with the north pole
n := (0, 0, 1) serving as projection point.

Definition 281 (Stereographic projection)

The stereographic projection, SP(p), of a point p on S2 \ {n} is the point p′ uniquely
determined according to Lemma 280.
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Stereographic Projection

Lemma 282

Let p on S2 \ {n} and p′ := SP(p). If p := (x , y , z) and p′ := (a, b) then we get the
following relations:

(a, b) =
(

x
1 − z

,
y

1 − z

)
,

(x , y , z) =
(

2a
1 + a2 + b2 ,

2b
1 + a2 + b2 ,

−1 + a2 + b2

1 + a2 + b2

)
.

Corollary 283

The point p has rational coordinates if and only if p′ has rational coordinates.

Lemma 284

The stereographic projection and its inverse are continuous maps.

Sketch of Proof : Both maps are given as fractions of polynomials where the
denominator is never zero.
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Stereographic Projection

Lemma 285

The stereographic projection establishes a bijection between S2 \ {n} and the plane
z = 0: It maps the south pole to (0, 0), the equator to the unit circle, the southern
hemisphere to the region inside the circle, and the northern hemisphere to the region
outside the circle.

Lemma 286

The stereographic projection is conformal but neither isometric nor area-preserving.

x

z

z = −1

n

p
p′

Other conventions . . .

. . . include a mapping to z = −1.

The intercept theorem implies that this
scales the image by a factor of two.
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UNIVERSITÄT SALZBURG

Stereographic Projection

Lemma 285

The stereographic projection establishes a bijection between S2 \ {n} and the plane
z = 0: It maps the south pole to (0, 0), the equator to the unit circle, the southern
hemisphere to the region inside the circle, and the northern hemisphere to the region
outside the circle.

Lemma 286

The stereographic projection is conformal but neither isometric nor area-preserving.

x

z

z = −1

n

p
p′

Other conventions . . .

. . . include a mapping to z = −1.

The intercept theorem implies that this
scales the image by a factor of two.

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 328/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Extended Stereographic Projection

Recall that the north pole n of S2 would be mapped to a point at infinity of the
plane.

We extend the stereographic projection by defining SP(n) := ∞ and get a
bijection between S2 and R2 ∪ {∞}.

By identifying R2 with C, this concept can be generalized to a bijection between
S2 and C∞.

Topologically speaking, since S2 is compact, the sphere S2 is homeomorphic to a
one-point compactification of the (complex) plane.

Lemma 287

The extended stereographic projection SP: S2 → R2 ∪ {∞}, or SP: S2 → C∞, maps
circles to circles and lines.
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UNIVERSITÄT SALZBURG

Extended Stereographic Projection

Recall that the north pole n of S2 would be mapped to a point at infinity of the
plane.

We extend the stereographic projection by defining SP(n) := ∞ and get a
bijection between S2 and R2 ∪ {∞}.

By identifying R2 with C, this concept can be generalized to a bijection between
S2 and C∞.

Topologically speaking, since S2 is compact, the sphere S2 is homeomorphic to a
one-point compactification of the (complex) plane.

Lemma 287

The extended stereographic projection SP: S2 → R2 ∪ {∞}, or SP: S2 → C∞, maps
circles to circles and lines.

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 329/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Inversion

Definition 288 (Circle inversion)

Consider a circle C in the (Euclidean) plane that is centered at c and has radius
r ∈ R+.

The inversion of a point p with respect to C, denoted by Invc,r (p), is the point
p′ on the ray from c through p such that ∥c − p∥ · ∥c − p′∥ = r 2.

Obviously, Invc,r (c) is not defined.

We turn Invc,r into a total function by mapping c to a point at infinity, and vice
versa.

c
r

C
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Inversion: Construction by Compass and Ruler

The right triangles ∆(c, p′, u) and ∆(c, p, u) are similar.

The center c′ of the blue circle is the midpoint of c and p′.

c
r p

p′c′

u

v

C
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Inversion: Properties

Lemma 289

The inversion Invc,r maps a line that does not pass through c to a circle that passes
through c. A line that passes through c is mapped onto itself.

Lemma 290

The inversion Invc,r maps a circle that does not pass through c to a circle that does
not pass through c.

c
r

C
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Inversion and Stereographic Projection

Lemma 291

The stereographic projection onto the plane z = −1 equals an inversion with respect
to a sphere centered at n with radius r := 2.

x

z

z = −1

n

p
p′
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7 Floating-Point Arithmetic and Numerical Mathematics
Floating-Point Computations
Iterative Algorithms for Solving Non-Linear Equations
Iterative Algorithms for Solving Linear Equations
Numerical Integration
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7 Floating-Point Arithmetic and Numerical Mathematics
Floating-Point Computations

Numerical Errors on IEEE 754 Arithmetic
Compiler Dependence
Common Manifestations of Floating-Point Errors
Comparisons of Floating-Point Numbers
Sample Robustness Problems
Real-World Impacts of Floating-Point Errors
Improving the Reliability of Floating-Point Computations

Iterative Algorithms for Solving Non-Linear Equations
Iterative Algorithms for Solving Linear Equations
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Floating-Point Arithmetic

Computers employ floating-point (fp) arithmetic to perform real arithmetic.

No matter how many bits are used, fp-arithmetic represents a number by a
fixed-length binary mantissa and an exponent of fixed size.

Chuck Allison

Floating-point numbers are not real numbers [. . .]. Real numbers have infinite
precision and are therefore continuous and nonlossy; floating-point numbers have
limited precision, so they are finite, and they resemble “badly behaved” integers,
because they are not evenly spaced throughout their range.

Thus, only a finite number of values within a finite sub-interval of R can be
represented accurately; all other values have to be rounded to the closest
number that is representable.

The IEEE 754 standard for fp-arithmetic knows four different rounding modes.
The first mode is the default; the others are called directed roundings.
Round to Nearest
Round towards 0
Round towards +∞
Round towards −∞
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Floating-Point Errors

Hence, there are two sources of error for fp-computations: input error and
round-off error.
Input error: It arises from reading/assigning a value to an fp variable.

It is well-known that 1
3 cannot be represented by a finite sum of powers

of 10.
Similarly, 0.1 cannot be represented by a finite sum of powers of 2!
What do we get if we assign 224 + 1 = 16777217 to a 32-bit float? We
get 16777216!

Round-off error: It arises from rounding results of fp-computations during an
algorithm.

E.g.,
√

2 cannot be represented exactly since
√

2 is an irrational
number.

While one can instruct the C command printf to print, say, 57 digits after the
decimal separator, one will “only” get the digits of the closest value that is
representable:

1/3 = 0.333333333333333314829616256247390992939472198486328125000

1/10 = 0.100000000000000005551115123125782702118158340454101562500
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get 16777216!

Round-off error: It arises from rounding results of fp-computations during an
algorithm.

E.g.,
√

2 cannot be represented exactly since
√

2 is an irrational
number.

While one can instruct the C command printf to print, say, 57 digits after the
decimal separator, one will “only” get the digits of the closest value that is
representable:

1/3 = 0.333333333333333314829616256247390992939472198486328125000

1/10 = 0.100000000000000005551115123125782702118158340454101562500
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UNIVERSITÄT SALZBURG

Floating-Point Errors

Hence, there are two sources of error for fp-computations: input error and
round-off error.
Input error: It arises from reading/assigning a value to an fp variable.

It is well-known that 1
3 cannot be represented by a finite sum of powers

of 10.
Similarly, 0.1 cannot be represented by a finite sum of powers of 2!
What do we get if we assign 224 + 1 = 16777217 to a 32-bit float? We
get 16777216!

Round-off error: It arises from rounding results of fp-computations during an
algorithm.

E.g.,
√

2 cannot be represented exactly since
√

2 is an irrational
number.

While one can instruct the C command printf to print, say, 57 digits after the
decimal separator, one will “only” get the digits of the closest value that is
representable:

1/3 = 0.333333333333333314829616256247390992939472198486328125000

1/10 = 0.100000000000000005551115123125782702118158340454101562500

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 337/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Machine Precision

The round-off error is bounded in terms of the machine precision, ε, which is the
smallest value satisfying

|fp(a ◦ b)− (a ◦ b)| ≤ ε|a ◦ b|

for all fp-numbers a, b and any of the four operations +,−, ·, / instead of ◦, for
which a ◦ b does not cause an underflow or an overflow.

On IEEE-754 machines, ε = 2−23 ≈ 1.19 · 10−7 for floats, and
ε = 2−52 ≈ 2.22 · 10−16 for doubles.

On some exotic platform, ε can be determined approximately by finding the
smallest positive value x such that 1 + x ̸= 1.

Note: Some compilers promote floats to doubles!

Note: Some platforms employ extended representations, or use registers longer
than standard words for intermediate results! The sad truth is that hardware
vendors still prefer to stick to their own standards . . .

Random errors tend to cancel on a large scale, and accumulate on small scale.
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Floating-Point Arithmetic and Compilers

Accumulation: Adding 0.001 for 1 000 000 times need not yield exactly 1000.

Warning

The result of fp-computations may depend on the compile-time options!

Old 387 floating-point units on x86 processors used 80bit registers and
operators, while standard “double” variables were stored in 64bit memory cells.

Hence, rounding to a lower precision was necessary whenever a floating-point
variable is transferred from register to memory.

As a consequence, on my PC,

10000000∑
i=1

0.001 = 1000.0000000000009095 with gcc -O2 -mfpmath=387,

10000000∑
i=1

0.001 = 999.9999999832650701 with gcc -O0 -mfpmath=387.

Newer chips also support the SSE/SSE2 instruction set, and the default option
-mfpmath=sse avoids this problem for x86-64 compilers.
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Common Manifestations of Floating-Point Errors

Cancellation: Subtracting two numbers of almost equal magnitudes may cause a
drastic loss in the number of significant digits.

With exact arithmetic, we would have

(0.1234567890123456 − 0.12345678901234) = 0.56 · 10−14 =
56

100
· 10−14.

Taking 56/100 · 10−14 as result of the subtraction, we would get

(0.1234567890123456−0.12345678901234)·1014 = 0.5600000000000000532 . . .

but when doing all computations on a floating-point arithmetic we get

(0.1234567890123456−0.12345678901234)·1014 ≈ 0.5592748486549226 . . .

Absorption due to adding/subtracting small and large numbers: the
un-normalizing required to line up the decimal point may cause truncation. E.g.,
adding 240 = 1099511627776 and 2−14 = 0.0000610352 yields 1099511627776
with double-precision arithmetic. As a consequence,

0 = 240 − (240 − 2−14) ̸= (240 − 240) + 2−14 = 2−14.
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Common Manifestations of Floating-Point Errors

Underflow: Occurs if (absolute) value of an expression is too small to be
represented as a normalized number. An expression that results in an underflow
may evaluate to zero, without returning an error!

Implementations that conform to IEEE 754-2008 try to avoid the underflow gap
by resorting to “subnormal” numbers, that is, they allow leading zeros in the
significand.

Overflow: Occurs if (absolute) value of a number is too large to be represented.
The evaluation of an expression that results in an overflow will raise an error flag;
the actual value of the expression is positive or negative “Inf”.

Divisions by zero will generate positive or negative “Inf”, too.

Not a Number: 0/0 or
√
−1 will generate a special value, “NaN”.

E.g.,
√

((1 + 10−20)− 1)− 10−20 does not yield 0, but results in an NaN error:
The truncation and subsequent cancellation lets us compute

√
−10−20.

Those special numbers propagate through subsequent calculations.
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Floating-Point Comparisons and Precision Thresholds

Topological decisions in geometry are based on the results of floating-point (fp)
computations, which are prone to round-off errors.

Comparing two fp-numbers a and b by means of a = b will hardly ever yield true.

Threshold-based comparison:

(a =ε b) :⇐⇒ (|a − b| ≤ ε),

for some positive value of ε.

Note: |a − b| ≤ ε rather than |a − b| < ε!

Caveat: =ε is no longer transitive: a =ε b and b =ε c need not imply a =ε c.

Note: fp-numbers are “denser” close to zero than far away from zero.

Note: |x − y | ≤ ε need not imply |α · x − α · y | ≤ ε.

Thus, use relative errors or scale the data appropriately.

Obvious disadvantage of scaling: Unless only shifts by two are performed, new
errors may be introduced.
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Floating-Point Comparisons and Precision Thresholds

Topological decisions in geometry are based on the results of floating-point (fp)
computations, which are prone to round-off errors.
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UNIVERSITÄT SALZBURG

Sample Robustness Problem: Failure of Basic Mathematical Implications

Suppose that we are given two line segments ab and cd such that

cx < ax < bx < dx ay < cy < dy < by .

It is easy to see that the two line segments intersect, without a or b lying on cd
and without c or d lying on ab. Furthermore, the line segments cannot overlap.
Hence, the two line segments intersect in a point.

Let p := ab ∩ cd . Are the following inequalities guaranteed to be true?

ax < px < bx ay < py < by cx < px < dx cy < py < dy

Yes in theory, no on an fp-arithmetic!
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Sample Robustness Problem: Lack of Convergence

Theory tells us that we can approximate the first derivative f ′ of a function f at the
point x0 by evaluating f (x0+h)−f (x0)

h for sufficiently small values of h.

Consider f (x) := x3 and x0 := 10:

h := 100 : f ′(10) ≈ 331.0000000

h := 10−2 : f ′(10) ≈ 300.3000999

h := 10−4 : f ′(10) ≈ 300.0030000

h := 10−6 : f ′(10) ≈ 300.0000298

h := 10−8 : f ′(10) ≈ 300.0000219

h := 10−10 : f ′(10) ≈ 300.0002379

h := 10−12 : f ′(10) ≈ 300.1332515

h := 10−14 : f ′(10) ≈ 318.3231456

h := 10−16 : f ′(10) ≈ 0.000000000

h := 10−1 : f ′(10) ≈ 303.0099999

h := 10−3 : f ′(10) ≈ 300.0300009

h := 10−5 : f ′(10) ≈ 300.0002999

h := 10−7 : f ′(10) ≈ 300.0000003

h := 10−9 : f ′(10) ≈ 300.0000106

h := 10−11 : f ′(10) ≈ 299.9854586

h := 10−13 : f ′(10) ≈ 298.9963832

h := 10−15 : f ′(10) ≈ 568.4341886

h := 10−17 : f ′(10) ≈ 0.000000000

The cancellation error increases as the step size, h, decreases. On the other
hand, the truncation error decreases as h decreases.

These two opposing effects result in a minimum error (and “best” step size h) that
is significantly greater than the machine precision!
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Sample Robustness Problem: Ill-Conditioned Equations

The quartic equation x4 + 4x3 + 6x2 + 4x + 1 = 0 has the quadruple root x = −1.

Changing the coefficient of x to 4.00000001 drastically affects the solution: Now
we get x = −1.01002496875 . . . and x = −0.99002503124 . . . as the only real
roots of the equation.

Similarly, the linear system

x + 2y = 3

0.48x + 0.99y = 1.47

has the exact solution x = 1, y = 1, while the system

x + 2y = 3

0.49x + 0.99y = 1.47

has the exact solution x = 3, y = 0.

Note, however, that the old solution, x = 1, y = 1, also “nearly” fulfills this
equation.

Thus, a small change (or error!) in the coefficients may dramatically affect the
solutions of an equation: ill-conditioned or ill-posed !
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Sample Robustness Problem: Ill-Conditioned Equations

If an equation (or a system of equations) is ill-conditioned, then the usual
procedure of checking a numerical solution by calculation of the residuals is
problematic.

Consider the 2 × 2 linear system

1.2969x + 0.8648y = 0.8642
0.2161x + 0.1441y = 0.1440 that is, A

(
x
y

)
=

(
b1

b2

)
.

The exact solution is x = 2 and y = −2.

But we get close-to-zero residuals also for other pairs of x and y :

x2 = 2.001557851
y2 = −2.002336236

∥∥∥∥A
(

x2

y2

)
−
(

b1

b2

)∥∥∥∥ ≈ 10−10

x1 = 0.9911
y1 = −0.4870

∥∥∥∥A
(

x1

y1

)
−
(

b1

b2

)∥∥∥∥ ≈ 10−8

x3 = −0.000004626
y3 = 0.999312976

∥∥∥∥A
(

x3

y3

)
−
(

b1

b2

)∥∥∥∥ ≈ 10−9
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Sample Robustness Problem: Incorrect Orientation Predicate

[Kettner et alii 2006] study the standard determinant-based orientation predicate
on IEEE 754 fp-arithmetic to check the sidedness of (px + x · u, py + y · u)
relative to two points q, r , for 0 ≤ x , y ≤ 255 and with u := 2−53:

sign det

1 px + x · u py + y · u
1 qx qy

1 rx ry


>
=
<

 0 ?

The resulting 256 × 256 array of signs (as a function of x , y ) is color-coded: A
yellow (red, blue) pixel indicates collinear (negative, positive, resp.) orientation.

The black line indicates the line through q and r .

Note the sign inversions!

[Image credit: www.mpi-inf.mpg.de/~kettner/proj/NonRobust/]
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Sample Robustness Problem: Incorrect Orientation Predicate

[Kettner et alii 2006]: A yellow (red, blue) pixel indicates collinear (negative,
positive, resp.) orientation.

p :=

(
0.5
0.5

)
q :=

(
12
12

)
r :=

(
24
24

)
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Sample Robustness Problem: Incorrect Orientation Predicate

[Kettner et alii 2006]: A yellow (red, blue) pixel indicates collinear (negative,
positive, resp.) orientation.

p :=

(
0.5
0.5

)
q :=

(
8.8000000000000007
8.8000000000000007

)
r :=

(
12.1
12.1

)
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Real-World Example of Round-Off Error

During the First Gulf War (1990/91), an Iraqi Scud got through the Patriot
anti-missile system (AMS) and hit a barracks of the Pennsylvania National Guard
in Dhahran, Saudi Arabia, killing 28 people.

To track the Scud, the AMS had to determine the interval between tracking times
by subtracting two values of a timer. The times in tenths of a second were stored
in integer registers; a stored value of 35 would be equivalent to 3.5 seconds.

To compute the interval, the values in the registers were converted to
fp-representation by multiplying them by 0.1.

As stated previously, 0.1 has a non-terminating binary expansion. Consequently,
the time interval was computed with error.

The larger the value in the timer, the larger the error.

At the time of the incident, the AMS had been operating for over 100 hours,
resulting in an error of 0.34 seconds in the timer, causing the system to look in
the wrong place for the incoming Scud.
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UNIVERSITÄT SALZBURG

Real-World Example of Overflow Error

Ariane Flight V88 was the failed maiden flight of the Ariane 5 rocket, vehicle
number 501, on 04-June-1996.

The operating code for the Ariane 4 rocket was reused in the Ariane 5. However,
Ariane 5 was faster. . ..
This triggered a bug in an arithmetic routine inside the rocket’s flight computer:
The error was in the code that converts a 64-bit floating-point number to a 16-bit
signed integer. The faster engines caused the 64-bit numbers to be larger in the
Ariane 5 than in the Ariane 4, triggering an overflow condition.
To make the situation worse, the default IEEE 754 exception-handling policy
("presubstitution") had not been used.
As a consequence, the overflow resulted in a hardware exception, causing both
flight computers to crash: First the backup flight computer crashed, followed 0.05
seconds later by a crash of the primary flight computer.
As a result of both computers being off, the rocket’s primary processor
overpowered the rocket’s engines, which caused the rocket to disintegrate 40
seconds after launch, and finally self-destruction via its automated flight
termination system.
That failure resulted in a loss of more than ¤290 million and in a delay of the
Ariane program by a year.
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Butterfly Effect and Chaos Theory

In 1961, the mathematician and meteorologist Lorenz noted that very minor
changes in the initial conditions (due to numerical rounding) caused repeated
runs of his weather model to produce strikingly different results.

He wanted to rerun a numerical computer model to redo a weather prediction
from the middle of the previous run.

He entered the initial condition 0.506 from the previous result instead of entering
the full-precision value 0.506127.

The result was a completely different weather prediction.

Lorenz:
Chaos: When the present determines the future, but the approximate present
does not approximately determine the future.

See https://upload.wikimedia.org/wikipedia/commons/4/44/
Double_pendulum_simultaneous_realisations.ogv for six slow-motion
videos of the same double pendulum (built with Lego). For each recording, the
double pendulum was excited in virtually the same manner.
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Quote taken from “The Art of Computer Programming” (D.E. Knuth)

Floating-point computation is by nature inexact, and it is not difficult to misuse
it so that the computed answers consist almost entirely of ’noise’.

One of the principal problems of numerical analysis is to determine how accu-
rate the results of certain numerical methods will be; a ’credibility gap’ prob-
lem is involved here: we don’t know how much of the computer’s answers to
believe.

Novice computer users solve this problem by implicitly trusting in the com-
puter as an infallible authority; they tend to believe all digits of a printed an-
swer are significant.

Disillusioned computer users have just the opposite approach, they are con-
stantly afraid their answers are almost meaningless.
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Floating-Point Comparisons and Precision Thresholds

The gap between the theory of the reals and floating-point reality has important
and severe consequences for the actual coding practice when implementing
(geometric) algorithms that require floating-point arithmetic:

1 The correctness proof of the mathematical algorithm does not extend to the
program, and the program can fail on seemingly appropriate input data.

2 Local consistency need not imply global consistency.

Numerical analysis . . .

. . . and adequate coding are a must when implementing algorithms that deal with real
numbers. Otherwise, the implementation of an algorithm may turn out to be absolutely
useless in practice, even if the algorithm (and even its implementation) would come
with a rigorous mathematical proof of correctness!
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Improving the Reliability of FP-Calculations

Try to perform all numerical computations relative to the original input data.

All floating-point computations need to be consistent.

In particular, make sure that different calls of the same function with the “same”
input will yield exactly the same output. E.g., when computing 3 × 3 determinants
to determine the orientation of three points p, q, r , the following identities are a
must even on a floating-point arithmetic:

det(p, q, r) = det(q, r , p) = det(r , p, q)

= − det(q, p, r) = − det(p, r , q) = − det(r , q, p).

Do not resort to multiple precision thresholds! At most two thresholds: One to
avoid divisions by zero, and possibly another threshold to catch “nearly zero”
numbers.

Epsilon-based comparisons need to be relative to the absolute values of the
numbers to be compared, or the input has to be scaled (by performing shifts!) to
fit into the unit square/cube prior to the actual computation.

Use iterations as back-up for analytical solutions to equations. If at all possible,
use methods that bracket the solution sought!
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Improving the Reliability of FP-Calculations

Take a close look at your calculations: Different terms might be arithmetically
identical, but their numerical behavior may be substantially different, and one
term may be far better than the other!

E.g., compute a finite series by starting with the smallest rather than with the
largest summand:

1 +
1
2
+ . . .+

1
1000000

≈ 14.3927267228649889

1
1000000

+ . . .+
1
2
+ 1 ≈ 14.3927267228657723

Mathematica: ≈ 14.39272672286572363138. . .
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Improving the Reliability of FP-Calculations: Quadratic Equations

Take a close look at your calculations: Different terms might be arithmetically
identical, but their numerical behavior may be substantially different, and one
term may be far better than the other!

Mathematics tells us that the solutions of the quadratic equation
ax2 + bx + c = 0 are given by

x1,2 :=
−b ±

√
b2 − 4ac

2a
.

Unfortunately, using this formula means begging for troubles if |a · c| is small
compared to |b|, since the subtraction of

√
b2 − 4ac from b may cause serious

cancellation.

Better: Let

∆ := −1
2
(b + sign(b)

√
b2 − 4ac).

Then the roots are obtained more reliably as

x1 :=
∆

a
and x2 :=

c
∆
. (This is a consquence of Viète’s formulas.)
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Improving the Reliability of FP-Calculations: Quadratic Equations

E.g., consider the equation x2 + 104x + 10−9 = 0.

The classical formula yields

x1 ≈ −10000.000000000000000000000000000,

x2 ≈ −0.0000000000000000000000000000000.

The refined approach yields

x1 ≈ −10000.000000000000000000000000000,

x2 ≈ −0.0000000000001000000000000000030.

According to Mathematica, the true solution is

x1 ≈ −9999.9999999999999000000000000000,

x2 ≈ −0.0000000000001000000000000000010.
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7 Floating-Point Arithmetic and Numerical Mathematics
Floating-Point Computations
Iterative Algorithms for Solving Non-Linear Equations

Basics of Iterative Algorithms
Bisection
Regula Falsi
Newton-Raphson Method
Secant Method

Iterative Algorithms for Solving Linear Equations
Numerical Integration
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Iterative Algorithms for Solving Non-Linear Equations

We are interested in solving the equation f (x) = 0, for a function f : R → R. This
means finding all x ∈ R for which f (x) = 0.

Explicit (algebraic) root-finding is possible for polynomial equations of degree
less than five.

For other types of non-linear equations, dozens of iterative methods have been
proposed.

Two basic schemes:
Bracketing: e.g., bisection, regula falsi;
Polishing: e.g., Newton-Raphson method, secant method.

Extensions to vector-valued functions are possible.
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Basics of Iterative Root Finding

We attempt to compute a sequence (xk )
∞
k=0, depending on some initial value(s)

x0 resp. x0, x1 and on f and its derivatives.

Ideally, limk→∞ xk = x .

Question: What is a suitable initial value x0?
Answer: Whether or not x0 is suitable depends on f and on the iteration method
used.

Question: Is the iteration guaranteed to converge?
Answer: Unfortunately, no – unless specific criteria are fulfilled.

Question: Is the iteration guaranteed to find all roots?
Answer: At best, an iteration method will find one root at a time.

Question: How quickly will the iteration converge?
Answer: This depends on the convergence rate of the iteration method, see later.

General advice

Do not use iteration methods on a function you do not know much about. In particular,
do not use an iteration method to test whether a root exists in the neighborhood of
some initial value.
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Basics of Iterative Root Finding

How can we state how rapidly a sequence (xk )
∞
k=0 converges to the root x?

Definition 292 (Convergence rate, Dt.: Konvergenzrate)

Let (xk )
∞
k=0 be a sequence that is used to approximate a root x , and let ek := x − xk

be the error of the k -th approximation xk of x . The convergence rate of an iteration
method is the largest exponent p such that

lim
k→∞

|ek |
|ek−1|p

= c,

for a suitable asymptotic error constant c ∈ R+.
If p = 1 then the convergence is called linear.
If p = 2 then the convergence is called quadratic.
If 1 < p < 2 then the convergence is called super-linear.

Linear convergence means that the error is reduced by a constant factor per
iteration, i.e., that that the number of correct digits increases by one after a
constant number of iterations.

Quadratic convergence means that the number of correct digits roughly doubles
with each iteration.
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UNIVERSITÄT SALZBURG

Basics of Iterative Root Finding

How can we state how rapidly a sequence (xk )
∞
k=0 converges to the root x?

Definition 292 (Convergence rate, Dt.: Konvergenzrate)

Let (xk )
∞
k=0 be a sequence that is used to approximate a root x , and let ek := x − xk

be the error of the k -th approximation xk of x . The convergence rate of an iteration
method is the largest exponent p such that

lim
k→∞

|ek |
|ek−1|p

= c,

for a suitable asymptotic error constant c ∈ R+.

If p = 1 then the convergence is called linear.
If p = 2 then the convergence is called quadratic.
If 1 < p < 2 then the convergence is called super-linear.

Linear convergence means that the error is reduced by a constant factor per
iteration, i.e., that that the number of correct digits increases by one after a
constant number of iterations.

Quadratic convergence means that the number of correct digits roughly doubles
with each iteration.

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 362/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Bisection

Consider a continuous function f : R → R, and assume that for a, b ∈ R you know
sign(f (a)) = − sign(f (b)), with a < b and f (a) · f (b) ̸= 0.

Intermediate Value Theorem: Since we have opposite signs for f at a, b, and f is
continuous, we conclude that f has at least one root x in the interval [a, b].

By checking the sign of f ( a+b
2 ) and appropriately replacing a or b by a+b

2 , this
interval is halved at each step of the iteration:

if sign(f (
a + b

2
))


= 0 then x := a+b

2 , stop;
= sign(f (a)) then a := a+b

2 ;
= sign(f (b)) then b := a+b

2 .

Since bisection traps a root, it is guaranteed to converge. However, it needs at
least three iterations to achieve one additional significant digit of the root!

Caveat

Although several roots might exist within [a, b], only one root will be found.

Root-bracketing is not feasible for finding even-multiplicity roots.
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Regula Falsi

Aka “false position method” in some English literature.

Rather than blindly testing c := a+b
2 , one could also compute the x-intercept of

the secant through (a, f (a)) and (b, f (b)):

c := b − f (b)(b − a)
f (b)− f (a)

.

Now evaluate sign(f (c)), and keep either a or b, just as with bisection.

The regula falsi method shares with bisection the advantage of trapping a root
and, thus, of always converging.

However, it tends to converge faster than the bisection method if a and b are
close together.

This basic scheme can be improved further to achieve super-linear convergence;
e.g., Brent-Dekker method or Illinois method.

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 364/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Newton-Raphson Method

Suppose that f and f ′ are continuous near a root x of f , and that x0 is close to x .
The Newton-Raphson method is based on the approximation of a function f by
the straight-line tangent at (xk , f (xk )):

y = f (xk ) + f ′(xk )(x − xk ).

An estimate xk+1 for the root is obtained by setting y := 0 and solving for x :

xk+1 := xk − f (xk )

f ′(xk )
.

If f ′(x) is non-zero and x0 sufficiently close to the actual root x then the
Newton-Raphson method exhibits a quadratic convergence rate.
That is, near a root the number of significant digits approximately doubles with
each iteration.
If the root is multiple then the rate of convergence may decrease to linear.

Caveat

The Newton-Raphson method may be unstable near a horizontal asymptote or a
local minimum, and might even diverge.

Global convergence is not guaranteed even for “nice” functions!

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 365/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Secant Method

If the derivative f ′(xk ) is too difficult to compute then the tangent may be
replaced by the secant through two points (xk−1, f (xk−1)) and (xk , f (xk )):

xk+1 = xk − f (xk )(xk − xk−1)

f (xk )− f (xk−1)
.

This yields a simplification of the Newton-Raphson method which is known as
Secant method.

The rate of convergence is super-linear, and, thus, slower than for the
Newton-Raphson method.

Note that two initial values x0, x1 are needed.
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7 Floating-Point Arithmetic and Numerical Mathematics
Floating-Point Computations
Iterative Algorithms for Solving Non-Linear Equations
Iterative Algorithms for Solving Linear Equations

Avoiding Gaussian Elimination
Jacobi Iteration
Gauss-Seidel Iteration

Numerical Integration
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Iterative Algorithms for Solving Linear Equations

Recall that finding the exact solution x of the system of linear equations Ax = b
requires O(n3) time for an n × n matrix A.

A direct (and exact) solution turns out to be a waste of time if n goes into the
thousands or millions and if A is sparse. In that case, iterative methods may be
much faster than direct methods.

Suppose that we know the exact solution: x .

If we write x as x = x ′ +∆x then we get

A∆x = Ax − Ax ′ = b − Ax ′.

Interpreting this equation as basis for an iterative formula x (k+1) = x (k) +∆x
yields

A(x (k+1) − x (k)) = b − Ax (k).

So far, we would have gained little, as we would still have to solve for x (k+1) . . .

Bold idea: Replace A on the left-hand side of this equation by an easily invertible
matrix B that is “close to” A.
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Iterative Algorithms for Solving Linear Equations

We get

B(x (k+1) − x (k)) = b − Ax (k),

or

Bx (k+1) = b − (A − B)x (k).

One can formulate conditions under which the solution obtained by this iterative
scheme is guaranteed to converge to the exact solution of Ax = b.

Typical application in graphics: Iterative solution of a radiosity equation.

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 369/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Jacobi Iteration

Assume that all diagonal elements of A are non-zero, and let B be the diagonal
matrix that contains all diagonal elements of A.

Applying the iteration

Bx (k+1) = b − (A − B)x (k).

is equivalent to

aii x (k+1)
i = bi −

n∑
j=1,j ̸=i

aij x (k)
j and, thus, x (k+1)

i =
1
aii

bi −
n∑

j=1,j ̸=i

aij x (k)
j

 .

If

|aii | >
n∑

j=1,j ̸=i

|aij |,

i.e., if A is strictly diagonally dominant then this so-called Jacobi iteration is
guaranteed to converge. (Different and less stringent conditions do also suffice.)
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UNIVERSITÄT SALZBURG

Gauss-Seidel Iteration

Gauss-Seidel iteration is a modification of Jacobi iteration that can converge
faster in some cases.

Basic idea: Use the most up-to-date information available.

If x (k+1)
1 , x (k+1)

2 , . . . , x (k+1)
i−1 are already known, then these new values can be used

for the computation of x (k+1)
i :

aiix
(k+1)
i = bi −

i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j .

Again, convergence is guaranteed if A is strictly diagonally dominant.

Tends to converge faster than Jacobi iteration, but is significantly more difficult to
parallelize.
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7 Floating-Point Arithmetic and Numerical Mathematics
Floating-Point Computations
Iterative Algorithms for Solving Non-Linear Equations
Iterative Algorithms for Solving Linear Equations
Numerical Integration

Integration Rules
Multi-dimensional Integration and Monte-Carlo Integration
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Numerical Integration

Suppose we want to compute an integral

I =
∫ b

a
f (x) dx .

The best way to compute this integral would be to solve it analytically, and get

I =
∫ b

a
f (x) dx = F (b)− F (a) , where F ′(x) = f (x) .

However, there are many functions that cannot be integrated analytically. Thus,
methods for approximating the integral through quadrature rules of the form

Î =
n∑

i=1

ωi f (xi)

have been devised, which is essentially a weighted sum of samples of the
function f at various points xi using weights ωi .

The many different quadrature rules can be distinguished by their sampling
patterns and weights.
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Midpoint Rule for Numerical Integration

We divide the interval [a, b] into a fixed number n of subintervals, each of size
h = (b − a)/n.

We then choose one sample point at the midpoint of each subinterval:

Î = h
n∑

i=1

f (a + (i − 1
2
)h)

= h
[
f (a +

h
2
) + f (a +

3h
2
) + · · ·+ f (b − h

2
)

]
.

The Midpoint Rule is exact for constant or linear functions. Otherwise, its error is
bounded by O(n−2), provided that f has at least two continuous derivatives on
[a, b].

h

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 374/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG
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Trapezoidal Rule for Numerical Integration

The trapezoidal rule is similar to the midpoint rule, except that we sample the
function at the ends of each subinterval, and compute the area of a trapezoid for
each subinterval.

Î =
n∑

i=1

h
2
[f (a + (i − 1)h) + f (a + ih)]

= h
[

1
2

f (a) + f (a + h) + f (a + 2h) + · · ·+ f (b − h) +
1
2

f (b)
]
.

For the trapezoid rule, the error is also bounded by O(n−2).

h
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Simpson’s Rule for Numerical Integration

Simpson’s rule is similar to the trapezoidal rule, except that we compute the area
under a quadratic polynomial approximation (instead of a linear approximation for
the trapezoid). The equation is:

Î = h
[

1
3

f (a) +
4
3

f (a + h) +
2
3

f (a + 2h) +
4
3

f (a + 3h) +
2
3

f (a + 4h)+

· · ·+ 4
3

f (b − h) +
1
3

f (b)
]
.

Simpson’s rule is exact for polynomial functions up to cubics. The error can be
bounded by O(n−4).

It converges very quickly if f has a continuous fourth derivative.

There are higher-order rules that can achieve even faster convergence, but
require the function to be even smoother — a vary rare event in computer
graphics!
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UNIVERSITÄT SALZBURG

Multi-Dimensional Integration

A common way to extend a 1D quadrature rule to higher dimensions is to use a
tensor product rule. These rules have the form

Î =
n∑

i1=1

n∑
i2=1

· · ·
n∑

is=1

ωi1ωi2 · · ·ωis f (xi1 , xi2 , . . . , xis ) ,

where s is the dimension, and the ωik and xik are weights and sample locations
for a given one-dimensional quadrature rule.

Thus, if we start with an n-point quadrature rule in 1D, we need N = nd sample
points for a d-dimensional integral.

In terms of the total number N of samples the convergence is only O(N−r/d ) if
the 1D rule has a convergence rate of O(n−r ).

If we throw in a discontinuity in f then things get even worse!
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Monte Carlo Integration

The basic Monte Carlo method is∫ b

a
f (x) dx ≈ b − a

n

n∑
i=1

f (Xi)

where the points Xi are chosen independently and uniformly at random within the
interval [a, b].

This method has a convergence rate of O(n−1/2), regardless of the smoothness
of the function f .

Note that the convergence rate does not deteriorate in higher dimensions, and
the number of samples needed does not grow astronomically.

This is particularly useful in graphics, where we often need to calculate
multi-dimensional integrals of discontinuous functions, for which Newton-Cotes
rules do not work well. (E.g., in distributed ray tracing.)
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UNIVERSITÄT SALZBURG

Monte Carlo Integration

The basic Monte Carlo method is∫ b

a
f (x) dx ≈ b − a

n

n∑
i=1

f (Xi)

where the points Xi are chosen independently and uniformly at random within the
interval [a, b].

This method has a convergence rate of O(n−1/2), regardless of the smoothness
of the function f .

Note that the convergence rate does not deteriorate in higher dimensions, and
the number of samples needed does not grow astronomically.

This is particularly useful in graphics, where we often need to calculate
multi-dimensional integrals of discontinuous functions, for which Newton-Cotes
rules do not work well. (E.g., in distributed ray tracing.)

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 378/379



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

The End!

I hope that you enjoyed this course, and I wish you all the best for your future studies.

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

© M. Held (Univ. Salzburg) Geometrisches Rechnen (WS 2024/25) 379/379


