PS Geometric Modeling: Homework Assignment Sheet 1 for 2025-03-21

Assignment 1.1 Solve the following equation for $x \in \mathbb{R}$:

$$\frac{x+1}{|2x-3|} = x+2$$

Assignment 1.2 Consider $f, g : \mathbb{N} \to \mathbb{R}$ with $f(n) := \log n + 2n^2 + 2n + 4$ and $g(n) := n^2 + \sqrt{n}$. Which of the following claims is correct?

a) $f \in O(g)$, b) $f \in \Theta(g)$, c) $f \in \Omega(g)$, d) $f \in o(g)$

Assignment 1.3 For $g: \mathbb{N} \to \mathbb{R}^+$ we define

$$O(g) := \{ f : \mathbb{N} \to \mathbb{R}^+ \mid \exists n_0 \in \mathbb{N} \ \exists c \in \mathbb{R}^+ \ \forall n > n_0 : f(n) \leqslant c g(n) \}$$

and

$$U(g) := \left\{ f: \mathbb{N} \to \mathbb{R}^+ \mid \exists c \in \mathbb{R}_0^+ \quad \lim_{n \to \infty} \frac{f(n)}{g(n)} = c \right\}.$$

Which set-theoretic relation holds between O(g) and U(g)?

Assignment 1.4 Use induction to prove

$$\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

for all $n \in \mathbb{N}_0$. Please make sure to formulate a clean and mathematically sound proof! Assignment 1.5 We define $s \colon \mathbb{N} \to \mathbb{Q}$ as follows

$$s_n := \begin{cases} \frac{1}{2} \left(s_{n-1} + \frac{5}{s_{n-1}} \right) & \text{if } n \ge 2, \\ 5 & \text{if } n = 1. \end{cases}$$

Your task is to determine $\min\{s_n : n \in \mathbb{N}\}\$ and $\inf\{s_n : n \in \mathbb{N}\}$.

PS Geometric Modeling: Homework Assignment Sheet 2 for 2025-03-28

Assignment 2.1 Use induction to prove that

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

for all $n \in \mathbb{N}_0$. Please make sure to formulate a clean and mathematically sound proof!

Assignment 2.2 In how many zeros does 1000! end? (You should analyse 1000! and come up with a counting argument without determining the exact value of 1000!; please do not simply use Mathematica or a similar tool to compute it.)

Assignment 2.3 Prove that

$$\sum_{k=0}^{\lfloor n/2 \rfloor - 1} \binom{n}{2k+1} = 2^{n-1} \quad \text{and} \quad \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k} = 2^{n-1}$$

for all $n \in \mathbb{N}$.

Assignment 2.4 Somebody claims that 1 and 4 are roots of the polynomial $p \in \mathbb{R}[x]$, with $p := x^5 - 10x^4 + 35x^3 - 50x^2 + 24x$. Verify this claim and compute the other roots of p. (You can either divide p appropriately, or resort to Vieta's rule and set up appropriate equations to obtain the coefficients of the remainder.)

Assignment 2.5 Prove explicitly: If ν_1, \ldots, ν_n form a basis of the vector space V over \mathbb{R} , then for all $\nu \in V$ exist uniquely determined $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ such that $\nu = \lambda_1 \nu_1 + \lambda_2 \nu_2 + \cdots + \lambda_n \nu_n$.

PS Geometric Modeling: Homework Assignment Sheet 3 for 2025-04-04

Assignment 3.1 Compute $f_x(0,0)$ for the function $f: R \times R \to \mathbb{R}$, with

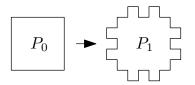
$$f(x,y) := \begin{cases} (x^2 + y^2) \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Assignment 3.2 Prove that $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ with

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

has partial derivatives on all of \mathbb{R}^2 , can be differentiated on $\mathbb{R}^2 \setminus \{(0,0)\}$, but is not continuous at (0,0).

Assignment 3.3 Let P_0 be a square of edge length 1. Now suppose that we generate a closed polygon P_1 by adding two small squares per edge of P_0 such that all edges of P_1 have one fifth of the length of the edges of P_0 , as shown in the figure below. Inductively we generate P_{n+1} from P_n by adding two small squares on all of the edges of P_n (towards the outside of P_n) such that all edges of P_{n+1} have one fifth of the length of the length of the length of the edges of P_n .



What is the perimeter and the area of P_n ? a tight upper bound on the area of P_n as n becomes arbitrarily large?

Assignment 3.4 Consider the infinite family of non-vertical lines (in \mathbb{R}^2) which all go through the point (-1, 0). Every such line is uniquely characterized by specifying a second point (0, t) on the *y*-axis through which it passes. Your task is to parameterize the unit circle (except for the point (-1, 0)) relative to the parameter *t*.

PS Geometric Modeling: Homework Assignment Sheet 4 for 2025-04-11

Assignment 4.1 Find a reparametrization β of $\gamma \colon \mathbb{R}^+_0 \to \mathbb{R}^3$, with $\gamma(t) := (a \cos t, a \sin t, bt)$ for $a, b \in \mathbb{R}^+$, which has unit speed. What is the arc length of β in dependence on the parameter t?

Assignment 4.2 Let $\gamma : I \to \mathbb{R}^3$ be a C^2 curve that is regular of order two, and define T(t), N(t), B(t) as follows:

$T(t) := \frac{\gamma'(t)}{\ \gamma'(t)\ }$	unit tangent;
$N(t) := \frac{T'(t)}{\ T'(t)\ }$	unit (principal) normal;
$B(t) := T(t) \times N(t)$	unit binormal.

Prove that, for all $t \in I$,

- N(t) is normal to T(t), and
- B(t) is a unit vector.

Assignment 4.3 Let $\gamma : I \to \mathbb{R}^3$ be a C^3 -curve at unit speed that is of order two. Prove that $\|\gamma'(t) \times \gamma''(t)\| = \|\gamma''(t)\|$ for all $t \in I$.

Assignment 4.4 Find parametrizations of two curves that join in a C^{1} - and curvature-continuous fashion but that are not C^{2} -continuous.

Assignment 4.5 Determine the equation of the plane that is tangent to the graph (surface) of $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, with $f(x, y) := e^{-x^2 - y^2}$, for x := 1 and y := -1.

PS Geometric Modeling: Homework Assignment Sheet 5 for 2025-05-09

Assignment 5.1 Prove directly — without resorting to (the proofs of) Lem. 97, Lem. 98 or Thm. 99! — that $B_{0,2}(x)$, $B_{1,2}(x)$ and $B_{2,2}(x)$ are linearly independent.

Assignment 5.2 Let $n \in \mathbb{N}$ and $k \in \mathbb{N}_0$ with $k \leq n$ be arbitrary but fixed. Prove that $B_{k,n}(x)$ has one global maximum within [0, 1], which occurs for $x := \frac{k}{n}$.

Assignment 5.3 Compute the second derivative of $B_{1,2}(x) + 2B_{2,2}(x)$. (You are welcome to use the formula stated in Cor. 96 for $B'_{k,n}(x)$, but you shall not use the formula for $B''_{k,n}(x)$.)

Assignment 5.4 Let p_0, p_1, p_2 be the control points of a quadratic Bézier curve \mathcal{B} . Let M be the mid-point of p_0 and p_2 . Prove that $\mathcal{B}(1/2)$ lies on the line through M and p_1 .

Assignment 5.5 Let p_0, p_1, \ldots, p_n be a set of control points, and let \mathcal{B} be the degree-*n* Bézier curve that is defined by p_0, p_1, \ldots, p_n . Furthermore, let \mathcal{B}^* and \mathcal{B}^{**} be the Bézier curves of degree n-1 that are defined by $p_0, p_1, \ldots, p_{n-1}$ and p_1, p_2, \ldots, p_n , respectively. Does the following equality hold for all $t \in [0, 1]$?

 $\mathcal{B}(t) = (1-t)\mathcal{B}^{\star}(t) + t\mathcal{B}^{\star\star}(t)$

PS Geometric Modeling: Homework Assignment Sheet 6 for 2025-05-16

Assignment 6.1 Consider the curve $\alpha \colon \mathbb{R} \to \mathbb{R}^2$ with $\alpha(t) := (3t + 3t^2, 1 + 4t^3)$ and compute a Bézier curve \mathcal{B} such that $\mathcal{B} = \alpha|_{[0,1]}$.

Assignment 6.2 Let $n \in \mathbb{N}$ and consider a Bézier curve $\mathcal{B}: [0,1] \to \mathbb{R}^2$ of degree n with control points p_0, p_1, \ldots, p_n . Suppose that you used de Casteljau's algorithm to evaluate $\mathcal{B}(t^*)$ for some $t^* \in [0,1]$. How could you have used these computations to obtain $\mathcal{B}'(t^*)$ with very little computational overhead?

Assignment 6.3 Consider a cubic Bézier curve $\mathcal{B}: [0,1] \to \mathbb{R}^2$ and determine control points $p_0, p_1, p_2, p_3 \in \mathbb{R}^2$ such that

$$\mathcal{B}(0) = \begin{pmatrix} 0\\ 0 \end{pmatrix} \qquad \mathcal{B}(1/4) = \mathcal{B}(3/4) \qquad \mathcal{B}(1) = \begin{pmatrix} 9\\ 0 \end{pmatrix}$$

and such that it intersects itself at $\mathcal{B}(1/4) = \mathcal{B}(3/4)$ orthogonally. (You are welcome to use Mathematica (or a similar tool) for solving a system of linear equations; it's not necessary, though.)

Assignment 6.4 Prove or disprove the following claim: Given numbers $y_0, v_0, y_1, v_1 \in \mathbb{R}$, there exists a unique polynomial $P \colon \mathbb{R} \to \mathbb{R}$ of degree at most three such that

$$P(0) = y_0$$
 and $P'(0) = v_0$ and $P(1) = y_1$ and $P'(1) = v_1$.

Please try to apply knowledge gained in the lecture rather than brute-force calculations.

Assignment 6.5 Consider the Bézier surface

$$\mathcal{S}(u,v) := \sum_{i=0}^{n} \sum_{j=0}^{m} B_{i,n}(u) B_{j,m}(v) p_{i,j} \quad \text{for } (u,v) \in [0,1] \times [0,1],$$

with the control points $p_{i,j}$ for $0 \leq i \leq n$ and $0 \leq j \leq m$. Resort to the definition of a tangent plane (Def. 74) to verify that the tangent plane in S(1, 1) is spanned by the vectors $p_{n,m} - p_{n-1,m}$ and $p_{n,m} - p_{n,m-1}$.