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Formalia

URL of course (VO+PS): Base-URL/teaching/geom_mod/geom_mod.html.

Lecture times (VO): Friday 910–1110.

Venue (VO): T03, PLUS, FB Informatik, Jakob-Haringer Str. 2.

Lecture times (PS): Friday 745–850.

Venue (PS): T03, PLUS, FB Informatik, Jakob-Haringer Str. 2.

Note — PS is graded according to continuous-assessment mode!
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Electronic Slides and Online Material

In addition to these slides, you are encouraged to consult the WWW home-page of
this lecture:

https://www.cosy.sbg.ac.at/~held/teaching/geom_mod/geom_
mod.html.

In particular, this WWW page contains up-to-date information on the course, plus links
to online notes, slides and (possibly) sample code.
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A Few Words of Warning

I hope that these slides will serve as a practice-minded introduction to various
aspects of geometric modeling. I would like to warn you explicitly not to regard
these slides as the sole source of information on the topics of my course. It may
and will happen that I’ll use the lecture for talking about subtle details that need
not be covered in these slides! In particular, the slides won’t contain all sample
calculations, proofs of theorems, demonstrations of algorithms, or solutions to
problems posed during my lecture. That is, by making these slides available to
you I do not intend to encourage you to attend the lecture on an irregular basis.

See also In Praise of Lectures by T.W. Körner.

A basic knowledge of calculus, linear algebra, discrete mathematics, and
geometric computing, as taught in standard undergraduate CS courses, should
suffice to take this course. It is my sincere intention to start at such a hypothetical
low level of “typical prior undergrad knowledge”. Still, it is obvious that different
educational backgrounds will result in different levels of prior knowledge. Hence,
you might realize that you do already know some items covered in this course,
while you lack a decent understanding of some other items which I seem to
presuppose. In such a case I do expect you to refresh or fill in those missing
items on your own!
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Legal Fine Print and Disclaimer

To the best of my knowledge, these slides do not violate or infringe upon somebody
else’s copyrights. If copyrighted material appears in these slides then it was
considered to be available in a non-profit manner and as an educational tool for
teaching at an academic institution, within the limits of the “fair use” policy. For
copyrighted material we strive to give references to the copyright holders (if known).
Of course, any trademarks mentioned in these slides are properties of their respective
owners.

Please note that these slides are copyrighted. The copyright holder grants you the
right to download and print the slides for your personal use. Any other use, including
instructional use at non-profit academic institutions and re-distribution in electronic or
printed form of significant portions, beyond the limits of “fair use”, requires the explicit
permission of the copyright holder. All rights reserved.

These slides are made available without warrant of any kind, either express or
implied, including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. In no event shall the copyright holder and/or his
respective employer be liable for any special, indirect or consequential damages or
any damages whatsoever resulting from loss of use, data or profits, arising out of or in
connection with the use of information provided in these slides.
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1 Introduction
Motivation
Notation
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Motivation: Evaluation of a Polynomial

Assume that we have an intuitive understanding of polynomials and consider a
polynomial in x of degree n with coefficients a0, a1, . . . , an ∈ R, with an ̸= 0:

p(x) :=
n∑

i=0

aix i = a0 + a1x + a2x2 + . . .+ an−1xn−1 + anxn.

A straightforward polynomial evaluation of p for a given parameter x0 — i.e., the
computation of p(x0) — results in k multiplications for a monomial of degree k ,
plus a total of n additions.

Hence, we would get

0 + 1 + 2 + . . .+ n =
n(n + 1)

2
= O(n2)

multiplications (and n additions).

Can we do better?

Yes, we can: Horner’s Algorithm consumes only n multiplications and n additions
to evaluate a polynomial of degree n!

© M. Held (Univ. Salzburg) Geometric Modeling (SS 2025) 13/297



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Motivation: Smoothness of a Curve

What is a characteristic difference between the three curves shown below?

Answer: The green curve has tangential discontinuities at the vertices, the blue
curve consists of straight-line segments and circular arcs and is
tangent-continuous, while the red curve is a cubic B-spline and is
curvature-continuous.

By the way, when precisely is a geometric object a “curve”?
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Motivation: Tangent to a Curve

What is a parametrization of the tangent line at a point γ(t0) of a curve γ?

γ

γ(t0)

Answer: If γ is differentiable then a parametrization of the tangent line ℓ that
passes through γ(t0) is given by

ℓ(λ) = γ(t0) + λγ′(t0) with λ ∈ R.

How can we obtain γ′(t) for γ : R → Rd ?
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Motivation: Bézier Curve

How can we model a “smooth” polynomial curve in R2 by specifying a sequence
of so-called “control points”. (E.g., the points p0, p1, . . . , p10 in the figure.)

p0

p1

p2 p3

p4
p5

p6

p7

p8p9

p10

One (widely used) option is to generate a Bézier curve. (The figure shows a
Bézier curve of degree 10 with 11 control points.)

What is the degree of a Bézier curve? Which geometric and mathematical
properties do Bézier curves exhibit?
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Motivation: B-Spline Curve

How can we model a (piecewise) polynomial curve in R2 by specifying a
sequence of so-called “control points” such that a modification of one control
point affects only a “small” portion of the curve?

Answer: Use B-spline curves.

Which geometric and mathematical properties do B-spline curves exhibit?
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Motivation: NURBS

Is it possible to parameterize a circular arc by means of a polynomial term? Or by
a rational term?

Yes, this is possible by means of a rational term:(
1 − t2

1 + t2 ,
2t

1 + t2

)
for t ∈ R.

More generally, NURBS can be used to model all types of conics by means of
rational parametrizations.

© M. Held (Univ. Salzburg) Geometric Modeling (SS 2025) 18/297



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Motivation: Modeling Complicated Organic Shapes

How can we model a complicated organic shape such as (humanoid) characters
like Gollum (from “Lord of the Rings”), or Geri (from Pixar’s “Geri’s Game”)?

In theory, spline-based modeling is possible.

In practice, subdivision surfaces are easier to deal with.
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Motivation: Approximation of a Continuous Function

How can we approximate a continuous function by a polynomial?
Answer: We can use a Bernstein approximation.
Sample Bernstein approximations of a continuous function:

f : [0, 1] → R f (x) := sin (πx) +
1
5
sin
(

6πx + πx2
)

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

One can prove that the Bernstein approximation Bn,f converges uniformly to f on
the interval [0, 1] as n increases, for every continuous function f .
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Notation: Numbers and Sets

Numbers:
The set {1, 2, 3, . . .} of natural numbers is denoted by N, with N0 := N ∪ {0}.
The set {2, 3, 5, 7, 11, 13, . . .} ⊂ N of prime numbers is denoted by P.
The (positive and negative) integers are denoted by Z.
Zn := {0, 1, 2, . . . , n − 1} and Z+

n := {1, 2, . . . , n − 1} for n ∈ N.
The reals are denoted by R; the non-negative reals are denoted by R+

0 , and
the positive reals by R+.

Open or closed intervals I ⊂ R are denoted using square brackets: e.g.,
I1 = [a1, b1] or I2 = [a2, b2[, with a1, a2, b1, b2 ∈ R, where the right-hand “[”
indicates that the value b2 is not included in I2.
The set of all elements a ∈ A with property P(a), for some set A and some
predicate P, is denoted by

{x ∈ A : P(x)} or {x : x ∈ A ∧ P(x)}
or

{x ∈ A | P(x)} or {x | x ∈ A ∧ P(x)}.
Quantifiers: The universal quantifier is denoted by ∀, and ∃ denotes the
existential quantifier.
Bold capital letters, such as M, are used for matrices.
The set of all (real) m × n matrices is denoted by Mm×n.
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Notation: Vectors

Points are denoted by letters written in italics: p, q or, occasionally, P,Q. We do
not distinguish between a point and its position vector.

The coordinates of a vector are denoted by using indices (or numbers): e.g.,
v = (vx , vy ) for v ∈ R2, or v = (v1, v2, . . . , vn) for v ∈ Rn.

In order to state v ∈ Rn in vector form we will mix column and row vectors freely
unless a specific form is required, such as for matrix multiplication.

The vector dot product of two vectors v ,w ∈ Rn is denoted by ⟨v ,w⟩. That is,
⟨v ,w⟩ =

∑n
i=1 vi · wi for v ,w ∈ Rn.

The vector cross-product (in R3) is denoted by a cross: v × w .

The length of a vector v is denoted by ∥v∥.

The straight-line segment between the points p and q is denoted by pq.

The supporting line of the points p and q is denoted by ℓ(p, q).
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Notation: Sum and Product

Consider k real numbers a1, a2, . . . , ak ∈ R, together with some m, n ∈ N such
that 1 ≤ m, n ≤ k .

n∑
i=m

ai :=


0 if n < m,

am if n = m,

(
∑n−1

i=m ai) + an if n > m.

n∏
i=m

ai :=


1 if n < m,

am if n = m,

(
∏n−1

i=m ai) · an if n > m.
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2 Mathematics for Geometric Modeling
Extreme Elements and Bounds
Factorial and Binomial Coefficient
Vector Space and Basis
Convexity
Polynomials
Elementary Differential Calculus
Elementary Differential Geometry of Curves
Elementary Differential Geometry of Surfaces
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Extreme Elements

Definition 1 (Least element, Dt.: kleinstes Element, Minimum)

Consider T ⊆ R. An element a ∈ T is a least element (or minimum) of T if
∀b ∈ T \ {a} a ≤ b.

This definition can be extended to an arbitrary partially-ordered set (S,⪯).

Definition 2 (Greatest element, Dt.: größtes Element, Maximum)

Consider T ⊆ R. An element a ∈ T is a greatest element (or maximum) of T if
∀b ∈ T \ {a} b ≤ a.
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Infimum

Definition 3 (Lower bound, Dt.: untere Schranke)

Consider T ⊆ R. The set T is bounded below if there exists an element s ∈ R, a
lower bound of T , such that

∀t ∈ T s ≤ t .

Definition 4 (Greatest lower bound, infimum, Dt.: Infimum, größte untere
Schranke)

Consider T ⊆ R. An element s ∈ R is called greatest lower bound (or infimum of T ),
and denoted by inf(T ), if

∀t ∈ T s ≤ t and ∀s′ ∈ R
(
(∀t ∈ T s′ ≤ t) ⇒ s′ ≤ s

)
.

Mind the difference!

The terms “minimum” and “infimum” have different meanings!
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Infimum and Supremum

Lemma 5

Consider T ⊆ R.
(1) If the infimum of T exists then it is unique.
(2) If the infimum of T belongs to T then it is also the minimum of T .

The definitions of upper bound and supremum are obtained by replacing terms
like “lower” by “upper” in these definitions.
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Factorial and Binomial Coefficient

Definition 6 (Factorial, Dt.: Fakultät, Faktorielle)

For n ∈ N0,

n! :=

{
1 if n ≤ 1,
n · (n − 1)! if n > 1.

Note that 0! = 1 by definition!

Definition 7 (Binomial coefficient, Dt.: Binomialkoeffizient)

Let n ∈ N0 and k ∈ Z. The binomial coefficient
(n

k

)
of n and k is defined as follows:

(
n
k

)
:=



0 if k < 0,

n!
k ! · (n − k)!

if 0 ≤ k ≤ n,

0 if k > n.

The binomial coefficient
(n

k

)
is pronounced as “n choose k ”; Dt.: “n über k ”.
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Factorial and Binomial Coefficient

Lemma 8

Let n ∈ N0 and k ∈ Z.(
n
0

)
=

(
n
n

)
= 1

(
n
1

)
=

(
n

n − 1

)
= n

(
n
k

)
=

(
n

n − k

)

Theorem 9 (Khayyam, Yang Hui, Tartaglia, Pascal)

For n ∈ N and k ∈ Z,(
n
k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
.
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Factorial and Binomial Coefficient

Theorem 10 (Binomial Theorem, Dt.: Binomischer Lehrsatz)

For all n ∈ N0 and a, b ∈ R,

(a + b)n =

(
n
0

)
an +

(
n
1

)
an−1b + · · ·+

(
n
n

)
bn

or, equivalently,

(a + b)n =
n∑

i=0

(
n
i

)
an−ibi .

In particular, for all a, b ∈ R,

(a + b)2 = a2 + 2ab + b2 and (a + b)3 = a3 + 3a2b + 3ab2 + b3.
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Vector Space

Definition 11 (Vector space, Dt.: Vektorraum)

A set V together with an “addition” ⊕ : V × V → V and a scalar “multiplication”
⊙ : R× V → V defines a vector space over R (with addition + and multiplication ·) if
the following conditions hold:

1 (V ,⊕) is an Abelian group.
2 Distributivity: λ⊙ (a ⊕ b) = (λ⊙ a)⊕ (λ⊙ b) ∀λ ∈ R, ∀a, b ∈ V .
3 Distributivity: (λ+ µ)⊙ a = (λ⊙ a)⊕ (µ⊙ a) ∀λ, µ ∈ R, ∀a ∈ V .
4 Associativity: λ⊙ (µ⊙ a) = (λ · µ)⊙ a ∀λ, µ ∈ R, ∀a ∈ V .
5 Neutral element: 1 ⊙ a = a ∀a ∈ V .

In the sequel we use the same symbols + and · for both types of operations.

Furthermore, we postulate the standard precedence rules.

The multiplication sign is often dropped if the meaning is clear within a specific
context: λa rather than λ · a or λ⊙ a.

This definition (and the subsequent ones) can be generalized by replacing R with
an arbitrary field.
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Linear Combination

Definition 12 (Linear combination, Dt.: Linearkombination)

Let V be a vector space over R, and ν1, . . . , νk ∈ V and λ1, . . . , λk ∈ R, for some
k ∈ N. The vector

ν := λ1ν1 + λ2ν2 + · · ·+ λkνk

is called a linear combination of the vectors ν1, . . . , νk .

Definition 13 (Linear hull, Dt.: lineare Hülle)

For S ⊆ V , with V being a vector space over R,

[S] := {λ1ν1 + · · ·+ λkνk : k ∈ N, ν1, . . . , νk ∈ S, λ1, . . . , λk ∈ R}

forms the linear hull of S.

Note: Any linear combination is formed by a finite number of vectors, even if we
are allowed to pick those vectors from an infinite set!
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Linear Independence

Definition 14 (Linear independence, Dt.: lineare Unabhängigkeit)

The vectors ν1, ν2, . . . , νk of a vector space V over R are linearly dependent if there
exist scalars λ1, . . . , λk ∈ R, not all zero, such that

λ1ν1 + λ2ν2 + · · ·+ λkνk = 0.

Otherwise, the vectors ν1, ν2, . . . , νk are linearly independent.

Lemma 15

If the vectors ν1, ν2, . . . , νk of a vector space V over R are linearly independent then

λ1ν1 + λ2ν2 + · · ·+ λkνk = 0 ⇒ λ1 = λ2 = · · · = λk = 0

for all λ1, . . . , λk ∈ R.

Lemma 16

The vectors ν1, ν2, . . . , νk of a vector space V over R are linearly independent if and
only if none of them can be expressed as a linear combination of the other vectors.
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Basis of a Vector Space

Definition 17 (Basis)

The vectors ν1, ν2, . . . , νn ∈ V form a basis of the vector space V over R if
1 ν1, . . . , νn are linearly independent;
2 [{ν1, . . . , νn}] = V .

Definition 18 (Finite dimension)

A vector space V is said to have finite dimension if their exists a basis of V that has
finitely many vectors.

Theorem 19

Every basis of a finite vector space has the same number of basis vectors.

The number of vectors of a basis is called the dimension of the vector space.

Theorem 20

If ν1, . . . , νn form a basis for V over R then for all ν ∈ V exist uniquely determined
λ1, . . . , λn ∈ R such that ν = λ1ν1 + λ2ν2 + · · ·+ λnνn.
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Convex Combination

Definition 21 (Convex combination, Dt.: Konvexkombination)

Let p1, p2, . . . , pk be k points in Rn. A convex combination of p1, . . . , pk is given by

k∑
i=1

λi pi with
k∑

i=1

λi = 1 and ∀(1 ≤ i ≤ k) λi ≥ 0,

where λ1, λ2, . . . , λk ∈ R are scalars.

Hence, a convex combination is a linear combination (of the position vectors) of
the points with the added restrictions

∀(1 ≤ i ≤ k) λi ≥ 0 and
k∑

i=1

λi = 1.
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Convex Hull

Definition 22 (Convex hull, Dt.: konvexe Hülle)

Let p1, p2, . . . , pk be k points in Rn. The convex hull of p1, . . . , pk is the set

{
k∑

i=1

λi pi : λ1, . . . λk ∈ R+
0 and

k∑
i=1

λi = 1}.

For a set S ⊆ Rn (with possibly infinitely many points), the convex hull of S is the set

{
k∑

i=1

λi pi : k ∈ N and p1, p2, . . . , pk ∈ S and λ1, . . . λk ∈ R+
0 and

k∑
i=1

λi = 1}.

The convex hull of S is commonly denoted by CH(S).
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Convexity

Definition 23 (Convex set, Dt.: konvexe Menge)

A set S ⊆ Rn is called convex if for all p, q ∈ S

pq ⊆ S,

where pq denotes the straight-line segment between p and q.

Lemma 24

For S ⊆ Rn, the convex hull CH(S) of S is a convex set.

Lemma 25

For a set S of n points in R2, the convex hull CH(S) is a convex polygon.
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Convexity

Definition 26 (Convex superset)

A set B ⊆ Rn is called a convex superset of a set A ⊆ Rn if

A ⊆ B and B is convex.

Lemma 27

For A ⊆ Rn, the following definitions are equivalent to Def. 22:

CH(A) is the smallest convex superset of A.

CH(A) is the intersection of all convex supersets of A.

The definition of a convex hull (and of convexity) is readily extended from Rn to
other vector spaces over R.
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Polynomials

Definition 28 (Monomial, Dt.: Monom)

For m ∈ N, a (real) monomial in m variables x1, x2, . . . , xm is a product of a coefficient
c ∈ R and powers of the variables xi with exponents ki ∈ N0:

c
m∏

i=1

xki
i = c · xk1

1 · xk2
2 · . . . · xkm

m .

The degree of the monomial is given by
∑m

i=1 ki .

Definition 29 (Polynomial, Dt.: Polynom)

For m ∈ N, a (real) polynomial in m variables x1, x2, . . . , xm is a finite sum of
monomials in x1, x2, . . . , xm.
A polynomial is univariate if m = 1, bivariate if m = 2, and multivariate otherwise.

Definition 30 (Degree, Dt.: Grad)

The degree of a polynomial is the maximum degree of its monomials.

© M. Held (Univ. Salzburg) Geometric Modeling (SS 2025) 45/297



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Polynomials

Hence, a univariate polynomial over R with variable x of degree n is a term of the
form

anxn + an−1xn−1 + · · ·+ a1x + a0,

with coefficients a0, . . . , an ∈ R and an ̸= 0.
It is a convention to drop all monomials whose coefficients are zero.
Univariate polynomials are usually written according to a decreasing order of the
exponents of their monomials.
In that case, the first term is the leading term which indicates the degree of the
polynomial; its coefficient is the leading coefficient.
Univariate polynomials of degree

0 are called constant polynomials,
1 are called linear polynomials,
2 are called quadratic polynomials,
3 are called cubic polynomials,
4 are called quartic polynomials,
5 are called quintic polynomials.

The set of all univariate polynomials with variable x and coefficients out of R is
denoted by R[x ]. Similarly, R[x , y ] for all bivariate polynomials in x and y .
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Polynomial Arithmetic

We define the addition of (univariate) polynomials based on the pairwise addition
of corresponding coefficients:(

n∑
i=0

aix i

)
+

(
n∑

i=0

bix i

)
:=

n∑
i=0

(ai + bi)x i

The multiplication of polynomials is based on the multiplication within R,
distributivity, and the rules

ax = xa and xmxk = xm+k

for all a ∈ R and m, k ∈ N:(
n∑

i=0

aix i

)
·

 m∑
j=0

bjx j

 :=
n∑

i=0

m∑
j=0

(aibj)x i+j

Elementary properties of polynomials: One can prove easily that the addition,
multiplication and composition of two polynomials as well as their derivative and
antiderivative (indefinite integral) again yield a polynomial.

Similarly for multivariate polynomials.
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Polynomials: Vector Space

Theorem 31

The univariate polynomials of R[x ] form an infinite vector space over R. The so-called
power basis of this vector space is given by the monomials 1, x , x2, x3, . . ..

Lemma 32

The monomials 1, x , x2, x3, . . . , xn form a basis of the vector space of polynomials of
degree up to n over R, for all n ∈ N0.

The power basis is not the only meaningful basis of the polynomials of R[x ]. See,
e.g., the Bernstein polynomials that are used to form Bézier curves.
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Polynomial: Evaluation

Consider a polynomial p ∈ R[x ] of degree n with coefficients a0, a1, . . . , an ∈ R,
with an ̸= 0:

p(x) :=
n∑

i=0

aix i = a0 + a1x + a2x2 + . . .+ an−1xn−1 + anxn.

A straightforward polynomial evaluation of p for a given parameter x0 results in k
multiplications for a monomial of degree k , plus a total of n additions.
Hence, we would get

0 + 1 + 2 + . . .+ n =
n(n + 1)

2

multiplications (and n additions).
Can we do better?
Obviously, we can reduce the number of multiplications to O(n log n) by resorting
to exponentiation by squaring:

xn :=

{
x (x2)

n−1
2 if n is odd,

(x2)
n
2 if n is even.

Can we do even better?
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Polynomial: Horner’s Algorithm

Horner’s Algorithm: The idea is to rewrite the polynomial such that

p(x) = a0 + x
(

a1 + x
(
a2 + . . .+ x(an−2 + x(an−1 + x an)) . . .

))
and compute the result h0 := p(x0) as follows:

hn := an

hi := x0 · hi+1 + ai for i := n − 1, n − 2, . . . , 2, 1, 0

1 /** Evaluates a polynomial of degree n at point x
2 * @param p: array of n+1 coefficients
3 * @param n: the degree of the polynomial
4 * @param x: the point of evaluation
5 * @return the evaluation result
6 */
7 double evaluate(double *p, int n, double x)
8 {
9 double h = p[n];

11 for (int i = n - 1; i >= 0; --i)
12 h = x * h + p[i];

14 return h;
15 }
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Polynomial: Horner’s Algorithm

Lemma 33

Horner’s Algorithm consumes n multiplications and n additions to evaluate a
polynomial of degree n.

Caveat

Subtractive cancellation could occur at any time, and there is no easy way to
determine a priori whether and for which data it will indeed occur.

Subtractive cancellation: Subtracting two nearly equal numbers (on a
conventional IEEE-754 floating-point arithmetic) may yield a result with few or no
meaningful digits. Aka: catastrophic cancellation.
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UNIVERSITÄT SALZBURG

Differentiation of Functions of One Variable

Definition 34 (Derivative, Dt.: Ableitung)

Let S ⊆ R be an open set. A (scalar-valued) function f : S → R is differentiable at an
interior point x0 ∈ S if

lim
h→0

f (x0 + h)− f (x0)

h

exists, in which case the limit is called the derivative of f at x0, denoted by f ′(x0).

Definition 35

Let S ⊆ R be an open set. A (scalar-valued) function f : S → R is differentiable on S if
it is differentiable at every point of S.
If f is differentiable on S and f ′ is continuous on S then f is continuously differentiable
on S. In this case f is said to be of differentiability class C1.

By taking one-sided limits one can also consider one-sided derivatives on the
boundary of closed sets S.

By applying differentiation to f ′, a second derivative f ′′ of f can be defined.
Inductively, we obtain f (n) by differentiating f (n−1).
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Differentiation of Functions of One Variable

Definition 36 (Ck , Dt.: k -mal stetig differenzierbar)

Let S ⊆ R be an open set. A function f : S → R that has k successive derivatives is
called k times differentiable. If, in addition, the k -th derivative is continuous, then the
function is said to be of differentiability class Ck .

If the k -th derivative of f exists then the continuity of f (0), f (1), . . . , f (k−1) is implied.

Definition 37 (Smooth, Dt.: glatt)

Let S ⊆ R be an open set. A function f : S → R is called smooth if it has infinitely
many derivatives, denoted by the class C∞.

We have C∞ ⊂ C i ⊂ C j , for all i, j ∈ N0 if i > j .
Notation:

f (0)(x) := f (x) for convenience purposes.
f ′(x) = f (1)(x) = d

dx f (x) = df
dx (x).

f ′′(x) = f (2)(x) = d2

dx2 f (x) = d2f
dx2 (x).

f ′′′(x) = f (3)(x) = d3

dx3 f (x) = d3f
dx3 (x).

f (n)(x) = dn

dxn f (x) = dn f
dxn (x).
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Differentiation of Functions of One Variable

Definition 38

For n ∈ N consider n functions fi : S → R (with 1 ≤ i ≤ n) and define f : S → Rn as

f (x) :=


f1(x)
f2(x)

...
fn(x)

 .

Then the (vector-valued) function f is differentiable at an interior point x0 ∈ S if and
only if fi is differentiable at x0, for all i ∈ {1, 2, . . . , n}. The derivative of f at x0 is given
by

f ′(x0) :=


f ′1(x0)
f ′2(x0)

...
f ′n(x0)

 .

All other definitions related to differentiability carry over from scalar-valued
functions to vector-valued functions of one variable in a natural way.
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Differentiation of Functions of Several Variables

Definition 39 (Partial derivative, Dt.: partielle Ableitung)

Let S ⊆ Rm be an open set. The partial derivative of a (vector-valued) function
f : S → Rn at point (a1, a2, . . . , am) ∈ S with respect to the i-th coordinate xi is defined
as

∂f
∂xi

(a1, a2, . . . , am) := lim
h→0

f (a1, a2, . . . , ai + h, . . . , am)− f (a1, a2, . . . , ai , . . . , am)

h
,

if this limit exists.

Hence, for a partial derivative with respect to xi we simply differentiate f with
respect to xi according to the rules for ordinary differentiation, while regarding all
other variables as constants.

That is, for the purpose of the partial derivative with respect to xi we regard f as
univariate function in xi and apply standard differentiation rules.

Some authors prefer to write fx instead of ∂f
∂x .

We will mix notations as we find it convenient.
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Differentiation of Functions of Several Variables

Note

A function of m variables may have all first-order partial derivatives at a point
(a1, . . . , am) but still need not be continuous at (a1, . . . , am).

Definition 40 (Continuously differentiable, Dt.: stetig differenzierbar)

We say that a function f : S → Rn of m variables is continuously differentiable on an
open subset S of Rm if ∂f

∂x1
, ∂f
∂x2

, . . . , ∂f
∂xm

exist and are continuous on S.
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Curves

Intuitively, a curve in R2 is generated by a continuous motion of a pencil on a
sheet of paper.

A formal mathematical definition is not entirely straightforward, and the term
“curve” is associated with two closely related notions: kinematic and geometric.

In the kinematic setting, a (parametric) curve is a function of one real variable.

In the geometric setting, a curve, also called an arc, is a 1-dimensional subset of
space that is “similar” to a line (albeit it need not be straight).

E.g., the unit circle in the (Euclidean) plane can be defined algebraically as the
zero set of the equation x2 + y2 − 1 = 0, for x , y ∈ R.

Both notions are related:
The image of a parametric curve describes an arc.
Conversely, an arc admits a parametrization.

Note that fairly counter-intuitive curves exist: e.g., space-filling curves like the
Sierpinski curve. (See next slide.)

Similarly, the zero set of an algebraic equation in two variables x , y ∈ R need not
match our intuition of a curve. E.g., x · y = 0 models the coordinate axes of R2.
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Caveat: Sierpinski Curves

Sierpinski curves are a sequence of recursively defined continuous and closed
curves Sn in R2.

Sierpinski curves of orders 1–3 :

Their limit curve, the Sierpinski curve, is a space-filling curve: In the limit, for
n → ∞, it fills the unit square completely!

Its length grows exponentially and unboundedly as n grows.

Other space-filling curves exist: E.g., Peano curve, Hilbert curve.
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Curves in Rn

Definition 41 (Curve, Dt.: Kurve)

Let I ⊆ R be an interval of the real line. A continuous (vector-valued) mapping
γ : I → Rn is called a parametrization of γ(I) or a parametric curve.

Well-known examples of parametric curves include a straight-line segment, a
circular arc, and a helix.

E.g., γ : [0, 1] → R3 with

γ(t) :=

px + t · (qx − px)
py + t · (qy − py )
pz + t · (qz − pz)


maps [0, 1] to a straight-line segment from point p to q.

The interval I is called the domain of γ, and γ(I) is called image (Dt.: Bild, Spur).

Definition 42 (Plane curve, Dt.: ebene Kurve)

For γ : I → Rn, the curve γ(I) is plane if γ(I) ⊆ R2 or if γ(I) lies within a plane. A
non-plane curve is called a skew curve (Dt.: Raumkurve).
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Curves in Rn

Definition 43 (Start and end point)

If I is a closed interval [a, b], for some a, b ∈ R, then we call γ(a) the start point and
γ(b) the end point of the curve γ : I → Rn.

Definition 44 (Closed, Dt.: geschlossen)

A parametrization γ : I → Rn is said to be closed (or a loop) if I is a closed interval
[a, b], for some a, b ∈ R, and if γ(a) = γ(b).

Definition 45 (Simple, Dt.: einfach)

A parametrization γ : I → Rn is said to be simple if γ(t1) = γ(t2) for t1 ̸= t2 ∈ I implies
I = [a, b] for some a, b ∈ R and {t1, t2} = {a, b}.

Hence, if γ : I → Rn is simple then it is injective on int(I): It has no
“self-intersections”.
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Curves in Rn

Many properties of curves can also be stated independently of a specific
parametrization. E.g., we can regard a curve C to be simple if there exists one
parametrization of C that is simple.

In daily math, the standard meaning of a “curve” is the image of the equivalence
class of all paths under a certain equivalence relation. (Roughly, two paths are
equivalent if they are identical up to re-parametrization.)

Hence, the distinction between a curve and (one of) its parametrizations is often
blurred.

For the sake of simplicity, we will not distinguish between a curve C and one of its
parametrizations γ if the meaning is clear.

Similarly, we will frequently call γ a curve.

For instance, we will frequently speak about a closed curve rather than about a
closed parametrization of a curve.
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Convex Curve in R2

Definition 46 (Supporting line, Dt.: Stützgerade)

In R2, a line ℓ is a supporting line of a curve C if
1 ℓ passes through a point of C,
2 C lies completely in one of the two closed half-planes induced by ℓ.

There may be many supporting lines for a curve at a given point.

If a tangent exists at a given point, then it is the unique supporting line at this
point if it does not separate the curve.

Definition 47 (Convex curve)

In R2, a curve is convex if it has a supporting line through each of its points.

Lemma 48

Every convex curve is a subset of the boundary of its own convex hull.

It is straightforward to extend the notion of convexity from R2 to plane curves.
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Jordan Curve in R2

Definition 49 (Jordan curve)

A set C ⊂ R2 (which is not a single point) is called a Jordan curve if there exists a
simple and closed parametrization γ : I → R2 that parameterizes C.

Theorem 50 (Jordan 1887)

Every Jordan curve C partitions R2 \ C into two disjoint open regions, a (bounded)
“interior” region and an (unbounded) “exterior” region, with C as the (topological)
boundary of both of them.

Although this theorem — the so-called Jordan Curve Theorem (Dt.: Jordanscher
Kurvensatz) — seems obvious, a proof is not entirely trivial.

Theorem 51 (Schönflies 1906)

For every Jordan curve C there exists a homeomorphism from the plane to itself that
maps C to the unit sphere S1.

Roughly, a homeomorphism is a bijective continuous stretching and bending of
one space into another space such that the inverse function also is continuous.
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Differentiable Curves

Definition 52 (Cr -parametrization)

If γ : I → Rn is r times continuously differentiable then γ is called a parametric curve
of class Cr , or a Cr -parametrization of γ(I), or simply a Cr -curve.
If I = [a, b], then γ is called a closed Cr -parametrization if γ(k)(a) = γ(k)(b) for all
0 ≤ k ≤ r .

One-sided differentiability is meant at the endpoints of I if I is a closed interval.

Definition 53 (Smooth curve, Dt.: glatte Kurve)

If γ : I → Rn has derivatives of all orders then γ is (the parametrization of) a smooth
curve (or of class C∞).

Definition 54 (Piecewise smooth curve, Dt.: stückweise glatte Kurve)

If I is the union of a finite number of sub-intervals over each of which γ : I → Rn is
smooth then γ is piecewise smooth.

Smoothness depends on the parametrization!
[Weierstrass (1872), Koch (1904)]: There do exist curves which are continuous
everywhere but differentiable nowhere.
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Differentiable Curves

Definition 55 (Regular, Dt.: regulär)

A Cr -curve γ : I → Rn is called regular of order k , for some 0 < k ≤ r , if the vectors
{γ′(t), γ′′(t), . . . , γ(k)(t)} are linearly independent for every t ∈ I.
In particular, γ is called regular if γ′(t) ̸= 0 ∈ Rn for every t ∈ I.

Definition 56 (Singular, Dt.: singulär)

For a C1-curve γ : I → Rn and t0 ∈ I, the point γ(t0) is called a singular point of γ if
γ′(t0) = 0.

Regularity and singularity depend on the parametrization!
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Equivalence of Parametrizations in Rn

Parametrizations of a curve (regarded as a set C ⊂ Rn) need not be unique: Two
different parametrizations γ : I → Rn and β : J → Rn may exist such that
C = γ(I) = β(J).

γ(t) :=
(
cos 2π t
sin 2π t

)

x

y

Figure: γ(t) for t ∈ [0, 0.9]

β(t) :=
(

cos 2π t
− sin 2π t

)

x

y

Figure: β(t) for t ∈ [0, 0.9]
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UNIVERSITÄT SALZBURG

Equivalence of Parametrizations in Rn

Definition 57 (Reparametrization, Dt.: Umparameterisierung)

Let γ : I → Rn and β : J → Rn both be Cr -curves, for some r ∈ N0. We consider γ and
β as equivalent if a function ϕ : I → J exists, such that

β(ϕ(t)) = γ(t) ∀t ∈ I,

and
1 ϕ is continuous, strictly monotonously increasing and bijective,
2 both ϕ and ϕ−1 are r times continuously differentiable.

In this case the parametric curve β is called a reparametrization of γ.

γ
β

φ

I J

γ(I) = β(J)

t

Caveat

There is no universally accepted definition
of a reparametrization! Some authors drop
the monotonicity or the differentiability of ϕ,
while others even require ϕ to be smooth.
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Arc Length

Definition 58 (Decomposition, Dt.: Unterteilung)

Consider γ : I → Rn, with I := [a, b]. A decomposition, D, of the closed interval I is a
sequence of m + 1 numbers t0, t1, t2, . . . , tm, for some m ∈ N, such that

a = t0 < t1 < t2 < · · · < tm = b.

The length LD(γ) of the polygonal chain (γ(t0), γ(t1), γ(t2), . . . , γ(tm)) that
corresponds to the decomposition t0, t1, t2, . . . , tm is given by

LD(γ) :=
m−1∑
j=0

∥γ(tj+1)− γ(tj)∥

= ∥γ(t1)− γ(t0)∥+ ∥γ(t2)− γ(t1)∥+ · · ·+ ∥γ(tm)− γ(tm−1)∥.

We denote the set of all decompositions of [a, b] by D[a, b].
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Arc Length

Definition 59 (Arc length, Dt.: Bogenlänge)

Consider γ : I → Rn, with I := [a, b]. The arc length of γ(I) is given by

sup {LD(γ) : D ∈ D[a, b]} ,

i.e., by the supremum (over all decompositions t0, t1, t2, . . . , tm of I) of the lengths of
the polygonal chains defined by γ(t0), γ(t1), γ(t2), . . . , γ(tm).

Definition 60 (Rectifiable, Dt.: rektifizierbar)

If the arc length of γ : I → Rn is a finite number then γ(I) is called rectifiable.

Lemma 61

The arc length of a curve does not change for equivalent parametrizations.

Sketch of proof : Suppose that γ(t) = β(ϕ(t)) for all t ∈ I, for β : J → Rn. Every
decomposition t0, t1, t2, . . . , tm of I maps to a decomposition ϕ(t0),ϕ(t1),ϕ(t2), . . . , ϕ(tm)
of J such that γ(ti) = β(ϕ(ti)) for all 1 ≤ i ≤ m. Hence, there is a bijection from the
set of decompositions of I to the set of decompositions of J, and it does not matter
which set is used for determining the supremum of all possible chain lengths.
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Arc Length: Non-Rectifiable Curve

Curves exist that are non-rectifiable, i.e., for which there is no upper bound on the
length of their polygonal approximations.

Example of a non-rectifiable curve: The graph of the function defined by f (0) := 0
and f (x) := x sin

( 1
x

)
for 0 < x ≤ a, for some a ∈ R+. It defines a curve

γ(t) :=
(

t
f (t)

)
.

0.5 1.0 1.5 2.0

- 1.0

- 0.5

0.5

1.0

The graph of f (x) := x sin
( 1

x

)
for x ∈ [0, 2]
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Arc Length: Non-Rectifiable Curve

Curves exist that are non-rectifiable, i.e., for which there is no upper bound on the
length of their polygonal approximations.

Example of a non-rectifiable curve: The graph of the function defined by f (0) := 0
and f (x) := x sin

( 1
x

)
for 0 < x ≤ a, for some a ∈ R+. It defines a curve

γ(t) :=
(

t
f (t)

)
.

0.1 0.2 0.3 0.4 0.5

- 0.2

- 0.1

0.1

0.2

The graph of f (x) := x sin
( 1

x

)
for x ∈ [0, 1

2 ]
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Arc Length: Non-Rectifiable Curve

Curves exist that are non-rectifiable, i.e., for which there is no upper bound on the
length of their polygonal approximations.

Example of a non-rectifiable curve: The graph of the function defined by f (0) := 0
and f (x) := x sin

( 1
x

)
for 0 < x ≤ a, for some a ∈ R+. It defines a curve

γ(t) :=
(

t
f (t)

)
.

0.005 0.010 0.015

- 0.006

- 0.004

- 0.002

0.002

0.004

0.006

The graph of f (x) := x sin
( 1

x

)
for x ∈ [0, 1

32 ]
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Arc Length: Non-Rectifiable Curve

Example of a non-rectifiable closed curve: The Koch snowflake [Koch 1904].

Koch snowflake, iteration 2

The length of the curve after the n-th iteration is (4/3)n times the original triangle
perimeter. (Its fractal dimension is log 4/log 3 ≈ 1.261.)
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Arc Length

Theorem 62

If γ : I → Rn is a C1-curve then γ(I) is rectifiable.

Theorem 63

Let γ : I → Rn be a C1 curve, with I := [a, b]. Then the arc length of γ(I) is given by∫ b

a

∥∥γ′(t)
∥∥ dt .

Corollary 64

Let γ : I → Rn be a C1 curve, and [a, b] ⊆ I. Then the arc length of γ([a, b]) is given by∫ b

a

∥∥γ′(t)
∥∥ dt .
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Arc Length: Unit Speed

Definition 65 (Speed, Dt.: Geschwindigkeit)

If γ : I → Rn is a C1-curve then the vector γ′(t) is the velocity vector at parameter t ,
and ∥γ′(t)∥ gives the speed at parameter t , for all t ∈ I.

Definition 66 (Natural parametrization)

A C1-curve γ : I → Rn is called natural (or at unit speed) if ∥γ′(t)∥ = 1 for all t ∈ I.

Theorem 67

If γ : I → Rn, with I := [a, b], is a regular curve then there exists an equivalent
reparametrization γ̃ that has unit speed.
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Tangent Vector

γ

γ(t0) γ(t1)

If γ(t0) is a fixed point on the curve γ, and γ(t1), with t1 > t0, is another point,
then the vector from γ(t0) to γ(t1) approaches the tangent vector to γ at γ(t0) as
the distance between t1 and t0 is decreased.

The infinite line through γ(t0) that is parallel to this vector is known as the tangent
line to the curve γ at point γ(t0).

If we disregard the orientation of the tangent vector then we would like to obtain
the same result for the tangent line by considering a point γ(t1) with t1 < t0.
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Tangent Vector

Definition 68 (Tangent vector)

Let γ : I → Rn be a C1-curve. If γ′(t) ̸= 0 for t ∈ I then γ′(t) forms the tangent vector
at the point γ(t) of γ.

The tangent vector indicates the forward direction of γ relative to increasing
parameter values.
If γ is at unit speed then γ′(t) forms a unit vector.
A parametrization of the tangent line ℓ that passes through γ(t) is given by

ℓ(λ) = γ(t) + λγ′(t) with λ ∈ R.

If

γ(t) =
(

x(t)
y(t)

)
is a curve in R2 then the vector(

−y ′(t)
x ′(t)

)
is normal on the tangent line at γ(t).
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Curvature of Curves in R3

The curvature at a given point of a curve (in R3) is a measure of how quickly the
curve changes direction at that point relative to the speed of the curve.

Definition 69 (Curvature, Dt.: Krümmung)

Let γ : I → R3 be a C2 curve that is regular. The curvature κ(t) of γ at the point γ(t) is
defined as

κ(t) :=
∥γ′(t)× γ′′(t)∥

∥γ′(t)∥3 .

Definition 70 (Radius of curvature, Dt.: Krümmungsradius)

Let γ : I → R3 be a C2 curve that is regular. If κ(t) > 0 then the radius of curvature
ρ(t) at the point γ(t) is defined as

ρ(t) :=
1

κ(t)
.
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Curvature of Curves in R3: Inflection

Definition 71 (Point of inflection, Dt.: Wendepunkt)

Let γ : I → R3 be a C2-curve that is regular. If for all t ∈ I the second derivative γ′′

does not vanish, i.e., if γ′′(t) ̸= 0, then a point γ(t) for which κ(t) = 0 holds is called a
point of inflection of γ.

Lemma 72

Let γ : I → R3 be a C2-curve that is regular such that for all t ∈ I the second derivative
γ′′ does not vanish. Then γ(t) is a point of inflection of γ if and only if γ′(t) and γ′′(t)
are collinear.

Hence, at a point of inflection the radius of curvature is infinite and the circle of
curvature degenerates to the tangent.
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Curvature of Curves in R3

Lemma 73

Let γ : I → R3 be a C2-curve at unit speed that is regular. Then the following simplified
formula holds:

κ(t) =
∥∥γ′′(t)

∥∥
Sketch of proof : Recall that, in general,

κ(t) =
∥γ′(t)× γ′′(t)∥

∥γ′(t)∥3 .
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Curvature of Curves in R2

Lemma 74

Let γ : I → R2 be a C2-curve that is regular, with γ(t) = (x(t), y(t)). Then κ(t) of γ at
the point γ(t) is given as

κ(t) =
|x ′(t)y ′′(t)− x ′′(t)y ′(t)|
((x ′(t))2 + (y ′(t))2)3/2 .

Sketch of proof : Recall that, in general,

κ(t) =
∥γ′(t)× γ′′(t)∥

∥γ′(t)∥3 .

Corollary 75

Let γ : I → R2 be a C2-curve that is regular, with γ(t) = (t , y(t)). Then κ(t) of γ at the
point γ(t) is given as

κ(t) =
|y ′′(t)|

(1 + (y ′(t))2)3/2 .
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Implications of Convexity in the Plane

Lemma 76

Every convex curve is simple.

Lemma 77

A convex Jordan curve bounds a convex area.

Lemma 78

A smooth Jordan curve is convex if and only if its curvature has a consistent sign.

Lemma 79

Every bounded convex curve is rectifiable.
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Parametric Continuity of a Curve

Consider two curves β : [a, b] → Rn and γ : [c, d ] → Rn.

Suppose that β(b) = γ(c) =: p.

We are interested in checking how “smoothly” β and γ join at the joint p.

p
β

γ

Definition 80 (Ck -continuous at joint, Dt.: Ck -stetiger Übergang)

Let β : [a, b] → Rn and γ : [c, d ] → Rn be Ck -curves. If

β(i)(b) = γ(i)(c) for all i ∈ {0, . . . , k}

then β and γ are Ck -continuous at joint p := β(b).

Of course, one-sided derivatives are to be considered in Def. 80.
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Parametric Continuity of a Curve

C0-continuity implies that the end point of one curve is the start point of the
second curve, i.e., they share a common joint.

C1-continuity implies that the speed does not change at p.

C2-continuity implies that the acceleration does not change at p.

Definition 81 (Curvature continuous, Dt.: krümmungsstetig)

Let β : [a, b] → R3 and γ : [c, d ] → R3 be C2-curves, with β(b) = γ(c) =: p. If the
curvatures of β and γ are equal at p then β and γ are said to be curvature continuous
at p.

Caveat

C1-continuity plus curvature continuity need not imply C2-continuity!

Unfortunately, this important fact is missed frequently, and curvature continuity is
often (wrongly) taken as a synonym for C2-continuity . . .
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Problems with Parametric Continuity

Parametric continuity depends on the particular parametrizations of β and γ.
Consider three collinear points p, q, and r which define two straight-line
segments joined at their common endpoint q:

β(t) := p + t(q − p), t ∈ [0, 1]

γ(t) := q + (t − 1)(r − q), t ∈ [1, 2]

p q r
β γ

Of course, β and γ are C0-continuous at q.
However, β′(1) = q − p while γ′(1) = r − q. Thus, in general, β and γ will not be
C1-continuous at q.
C1-continuity at q could be achieved by resorting to arc-length parametrizations
for β and γ:

β(t) := p +
t

∥q − p∥ (q − p), t ∈ [0, ∥q − p∥]

γ(t) := q +
t − ∥q − p∥
∥r − q∥ (r − q), t ∈ [∥q − p∥ , ∥q − p∥+ ∥r − q∥]
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Geometric Continuity

G0-continuity equals C0-continuity: The curves β and γ share a common joint p.

Definition 82 (G1-continuous at joint, Dt.: G1-stetiger Übergang)

Let β : [a, b] → Rn and γ : [c, d ] → Rn be C1-curves, with β(b) = γ(c) =: p. If

0 ̸= β′(b) = λ · γ′(c) for some λ ∈ R+

then β and γ are G1-continuous at joint p.

G1-continuity means that β and γ share the tangent line at p.

Higher-order geometric continuities are a bit tricky to define formally for k ≥ 2.

G2-continuity means that β and γ share the tangent line and also the curvature at
p.

In general, Gk -continuity exists at p if β and γ can be reparameterized such that
they join with Ck -continuity at p.

Ck -continuity implies Gk -continuity.
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Parametric Surface in R3

Definition 83 (Parametric surface)

Let Ω ⊆ R2. A continuous mapping α : Ω → R3 is called a parametrization of α(Ω),
and α(Ω) is called the (parametric) surface parameterized by α.

For instance, every point on the surface of Earth can be described by the
geographic coordinates longitude and latitude.

Parametrizations of a surface (regarded as a set S ⊂ R3) need not be unique:
two different parametrizations α and β may exist such that S = α(Ω1) = β(Ω2).

For simplicity, we will not distinguish between a surface and one of its
parametrizations if the meaning is clear.

α

(u, v)

Ω

α(Ω)
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Sample Parametric Surface: Frustum of a Paraboloid

α : [0, 1]× [0, 2π] → R3

α(u, v) :=

u cos v
u sin v

2u2


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Sample Parametric Surface: Torus

α : [0, 2π]2 → R3

α(u, v) :=

(2 + cos v) cos u
(2 + cos v) sin u

sin v


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Basic Definitions for Parametric Surfaces

Definition 84 (Regular parametrization, Dt.: reguläre (od. zulässige) Param.)

Let Ω ⊆ R2. A continuous mapping α : Ω → R3 in the variables u and v is called a
regular parametrization of α(Ω) if

1 α is (continuously) differentiable on Ω,
2 ∂α

∂u (u0, v0) and ∂α
∂v (u0, v0) are linearly independent for all (u0, v0) in Ω.

Note that ∂α
∂u (u0, v0) and ∂α

∂v (u0, v0) are linearly independent if and only if

∂α

∂u
(u0, v0)×

∂α

∂v
(u0, v0) ̸= 0.

Definition 85 (Singular point, Dt.: singulärer Punkt)

Let Ω ⊆ R2. A point (u0, v0) ∈ Ω is a singular point of a (continuously) differentiable
parametrization α : Ω → R3 if ∂α

∂u (u0, v0) and ∂α
∂v (u0, v0) are linearly dependent.
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Tangent Plane and Normal Vector

Definition 86 (Tangent plane, Dt.: Tangentialebene)

Consider a regular parametrization α : Ω → R3 of a surface S. For (u, v) ∈ Ω, the
tangent plane ε(u, v) of S at α(u, v) is the plane through α(u, v) that is spanned by
the vectors

∂α

∂u
(u, v) and

∂α

∂v
(u, v).

Definition 87 (Normal vector, Dt.: Normalvektor)

Consider a regular parametrization α : Ω → R3 of a surface S. For (u, v) ∈ Ω, the
normal vector N(u, v) of S at α(u, v) is given by

N(u, v) :=
∂α

∂u
(u, v)× ∂α

∂v
(u, v).
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UNIVERSITÄT SALZBURG

Curves on Surfaces

Suppose that Ω = [umin, umax ]× [vmin, vmax ]

If we fix v := v0 ∈ [vmin, vmax ] and let u vary, then α(u, v0) depends on one
parameter; it is called an isoparametric curve or, more specifically, the
u-parameter curve.

Likewise, we can fix u := u0 ∈ [umin, umax ] and let v vary to obtain the
v-parameter curve α(u0, v).

Tangent vectors for the u-parameter and v -parameter curves are computed by
partial derivatives of α with respect to u and v , respectively:

∂α

∂u
(u, v) for v := v0

∂α

∂v
(u, v) for u := u0
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Curves on Surfaces

The standard parametrization of the unit sphere is given by

α(u, v) :=

 cos u · cos v
sin u · cos v

sin v

 with (u, v) ∈ [0, 2π[×[−π

2
,
π

2
].

We get

∂α

∂u
(u, v0) =

 − sin u · cos v0

cos u · cos v0

0


and

∂α

∂v
(u0, v) =

 − cos u0 · sin v
− sin u0 · sin v

cos v

 .

Note that ∂α
∂u (u0, v0) ⊥ ∂α

∂v (u0, v0).

Also, note that ∂α
∂u (u, v0) vanishes for v0 := ±π

2 . Hence, the north and south
poles are singular points of this parametrization.
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Practical Continuity Requirements

Parametric continuity of curves is important for animations: If an object moves
along curve β with constant speed, then there should be no sudden increase in
speed once it moves along γ. Thus, C1 continuity is required.

Roads and railroad tracks have so-called transition curves (such as clothoids) to
lead from a straight segment to a circular segments, or to connect arcs of
different radii, thus achieving (at least) G2 continuity.

The definitions of Ck continuity and Gk continuity can be extended to surface
patches.

Reflections on a surface (e.g., a car body) will not appear smooth unless
G2-continuity is achieved between neighboring patches: “Class-A surface”.

[Image credit: © Autodesk]

© M. Held (Univ. Salzburg) Geometric Modeling (SS 2025) 95/297

https://www.aliasworkbench.com/theoryBuilders/TB6_evaluate2.htm


Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

3 Bézier Curves and Surfaces
Bernstein Basis Polynomials
Bézier Curves
Bézier Surfaces
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Bernstein Basis Polynomials

Definition 88 (Bernstein basis polynomials)

The n + 1 Bernstein basis polynomials of degree n, for n ∈ N0, are defined as

Bk,n(x) :=

(
n
k

)
xk (1 − x)n−k for k ∈ {0, 1, . . . , n}.

We use the convention 00 := 1.

For convenience purposes, we define Bk,n(x) := 0 for k < 0 or k > n.

B0,0(x) = 1.

B0,1(x) = 1 − x and B1,1(x) = x .

B0,2(x) = (1 − x)2 and B1,2(x) = 2x(1 − x) and B2,2(x) = x2.

Introduced by Sergei N. Bernstein in 1911 for a constructive proof of Weierstrass’
Approximation Theorem 198.
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Bernstein Basis Polynomials

All Bernstein basis polynomials of degree n = 0 over the interval [0, 1]:

1

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
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Bernstein Basis Polynomials

All Bernstein basis polynomials of degree n = 1 over the interval [0, 1]:

1 − x x

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
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Bernstein Basis Polynomials

All Bernstein basis polynomials of degree n = 2 over the interval [0, 1]:

(1 − x)2 2x(1 − x) x2

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
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Bernstein Basis Polynomials

All Bernstein basis polynomials of degree n = 3 over the interval [0, 1]:

(1 − x)3 3x(1 − x)2 3x2(1 − x) x3

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
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Bernstein Basis Polynomials

All Bernstein basis polynomials of degree n = 4 over the interval [0, 1]:

(1 − x)4 4x(1 − x)3 6x2(1 − x)2 4x3(1 − x) x4

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
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Bernstein Basis Polynomials

All Bernstein basis polynomials of degree n = 5 over the interval [0, 1]:

(1 − x)5 5x(1 − x)4 10x2(1 − x)3 10x3(1 − x)2 5x4(1 − x) x5

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
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Recursion Formula for Bernstein Basis Polynomials

Lemma 89

For all n ∈ N and k ∈ N0 with k ≤ n, the Bernstein basis polynomial Bk,n(x) of degree
n can be written as the sum of two basis polynomials of degree n − 1:

Bk,n(x) = x · Bk−1,n−1(x) + (1 − x) · Bk,n−1(x)

Proof : Let n ∈ N and k ∈ N0 with k ≤ n be arbitrary but fixed, and recall that

Bk,n(x)
Def. 88
=

(
n
k

)
xk (1 − x)n−k and

(
n
k

)
Thm. 9
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
.

We get

Bk,n(x) =

(
n − 1
k − 1

)
xk (1 − x)n−k +

(
n − 1

k

)
xk (1 − x)n−k

= x

(
n − 1
k − 1

)
xk−1 (1 − x)(n−1)−(k−1) + (1 − x)

(
n − 1

k

)
xk (1 − x)(n−1)−k

= x · Bk−1,n−1(x) + (1 − x) · Bk,n−1(x).
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Properties of Bernstein Basis Polynomials

Lemma 90

For all n ∈ N and k ∈ N0 with k ≤ n, the Bernstein basis polynomial Bk,n−1 can be
written as linear combination of Bernstein basis polynomials of degree n:

Bk,n−1(x) =
n − k

n
Bk,n(x) +

k + 1
n

Bk+1,n(x).

Lemma 91

For all n, k ∈ N0 with k ≤ n, the Bernstein basis polynomial Bk,n is non-negative over
the unit interval:

Bk,n(x) ≥ 0 for all x ∈ [0, 1].

Proof : Recall the definition of the Bernstein basis polynomials:

Bk,n(x)
Def. 88
=

(
n
k

)
(x)︸︷︷︸
≥0

k (1 − x)︸ ︷︷ ︸
≥0

n−k ≥ 0 for all x ∈ [0, 1].
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Properties of Bernstein Basis Polynomials

Lemma 92 (Partition of unity, Dt.: Zerlegung der Eins)

For all n ∈ N0, the n + 1 Bernstein basis polynomials of degree n form a partition of
unity, i.e., they sum up to one:

n∑
k=0

Bk,n(x) = 1 for all x ∈ [0, 1].

Proof : Trivial for n := 0. Now recall the Binomial Theorem 10, for a, b ∈ R and n ∈ N:

(a + b)n =
n∑

k=0

(
n
k

)
ak bn−k

Then the claim is an immediate consequence by setting a := x and b := 1 − x :

1 = (x + (1 − x))n =
n∑

k=0

(
n
k

)
xk (1 − x)n−k =

n∑
k=0

Bk,n(x).
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Properties of Bernstein Basis Polynomials

Lemma 93

For all n ∈ N0 and any set of n + 1 points in R2 with position vectors p0, p1, p2, . . . , pn,
the term

B0,n(t)p0 + B1,n(t)p1 + · · ·+ Bn,n(t)pn

forms a convex combination of these points for all t ∈ [0, 1].

Proof : This is an immediate consequence of Lem. 91 and Lem. 92.

Corollary 94 (Convex hull property)

For all n ∈ N0 and any set of n + 1 points in R2 with position vectors p0, p1, p2, . . . , pn,
the point

B0,n(t)p0 + B1,n(t)p1 + · · ·+ Bn,n(t)pn

lies within CH({p0, p1, p2, . . . , pn}) for all t ∈ [0, 1].

Proof : Recall Def. 22: CH({p0, p1, p2, . . . , pn}) equals the set of all convex
combinations of p0, p1, p2, . . . , pn.
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Derivatives of Bernstein Basis Polynomials

Lemma 95

For n, k ∈ N0 and i ∈ N with i ≤ n, the i-th derivative of Bk,n(x) can be written as a
linear combination of Bernstein basis polynomials of degree n − i :

B(i)
k,n(x) =

n!
(n − i)!

i∑
j=0

(−1)i−j

(
i
j

)
Bk−j,n−i(x)

Corollary 96

For n, k ∈ N0, the first and second derivative of Bk,n(x) are given as follows:

B′
k,n(x) = n

(
Bk−1,n−1(x)− Bk,n−1(x)

)
B′′

k,n(x) = n(n − 1)
(
Bk−2,n−2(x)− 2Bk−1,n−2(x) + Bk,n−2(x)

)
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UNIVERSITÄT SALZBURG

Bernstein Basis Polynomials Form a Basis

Lemma 97

The n + 1 Bernstein basis polynomials B0,n,B1,n, . . . ,Bn,n are linearly independent, for
all n ∈ N0.

Proof : We do a proof by induction.
I.B.: The claim is obviously true for n := 0 and n := 1.
I.H.: Suppose that the claim is true for an arbitrary but fixed n − 1 ∈ N0, i.e., that∑n−1

k=0 λk Bk,n−1(x) = 0 implies λ0 = λ1 = . . . = λn−1 = 0.
I.S.: Suppose that

∑n
k=0 λk Bk,n(x) = 0 for some λ0, λ1, . . . , λn ∈ R. Then we get

0 =
n∑

k=0

λk B′
k,n(x)

Lem. 95
=

n∑
k=0

λk · n · (Bk−1,n−1(x)− Bk,n−1(x))

= n

(
n−1∑
k=0

λk+1Bk,n−1(x)−
n−1∑
k=0

λk Bk,n−1(x)

)

= n
n−1∑
k=0

µk Bk,n−1(x) with µk := λk+1 − λk for 0 ≤ k ≤ n − 1.

The I.H. implies µ0 = µ1 = · · ·µn−1 = 0 and, thus, λ0 = λ1 = · · ·λn, which implies
λ0 = λ1 = · · ·λn = 0. (Recall Partition of Unity, Lem. 92.)
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Bernstein Basis Polynomials Form a Basis

Lemma 98

For all n, i ∈ N0 with i ≤ n, we have

x i =
n∑

k=i

(k
i

)(n
i

)Bk,n(x).

Theorem 99

The Bernstein basis polynomials of degree n form a basis of the vector space of
polynomials of degree up to n over R, for all n ∈ N0.

Proof : This is an immediate consequence of either Lem. 97 or Lem. 98.

© M. Held (Univ. Salzburg) Geometric Modeling (SS 2025) 106/297



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Bézier Curves

Discovered in the late 1950s by Paul de Faget de Casteljau at Citroën and in the
early 1960s by Pierre E. Bézier at Renault, and first published by Bézier in 1962.
(Citroën allowed de Casteljau to publish his results in 1974 for the first time.)

The idea is to specify a curve by using points which control its shape: control
points. The figure shows a Bézier curve of degree 10 with 11 control points.

p0

p1

p2 p3

p4
p5

p6

p7

p8p9

p10

Bézier curves formed the foundations of the UNISURF CAD/CAM system.

TrueType fonts use font descriptions made of composite quadratic Bézier curves;
PostScript, METAFONT, and SVG use composite cubic Bézier curves.
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Bézier Curves

Definition 100 (Bézier curve)

Suppose that we are given n + 1 control points with position vectors p0, p1, . . . , pn in
the plane R2, for n ∈ N. The Bézier curve B : [0, 1] → R2 defined by p0, p1, . . . , pn is
given by

B(t) :=
n∑

i=0

Bi,n(t)pi for t ∈ [0, 1],

where Bi,n(t) :=
(n

i

)
t i(1 − t)n−i is the i-th Bernstein basis polynomial of degree n.

The weighted average of all control points gives a location on the curve relative to
the parameter t . The weights are given by the coefficients Bi,n.

The polygonal chain p0, p1, p2, . . . , pn−1, pn is called the control polygon, and its
individual segments are referred to as legs.

Although not explicitly required, it is generally assumed that the control points are
distinct, except for possibly p0 and pn being identical.

Of course, the same definition and the subsequent math can be applied to
p0, p1, . . . , pn ∈ Rd for some d ∈ N with d > 2.
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Properties of Bézier Curves

Lemma 101

A Bézier curve defined by n + 1 control points is (coordinate-wise) a polynomial of
degree n.

Proof : It is the sum of n + 1 Bernstein basis polynomials of degree n.

Lemma 102

A Bézier curve starts in the first control point and ends in the last control point.

Proof : Recall that

Bi,n(0) =

(
n
i

)
0i (1 − 0)n−i =

{
1 for i = 0,
0 for i > 0.

Hence,

B(0) =
n∑

i=0

Bi,n(0)pi = B0,n(0)p0 = p0.

Similarly for Bi,n(1) and B(1).
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Properties of Bézier Curves

Lemma 103 (Convex hull property)

A Bézier curve lies completely inside the convex hull of its control points.

Proof : This is nothing but a re-formulation of Cor. 94.

Lemma 104 (Variation diminishing property)

If a straight line intersects the control polygon of a Bézier curve k times then it
intersects the actual Bézier curve at most k times.

Lemma 105 (Symmetry property)

The following identity holds for all n ∈ N, all p0, . . . , pn ∈ R2 and all t ∈ [0, 1]:

n∑
i=0

Bi,n(t)pi =
n∑

i=0

Bi,n(1 − t)pn−i .
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Properties of Bézier Curves

Lemma 106 (Affine invariance)

Any Bézier representation is affinely invariant, i.e., given any affine map π, the image
curve π(B) of a Bézier curve B : [0, 1] → R2 with control points p0, p1, . . . , pn has the
control points π(p0), π(p1), . . . , π(pn) over [0, 1].

Proof : Consider an affine map π : R2 → R2. Hence, π(x) = A · x + v , for some 2 × 2
matrix A, and x , v ∈ R2. We get

π(B(t)) = π

(
n∑

i=0

Bi,n(t)pi

)
= A ·

(
n∑

i=0

Bi,n(t)pi

)
+ v

=
n∑

i=0

Bi,n(t)A · pi +
n∑

i=0

Bi,n(t)v =
n∑

i=0

Bi,n(t)(A · pi + v)

=
n∑

i=0

Bi,n(t)π(pi).
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Modifying a Control Point

Suppose that we shift one control point pj to a new location pj + v .

p0

p1

p2 p3

p4

v
p4 + v

p5

p6

p7

p8p9

p10

The corresponding Bézier curve B is transformed to B⋆ as follows:

B⋆(t) =

( j−1∑
i=0

Bi,n(t)pi

)
+ Bj,n(t)(pj + v) +

 n∑
i=j+1

Bi,n(t)pi

 =

=
n∑

i=0

Bi,n(t)pi + Bj,n(t)v = B(t) + Bj,n(t)v

Now recall that Bj,n(t) ̸= 0 for all t with 0 < t < 1. Hence, a modification of just
one control point results in a global change of the entire Bézier curve.
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Evaluation of a Bézier Curve

For 0 < t < 1 we can locate a point q on a line segment pr such that it divides
the line segment into portions of relative length t and 1 − t , i.e., according to the
ratio t : (1 − t).

Of course, q is given by the linear interpolation

q = p + t(r − p) = (1 − t) · p + t · r .

Similarly, we can compute a point on a Bézier curve such that the curve is split
into portions of relative length t and 1 − t .

On every leg pj−1pj of the control polygon we compute a point p1j which
divides it according to the ratio t : (1 − t).
In total we get n new points which define a new polygonal chain with n − 1
legs.
This new polygonal chain can be used to construct another polygonal chain
with n − 2 legs.
This process can be repeated n times, i.e., until we are left with a single
point.
It was proved by de Casteljau that this point corresponds to the point B(t)
sought.
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De Casteljau’s Algorithm

Sample run of de Casteljau’s algorithm for t := 1/4.

The points are indexed in the form i, j , where i denotes the number of the
iteration and j + 1 numbers the leg defined by the control points pi,j and pi,j+1.

p0

p1

p2 p3

p4

p5

p14

p13

p12

p11

p10

p20

p21

p22

p23

p30

p32
p41

p0 =: p00
p1 =: p01
p2 =: p02
p3 =: p03
p4 =: p04
p5 =: p05

p10
p11
p12
p13
p14

p20
p21
p22
p23

p30
p31
p32

p40
p41

p50

p31

p40

p50

The union of these legs pi,j , pi,j+1 is known as de Casteljau net.
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De Casteljau’s Algorithm

Numerically very stable, since only convex combinations are used!

1 /** Evaluates a Bezier curve at parameter t by applying de Casteljau’s algorithm
2 * @param p: array of n+1 control points
3 * @param n: the degree of the Bezier curve
4 * @param t: the parameter
5 * @return the evaluation result
6 */
7 point DeCasteljau(point *p, int n, double t)
8 {
9 for (int i = 1; i <= n; ++i)

10 for (int j = 0; j <= n-i; ++j)
11 p[j] = (1-t) * p[j] + t * p[j+1];

13 return p[0];
14 }

p0 =: p00
p1 =: p01
p2 =: p02
p3 =: p03
p4 =: p04
p5 =: p05

p10
p11
p12
p13
p14

p20
p21
p22
p23

p30
p31
p32

p40
p41

p50
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De Casteljau’s Algorithm: Correctness

The point p10 is obtained as

p10 = (1− t) ·p00 + t ·p01.

Hence, the contribution of p01

to p10 is t · p01.

Since p20 is obtained as

p20 = (1− t) ·p10 + t ·p11,

the contribution of p01 to p20

via p10 is

(1− t)p10 = t(1− t) ·p01.

Similarly, the contribution of
p01 to p20 via p11 is

t(1 − t) · p01.

p0 =: p00
p1 =: p01
p2 =: p02
p3 =: p03
p4 =: p04
p5 =: p05

p10
p11
p12
p13
p14

p20
p21
p22
p23

p30
p31
p32

p40
p41

p50
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De Casteljau’s Algorithm: Correctness

Each path from p0i to pn0 is
constrained to a diamond
shape anchored at p0i and
pn0.

An inductive argument shows
that each path from p0i to pn0

consists of i north-east
arrows, i.e., multiplications by
t , and n − i south-east
arrows, i.e., multiplications by
(1 − t).

Thus, the contribution of p0i

to pn0 is

t i(1 − t)n−i · p0i ,

along each path from p0i to
pn0.

p0 =: p00
p1 =: p01
p2 =: p02
p3 =: p03
p4 =: p04
p5 =: p05

p10
p11
p12
p13
p14

p20
p21
p22
p23

p30
p31
p32

p40
p41

p50
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De Casteljau’s Algorithm: Correctness

How many different paths
exist from p0i to pn0? This is
equivalent to asking “how
many different ways exist to
place i north-east arrows on
a total of n possible
positions?”, and the answer
is given by

(n
i

)
.

Thus, the total contribution of
p0i to pn0, along all paths
from p0i to pn0, is(

n
i

)
· t i(1 − t)n−ip0i .

This is, however, precisely
the weight of p0i , i.e., pi in the
definition of a Bézier curve
(Def. 100).

p0 =: p00
p1 =: p01
p2 =: p02
p3 =: p03
p4 =: p04
p5 =: p05

p10
p11
p12
p13
p14

p20
p21
p22
p23

p30
p31
p32

p40
p41

p50
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Evaluation of a Bézier Curve Using Horner’s Scheme

Horner’s scheme can also be used for evaluating a Bézier curve.
After rewriting B(t) as

B(t) =
n∑

i=0

Bi,n(t)pi =
n∑

i=0

(
n
i

)
t i(1 − t)n−ipi

= (1 − t)n

(
n∑

i=0

(
n
i

)(
t

1 − t

)i

pi

)
,

one evaluates the sum for the value t
1−t , and then multiplies by (1 − t)n.

This method becomes unstable if t is close to one. In this case, one can resort to
Lem. 105, which gives the identity

B(t) = tn

(
n∑

i=0

(
n
i

)(
1 − t

t

)i

pn−i

)
.

In any case, Horner’s scheme tends to be faster but numerically more
problematic than de Casteljau’s algorithm.
[Woźny&Chudy (2019)] explain an algorithm that uses only convex combinations
of the control points and consumes O(n) time.
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Bernstein Polynomials and Polar Forms

Theorem 107

Let n, d ∈ N. For every polynomial function F : R → Rd of degree at most n there
exists exactly one symmetric and multi-affine function f : Rn → Rd such that

1 for all i ∈ {1, 2, . . . , n}, all x1, x2, . . . , xn ∈ R, all k ∈ N, all y1, y2, . . . , yk ∈ R and
all α1, α2, . . . , αk ∈ R with

∑k
j=1 αj = 1

f (x1, . . . , xi−1,
k∑

j=1

αjyj , xi+1, . . . , xn) =
k∑

j=1

αj f (x1, . . . , xi−1, yj , xi+1, . . . , xn)

2 for all i, j ∈ {1, 2, . . . , n}

f (x1, x2, . . . , xi−1, xi , xi+1, . . . , xj−1, xj , xj+1, . . . , xn) =

f (x1, x2, . . . , xi−1, xj , xi+1, . . . , xj−1, xi , xj+1, . . . , xn),

3 for all x ∈ R

F (x) = f (x , x , . . . , x︸ ︷︷ ︸
n times

), i.e., F is the diagonal of f .

The function f is called the polar form (aka “blossom”, Dt.: Polarform) of F .
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Bernstein Polynomials and Polar Forms

Lemma 108

Let n ∈ N and a0, a1, . . . , an ∈ R, and F (x) :=
∑n

i=0 aix i . Then f : Rn → R with

f (x1, x2, . . . , xn) :=
n∑

i=0

ai
1(n
i

)
 ∑

I⊆{1,...,n}
|I|=i

∏
j∈I

xj


is the polar form of F .

ai F (x) f (x1, . . . , xn)

n = 1 a0 := 1, a1 := 0 1 1
a0 := 0, a1 := 1 x x1

n = 2 a0 := 1, a1 := 0, a2 := 0 1 1
a0 := 0, a1 := 1, a2 := 0 x 1

2 (x1 + x2)

a0 := 0, a1 := 0, a2 := 1 x2 x1x2

n = 3 a0 := 1, a1 := 0, a2 := 0, a3 := 0 1 1
a0 := 0, a1 := 1, a2 := 0, a3 := 0 x 1

3 (x1 + x2 + x3)

a0 := 0, a1 := 0, a2 := 1, a3 := 0 x2 1
3 (x1x2 + x1x3 + x2x3)

a0 := 0, a1 := 0, a2 := 0, a3 := 1 x3 x1x2x3
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Bernstein Polynomials and Polar Forms

Let F (x) :=
(

x
1
2 x2

)
. Hence f (x1, x2) =

( 1
2 (x1 + x2)

1
2 x1x2

)
, and we get

f (0, 0) =
(

0
0

)
f (0, 1) =

( 1
2
0

)
= f (1, 0) f (1, 1) =

(
1
1
2

)
.

Furthermore, F (t) = f (t , t), with

F (t) = f (t , t)

= f ((1 − t) · 0 + t · 1, t) = (1 − t) · f (0, t) + t · f (1, t)

= (1 − t)[(1 − t) · f (0, 0) + t · f (0, 1))] + t [(1 − t) · f (1, 0) + t · f (1, 1))]

= (1 − t)2 · f (0, 0) + 2t(1 − t) · f (0, 1) + t2 · f (1, 1)

= B0,2(t)f (0, 0) + B1,2(t)f (0, 1) + B2,2(t)f (1, 1)

= B0,2(t)
(

0
0

)
+ B1,2(t)

( 1
2
0

)
+ B2,2(t)

(
1
1
2

)
.

Hence, there is a close connection between the polar form and the Bernstein
polynomials: f (0, 0), f (0, 1), f (1, 1) form the coefficients (i.e., control points) of F
relative to the Bernstein basis.
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Bernstein Polynomials and Polar Forms

Lemma 109

Every polynomial can be expressed in Bezier form. That is, for every polynomial
P : R → R2 of degree n there exist control points p0, p1, . . . , pn ∈ R2 such that the
Bézier curve defined by them matches P|[0,1].

Sketch of proof : Let f be the polarform of P, and let

pk := f (0, . . . , 0︸ ︷︷ ︸
n−k

, 1, . . . , 1︸ ︷︷ ︸
k

) for k = 0, 1, . . . , n.

Polar forms are useful because they provide a uniform and simple means for
computing values of a polynomial using a variety of representations (Bézier,
B-spline, NURBS, etc.).

For this reason, some authors prefer to introduce Bézier curves in their polar
form.
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Derivatives of a Bézier Curve

Lemma 110

Let B be a Bézier curve of degree n with n + 1 control points p0, p1, . . . , pn. Its first
derivative, which is sometimes called hodograph, is a Bézier curve of degree n − 1,

B′(t) =
n−1∑
i=0

Bi,n−1(t)
(
n(pi+1 − pi)

)
,

whose n control points are given by n(p1 − p0), n(p2 − p1), · · · , n(pn − pn−1).

Proof : Since the control points are constants, computing the derivative of a Bézier
curve is reduced to computing the derivatives of the Bernstein basis polynomials.

B′(t) =
d
dt

(
n∑

i=0

Bi,n(t)pi

)
=

n∑
i=0

B′
i,n(t)pi

Cor. 96
= n

(
n∑

i=0

(
Bi−1,n−1(t)− Bi,n−1(t)

)
pi

)

= n ·

(
n∑

i=1

Bi−1,n−1(t)pi −
n−1∑
i=0

Bi,n−1(t)pi

)

= n ·

(
n−1∑
i=0

Bi,n−1(t)pi+1 −
n−1∑
i=0

Bi,n−1(t)pi

)
=

n−1∑
i=0

Bi,n−1(t)
(
n(pi+1 − pi)

)
© M. Held (Univ. Salzburg) Geometric Modeling (SS 2025) 125/297



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Derivatives of a Bézier Curve

Lemma 111

A Bézier curve is tangent to the control polygon at the endpoints.

Proof : This is readily proved by computing B′(0) and B′(1).

Hence, joining two Bézier curves in a G1-continuous way is easy.

Let p0, p1, . . . , pn and p⋆
0 , p

⋆
1 , . . . , p

⋆
m be the control points of two Bézier curves B

and B⋆. In order to achieve C1-continuity, we need (in addition to pn = p⋆
0 )

B′(1) = (B⋆)′(0) i.e., n(pn − pn−1) = m(p⋆
1 − p⋆

0 ).

This has an interesting consequence for closed Bézier curves with
p0 = B(0) = B(1) = pn:

We get G1-continuity at p0 if p0, p1, pn−1 are collinear.
We get C1-continuity at p0 if p1 − p0 = pn − pn−1.
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Subdivision of a Bézier Curve

One can subdivide a Bézier curve B of degree n into two curves, at a point B(t0)
for a given parameter t0, such that the newly obtained Bézier curves B1 and B2

have their own set of control points and are of degree n each:
First, we use de Casteljau’s algorithm to compute B(t0).
The de Casteljau net can then be used to generate the new control polygons
for B1 and B2.
Note that B1 and B2 join in a G1-continuous way.
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UNIVERSITÄT SALZBURG

Subdivision of a Bézier Curve

Lemma 112

Let p0, p1, . . . , pn be the control points of the Bézier curve B, and let pi,j denote the
control points obtained by de Casteljau’s algorithm for some t0 ∈]0, 1[. We define new
control points as follows:

p⋆
i := pi,0 for i = 0, 1, . . . , n

p⋆⋆
i := pn−i,i for i = 0, 1, . . . , n

Let B⋆ (B⋆⋆, resp.) denote the Bézier curve defined by p⋆
0 , p

⋆
1 , . . . , p

⋆
n

(p⋆⋆
0 , p⋆⋆

1 , . . . , p⋆⋆
n , resp.). Then B⋆ and B⋆⋆ join in a tangent-continuous way at point

p⋆
n = p⋆⋆

0 , and we have

B⋆ = B|[0,t0] and B⋆⋆ = B|[t0,1].

Note: With every subdivision the control polygons get closer to the Bézier curve.
And the approximation is quite fast: For k (uniform recursive) subdivision steps,
the maximum distance ε between the resulting control polygon and the curve is

ε <
c
2k for some positive constant c.
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Degree Elevation of a Bézier Curve

An increase of the number of control points of a Bézier curve increases the
flexibility in designing shapes.

The key goal is to preserve the shape of the curve. (Recall that Bézier curves
change globally if one control point is relocated!)

Of course, adding one control point means increasing the degree of a Bézier
curve by one.

Let p0, p1, . . . , pn be the old control points, and p⋆
0 , p

⋆
1 , . . . , p

⋆
n , p⋆

n+1 be the new
control points, and denote the Bézier curves defined by them by B and B⋆.

How can we guarantee B(t) = B⋆(t) for all t ∈ [0, 1]?

Obviously, we will need

p0 = p⋆
0 and pn = p⋆

n+1

in order to ensure that at least the start and end points of B and B⋆ match.

In the sequel, we will find it convenient to extend the index range of the control
points of B and introduce (arbitrary) points p−1 and pn+1. (Both points will be
multiplied with factors that equal zero, anyway.)
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Degree Elevation of a Bézier Curve

Standard equalities:(
n + 1

i

)
(1 − t) · Bi,n(t) =

(
n + 1

i

)
(1 − t)

(
n
i

)
t i(1 − t)n−i

=

(
n
i

)(
n + 1

i

)
t i(1 − t)n+1−i =

(
n
i

)
Bi,n+1(t)

and(
n + 1
i + 1

)
t · Bi,n(t) =

(
n + 1
i + 1

)
t

(
n
i

)
t i(1 − t)n−i

=

(
n
i

)(
n + 1
i + 1

)
t i+1(1 − t)n−i =

(
n
i

)
Bi+1,n+1(t)

Hence,

(1 − t) · Bi,n(t) =
n + 1 − i

n + 1
Bi,n+1(t) and t · Bi,n(t) =

i + 1
n + 1

Bi+1,n+1(t).
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Degree Elevation of a Bézier Curve

B(t) =
n∑

i=0

Bi,n(t)pi =
(
(1 − t) + t

) n∑
i=0

Bi,n(t)pi

= (1 − t)
n∑

i=0

Bi,n(t)pi + t
n∑

i=0

Bi,n(t)pi =
n∑

i=0

(1 − t) · Bi,n(t)pi +
n∑

i=0

t · Bi,n(t)pi

=
n∑

i=0

n + 1 − i
n + 1

Bi,n+1(t)pi +
n∑

i=0

i + 1
n + 1

Bi+1,n+1(t)pi

=
n+1∑
i=0

n + 1 − i
n + 1

Bi,n+1(t)pi +
n∑

i=−1

i + 1
n + 1

Bi+1,n+1(t)pi

=
n+1∑
i=0

n + 1 − i
n + 1

Bi,n+1(t)pi +
n+1∑
i=0

i
n + 1

Bi,n+1(t)pi−1

=
n+1∑
i=0

Bi,n+1(t)
(

i
n + 1

pi−1 +
n + 1 − i

n + 1
pi

)
=

n+1∑
i=0

Bi,n+1(t)p⋆
i =: B⋆(t)

with

p⋆
i :=

i
n + 1

pi−1 +
n + 1 − i

n + 1
pi , i = 0, . . . , n + 1.
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Degree Elevation of a Bézier Curve

Lemma 113

Let p0, p1, . . . , pn be the control points of the degree-n Bézier curve B. If we use

p⋆
i :=

(
i

n + 1

)
pi−1 +

(
1 − i

n + 1

)
pi for i = 0, 1, · · · , n + 1

as control points for the Bézier curve B⋆ of degree n + 1, then

B(t) = B⋆(t) for all t ∈ [0, 1].
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Degree Elevation of a Bézier Curve

Note that all newly created control points lie on the edges of the previous control
polygon.

Effectively, the corners of the previous control polygon are cut off.

Degree elevation can be used repeatedly, e.g., in order to arrive at the same
degrees for two Bézier curves that join.

As the degree keeps increasing, the control polyon approaches the Bézier curve
and has it as a limiting position.
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Bernstein Basis Polynomials and Matrix Representation

Consider Bernstein basis polynomials of degree three:

B0,3(t) = (1 − t)3 B1,3(t) = 3t(1 − t)2 B2,3(t) = 3t2(1 − t) B3,3(t) = t3

By applying the Binomial Theorem 10, we get B0,3(t) = 1 − 3t + 3t2 − t3.
B03(t)
B13(t)
B23(t)
B33(t)

 =


1 −3 3 −1
0 3 −6 3
0 0 3 −3
0 0 0 1

 ·


1
t
t2

t3


We get

B−1 =


1 1 1 1
0 1

3
2
3 1

0 0 1
3 1

0 0 0 1

 for B :=


1 −3 3 −1
0 3 −6 3
0 0 3 −3
0 0 0 1

 .

Hence, B−1 allows a basis conversion from power basis to Bernstein basis:
1
t
t2

t3

 =


1 1 1 1
0 1

3
2
3 1

0 0 1
3 1

0 0 0 1

 ·


B03(t)
B13(t)
B23(t)
B33(t)


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Matrix Representation of Bézier Curve

Since B(t) =
∑3

i=0 Bi,3(t)pi , we obtain

B(t) =
(
p0 p1 p2 p3

)
·


1 −3 3 −1
0 3 −6 3
0 0 3 −3
0 0 0 1

 ·


1
t
t2

t3


as the matrix representation of a cubic Bézier curve.

This approach can be generalized to representing a degree-n Bézier curve by an
(n + 1)× (n + 1) matrix.
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Application of Matrix Representation

The matrix representation gives a simple way to prove Lemma 106: For a linear
transformation with matrix A, we get

A·B(t) = A·

(p0 p1 p2 p3
)
· B ·


1
t
t2

t3


 =

(
A·
(
p0 p1 p2 p3

) )
·B·


1
t
t2

t3

 .

Derivatives are obtained in a similar way:

B′(t) =
(
p0 p1 p2 p3

)
· B ·


0
1
2t
3t2

 .
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Application of Matrix Representation

Suppose that we want to subdivide B(t) for t := 1/2.
This can be done by defining a new curve B1(t) that is equal to B(t/2), and we get

B1(t) =
(
p0 p1 p2 p3

)
· B ·


1

t/2

(t/2)2

(t/2)3



=
(
p0 p1 p2 p3

)
· B ·


1 0 0 0
0 1/2 0 0
0 0 1/4 0
0 0 0 1/8

 ·


1
t
t2

t3



=
(
p0 p1 p2 p3

)
· B ·


1 0 0 0
0 1/2 0 0
0 0 1/4 0
0 0 0 1/8

 · B−1 · B ·


1
t
t2

t3



=
(
p0 p1 p2 p3

)
·


1 1/2 1/4 1/8

0 1/2 1/2 3/8

0 0 1/4 3/8

0 0 0 1/8

 · B ·


1
t
t2

t3

 .
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Application of Matrix Representation

We conclude that the new control points of B1(t) are given as follows:

(
p∗

0 p∗
1 p∗

2 p∗
3
)
=
(
p0 p1 p2 p3

)
·


1 1/2 1/4 1/8

0 1/2 1/2 3/8

0 0 1/4 3/8

0 0 0 1/8


=
(
p0

1
2 p0 +

1
2 p1

1
4 p0 +

1
2 p1 +

1
4 p2

1
8 p0 +

3
8 p1 +

3
8 p2 +

1
8 p3
)
.

Similarly, the control points for the second half of the curve are obtained by
studying B( 1

2 (1 + t)), yielding( 1
8 p0 +

3
8 p1 +

3
8 p2 +

1
8 p3

1
4 p1 +

1
2 p2 +

1
4 p3

1
2 p2 +

1
2 p3 p3

)
.
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UNIVERSITÄT SALZBURG

From Bézier Curve to Bézier Surface

Consider a cubic Bézier curve with control points p0, p1, p2, p3:

B(u) := B0,3(u)p0 + B1,3(u)p1 + B2,3(u)p2 + B3,3(u)p3.

Rename control points as p0,0, p1,0, p2,0, p3,0:

B(u) = B0,3(u)p0,0 + B1,3(u)p1,0 + B2,3(u)p2,0 + B3,3(u)p3,0.

p0,0

p1,0

p2,0

p3,0
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From Bézier Curve to Bézier Surface

Add four Bézier curves Pi(v) with control points pi,j for 0 ≤ i, j ≤ 3. We get

Pi(v) = B0,3(v)pi,0+B1,3(v)pi,1+B2,3(v)pi,2+B3,3(v)pi,3 and Pi(0) = pi,0 = pi .

For increasing values of 0 ≤ v ≤ 1, consider

S(u, v) := B0,3(u)P0(v) + B1,3(u)P1(v) + B2,3(u)P2(v) + B3,3(u)P3(v).

p0,0

p1,0

p2,0

p3,0

p0,1

p1,1

p2,1

p3,1

p0,2

p1,2
p2,2

p3,2

p0,3

p1,3

p2,3

p3,3
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From Bézier Curve to Bézier Surface

We get

S(u, v) =
3∑

i=0

Bi,3(u)Pi(v) =
3∑

i=0

Bi,3(u)
3∑

j=0

Bj,3(v)pi,j =
3∑

i=0

3∑
j=0

Bi,3(u)Bj,3(v)pi,j .

p0,0

p1,0

p2,0

p3,0

p0,1

p1,1

p2,1

p3,1

p0,2

p1,2
p2,2

p3,2

p0,3

p1,3

p2,3

p3,3
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Bézier Surfaces

Definition 114 (Bézier surface)

Suppose that we are given a set of (n + 1) · (m + 1) control points in R3, with
0 ≤ i ≤ n and 0 ≤ j ≤ m, where the control point on the i-th row and j-th column is
denoted by pi,j . The Bézier surface S : [0, 1]× [0, 1] → R3 defined by pi,j is given by

S(u, v) :=
n∑

i=0

m∑
j=0

Bi,n(u)Bj,m(v)pi,j for (u, v) ∈ [0, 1]× [0, 1],

where Bk,d (x) :=
(d

k

)
xk (1 − x)d−k is the k -th Bernstein basis polynomial of degree d .

Since Bi,n(u) and Bj,m(v) are polynomials of degree n and m, this is called a
Bézier surface of degree (n,m).

The set of control points is called a Bézier net or control net.
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Properties of Bézier Surfaces

Lemma 115

For all n,m ∈ N0 and all 0 ≤ i ≤ n and 0 ≤ j ≤ m, and all (u, v) ∈ [0, 1]× [0, 1], the
term Bi,n(u)Bj,m(v) is non-negative.

Lemma 116 (Partition of unity)

For all m, n ∈ N0, the sum of all Bi,n(u)Bj,m(v) is one:

n∑
i=0

m∑
j=0

Bi,n(u)Bj,m(v) = 1 for all (u, v) ∈ [0, 1]× [0, 1].

Proof : We have for all m, n ∈ N0 and all (u, v) ∈ [0, 1]× [0, 1]

n∑
i=0

m∑
j=0

Bi,n(u)Bj,m(v) =
n∑

i=0

Bi,n(u)

 m∑
j=0

Bj,m(v)

 =
n∑

i=0

Bi,n(u) = 1.
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Properties of Bézier Surfaces

Lemma 117 (Convex hull property)

A Bézier surface lies completely inside the convex hull of its control points.

Proof : Recall that S(u, v) is the linear combination of all its control points with
non-negative coefficients whose sum is one.

Lemma 118

A Bézier surface passes through the four corners p0,0, pn,0, p0,m and pn,m.

Proof : Recall that

Bi,n(0) =

{
1 for i = 0,
0 for i > 0,

and Bj,m(0) =

{
1 for j = 0,
0 for j > 0.

Hence, S(0, 0) = B0,n(0)B0,m(0)p0,0 = p0,0. Similarly for the other corners.

Lemma 119

Applying an affine transformation to the control points results in the same
transformation as obtained by transforming the surface’s equation.

© M. Held (Univ. Salzburg) Geometric Modeling (SS 2025) 145/297



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Isoparametric Curves of Bézier Surfaces

Lemma 120

Consider a Bézier surface S : [0, 1]× [0, 1] → R3 defined by (n + 1) · (m + 1) control
points pi,j , with 0 ≤ i ≤ n and 0 ≤ j ≤ m, and let v0 ∈ [0, 1] be fixed. Then
C : [0, 1] → R3 defined as

C(u) :=
n∑

i=0

m∑
j=0

Bi,n(u)Bj,m(v0)pi,j for u ∈ [0, 1]

is a Bézier curve defined by the n + 1 control points q0, q1, . . . , qn ∈ R3, where

qi :=
m∑

j=0

Bj,m(v0)pi,j for 0 ≤ i ≤ n.

Proof : We have for all u ∈ [0, 1]

C(u) =
n∑

i=0

m∑
j=0

Bi,n(u)Bj,m(v0)pi,j =
n∑

i=0

Bi,n(u)

 m∑
j=0

Bj,m(v0)pi,j

 =
n∑

i=0

Bi,n(u)qi .

Analogously for fixed u0.
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Isoparametric Curves of Bézier Surfaces

Corollary 121

The boundary curves of a Bézier surface are Bézier curves defined by the boundary
points of its control net.

Lemma 122 (Tangency in the corner points)

Consider a Bézier surface S : [0, 1]× [0, 1] → R3 defined by (n + 1) · (m + 1) control
points pi,j , with 0 ≤ i ≤ n and 0 ≤ j ≤ m. The tangent plane at S(0, 0) = p0,0 is
spanned by the vectors p1,0 − p0,0 and p0,1 − p0,0.
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Bézier Surface as Tensor-Product Surface

A Bézier surface is generated by “multiplying” two Bézier curves: tensor product
surface.

Lemma 123

Consider a Bézier surface S : [0, 1]× [0, 1] → R3 defined by (n + 1) · (m + 1) control
points pi,j , with 0 ≤ i ≤ n and 0 ≤ j ≤ m. Then S is a tensor-product surface:

S(u, v) = (B0,n(u),B1,n(u), . . . ,Bn,n(u))·


p0,0 p0,1 · · · p0,m

p1,0 p1,1 · · · p1,m
...

...
. . .

...
pn,0 pn,1 · · · pn,m

·


B0,m(v)
B1,m(v)

...
Bm,m(v)


Proof : Just do the math!

This can be re-written in matrix representation for Bi,n(u) and Bj,m(v).
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Famous Bézier Surface Model: Utah Teapot

The Utah teapot was designed in 1974 by Martin Newell at the Univ. of Utah.

It is a hand-crafted Bézier model of a “Haushaltsteekanne” (“household teapot”)
sold by Friesland Porzellan, at that time part of the German Melitta group.

It has become one of the most iconic models. See, e.g., the "The Six Platonic
Solids" by Arvo&Kirk (1987), showcasing “the newly discovered Teapotahedron”.
It is defined by 306 vertices and 32
Bézier patches.

[Image credits: https://en.
wikipedia.org/wiki/Utah_teapot]
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4 B-Spline Curves and Surfaces
Shortcomings of Bézier Curves
B-Spline Basis Functions
B-Spline Curves
B-Spline Surfaces
Non-Uniform Rational B-Spline Curves and Surfaces
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Shortcomings of Bézier Curves

Modifying the vertex pj of a Bézier curve causes a global change of the entire
curve:

p0

p1

p2 p3

p4

v
p4 + v

p5

p6

p7

p8p9

p10

B⋆(t) = B(t) + Bj,n(t)v

But Bj,n(t) ̸= 0 for all t with 0 < t < 1!
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Shortcomings of Bézier Curves

While it is easy to join two Bézier curves with G1 continuity, achieving C2 or even
higher continuity is quite cumbersome.

Even worse, changing the common end point of two consecutive Bézier curves
destroys G1 continuity.

p0

p1

p2

p3 = p∗
0

p∗
1

p∗
2

p∗
3

p2,p3 = p∗
0,p∗

1 collinear
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Shortcomings of Bézier Curves

While it is easy to join two Bézier curves with G1 continuity, achieving C2 or even
higher continuity is quite cumbersome.

Even worse, changing the common end point of two consecutive Bézier curves
destroys G1 continuity.

p0

p1

p2

p3 = p∗
0

p∗
1

p∗
2

p∗
3
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Shortcomings of Bézier Curves

While it is easy to join two Bézier curves with G1 continuity, achieving C2 or even
higher continuity is quite cumbersome.

This will be easier for B-spline curves. (Depicted are two cubic B-splines.)

p0

p1

p2

p3 = p∗
0

p∗
1

p∗
2

p∗
3
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Shortcomings of Bézier Curves

It is fairly difficult to squeeze a Bézier curve close to a sharp corner of the control
polygon.

Adding additional control vertices hardly helps but increases the degree of the
Bézier curve, which may result in oscillation and cause numerical instability.

three new vertices
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Introduction to B-Splines

Curves consisting of just one segment have several drawbacks:
The number of control points is directly related to the degree.
Often a high polynomial degree is required to satisfy all constraints given.
Interactive shape design is inaccurate or requires high computational costs.

The solution is to use a sequence of polynomial or rational curves to form one
continuous curve: spline.
Historically, the term spline (Dt.: Straklatte) was used for elastic wooden strips in
the shipbuilding industry, which pass through given constrained points called
ducks (Dt.: Molche) such that the strain of the strip is minimized.

ducks

Mathematical splines were introduced by Isaac Jacob Schoenberg in 1946.

Warning

The terminology and the definitions used for B-splines vary from author to author!
Thus, make sure to check carefully the definitions given in textbooks and papers.
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Introduction to B-Splines

Definition 124 (Spline)

A curve C : [a, b] → R2 is called a spline of degree k (and order k + 1), for k ∈ N, if
there exist

m polynomials P1,P2, . . . ,Pm of degree k , for some m ∈ N, and

m + 1 parameters t0, ..., tm ∈ R
such that

1 a = t0 ≤ t1 ≤ . . . ≤ tm−1 ≤ tm = b,
2 C|[ti−1,ti ] = Pi |[ti−1,ti ] for all i ∈ {1, 2, . . . ,m}.

a = t0 t1 t2 t3 t4 t5 = b

C(t)
P1(t)

P2(t)
P3(t)

P4(t)

P5(t)
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Introduction to B-Splines

The numbers t0, ..., tm are called breakpoints or knots.

In general we expect ti < ti+1.

The definition implies

Pi(ti) = Pi+1(ti) for all i ∈ {1, 2, . . . ,m − 1}.

Special case k = 1: We get a polygonal curve.

The polynomials join with some unknown degree of continuity at the breakpoints.
(We have at least C0-continuity.)

Obvious problem: How can we achieve a reasonable degree of continuity?
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Knot Vector

Definition 125 (Knot vector, Dt.: Knotenvektor)

In general, a knot vector is a sequence of non-decreasing real numbers (“knots”).
A finite knot vector is a sequence of m + 1 real numbers τ := (t0, t1, t2, . . . , tm), for
some m ∈ N, such that ti ≤ ti+1 for all 0 ≤ i < m.
An infinite knot vector is an infinite sequence of real numbers τ := (t0, t1, t2, . . .) such
that ti ≤ ti+1 for all i ∈ N0.
A bi-infinite knot vector is a bi-infinite sequence of real numbers
τ := (. . . , t−2, t−1, t0, t1, t2, . . .) such that ti ≤ ti+1 for all i ∈ Z.
The i -th knot span is given by the (half-open) interval [ti , ti+1[⊂ R.

t0 t1 t2 t3 t4

︷︸︸︷2nd knot span

For (bi)infinite knot vectors we assume supi→∞ ti = ∞ and inf i→−∞ ti = −∞.

For some of the subsequent definitions we will find it convenient to deal with
(bi)infinite knot vectors. With some extra care for “boundary conditions” one could
replace all (bi)infinite knot vectors by finite knot vectors.
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Knot Vector

Definition 126 (Multiplicity of a knot, Dt.: Vielfachheit eines Knotens)

Let τ be a finite or (bi)infinite knot vector. If a knot ti appears exactly k > 1 times in τ ,
for a permissible value of i ∈ Z, i.e., if ti−1 < ti = ti+1 = · · · = ti+k−1 < ti+k , then ti is a
multiple knot of multiplicity k . Otherwise, if ti appears only once in τ then ti is a simple
knot.

Definition 127 (Uniform knot vector)

A finite or (bi)infinite knot vector is uniform if there exists c ∈ R+ such that ti+1 − ti = c
for all (permissible) values of i ∈ Z, except for possibly the first and last knots of higher
multiplicity in case of a finite knot vector. Otherwise, the knot vector is non-uniform.
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B-Spline Basis Functions

We define the B-spline basis functions analytically, using the recurrence relation
found independently by de Boor and Mansfield (1972) and Cox (1972).

Definition 128 (B-spline basis function)

Let τ be a finite or (bi)infinite knot vector. For all (permissible) i ∈ Z and k ∈ N0, the
i-th B-spline basis function, Ni,k,τ (t), of degree k (and order k + 1) relative to τ is
defined as,
if k = 0,

Ni,0,τ (t) =
{

1 if ti ≤ t < ti+1,
0 otherwise,

and if k > 0 as

Ni,k,τ (t) =
t − ti

ti+k − ti
Ni,k−1,τ (t) +

ti+k+1 − t
ti+k+1 − ti+1

Ni+1,k−1,τ (t).

In case of multiple knots, indeterminate terms of the form 0
0 are taken as zero!

Alternatively, one can demand ti < ti+k for all (permissible) i ∈ Z.

Aka: Normalized B(asic)-Spline Blending Functions.
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B-Spline Basis Functions

Plugging into the definition yields

Ni,1,τ (t) =
t − ti

ti+1 − ti
Ni,0,τ (t) +

ti+2 − t
ti+2 − ti+1

Ni+1,0,τ (t)

=


0 if t ̸∈ [ti , ti+2[,

t−ti
ti+1−ti

if t ∈ [ti , ti+1[,

ti+2−t
ti+2−ti+1

if t ∈ [ti+1, ti+2[.

The functions Ni,1,τ (t) are called hat functions or chapeau functions. They are
widely used in signal processing and finite-element techniques.

Note that Ni,1,τ (t) is continuous at ti+1.

For a uniform knot vector τ with c := ti+1 − ti this simplifies to

Ni,1,τ (t) =


0 if t ̸∈ [ti , ti+2[,

1
c (t − ti) if t ∈ [ti , ti+1[,

1
c (ti+2 − t) if t ∈ [ti+1, ti+2[.
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B-Spline Basis Functions

Basis functions Ni,k,τ .

1

t0 t1 t2 t3 t4 t5

N1,2

1

t0 t1 t2 t3 t4 t5

N1,1

1

t0 t1 t2 t3 t4 t5

N1,0 Ni,0 is a step function that is 1 over
the knot span [ti , ti+1[

Ni,1 is a piecewise linear function
that is non-zero over two knot spans

[ti , ti+2[ and goes from 0 to 1 and
back

Ni,2 is a piecewise quadratic
function that is non-zero over three

knot spans [ti , ti+3[
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Sample B-Spline Basis Functions

Basis functions of degree 0:

1

t0 t1 t2 t3 t4 t5

1

t0 t1 t2 t3 t4 t5

1

t0 t1 t2 t3 t4 t5

1

t0 t1 t2 t3 t4 t5

1

t0 t1 t2 t3 t4 t5

1

t0 t1 t2 t3 t4 t5

N0,0 N1,0

N2,0 N3,0

N4,0
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Sample B-Spline Basis Functions

Basis functions of degree 1:

1

t0 t1 t2 t3 t4 t5

1

t0 t1 t2 t3 t4 t5

1

t0 t1 t2 t3 t4 t5

1

t0 t1 t2 t3 t4 t5

1

t0 t1 t2 t3 t4 t5

N0,1 N1,1

N2,1 N3,1

© M. Held (Univ. Salzburg) Geometric Modeling (SS 2025) 165/297



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Sample B-Spline Basis Functions

Basis functions of degree 2:

1

t0 t1 t2 t3 t4 t5

1

t0 t1 t2 t3 t4 t5

1

t0 t1 t2 t3 t4 t5

1

t0 t1 t2 t3 t4 t5

N0,2 N1,2

N2,2
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UNIVERSITÄT SALZBURG

Sample B-Spline Basis Functions

Uniform knot vector (0, 1
9 ,

2
9 ,

3
9 ,

4
9 ,

5
9 ,

6
9 ,

7
9 ,

8
9 , 1) with ten knots.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

N0,0,N1,0, . . . ,N8,0

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

N0,2,N1,2, . . . ,N6,2

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

N0,1,N1,1, . . . ,N7,1

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

N0,3,N1,3, . . . ,N5,3
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Sample B-Spline Basis Functions

Clamped uniform knot vector (0, 0, 0, 1
5 ,

2
5 ,

3
5 ,

4
5 , 1, 1, 1) with ten knots.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

N2,0,N3,0, . . . ,N6,0

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

N0,2,N1,2, . . . ,N6,2

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

N1,1,N2,1, . . . ,N5,1

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

N0,3,N1,3, . . . ,N5,3
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Sample B-Spline Basis Functions

Non-uniform knot vector (0, 1
6 ,

1
3 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

2
3 ,

5
6 , 1) with ten knots.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

N0,0,N1,0,N2,0,N6,0,N7,0,N8,0

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

N0,2,N1,2,N2,2,N4,2,N5,2,N6,2

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

N0,1,N1,1,N2,1,N5,1,N6,1,N7,1

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

N0,3,N1,3, . . . ,N5,3

© M. Held (Univ. Salzburg) Geometric Modeling (SS 2025) 168/297



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Properties of B-Spline Basis Functions

It is common to omit the explicit mentioning of the dependency of Ni,k,τ (t) on τ ,
and to write Ni,k (t). (And sometimes we simply write Ni,k . . .)

For k > 0, each Ni,k,τ (t) is a linear combination of two B-spline basis functions of
degree k − 1: Ni,k−1,τ (t) and Ni+1,k−1,τ (t).

This suggests a recursive analysis of the dependencies.

N0,0

N1,0

N2,0

N3,0

N4,0

N0,1

N1,1

N2,1

N3,1

N0,2

N1,2

N2,2

N0,3

N1,3

N0,4
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Properties of B-Spline Basis Functions

It is common to omit the explicit mentioning of the dependency of Ni,k,τ (t) on τ ,
and to write Ni,k (t). (And sometimes we simply write Ni,k . . .)

For k > 0, each Ni,k,τ (t) is a linear combination of two B-spline basis functions of
degree k − 1: Ni,k−1,τ (t) and Ni+1,k−1,τ (t).

Ni,k,τ (t) depends on Ni,0,τ (t),Ni+1,0,τ (t), . . . ,Ni+k,0,τ (t).

N0,0

N1,0

N2,0

N3,0

N4,0

N0,1

N1,1

N2,1

N3,1

N0,2

N1,2

N2,2

N0,3

N1,3

N0,4

Ni,k

k := 3
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Properties of B-Spline Basis Functions

It is common to omit the explicit mentioning of the dependency of Ni,k,τ (t) on τ ,
and to write Ni,k (t). (And sometimes we simply write Ni,k . . .)

For k > 0, each Ni,k,τ (t) is a linear combination of two B-spline basis functions of
degree k − 1: Ni,k−1,τ (t) and Ni+1,k−1,τ (t).

Ni,k,τ (t) is non-zero only for t ∈ [ti , ti+k+1[.

N0,0

N1,0

N2,0

N3,0

N4,0

N0,1

N1,1

N2,1

N3,1

N0,2

N1,2

N2,2

N0,3

N1,3

[t0, t1[

[t1, t2[

[t2, t3[

[t3, t4[

[t4, t5[

N0,4

Ni,k

k := 3
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Properties of B-Spline Basis Functions

Lemma 129 (Local support, Dt.: lokaler Träger)

Let τ := (. . . , t−2, t−1, t0, t1, t2, . . .) be a (bi)infinite knot vector. For all (permissible)
i ∈ Z and k ∈ N0 we have

Ni,k,τ (t) = 0 if t /∈ [ti , ti+k+1[.

Proof : We do a proof by induction on k .
I.B.: By definition, this claim is correct for k := 0 and all (permissible) i ∈ Z.
I.H.: Suppose that it is true for all basis functions of degree k − 1, for some arbitrary
but fixed k ∈ N. I.e., Ni,k−1,τ (t) = 0 if t /∈ [ti , ti+k [, for all (permissible) i ∈ Z.
I.S.: Recall that

Ni,k,τ (t) =
t − ti

ti+k − ti
Ni,k−1,τ (t) +

ti+k+1 − t
ti+k+1 − ti+1

Ni+1,k−1,τ (t).

Hence, Ni,k,τ (t) = 0 if t /∈ ([ti , ti+k [∪[ti+1, ti+k+1[), i.e., if t /∈ [ti , ti+k+1[.
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Properties of B-Spline Basis Functions

Lemma 130 (Non-negativity)

We have Ni,k,τ (t) ≥ 0 for all (permissible) i ∈ Z and k ∈ N0, and all real t .

Proof : Again we do a proof by induction on k .
I.B.: By definition, this claim is correct for k := 0 and all (permissible) i ∈ Z.
I.H.: Suppose that it is true for all basis functions of degree k − 1, for some arbitrary
but fixed k ∈ N.
I.S.: Lemma 129 tells us that Ni,k,τ (t) = 0 if t /∈ [ti , ti+k+1[. Hence, we can focus on
t ∈ [ti , ti+k+1[ and get

Ni,k,τ (t) =
t − ti

ti+k − ti︸ ︷︷ ︸
≥0 for t∈[ti ,ti+k+1[

·Ni,k−1,τ (t)︸ ︷︷ ︸
≥0 (I.H.)

+
ti+k+1 − t

ti+k+1 − ti+1︸ ︷︷ ︸
≥0 for t∈[ti ,ti+k+1[

·Ni+1,k−1,τ (t)︸ ︷︷ ︸
≥0 (I.H.)

≥ 0.

Lemma 131

For all k ∈ N, all B-spline basis functions of degree k are continuous.
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Properties of B-Spline Basis Functions

Lemma 132 (Local influence)

Let τ := (. . . , t−2, t−1, t0, t1, t2, . . .) be a (bi)infinite knot vector. For all (permissible)
i ∈ Z and k ∈ N0, the basis functions

Ni−k,k,τ (t), Ni−k+1,k,τ (t), . . . , Ni,k,τ (t)

are the only (at most) k + 1 basis functions of degree k that are (possibly) non-zero
over the interval [ti , ti+1[.

N0,0

N1,0

N2,0

N3,0

N4,0

N0,1

N1,1

N2,1

N3,1

N0,2

N1,2

N2,2

N0,3

N1,3

[t0, t1[

[t1, t2[

[t2, t3[

[t3, t4[

[t4, t5[

N0,4
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Properties of B-Spline Basis Functions

Lemma 132 (Local influence)

Let τ := (. . . , t−2, t−1, t0, t1, t2, . . .) be a (bi)infinite knot vector. For all (permissible)
i ∈ Z and k ∈ N0, the basis functions

Ni−k,k,τ (t), Ni−k+1,k,τ (t), . . . , Ni,k,τ (t)

are the only (at most) k + 1 basis functions of degree k that are (possibly) non-zero
over the interval [ti , ti+1[.

Proof : The Local Support Lemma 129 tells us that

Nj,k,τ (t) = 0 if t /∈ [tj , tj+k+1[

and, thus, possibly non-zero only if t ∈ [tj , tj+k+1[.
Hence, Nj,k,τ (t) ̸= 0 over [ti , ti+1[ only if i ≥ j and i + 1 ≤ j + k + 1, i.e., if j ≤ i and
j ≥ i − k . Thus,

Ni−k,k,τ (t), Ni−k+1,k,τ (t), . . . , Ni,k,τ (t)

are the only B-spline basis functions that are (possibly) non-zero over [ti , ti+1[.
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Properties of B-Spline Basis Functions

Lemma 133

For all k ∈ N0, all B-spline basis functions of degree k are piecewise polynomials of
degree k .

1

t0 t1 t2 t3 t4 t5

N1,2

Lemma 134

For all k ∈ N, all B-spline basis functions of degree k are k − r times continuously
differentiable at a knot of multiplicity r , and k − 1 times continuously differentiable
everywhere else. The first derivative of Ni,k (t) is given as follows:

N ′
i,k (t) =

k
ti+k − ti

Ni,k−1(t)−
k

ti+k+1 − ti+1
Ni+1,k−1(t)
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UNIVERSITÄT SALZBURG

Properties of B-Spline Basis Functions

Lemma 135

For a uniform knot vector τ , all B-spline basis functions of the same degree are
shifted copies of each other: For all t ∈ R and all (permissible) i ∈ Z and k ∈ N0 we
have Ni,k,τ (t) = N0,k,τ (t − i · c), where c := t1 − t0.

Lemma 136 (Partition of unity, Dt.: Zerlegung der Eins)

Let τ = (t0, t1, t2, . . . , tm) be a finite knot vector, and k ∈ N0 with k < m
2 . Then,

m−k−1∑
i=0

Ni,k,τ (t) = 1 for all t ∈ [tk , tm−k [.

Corollary 137

Let τ = (t0, t1, t2, . . . , tn+k+1) be a finite knot vector, for some k ∈ N0 with k ≤ n. Then,

n∑
i=0

Ni,k,τ (t) = 1 for all t ∈ [tk , tn+1[.
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UNIVERSITÄT SALZBURG

Properties of B-Spline Basis Functions

Proof of Lemma 136 (Partition of Unity) : We do a proof by induction on k .
I.B.: By definition, this claim is correct for k := 0.
I.H.: Suppose that it is true for degree k − 1, for some arbitrary but fixed k ∈ N such
that k < m

2 . I.e., suppose that
∑m−k

i=0 Ni,k−1,τ (t) = 1 for all t ∈ [tk−1, tm−k+1[.
I.S.: Recall that (by Lem. 129)

N0,k−1,τ (t) = 0 for t /∈ [t0, tk [ and Nm−k,k−1,τ (t) = 0 for t /∈ [tm−k , tm[.

Let t ∈ [tk , tm−k [ be arbitrary but fixed. Applying the recursion yields

m−k−1∑
i=0

Ni,k,τ (t) =
m−k−1∑

i=0

(
t − ti

ti+k − ti
Ni,k−1,τ (t) +

ti+k+1 − t
ti+k+1 − ti+1

Ni+1,k−1,τ (t)
)

=
m−k−1∑

i=1

t − ti
ti+k − ti

Ni,k−1,τ (t) +
m−k−2∑

i=0

ti+k+1 − t
ti+k+1 − ti+1

Ni+1,k−1,τ (t)

=
m−k−1∑

i=1

t − ti
ti+k − ti

Ni,k−1,τ (t) +
m−k−1∑

i=1

ti+k − t
ti+k − ti

Ni,k−1,τ (t)

=
m−k−1∑

i=1

Ni,k−1,τ (t) =
m−k∑
i=0

Ni,k−1,τ (t)
t∈[tk−1,tm−k+1[

= 1.
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B-Spline Curves

Definition 138 (B-spline curve)

For n ∈ N and k ∈ N0 with k ≤ n, consider a set of n + 1 control points with position
vectors p0, p1, . . . , pn in the plane, and let τ := (t0, t1, . . . , tn+k+1) be a knot vector.
Then the B-spline curve of degree k (and order k + 1) relative to τ with control points
p0, p1, . . . , pn is given by

P(t) :=
n∑

i=0

Ni,k,τ (t)pi for t ∈ [tk , tn+1[,

where Ni,k,τ is the i-th B-spline basis function of degree k relative to τ .

The degree k is (except for k ≤ n) independent of the number n + 1 of control
points!

The restriction of t to the interval [tk , tn+1[ guarantees that the basis functions sum
up to 1 for all (permissible) values of t . (Recall the Partition of Unity, Cor. 137.)
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Clamped and Unclamped B-Spline Curves

Definition 139 (Clamped B-spline)

Let P be a B-spline curve of degree k defined by n + 1 control points with position
vectors p0, p1, . . . , pn, over the knot vector τ := (t0, t1, . . . , tn+k+1), for n ∈ N and
k ∈ N0 with k ≤ n. If t0 = t1 = . . . = tk < tk+1 and tn < tn+1 = . . . = tn+k+1 then we say
that the knot vector and the B-spline curve are clamped.

Recall that the Partition of Unity (Cor. 137) holds for all t ∈ [tk , tn+1[.

Typically, for a clamped knot vector,

0 = t0 = t1 = . . . = tk and tn+1 = . . . = tn+k+1 = 1.

Lemma 140

Let P be a B-spline curve of degree k defined by n + 1 control points with position
vectors p0, p1, . . . , pn, over the clamped knot vector τ := (t0, t1, . . . , tn+k+1), for n ∈ N
and k ∈ N0 with k ≤ n. Then P starts in p0 and ends in pn.
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Clamped and Unclamped B-Spline Curves

Control points:
{(

0
0

)
,

(
0
2

)
,

(
2
3

)
,

(
4
0

)
,

(
6
3

)
,

(
8
2

)
,

(
8
0

)}
.

uniform unclamped cubic B-spline: τ = (0, 1
10 ,

1
5 ,

3
10 ,

2
5 ,

1
2 ,

3
5 ,

7
10 ,

4
5 ,

9
10 , 1)

uniform clamped cubic B-spline: τ = (0, 0, 0, 0, 1
4 ,

1
2 ,

3
4 , 1, 1, 1, 1).
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Proof of Lemma 140

We prove P(tk ) = p0. Recall that N0,k (t) is non-zero only for t ∈ [t0, tk+1[.

N0,0

N1,0

N2,0

N3,0

N4,0

N0,1

N1,1

N2,1

N3,1

N0,2

N1,2

N2,2

N0,3

N1,3

[t0, t1[

[t1, t2[

[t2, t3[

[t3, t4[

[t4, t5[

N0,4

Ni,k

k := 3

However, for a clamped knot vector with t0 = t1 = . . . = tk < tk+1 we have

N0,0(t) = N1,0(t) = . . . = Nk−1,0(t) = 0 for all t , and Nk,0(tk ) = 1.

The recursion formula for the B-spline basis functions yields

Ni,j(t) = 0 for all i, j with i + j ≤ k − 1 and for all t .
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Proof of Lemma 140

Applying the standard recursion for the B-spline basis functions at parameter tk ,

Ni,k (tk ) =
tk − ti

ti+k − ti
Ni,k−1(tk ) +

ti+k+1 − tk
ti+k+1 − ti+1

Ni+1,k−1(tk ),

for i := 0 (and subsequently for i := j and k − j , for j ∈ {1, . . . , k − 1}) yields

N0,k (tk ) =
tk − t0
tk − t0

N0,k−1(tk ) +
tk+1 − tk
tk+1 − t1

N1,k−1(tk )

=
tk+1 − tk
tk+1 − tk

N1,k−1(tk ) = N1,k−1(tk )

=
tk − t1
tk − t1

N1,k−2(tk ) +
tk+1 − tk
tk+1 − t2

N2,k−2(tk )

= N2,k−2(tk ) = · · · = Nk,0(tk )

= 1.

Hence, due to the Partition of Unity, Cor. 137, Ni,k (tk ) = 0 for i > 0 and we get

n∑
i=0

Ni,k (tk )pi = N0,k (tk )p0 = p0.
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Generation of Knot Vector

Suppose that a B-spline curve over [0, 1] has n + 1 control points p0, p1, . . . , pn

and degree k .

We need m + 1 knots, where m = n + k + 1.

If the B-spline curve is clamped then we get

t0 = t1 = . . . = tk = 0 and tn+1 = tn+2 = . . . = tn+k+1 = 1.

The remaining n − k knots can be spaced uniformly or non-uniformly.

For uniformly spaced internal knots the interval [0, 1] is divided into n − k + 1
subintervals. In this case the knots are given as follows:

t0 = t1 = . . . = tk = 0

tk+j =
j

n − k + 1
for j = 1, 2, . . . , n − k

tn+1 = tn+2 = . . . = tn+k+1 = 1
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UNIVERSITÄT SALZBURG

Generation of Knot Vector

Suppose that n := 6, i.e., that we have seven control points p0, . . . , p6, and want
to construct a clamped cubic B-spline curve. (Hence, k = 3.)

We have in total m + 1 = n + k + 2 = 6 + 3 + 2 = 11 knots and get

τ := (0, 0, 0, 0︸ ︷︷ ︸
k+1=4

,
1
4
,

2
4
,

3
4
, 1, 1, 1, 1︸ ︷︷ ︸

k+1=4

)

as uniform knot vector.

For (p0, . . . , p6) :=

((
0
0

)
,

(
0.2
2

)
,

(
2
3

)
,

(
3
2

)
,

(
3
0

)
,

(
5
0

)
,

(
7
1

))
we get

the following clamped, cubic and C2-continuous B-spline curve:

p0

p1

p2

p3

p4 p5

p6

t4
t5

t6
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Properties of B-Spline Curves

Lemma 141

The lower the degree of a B-spline curve, the closer it follows its control polygon.

Sketch of proof : The lower the degree, the fewer control points contribute to P(t). For
k := 1 it is simply the convex combination of pairs of control points.

Clamped uniform B-spline of degree 10 for a control polygon with 14 vertices:{(
1
1

)
,

(
1
3

)
,

(
3
5

)
,

(
5
5

)
,

(
6
4

)
,

(
5
2

)
,

(
3
2

)
,

(
3
1

)
,

(
11
1

)
,

(
8
3

)
,

(
8
5

)
,

(
10
6

)
,

(
4
7

)
,

(
1
5

)}
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Properties of B-Spline Curves

Lemma 142 (Variation diminishing property)

If a straight line intersects the control polygon of a B-spline curve m times then it
intersects the actual B-spline curve at most m times.

Lemma 143 (Affine invariance)

Any B-spline representation is affinely invariant, i.e., given any affine map π, the
image curve π(P) of a B-spline curve P with control points p0, p1, . . . , pn has the
control points π(p0), π(p1), . . . , π(pn).

Sketch of proof : The proof is identical to the proof of the affine invariance of Bézier
curves, recall Lem. 106.
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Properties of B-Spline Curves

Lemma 144

Let P be a clamped B-spline curve of degree k over [0, 1] defined by k + 1 control
points with position vectors p0, p1, . . . , pk and the knot vector τ := (t0, t1, . . . , t2k+1), for
k ∈ N0. Then P is a Bézier curve of degree k .

Note: This implies 0 = t0 = t1 = . . . = tk and 1 = tk+1 = . . . = t2k = t2k+1.

Of course, this lemma can also be formulated for a parameter interval other than
[0, 1].

Clamped (uniform) B-spline of degree 3 for knot vector (0, 0, 0, 0, 1, 1, 1, 1) and

control polygon
{(

0
0

)
,

(
1
3

)
,

(
3
3

)
,

(
4
0

)}
:
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Derivatives of B-Spline Curves

Lemma 145

Let P be a B-spline curve of degree k defined by n + 1 control points with position
vectors p0, p1, . . . , pn, and the knot vector τ := (t0, t1, . . . , tn+k+1), for n ∈ N and k ∈ N0

with k ≤ n. Then

P ′(t) =
n−1∑
i=0

Ni+1,k−1(t)qi for t ∈ [tk , tn+1[,

where

qi :=
k

ti+k+1 − ti+1
(pi+1 − pi) for i ∈ {0, 1, . . . , n − 1}

and the knot vector τ remains unchanged.

Sketch of proof : This is a consequence of Lem. 134 and some (lengthy) analysis.
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Derivatives of B-Spline Curves

Lemma 146

Let P be a B-spline curve of degree k defined by n + 1 control points with position
vectors p0, p1, . . . , pn and the clamped knot vector τ := (t0, t1, . . . , tn+k+1), for n ∈ N
and k ∈ N0 with k ≤ n. Then, for the new knot vector τ ′ := (t1, t2, . . . , tn+k−1, tn+k ),

P ′(t) =
n−1∑
i=0

Ni,k−1,τ ′(t)qi for t ∈ [tk , tn+1[,

where

qi :=
k

ti+k+1 − ti+1
(pi+1 − pi) for i ∈ {0, 1, . . . , n − 1}.

Sketch of proof : One can show that Ni+1,k−1,τ (t) is equal to Ni,k−1,τ ′(t) for all
t ∈ [tk , tn+1[, thus reducing this claim to Lemma 145.

Since the first derivative of a B-spline curve is another B-spline curve, one can
apply this technique recursively to compute higher-order derivatives.
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Derivatives of B-Spline Curves

Corollary 147

A clamped B-spline curve is tangent to the first leg and tangent to the last leg of its
control polygon.

Sketch of proof : Recall that, by Lem. 146, the first derivative of a clamped B-spline
curve P of degree k is a clamped B-spline curve of degree k − 1 over essentially the
same knot vector but with new control points of the form

qi :=
k

ti+k+1 − ti+1
(pi+1 − pi) for i ∈ {0, 1, . . . , n − 1}.

Hence, by arguments similar to those used in the proof of Lem. 140, one can show
that P ′(tk ) starts in q0 and, thus, the tangent of P in the start point P(tk ) is parallel to
p1 − p0.
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Strong Convex Hull Property

Lemma 148 (Strong convex hull property)

Let P be a B-spline curve of degree k defined by n + 1 control points with position
vectors p0, p1, . . . , pn and the knot vector τ := (t0, t1, . . . , tn+k+1), for n ∈ N and k ∈ N0

with k ≤ n. For i ∈ N with k ≤ i ≤ n, we have

P|[ti ,ti+1[ ⊂ CH({pi−k , pi−k+1, . . . , pi−1, pi}).

Proof : Lemma 132 tells us that Ni−k,k ,Ni−k+1,k , . . . ,Ni−1,k ,Ni,k are the only B-spline
basis functions that can be non-zero over [ti , ti+1[, for k ≤ i ≤ n, while all other basis
functions are zero (Lem. 130). Together with Cor. 137, Partition of Unity, we get

1 =
n∑

j=0

Nj,k (t) =
i∑

j=i−k

Nj,k (t) for all t ∈ [ti , ti+1[.

Hence,

P(t) =
n∑

j=0

Nj,k (t)pj =
i∑

j=i−k

Nj,k (t)pj for all t ∈ [ti , ti+1[

is a convex combination of pi−k , pi−k+1, . . . , pi−1, pi .
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Strong Convex Hull Property

Lemma 148 (Strong convex hull property)

Let P be a B-spline curve of degree k defined by n + 1 control points with position
vectors p0, p1, . . . , pn and the knot vector τ := (t0, t1, . . . , tn+k+1), for n ∈ N and k ∈ N0

with k ≤ n. For i ∈ N with k ≤ i ≤ n, we have

P|[ti ,ti+1[ ⊂ CH({pi−k , pi−k+1, . . . , pi−1, pi}).

p0

p1

p2

p3

p4 p5

p6

Second knot span of a cubic B-spline contained in CH({p1, p2, p3, p4}).
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Local Control and Modification

Lemma 149 (Local control)

Let P be a B-spline curve of degree k defined by n + 1 control points with position
vectors p0, p1, . . . , pn and the knot vector τ := (t0, t1, . . . , tn+k+1), for n ∈ N and k ∈ N0

with k ≤ n. Then the B-spline curve P restricted to [ti , ti+1[ depends only on the
positions of pi−k , pi−k+1, . . . , pi−1, pi .

Proof : By Lem. 132, and as in the proof of Lem. 148,

P|[ti ,ti+1[(t) =
i∑

j=i−k

Nj,k (t)pj .

Lemma 150 (Local modification scheme)

Let P be a B-spline curve of degree k defined by n + 1 control points with position
vectors p0, p1, . . . , pn and the knot vector τ := (t0, t1, . . . , tn+k+1), for n ∈ N and k ∈ N0

with k ≤ n. Then a modification of the position of pi changes P only in the parameter
interval [ti , ti+k+1[, for i ∈ {0, 1, . . . , n}.

Proof : The Local Support Lemma 129 tells us that

Ni,k (t) = 0 if t /∈ [ti , ti+k+1[.
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Local Control and Modification

Clamped uniform B-spline of degree three with knot vector
τ := (0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11, 11, 11)

for a control polygon with 14 vertices:{(
1
1

)
,

(
1
3

)
,

(
3
5

)
,

(
5
5

)
,

(
6
4

)
,

(
5
2

)
,

(
3
2

)
,

(
3
1

)
,

(
11
1

)
,

(
8
3

)
,

(
8
5

)
,

(
10
6

)
,

(
4
7

)
,

(
1
5

)}
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Local Control and Modification

Clamped uniform B-spline of degree three with knot vector
τ := (0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11, 11, 11)

for a control polygon with 14 vertices:{(
1
1

)
,

(
1
3

)
,

(
3
5

)
,

(
5
5

)
,

(
6
4

)
,

(
5
2

)
,

(
3
2

)
,

(
1
4

)
,

(
11
1

)
,

(
8
3

)
,

(
8
5

)
,

(
10
6

)
,

(
4
7

)
,

(
1
5

)}
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Multiple Control Points

Lemma 151 (Multiple control points)

Let P be a B-spline curve of degree k defined by n + 1 control points with position
vectors p0, p1, . . . , pn and the knot vector τ := (t0, t1, . . . , tn+k+1), for n ∈ N and k ∈ N0

with k ≤ n.
1 If k control points pi−k+1, pi−k+2, . . . , pi coincide, i.e., if pi−k+1 = pi−k+2 = . . . = pi

then P contains pi and is tangent to the legs pi−k pi−k+1 and pipi+1 of the control
polygon, for i ∈ N with k ≤ i < n.

2 If k control points pi−k+1, pi−k+2, . . . , pi are collinear then P touches a leg of the
control polygon, for i ∈ N with k ≤ i < n.

3 If k + 1 control points pi−k , pi−k+1, . . . , pi are collinear then P coincides with a leg
of the control polygon, for i ∈ N with k < i < n.

Sketch of proof : This is a consequence of the Local Control Lemma 149 and of the
Strong Convex Hull Property (Lem. 148).

Note that this implies that a degree-k B-spline P starts at p0 if
p0 = p1 = . . . = pk−1.
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Multiple Control Points

Clamped cubic B-spline with control points(
2
0

)
,

(
0
4

)
,

(
4
5

)
,

(
8
4

)
,

(
8
2

)
,

(
6
0

)
and uniform knot vector (0, 0, 0, 0, 1, 2, 3, 3, 3, 3):
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Multiple Control Points

Clamped cubic B-spline with control points(
2
0

)
,

(
0
4

)
,

(
4
5

)
,

(
4
5

)
,

(
4
5

)
,

(
8
4

)
,

(
8
2

)
,

(
6
0

)
and uniform knot vector (0, 0, 0, 0, 1, 2, 3, 4, 5, 5, 5, 5):
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Multiple Control Points

Clamped cubic B-spline with control points(
2
0

)
,

(
0
4

)
,

(
4
5

)
,

(
6
9
2

)
,

(
8
4

)
,

(
8
2

)
,

(
6
0

)
and uniform knot vector (0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4):
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Multiple Control Points

Clamped cubic B-spline with control points(
2
0

)
,

(
0
4

)
,

(
4
5

)
,

(
5
19
4

)
,

(
7
17
4

)
,

(
8
4

)
,

(
8
2

)
,

(
6
0

)
and uniform knot vector (0, 0, 0, 0, 1, 2, 3, 4, 5, 5, 5, 5):
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Multiple Knots

Lemma 152 (Multiple knots)

Let P be a B-spline curve of degree k defined by n + 1 control points with position
vectors p0, p1, . . . , pn and the knot vector τ := (t0, t1, . . . , tn+k+1), for n ∈ N and k ∈ N0

with k ≤ n. Let i ∈ N with k + 1 ≤ i ≤ n − k . If ti is a knot of multiplicity k , i.e., if
ti = ti+1 = . . . = ti+k−1 then P(ti) = pi−1 and P is tangent to the legs pi−2pi−1 and
pi−1pi of the control polygon.
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Multiple Knots

Clamped uniform B-spline of degree three for a control polygon with nine vertices:{(
−1
0

)
,

(
0
0

)
,

(
0
2

)
,

(
2
3

)
,

(
4
0

)
,

(
6
3

)
,

(
8
2

)
,

(
8
0

)
,

(
9
0

)}
Knot vector:

τ := (0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 6, 6, 6)
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Multiple Knots

Clamped uniform B-spline of degree three for a control polygon with nine vertices:{(
−1
0

)
,

(
0
0

)
,

(
0
2

)
,

(
2
3

)
,

(
4
0

)
,

(
6
3

)
,

(
8
2

)
,

(
8
0

)
,

(
9
0

)}
Knot vector:

τ := (0, 0, 0, 0, 1, 2, 2, 2, 3, 4, 4, 4, 4)
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Motivation for de Boor’s Algorithm

Can we express P(t) in terms of Ni,0(t)?
We exploit the recursive Definition 128 of Ni,k (t) in order to determine P(t) in
terms of Ni,k−1(t), recalling that t ∈ [tk , tn+1[.

P(t) =
n∑

i=0

Ni,k (t)pi =
n∑

i=0

(
t − ti

ti+k − ti
Ni,k−1(t) +

ti+k+1 − t
ti+k+1 − ti+1

Ni+1,k−1(t)
)

pi

=
n∑

i=0

t − ti
ti+k − ti

Ni,k−1(t)pi +
n∑

i=0

ti+k+1 − t
ti+k+1 − ti+1

Ni+1,k−1(t)pi

=
t − t0
tk − t0

N0,k−1(t)p0 +
n∑

i=1

t − ti
ti+k − ti

Ni,k−1(t)pi+

tn+k+1 − t
tn+k+1 − tn+1

Nn+1,k−1(t)pn +
n−1∑
i=0

ti+k+1 − t
ti+k+1 − ti+1

Ni+1,k−1(t)pi

⋆
=

n∑
i=1

t − ti
ti+k − ti

Ni,k−1(t)pi +
n∑

i=1

ti+k − t
ti+k − ti

Ni,k−1(t)pi−1

=
n∑

i=1

Ni,k−1(t)
(

ti+k − t
ti+k − ti

pi−1 +
t − ti

ti+k − ti
pi

)
=:

n∑
i=1

Ni,k−1(t)pi,1(t)
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Motivation for de Boor’s Algorithm

Equality at ⋆ holds since each basis function Ni,k is non-zero only over [ti , ti+k+1[
(Local Support Lem. 129):

N0,k−1,τ (t) = 0 for t /∈ [t0, tk [ and Nn+1,k−1,τ (t) = 0 for t /∈ [tn+1, tn+k+1[

For 1 ≤ i ≤ n, we have

pi,1(t) := (1 − αi,1) pi−1 + αi,1 pi with αi,1 :=
t − ti

ti+k − ti
,

thus expressing P(t) in terms of basis functions of degree k − 1 and modified
(parameter-dependent!) new control points.

Repeating this process yields

P(t) =
n∑

i=2

Ni,k−2(t)pi,2(t),

where, for 2 ≤ i ≤ n,

pi,2(t) := (1 − αi,2) pi−1,1(t) + αi,2 pi,1(t) with αi,2 :=
t − ti

ti+k−1 − ti
,

© M. Held (Univ. Salzburg) Geometric Modeling (SS 2025) 199/297



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

De Boor’s Algorithm

Theorem 153 (de Boor’s algorithm)

Let P be a B-spline curve of degree k with control points p0, p1, . . . , pn and knot vector
τ := (t0, t1, . . . , tn+k+1). If we define

pi,j(t) :=
{

pi if j = 0,
(1 − αi,j) pi−1,j−1(t) + αi,j pi,j−1(t) if j > 0,

where

αi,j :=
t − ti

ti+k+1−j − ti
,

then

P(t) =
n∑

i=k

Ni,0(t)pi,k (t) for t ∈ [tk , tn+1[.

Corollary 154

Let P be a B-spline curve of degree k with control points p0, p1, . . . , pn and knot vector
τ := (t0, t1, . . . , tn+k+1). If t ∈ [ti , ti+1[, for i ∈ {k , k + 1, . . . , n}, then P(t) = pi,k (t).
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Sample Run of de Boor’s Algorithm

Clamped uniform B-spline of degree three for seven control points:{(
0
0

)
,

(
0
2

)
,

(
2
3

)
,

(
4
0

)
,

(
6
3

)
,

(
8
2

)
,

(
8
0

)}
Knot vector with eleven knots: τ := (0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4).

B-spline curve with pi,0(0.7), with 0.7 ∈ [t3, t4[:{(
0
0

)
,

(
0
2

)
,

(
2
3

)
,

(
4
0

)
,

(
6
3

)
,

(
8
2

)
,

(
8
0

)}

p0,0

p1,0

p2,0

p3,0 p6,0

p5,0

p4,0
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Sample Run of de Boor’s Algorithm

Clamped uniform B-spline of degree three for seven control points:{(
0
0

)
,

(
0
2

)
,

(
2
3

)
,

(
4
0

)
,

(
6
3

)
,

(
8
2

)
,

(
8
0

)}
Knot vector with eleven knots: τ := (0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4).

B-spline curve with pi,1(0.7), with 0.7 ∈ [t3, t4[:{(
0.
1.4

)
,

(
0.7
2.35

)
,

(
2.4667

2.3

)}

p0,0

p1,0

p2,0

p3,0 p6,0

p5,0

p4,0

p1,1

p2,1 p3,1
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Sample Run of de Boor’s Algorithm

Clamped uniform B-spline of degree three for seven control points:{(
0
0

)
,

(
0
2

)
,

(
2
3

)
,

(
4
0

)
,

(
6
3

)
,

(
8
2

)
,

(
8
0

)}
Knot vector with eleven knots: τ := (0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4).

B-spline curve with pi,2(0.7), with 0.7 ∈ [t3, t4[:{(
0.49

2.065

)
,

(
1.3183
2.3325

)}

p0,0

p1,0

p2,0

p3,0 p6,0

p5,0

p4,0

p1,1

p2,1 p3,1

p2,2

p3,2
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Sample Run of de Boor’s Algorithm

Clamped uniform B-spline of degree three for seven control points:{(
0
0

)
,

(
0
2

)
,

(
2
3

)
,

(
4
0

)
,

(
6
3

)
,

(
8
2

)
,

(
8
0

)}
Knot vector with eleven knots: τ := (0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4).

B-spline curve with pi,3(0.7), with 0.7 ∈ [t3, t4[:{(
1.0698
2.2523

)}
= {P(0.7)}

p0,0

p1,0

p2,0

p3,0 p6,0

p5,0

p4,0

p1,1

p2,1 p3,1

p2,2

p3,2
p3,3
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De Boor’s Algorithm for Subdividing a B-Spline Curve

Clamped uniform B-spline of degree three for seven control points:{(
0
0

)
,

(
0
2

)
,

(
2
3

)
,

(
4
0

)
,

(
6
3

)
,

(
8
2

)
,

(
8
0

)}
Knot vector with eleven knots: τ := (0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4).

New control polygons for t⋆ := 0.7:

(p0,0, p1,1, p2,2, p3,3) and (p3,3, p3,2, p3,1, p3,0, p4,0, p5,0, p6,0)

New knot vectors for t⋆ := 0.7:

(0, 0, 0, 0, 0.7, 0.7, 0.7, 0.7) and (0.7, 0.7, 0.7, 0.7, 1, 2, 3, 4, 4, 4, 4)

p0,0

p1,0

p2,0

p3,0 p6,0

p5,0

p4,0

p1,1

p2,1 p3,1

p2,2

p3,2
p3,3
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De Boor’s Algorithm for Subdividing a B-Spline Curve

Definition 155

Let P be a clamped B-spline curve of degree k defined by n + 1 control points with
position vectors p0, p1, . . . , pn and the clamped knot vector τ := (t0, t1, . . . , tn+k+1), for
n ∈ N and k ∈ N0 with k ≤ n. For some t⋆ ∈ [ti , ti+1[, with i ∈ {k , . . . , n}, we define
two new knot vectors τ⋆, τ⋆⋆ and two new control polygons P⋆,P⋆⋆ as follows:
If t⋆ ̸= ti then m := i else m := i − 1.

τ⋆ := (t0, t1, . . . , tm, t⋆, . . . , t⋆︸ ︷︷ ︸
(k+1) times

) and τ⋆⋆ := (t⋆, . . . , t⋆︸ ︷︷ ︸
(k+1) times

, tm+1, . . . , tn+k+1),

P⋆(t⋆) := (p0,0(t⋆), p1,0(t⋆), . . . , pm−k,0(t⋆), p1,1(t⋆), p2,2(t⋆), . . . , pk,k (t⋆)),

P⋆⋆(t⋆) := (pk,k (t⋆), pk,k−1(t⋆), . . . , pk,1(t⋆), pm,0(t⋆), pm+1,0(t⋆), . . . , pn,0(t⋆)),

where the new control points pi,j(t⋆) are obtained by de Boor’s algorithm (Thm. 153).
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De Boor’s Algorithm for Subdividing a B-Spline Curve

Lemma 156

Let P be a clamped B-spline curve of degree k defined by n + 1 control points with
position vectors p0, p1, . . . , pn and the clamped knot vector τ := (t0, t1, . . . , tn+k+1), for
n ∈ N and k ∈ N0 with k ≤ n. (Hence, t0 = t1 = . . . = tk < tk+1 and
tn < tn+1 = . . . = tn+k+1.) For some t⋆ ∈ [ti , ti+1[, with i ∈ {k , . . . , n}, we define two
new knot vectors τ⋆, τ⋆⋆ and two new control polygons P⋆,P⋆⋆ as in Def. 155. Then
we get two new B-spline curves P⋆ and P⋆⋆ of degree k with control polygon P⋆ (P⋆⋆,
resp.) and knot vector τ⋆ (τ⋆⋆, resp.) that join in a tangent-continuous way at point
pkk (t⋆) = P(t⋆), such that

P⋆ = P|[tk ,t⋆[ and P⋆⋆ = P|[t⋆,tn+1[.
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De Boor’s Algorithm for Splitting a B-Spline Curve into Bézier Segments

Corollary 157

Let P be a clamped B-spline curve of degree k defined by n + 1 control points with
position vectors p0, p1, . . . , pn and the clamped knot vector τ := (t0, t1, . . . , tn+k+1), for
n ∈ N and k ∈ N0 with k ≤ n. (Hence, t0 = t1 = . . . = tk < tk+1 and
tn < tn+1 = . . . = tn+k+1.) Subdividing P at the knot values {tk+1, tk+2, . . . , tn−1, tn}, as
outlined in Def. 155, splits P into n − k + 1 Bézier curves of degree k .

Sketch of proof : Lemma 156 ensures that each of the resulting curves is a B-spline
curve of degree k , where the m-th curve is defined over [tk+m, tk+m+1[, for
m ∈ {0, 1, . . . , n − k}. Each curve has knot vectors of length 2k + 2, with start and
end knots of multiplicity k + 1 but no interior knots. After mapping [tk+m, tk+m+1[ to
[0, 1[ we can apply Lem. 144 and conclude that the resulting B-spline curve is a
Bézier curve of degree k .
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De Boor’s Algorithm for Splitting a B-Spline Curve into Bézier Segments

Clamped uniform B-spline of degree three for seven control points:{(
0
0

)
,

(
0
2

)
,

(
2
3

)
,

(
4
0

)
,

(
6
3

)
,

(
8
2

)
,

(
8
0

)}
Knot vector with eleven knots: τ := (0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4).

Third Bézier segment over [2, 3].

Note that the number of knots increased drasticallly!
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Knot Insertion

Suppose that we would like to insert a new knot t⋆ ∈ [tj , tj+1[, for some
j ∈ {k , k + 1, . . . , n}, into the knot vector

τ := (t0, t1, . . . , tj , tj+1, . . . , tn+k+1),

thus transforming τ into a knot vector

τ⋆ := (t0, t1, . . . , tj , t⋆, tj+1, . . . , tn+k+1).

The fundamental equality m = n + k + 1, with m + 1 denoting the number of
knots, tells us that we will have to either increase the number n of control points
by one or to increase the degree k of the curve by one.

Since an increase of the degree would change the shape of the B-spline globally,
we opt for increasing the number of control points (and modifying some of them).

How can we modify the control points such that the shape of the curve is
preserved?
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Knot Insertion

Lemma 158 (Boehm 1980)

Let P be a B-spline curve of degree k defined by n + 1 control points with position
vectors p0, p1, . . . , pn and the knot vector τ := (t0, t1, . . . , tn+k+1), for n ∈ N and k ∈ N0

with k ≤ n. Let t⋆ ∈ [tj , tj+1[, for some j ∈ {k , k + 1, . . . , n}, and define a knot vector
τ⋆ as τ⋆ := (t0, t1, . . . , tj , t⋆, tj+1, . . . , tn+k+1). Then we have

P(t) =
n∑

i=0

Ni,k,τ (t)pi =
n+1∑
i=0

Ni,k,τ⋆(t)p⋆
i =: P⋆(t) for all t ∈ [tk , tn+1[

if, for 0 ≤ i ≤ n + 1,

p⋆
i :=


pi if i ≤ j − k
(1 − αi)pi−1 + αipi if j − k + 1 ≤ i ≤ j
pi−1 if i ≥ j + 1

and

αi :=
t⋆ − ti

ti+k − ti
for i ∈ {j − k + 1, . . . , j}.
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Knot Insertion: Sample

Clamped uniform B-spline of degree three for 14 control points and knot vector
with 18 knots: τ := (0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11, 11, 11).{(

1
1

)
,

(
1
3

)
,

(
3
5

)
,

(
5
5

)
,

(
6
4

)
,

(
5
2

)
,

(
3
2

)
,

(
3
1

)
,

(
11
1

)
,

(
8
3

)
,

(
8
5

)
,

(
10
6

)
,

(
4
7

)
,

(
1
5

)}

New 15 control points for 19 knots
τ⋆ := (0, 0, 0, 0, 1, 2, 3, 4, 4.2, 5, 6, 7, 8, 9, 10, 11, 11, 11, 11):{(

1
1

)
,

(
1
3

)
,

(
3
5

)
,

(
5
5

)
,

(
6
4

)
,

(
5.2667
2.5333

)
,

(
4.2
2

)
,

(
3

1.9333

)
,

(
3
1

)
,

(
11
1

)
,

(
8
3

)
,

(
8
5

)
,

(
10
6

)
,

(
4
7

)
,

(
1
5

)}
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Knot Insertion: Sample

Old 18 knots:

t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 = t15 = t16 = t17t0 = t1 = t2 = t3
t? = 4.2

0 1 2 3 4 5 6 7 8 9 10 11

α5 1 − α5

α6 1 − α6

For t⋆ := 4.2 = 4 1
5 we have j = 7 and j − k + 1 = 5, and get:

α5 :=
t⋆ − t5
t8 − t5

=
2 1

5

3
=

11
15

p⋆
5 = (1−α5)p4 +α5p5 =

1
15

(
79
38

)
≈
(

5.2667
2.5333

)

α6 :=
t⋆ − t6
t9 − t6

=
1 1

5

3
=

6
15

p⋆
6 = (1 − α6)p5 + α6p6 =

1
15

(
63
30

)
≈
(

4.2
2

)

α7 :=
t⋆ − t7
t10 − t7

=
1
5

3
=

1
15

p⋆
7 = (1 − α7)p6 + α7p7 =

1
15

(
45
29

)
≈
(

3
1.9333

)
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Knot Insertion and Deletion

The so-called Oslo algorithm, developed by Cohen et al. [1980], is more general
than Boehm’s algorithm: It allows the insertion of several (possibly multiple) knots
into a knot vector. (It is also substantially more complex, though.)

An algorithm for the removal of a knot is due to Tiller [1992]. However, as pointed
out by Tiller, knot removal and degree reduction result in an overspecified
problem which, in general, can only be solved within some tolerance.
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Closed B-Spline Curve

Lemma 159

Let P be a B-spline curve of degree k defined by n + 1 control points with position
vectors p0, p1, . . . , pn and the uniform (unclamped) knot vector τ := (t0, t1, . . . , tn+k+1),
for n ∈ N and k ∈ N0 with k ≤ n. If

p0 = pn−k+1, p1 = pn−k+2, . . . , pk−2 = pn−1, pk−1 = pn

then P is Ck−1 at the joining point P(tk ) = limt↗tn+1 P(t).

Hence, wrapping around k control points achieves Ck−1-continuity at the joining
point.

A closed B-spline curve with Ck−1-continuity at the joining point can also be
achieved by resorting to a periodic knot vector and wrapping around k + 2 knots.
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Closed B-Spline Curve

Uniform B-spline of degree three for nine control points:{(
4
3

)
,

(
4
0

)
,

(
0
0

)
,

(
0
7

)
,

(
12
7

)
,

(
12
2

)
,

(
4
3

)
,

(
4
0

)
,

(
0
0

)}
Knot vector with 13 knots: τ := (0, 1

12 ,
2
12 ,

3
12 ,

4
12 ,

5
12 ,

6
12 ,

7
12 ,

8
12 ,

9
12 ,

10
12 ,

11
12 , 1).
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B-Spline Surfaces

Definition 160 (B-spline surface)

For n,m ∈ N and k ′, k ′′ ∈ N0 with k ′ ≤ n and k ′′ ≤ m, consider a set of
(n + 1)× (m + 1) control points with position vectors pi,j ∈ R3 for 0 ≤ i ≤ n and
0 ≤ j ≤ m, and let σ := (s0, s1, . . . , sn+k′+1) and τ := (t0, t1, . . . , tm+k′′+1) be two knot
vectors. Then the B-spline surface relative to σ and τ with control net (pi,j)

n,m
i,j=0 is

given by

S(s, t) :=
n∑

i=0

m∑
j=0

Ni,k′,σ(s)Nj,k′′,τ (t)pi,j for s ∈ [sk′ , sn+1[, t ∈ [tk′′ , tm+1[,

where Ni,k′,σ is the i-th B-spline basis function of degree k ′ relative to σ, and Nj,k′′,τ is
the j-th B-spline basis function of degree k ′′ relative to τ .

Hence, a B-spline surface is another example of a tensor-product surface.

© M. Held (Univ. Salzburg) Geometric Modeling (SS 2025) 215/297



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Properties of B-Spline Surfaces

Lemma 161 (Non-negativity)

With the setting of Def. 160, we have Ni,k′,σ(s)Nj,k′′,τ (t) ≥ 0 for all (permissible)
i, j ∈ Z and k ′, k ′′ ∈ N0, and all real s, t .

Lemma 162 (Partition of unity)

With the setting of Def. 160, we have

n∑
i=0

m∑
j=0

Ni,k′,σ(s)Nj,k′′,τ (t) = 1

for all s ∈ [sk′ , sn+1[, t ∈ [tk′′ , tm+1[.

Lemma 163 (Strong convex hull property)

With the setting of Def. 160, for i, j ∈ N with k ′ ≤ i ≤ n and k ′′ ≤ j ≤ m we have

S|[si ,si+1[×[tj ,tj+1[ ⊂ CH({pl′,l′′ : i − k ′ ≤ l ′ ≤ i ∧ j − k ′′ ≤ l ′′ ≤ j}).
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Properties of B-Spline Surfaces

Lemma 164 (Local control)

With the setting of Def. 160, for i, j ∈ N with k ′ ≤ i ≤ n and k ′′ ≤ j ≤ m we have that

S|[si ,si+1[×[tj ,tj+1[ depends only on {pl′,l′′ : i − k ′ ≤ l ′ ≤ i ∧ j − k ′′ ≤ l ′′ ≤ j}.

Lemma 165 (Local modification scheme)

With the setting of Def. 160, a modification of the position of pi,j changes S only in the
parameter domain [si , si+k′+1[×[tj , tj+k′′+1[, for i ∈ {0, 1, . . . , n} and j ∈ {0, 1, . . . ,m}.

Lemma 166 (Affine invariance)

Any B-spline representation is affinely invariant, i.e., given any affine map π, the
image surface π(S) of a B-spline surface S with control points pi,j has the control
points π(pi,j).
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Clamping of a B-Spline Surface

A B-spline surface can be clamped by repeating the same knot values in one
direction of the parameters (i.e., in s or t).

We can also close the surface by recycling the control points.

If a B-spline surface is closed in one direction, then the surface becomes a tube.

If a B-spline surface is closed in two directions, then the surface becomes a torus.

Other topologies are more difficult to handle, such as a ball or a double torus.
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Evaluation of a B-Spline Surface

Five easy steps to calculate a point on a B-spline patch for (s, t)
1 Find the knot span in which s lies, i.e., find i such that s ∈ [si , si+1[.
2 Evaluate the non-zero basis functions Ni−k′,k′(s), . . . ,Ni,k′(s).
3 Find the knot span in which t lies, i.e., find j such that t ∈ [tj , tj+1[.
4 Evaluate the non-zero basis functions Nj−k′′,k′′(t), . . . ,Nj,k′′(t).
5 Multiply Ni′,k′(s) with Nj′,k′′(t) and with the control point pi′,j′ , for

i ′ ∈ {i − k ′, . . . , i} and j ′ ∈ {j − k ′′, . . . , j}.

Alternatively, one can apply an appropriate generalization of de Boor’s algorithm.
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Motivation

Can we use a B-spline curve to represent a circular arc?{(
1
0

)
,

(
1
1

)
,

(
0
1

)
,

(
−1
1

)
,

(
−1
0

)
,

(
−1
−1

)
,

(
0
−1

)
,

(
1
−1

)
,

(
1
0

)}

uniform knots, degree 8

close to a circle, but still no circle!
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Non-Uniform Rational B-Splines

Definition 167 (NURBS curve)

For n ∈ N and k ∈ N0 with k ≤ n, consider a set of n + 1 control points with position
vectors p0, p1, . . . , pn in the plane, and let τ := (t0, t1, . . . , tn+k+1) be a knot vector.
Then a rational B-spline curve of degree k (and order k + 1) relative to τ with control
points p0, p1, . . . , pn is given by

N (t) :=
∑n

i=0 Ni,k,τ (t)wipi∑n
i=0 Ni,k,τ (t)wi

for t ∈ [tk , tn+1[,

where Ni,k,τ is the i-th B-spline basis function of degree k relative to τ , and for some
weights wi ∈ R+, for all i ∈ {0, 1, . . . , n}.

If all wi := 1 then we obtain the standard B-spline curve. (Recall the Partition of
Unity, Cor. 137.)

Both the numerator and the denominator are (piecewise) polynomials of degree
k . Hence, N is a piecewise rational curve of degree k .

In general, the weights wi are required to be positive; a zero weight effectively
turns off a control point, and can be used for so-called infinite control points
[Piegl 1987].
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Geometric Interpretation of NURBS: Homogeneous Coordinates

R2 is embedded into R3 by identifying it with the plane z = 1.

We identify the point
(

x
y

)
∈ R2 with

 x
y
1

 ∈ R3 or with

w · x
w · y

w

 ∈ R3 for

w ̸= 0.

Same for other points.

All points on a particular
line through the origin in R3

represent the same point in
R2.

0

y

x

x

y

z
(z=1)-plane
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Geometric Interpretation of NURBS: Homogeneous Coordinates

Definition 168 (Homogeneous coordinates, Dt.: homogene Koordinaten)

Homogeneous coordinates of
(

x
y

)
∈ R2 are given by

w · x
w · y

w

 ∈ R3, for w ̸= 0,

while

the inhomogeneous coordinates of

 x
y
w

 ∈ R3 are given by
(

x/w
y/w

)
∈ R2.

For pi :=

(
xi

yi

)
∈ R2, let pw

i :=

wixi

wiyi

wi

 ∈ R3, for all i ∈ {0, 1, . . . , n}.

Now consider

N w (t) :=
n∑

i=0

Ni,k (t) pw
i =

∑n
i=0 Ni,k (t)(wixi)∑n
i=0 Ni,k (t)(wiyi)∑n

i=0 Ni,k (t)wi

.

Dividing the first two coordinates of N w by its third coordinate equals the (central)
projection of N w to the plane z = 1.
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Geometric Interpretation of NURBS

Projection onto z = 1

A NURBS curve in Rd is the projection of a B-spline curve in Rd+1.

x

y

z

z = 1

(w0x0,w0y0,w0)
(w3x3,w3y3,w3)

(w2x2,w2y2,w2)
(w1x1,w1y1,w1)

(x0, y0,1)

(x1, y1,1) (x2, y2,1)

(x3, y3,1)

Hence, NURBS curves inherit properties of B-spline curves.
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Geometric Interpretation of NURBS

Rational (inhomogeneous) parametrization of the unit circle in the plane:

x(t) :=
1 − t2

1 + t2

y(t) :=
2t

1 + t2

with t ∈ R.

Parametrization of the unit circle in the plane in homogeneous coordinates:

u(t) := 1 − t2

v(t) := 2t

w(t) := 1 + t2
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NURBS Basis Functions

Definition 169 (NURBS basis function)

For k ∈ N0, weights wj > 0 for all j ∈ {0, 1, . . . , n} and all (permissible) i , we define
the i-th NURBS basis function of degree k as

Ri,k (t) :=
Ni,k (t)wi∑n
j=0 Nj,k (t)wj

.

We can re-write the equation (in Def. 167) for N (t) as

N (t) =
n∑

i=0

Ri,k (t)pi for t ∈ [tk , tn+1[.

Since NURBS basis functions in Rd are given by the projection of B-spline basis
functions in Rd+1, we may expect that the properties of B-spline basis functions
carry over to NURBS basis functions.
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Properties of NURBS Basis Functions

Lemma 170

For n ∈ N and k ∈ N0 with k ≤ n, let τ := (t0, t1, t2, . . . , tn+k+1) be a knot vector. Then
the following properties hold for all (permissible) values of i ∈ N0:

Non-negativity:
Ri,k (t) ≥ 0 for all real t .

Local support:
Ri,k (t) = 0 if t /∈ [ti , ti+k+1[.

Local influence:
Rj,k non-zero over [ti , ti+1[ ⇒ j ∈ {i − k , i − k + 1, . . . , i}.

Partition of unity:
n∑

j=0

Rj,k (t) = 1 for all t ∈ [tk , tn+1[.

Continuity:
All NURBS basis functions of degree k are k − r times continuously
differentiable at a knot of multiplicity r , and k − 1 times continuously
differentiable everywhere else.
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Properties of NURBS Curves

Lemma 171

For n ∈ N and k ∈ N0 with k ≤ n, consider a set of n + 1 control points with position
vectors p0, p1, . . . , pn in the plane, and let τ := (t0, t1, . . . , tn+k+1) be a knot vector.
Then the following properties hold:

Clamped interpolation: If τ is clamped then the NURBS curve N starts in p0 and
ends in pn.

Variation diminishing property: If a straight line intersects the control polygon of N
m times then it intersects N at most m times.

Strong convex hull property: For i ∈ N with k ≤ i ≤ n, we have

N|[ti ,ti+1[ ⊂ CH({pi−k , pi−k+1, . . . , pi−1, pi}).

Local control: The NURBS curve N restricted to [ti , ti+1[ depends only on the
positions of pi−k , pi−k+1, . . . , pi−1, pi .

Local modification scheme: A modification of the position of pi changes N only in
the parameter interval [ti , ti+k+1[, for i ∈ {0, 1, . . . , n}.
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Properties of NURBS Curves

Lemma 172 (Projective invariance)

Any NURBS curve is projectively invariant, i.e., given any projective transformation π,
the image curve π(N ) of a NURBS curve N with control points p0, p1, . . . , pn has the
control points π(p0), π(p1), . . . , π(pn).

Lemma 173

For n ∈ N and k ∈ N0 with k ≤ n, consider a set of n + 1 control points with position
vectors p0, p1, . . . , pn in the plane, and let τ := (t0, t1, . . . , tn+k+1) be a knot vector and
w0,w1, . . . ,wn be weights. Then the following properties hold for all i ∈ {0, 1, . . . , n}:

1 The weight wi effects only the knot span [ti , ti+k+1[.
2 If wi decreases (relative to the other weights) then the NURBS curve is pushed

away from pi .
3 If wi = 0 then pi does not contribute to the NURBS curve.
4 If wi increases (relative to the other weights) then the NURBS curve is pulled

towards pi .
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Sample NURBS Curve

Clamped uniform rational B-spline of degree three for a control polygon with
seven vertices:{(

0
0

)
,

(
0
2

)
,

(
2
3

)
,

(
4
0

)
,

(
6
3

)
,

(
8
2

)
,

(
8
0

)}
Knot vector:

τ := (0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4)

Weights:

(1, 1, 1, 1, 1, 1, 1)
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Sample NURBS Curve

Clamped uniform rational B-spline of degree three for a control polygon with
seven vertices:{(

0
0

)
,

(
0
2

)
,

(
2
3

)
,

(
4
0

)
,

(
6
3

)
,

(
8
2

)
,

(
8
0

)}
Knot vector:

τ := (0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4)

Weights:

(1, 1, 1, 10, 1, 1, 1)
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Sample NURBS Curve

Clamped uniform rational B-spline of degree three for a control polygon with
seven vertices:{(

0
0

)
,

(
0
2

)
,

(
2
3

)
,

(
4
0

)
,

(
6
3

)
,

(
8
2

)
,

(
8
0

)}
Knot vector:

τ := (0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4)

Weights:

(1, 1, 1, 0.1, 1, 1, 1)
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Conics Modeled by NURBS

NURBS can represent all conic curves — circle, ellipse, parabola, hyperbola —
exactly.

Conics are quadratic curves.

Hence, consider three control points p0, p1, p2 and the following quadratic
NURBS curve

N2(t) :=
∑2

i=0 Ni,2(t) wi pi∑2
i=0 Ni,2(t) wi

with τ := (0, 0, 0, 1, 1, 1),

i.e., a rational Bézier curve of degree two over [0, 1].

In expanded form we get

N2(t) =
(1 − t)2w0p0 + 2t(1 − t)w1p1 + t2w2p2

(1 − t)2w0 + 2t(1 − t)w1 + t2w2
.

Can we come up with conditions for w0,w1,w2 that allow to characterize the type
of curve represented by N2?
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Conics Modeled by NURBS

Lemma 174

The conic shape factor, ρ, determines the type of conic represented by N2:

ρ :=
w2

1

w0w2


< 1 . . . N2 is an elliptic curve,
= 1 . . . N2 is a parabolic curve,
> 1 . . . N2 is a hyperbolic curve.

Clamped uniform rational B-spline N2 of
degree two with three control vertices{(

1
0

)
,

(
1
1

)
,

(
0
1

)}
and knots

τ := (0, 0, 0, 1, 1, 1)

and weights:

(1, 1/10, 1), hence ρ < 1.

© M. Held (Univ. Salzburg) Geometric Modeling (SS 2025) 233/297



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Conics Modeled by NURBS

Lemma 174

The conic shape factor, ρ, determines the type of conic represented by N2:

ρ :=
w2

1

w0w2


< 1 . . . N2 is an elliptic curve,
= 1 . . . N2 is a parabolic curve,
> 1 . . . N2 is a hyperbolic curve.

Clamped uniform rational B-spline N2 of
degree two with three control vertices{(

1
0

)
,

(
1
1

)
,

(
0
1

)}
and knots

τ := (0, 0, 0, 1, 1, 1)

and weights:

(1, 1, 1), hence ρ = 1.
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Conics Modeled by NURBS

Lemma 174

The conic shape factor, ρ, determines the type of conic represented by N2:

ρ :=
w2

1

w0w2


< 1 . . . N2 is an elliptic curve,
= 1 . . . N2 is a parabolic curve,
> 1 . . . N2 is a hyperbolic curve.

Clamped uniform rational B-spline N2 of
degree two with three control vertices{(

1
0

)
,

(
1
1

)
,

(
0
1

)}
and knots

τ := (0, 0, 0, 1, 1, 1)

and weights:

(1, 5, 1), hence ρ > 1.
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Conics Modeled by NURBS

Lemma 175

The quadratic NURBS curve N2 represents a circular arc

if the control points p0, p1, p2 form an isosceles triangle, and

if the weights are set as follows:

w0 := 1 w1 :=
∥p0 − p2∥

2 · ∥p0 − p1∥
w2 := 1

The weight w1 is related to the central angle φ
subtended by the arc: w1 = cos(φ/2).

We can join four quarter-circle NURBS to form
a full circle.

In this case, the isosceles triangles defining
the quarter circles need to add up to a square.
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Conics Modeled by NURBS

It is also possible to construct a circle by a single NURBS curve.{(
1
0

)
,

(
1
1

)
,

(
0
1

)
,

(
−1
1

)
,

(
−1
0

)
,

(
−1
−1

)
,

(
0
−1

)
,

(
1
−1

)
,

(
1
0

)}

Knots:

(0, 0, 0,
π

2
,
π

2
, π, π,

3π
2

,
3π
2

, 2π, 2π, 2π)

Weights:

(1,
1√
2
, 1,

1√
2
, 1,

1√
2
, 1,

1√
2
, 1)

Note: The positioning of the control
points ensures that the first derivative
is continuous, despite of double knots.

Note: N (t) ̸= (cos t , sin t) for t ̸= m·π
4 .
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Conics Modeled by NURBS

Applying an affine transformation to the control points yields an ellipse.{(
2
0

)
,

(
2
1

)
,

(
0
1

)
,

(
−2
1

)
,

(
−2
0

)
,

(
−2
−1

)
,

(
0
−1

)
,

(
2
−1

)
,

(
2
0

)}
Knots: (0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4) Weights: (1,

1√
2
, 1,

1√
2
, 1,

1√
2
, 1,

1√
2
, 1)

© M. Held (Univ. Salzburg) Geometric Modeling (SS 2025) 236/297



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Sample NURBS Surface
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5 Subdivision Methods
Basics
Subdivision Surfaces
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Problems of NURBS Surfaces: Holes

Consider a NURBS surface. How could you intersect a cyclinder with it to cut out
a spherical hole?

v

u

S(u, v)
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Problems of NURBS Surfaces: Topology

A single NURBS patch is either a topological disk, a cyclinder or a torus.

One needs to stitch several NURBS patches together to realize more complex
topologies.

Care has to be taken at the seams of the patches to avoid cracks when such a
model is deformed.

[Sederberg (2003)]:
T-splines allow the
control mesh to contain
T-junctions.

This makes it a tad
easier to model complex
surfaces.

But technologies related
to T-splines are
patent-protected . . .

So . . .

© M. Held (Univ. Salzburg) Geometric Modeling (SS 2025) 241/297



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Corner Cutting

How can we make a polygonal curve “look smooth” by manipulating its vertices?

[Chaikin (1974)]: Smooth the polygonal curve by iteratively replacing each vertex
vi by two new vertices v−

i and v+
i such that

v−
i := vi + λ(vi−1 − vi) and v+

i := vi + λ(vi+1 − vi)

for some λ ∈ ]0, 1[.

Chaikin suggested λ := 1/4.

Need to come up with rule for handling terminal vertices.

vi

vi−1

vi+1

vi+2

v+
iv−

i

vi

vi−1

vi+1

vi+2

v+
iv−

i

d

λ · d
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Chaikin’s Corner Cutting

Chaikin suggested λ := 1/4. His scheme can be applied repeatedly.
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Corner Cutting

Of course, the result depends on the value of λ. E.g., for λ := 1/10:
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Corner Cutting Modified

Chaikin’s corner cutting scheme replaces the vertex vi by

v−
i :=

3
4

vi +
1
4

vi−1 and v+
i :=

3
4

vi +
1
4

vi+1.

[Catmull&Clark (1978)] modify this scheme by replacing vi by

v∗
i :=

1
8

vi−1 +
3
4

vi +
1
8

vi+1 and vm
i :=

1
2

vi +
1
2

vi+1.

vi

vi−1

vi+1

vi+2

vm
iv∗

i

vi−1

vi vi+1

vi+2

vm
iv∗

i
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Catmull-Clark Corner Cutting

Catmull-Clark corner cutting, with v∗
i and vm

i replacing vi :
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Limit Curve of Corner Cutting

Theorem 176

Chaikin’s corner cutting converges to the quadratic B-spline defined by the input
polygon, and Catmull-Clark corner cutting converges to its cubic B-spline.

four iterations of Catmull-Clark corner cutting vs. cubic B-spline
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Corner Cutting for Planar Straight-Line Graphs

Corner cutting is based on computing weighted averages of two or three
neighboring vertices.

It can be extended to arbitrary planar straight-line graphs.

We get piecewise splines.

That is, in the limit we get curves that are C1-continuous or even C2-continuous
everywhere except at points that correspond to input vertices of degree three or
higher.
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Mesh

Definition 177 (Mesh)

A (polygon) mesh is a collection of m plane polygons (“faces”) such that the following
conditions hold:

1 Every pair of polygons intersects at most in common edges or common vertices.
2 The union of all m polygons forms (part of) a 2-manifold.

A mesh is closed if every edge is shared by exactly two polygons. Otherwise, it is
open and has boundary edges.
The degree of a vertex of a mesh is given by the number of incident polygon edges.

The surface of a polyhedron forms a closed mesh.

Typical faces are given by triangles and plane quads.

Recall that Euler’s formula v − e + f = 2 is applicable to closed (connected)
meshes.
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Mesh Subdivision: Face Split versus Vertex Split

Smaller faces of a mesh can be generated by
1 splitting a face into sub-faces, and/or
2 splitting a vertex.
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Mesh Subdivision: Goals

Efficiency: The computation of the positions of the new vertices should be efficient,
based on only a small number of arithmetic operations.

Simplicity: A small number of simple subdivision rules is sought.

Local control: The subdivision rules that define a new point should involve only
points that are “close by”.

Local support: The position of an input point influences only a small area of the final
shape.

Affine invariance: An affine transformation applied to the vertices of the original
mesh followed by some subdivision steps should define the same surface as
obtained by transforming the shape given after some subdivision steps
relative to the original mesh.

Smoothness: The limit curve/surface should be of provable continuity.

Special surface features: Creases, grooves and sharp points/edges should be
representable.
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Subdivision for Regular Quad Meshes

Suppose that all faces in a mesh are quadrilaterals and that every vertex is
shared by exactly four faces.

For each of the four vertices v0, v1, v2, v3 of a quadrilateral, four new vertices
v ′

0, v
′
1, v

′
2, v

′
3 are computed as follows (with indices taken modulo four):

v ′
i :=

3
16

vi−1 +
9

16
vi +

3
16

vi+1 +
1
16

vi+2

The vertices v ′
0, v

′
1, v

′
2, v

′
3 define a new quadrilateral.

Similarly for the new vertices in the other quadrilaterals.

v0 v1

v2

v3

v ′
0 v ′

1

v ′
2

v ′
3
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Doo-Sabin Subdivision: Weighted Averages

[Doo&Sabin (1978)]: The new vertices v ′
1, v

′
2, . . . , v

′
k of a face with k vertices are

obtained as follows (for 1 ≤ i ≤ k ):

v ′
i :=

k∑
j=1

αijvj ,

where

aij :=


k+5
4k if i = j,
1

4k

[
3 + 2 cos

(
2π(i−j)

k

)]
otherwise.

Note that this formula matches the formula given for quads on the previous slide!

v0 v1

v2

v3

v ′
0 v ′

1

v ′
2

v ′
3
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Doo-Sabin Subdivision: Remeshing

F -face

E-face
V -face

Remeshing the new face
vertices yields three types of
faces.

An F -Face is defined by the
new vertices of one face. It
replaces the old face.

An E-face corresponds to an
old edge.

An V -face corresponds to an
old vertex.

If the input mesh consists of
quadrilaterals then most new
faces are quadrilaterals, too.

Non four-sided new faces are
V -faces that correspond to
“extraordinary” vertices
whose degree is not four.
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Doo-Sabin Subdivision: Properties

After one round of subdivision, all vertices are of degree four.

Lemma 178

The limit surface of Doo-Sabin subdivision mostly is a B-spline surface of degree
(2,2). It is C1 everywhere except at points that correspond to extraordinary vertices
where it is only G1.

© M. Held (Univ. Salzburg) Geometric Modeling (SS 2025) 256/297



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Doo-Sabin Subdivision: Sample
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Catmull-Clark Subdivision: Unweighted Averages

[Catmull&Clark (1978)]: They compute a face point for every face, followed by an
edge point for every edge, and then a vertex point for every vertex.

Once these new vertices are available, a new mesh is constructed.

We assume that the surface is a 2-manifold without boundary.

A face point is given by the centroid of that face, i.e., by the average of its
vertices.

An edge point is given by the average of the two end-points of that edge and the
face points of its two adjacent faces.
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Catmull-Clark Subdivision: Weighted Averages

Let e1, e2, . . . , ek and f1, f2, . . . , fk be the edge and face points of the k edges
(resp., faces) incident at a vertex v .

The position v ′ of the relocated vertex point is computed as follows:

v ′ =
k − 3

k
v +

1
k

k∑
i=1

fi +
2
k

k∑
i=1

ei

v ′

ve1

f1

e2
f2

e3

f3
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Catmull-Clark Subdivision: Remeshing

Connect every face point to the edge points of its edges.

Connect every vertex point to the edge points of the edges incident to it.
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Catmull-Clark Subdivision: Properties

Lemma 179

All faces of the mesh are quadrilaterals after one run of Catmull-Clark subdivision.

For Catmull-Clark subdivision, a vertex is extraordinary if it is not of degree four.

Lemma 180

The limit surface of Catmull-Clark subdivision is a B-spline surface of degree (3, 3). It
is C2 everywhere except at points that correspond to extraordinary vertices where it is
only C1.
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Catmull-Clark Subdivision: Sample
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UNIVERSITÄT SALZBURG

Loop Subdivision: Even and Odd Vertices

Consider a mesh with only triangular faces.

[Loop (1987)]:
1 Split every triangle into three sub-triangles by inserting three new vertices on

its edges (“edge points”) .
2 Relocate old and new vertices by computing weighted averages.

Old vertices are commonly called even vertices, and new vertices are called odd
vertices.
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UNIVERSITÄT SALZBURG

Loop Subdivision: Weighted Averages

For an edge point e defined by a non-boundary edge v1v2:

e :=
3
8
(v1 + v2) +

1
8
(vL + vR)

For an edge point e defined by a boundary edge v1v2:

e :=
1
2
(v1 + v2)

v1

v2

vL
vR

e
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Loop Subdivision: Weighted Averages

The new position v ′ of a non-boundary vertex v with k old neighbors
v1, v2, . . . , vk is computed as

v ′ := (1 − α)v + αv̄

where

v̄ :=
1
k

k∑
j=1

vk and α :=

{
3
16 if k = 3,
5
8 −

( 3
8 + 1

4 cos 2π
k

)2 if k > 3.

[Warren (1995)]: Use α := 3
8k for k > 3.

A boundary vertex v is relocated as

v ′ :=
1
8
(vL + vR) +

3
4

v .

v3

v4

v2

v1
v5

v ′
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Loop Subdivision: Properties

Lemma 181

A Loop subdivision surface lies within the convex hull of its input vertices.

Sketch of proof : Note that all weights are non-negative and sum up to one.

For Loop subdivision, a vertex is called extraordinary if its degree is not equal to
six.

Lemma 182

The limit surface of Loop subdivision is a generalization of box splines. It is C2 except
for extraordinary vertices where it is only G1. Same for Warren’s simplification.

For meshes with non-triangular faces the final limit surface depends on the
triangulation of those faces.
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Loop Subdivision: Sample
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√
3 Subdivision

Consider a mesh with only triangular faces.

Kobbelt (2000)]:
1 Split every triangle into three sub-triangles by inserting a center vertex at the

centroid of each triangle.
2 Flip all original triangle edges. This yields a new triangular mesh.
3 Relocate every old vertex.

The centroid c of a triangle ∆(v1, v2, v3) is its center of gravity:

c :=
1
3
(v1 + v2 + v3).
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√
3 Subdivision: Averages

An old vertex v with k neighbors v1, v2, . . . , vk is relocated to its new position v ′

as follows:

v ′ := (1 − α)v + αv̄ ,

with

α :=
1
9

[
4 − 2 cos

(
2π
k

)]
and v̄ :=

1
k

k∑
j=1

vj .
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√
3 Subdivision: Properties

Lemma 183

A
√

3 subdivision surface lies within the convex hull of its input vertices.

Sketch of proof : Note that all weights are non-negative and sum up to one.

After two subdivison steps the number of triangles has increased by a
multiplicative factor of nine. (This fact motivated the name of the scheme.)

For
√

3 subdivision, a vertex is called extraordinary if its degree is not equal to
six.

Lemma 184

The limit surface of
√

3 subdivision is a collection of C2 patches except for
extraordinary vertices where it is only C1.

Kobbelt’s
√

3’s scheme can be extended to an adaptive scheme for even finer
control of the subdivision.
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Discussion

Catmull-Clark subdivision is best for quads, and poor on triangular meshes.

Loop subdivision and
√

3 subdivision work nicely for triangular meshes.

When applied appropriately, differences are difficult to spot visually, though. After
three subdivision rounds: Input mesh, Doo-Sabin subdivision, Loop subdivision,
Catmull-Clark subdivision, Catmull-Clark subdivision for triangulated faces.

[Stam&Loop (2003), Schaefer&Warren (2005)]: Unified scheme for triangle/quad
meshes, with (mostly) C2 continuity.

© M. Held (Univ. Salzburg) Geometric Modeling (SS 2025) 271/297



Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Splines versus Subdivision Surfaces

NURBS are (still) the number-one contender when it comes to precise
non-organic modelling.

NURBS offer full control over the surface parametrization and its smoothness.

Subdivision surfaces are better suited for
describing objects with complex topology because
they start with a control mesh of arbitrary
(manifold) topology. Spline-based methods (such
as NURBS) struggle with complex topology.

Local refinement to add detail to a localized region
of a subdivision surface can be carried out easily
by adding faces to appropriate parts of the control
mesh.

Subdivision surfaces are better than polygon
meshes because they are smooth and do not look
faceted when viewed close up.

[Image credit: “Geri” from
Pixar’s “Geri’s Game”]

Subdivision surfaces come with level-of-detail modeling.

The classic tools and techniques for polygon-mesh modeling can be applied to
modeling subdivision control meshes with little extra effort.
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Splines versus Subdivision Surfaces

Since the popular subdivision methods are generalizations of spline-based
representations, renderers for subdivision surfaces tend to handle spline surfaces
as well.

Subdivision data can be sent to the GPU at
coarse resolution and rendered at high
resolution.

Recent GPUs provide hardware support!

Subdivision meshes tend to be well-suited
for finite-element solvers.

Subdivision surfaces provide top-quality
results for creature modelling in
conjunction with bump mapping or
displacement mapping.

In particular, they are not hampered by
topological constraints and simplify
character animation.

The original model of Gollum (“Lord of the Rings”) was based on NURBS but
then converted to subdivision surfaces.
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6 Approximation and Interpolation
Distance Measures
Interpolation and Approximation of Point Data
Bernstein Approximation of Functions
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Hausdorff Distance

Let A,B be two subsets of a metric space X and let d(p, q) denote the distance
between two elements p, q ∈ X . E.g., take Rn and the (standard) Euclidean
distance.

How can we measure how similar A and B are?

This is a frequently asked question in image processing, solid modeling,
computer graphics and computational geometry.

Note that the classical minimin function

D(A,B) := inf
a∈A

(
inf
b∈B

d(a, b)
)

is a very poor measure of similarity between A and B: One can easily get
D(A,B) = 0 although A and B need not be similar at all, according to any natural
human interpretation of similarity.

So, can we do any better?
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Hausdorff Distance

Definition 185 (Hausdorff distance)

Let A,B be two non-empty subsets of a metric space X and let d be any metric on X .
The directed Hausdorff distance, h(A,B), from A to B is defined as

h(A,B) := sup
a∈A

(
inf
b∈B

d(a, b)
)
.

The (symmetric) Hausdorff distance, H(A,B), between A and B is defined as

H(A,B) := max {h(A,B), h(B,A)} .

If both A and B are bounded then H(A,B) is guaranteed to be finite.
For compact sets we can replace inf by min and sup by max.
The function H defines a metric on the set of all non-empty compact subsets of a
metric space X .
For sets of n points in R2, the Hausdorff distance can be computed in time
O(n log n), using a Voronoi-based approach −→ computational geometry.
A common variation is the Hausdorff distance under translation.
The Hausdorff distance does not capture any form of orientation or continuity, as
we might be interested in when matching curves or surfaces.
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Fréchet Distance

Definition 186 (Fréchet distance)

Consider a closed interval I ⊂ R and two curves β, γ : I → Rn. The Fréchet distance
between β(I) and γ(I) is defined as

Fr(β, γ) := inf
σ,τ

max
t∈I

∥β(σ(t))− γ(τ(t))∥ ,

where σ, τ : I → I range over all continuous and monotonously increasing functions
that map I to I such that σ(I) = I and τ(I) = I.

Popular interpretation [Alt&Godau 1995]: Suppose that a person is walking a
dog. Assume the person is walking on one curve and the dog on another curve.
Both can adjust their speeds but are not allowed to move backwards.

We can think of the parameter t as time: Then β(σ(t)) is the position of the
person and γ(τ(t)) is the position of the dog at time t . The length of the leash
between them at time t is the distance between β(σ(t)) and γ(τ(t)).

Then the Fréchet distance of the two curves is the minimum leash length
necessary to keep the person and the dog connected at all times t ∈ I.

Note that we do not demand strict monotonicity for either σ or τ .
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Fréchet Distance

The Fréchet distance between two curves may be arbitrarily larger than the
Hausdorff distance between them.

[Alt&Godau 1995] give a (complicated) algorithm that computes the exact
Fréchet distance between two polygonal curves in time O(nm log(nm)), where n
and m are the number of vertices of the polygonal curves.

[Bringmann 2014] shows that, conditional on the Strong Exponential Time
Hypothesis (SETH), there cannot exist an O(n2−ε) algorithm for deciding whether
two n-vertex polygonal curves have a Fréchet distance at most δ. However, in
practice a fast computation can be engineered [Bringmann et al. 2021].

The same problem is NP-hard for triangulated surfaces. Only a variant, the
so-called weak Fréchet distance, can be computed in polynomial time
[Alt&Buchin 2010].

γ2

γ1

︷︸︸︷
︷︸︸︷

H(γ1, γ2)
H(γ1, γ2)

︷ ︸︸ ︷Fr(γ1, γ2)
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Interpolation Versus Approximation

For m ∈ N0, we are given m + 1 points q0, q1, . . . , qm ∈ Rn, possibly with
matching parameter values u0 < u1 < . . . < um.

For an interpolation of q0, q1, . . . , qm

we seek a curve C such that either
C(xi) = qi for arbitrary xi ∈ R, for
all i ∈ {0, 1, . . . ,m}, or
C(ui) = qi for all
i ∈ {0, 1, . . . ,m}.

For an approximation of q0, q1, . . . , qm

we seek a curve C such that the
distance between C and
q0, q1, . . . , qm is smaller than a
user-specified threshold relative to
some distance measure.

Similarly for approximation/interpolation by a surface rather than a curve.

u

C

u

C
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Humorous View of Approximation

[Image credit: https://xkcd.com]
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Lagrange Interpolation

Definition 187 (Lagrange polynomial)

For m ∈ N, consider m + 1 parameter values u0 < u1 < . . . < um and let
i ∈ {0, 1, . . . ,m}. Then the i-th Lagrange polynomial of degree m is defined as

Li,m(u) :=
m∏

j=0,i ̸=j

u − uj

ui − uj
.

That is,

Li,m(u) =
u − u0

ui − u0
· u − u1

ui − u1
· . . . · u − ui−1

ui − ui−1
· u − ui+1

ui − ui+1
· . . . · u − um−1

ui − um−1
· u − um

ui − um
.

Definition 188 (Lagrange interpolation)

For m ∈ N, consider m + 1 parameter values u0 < u1 < . . . < um and m + 1 data
points q0, q1, . . . , qm. Then the Lagrange interpolation of q0, q1, . . . , qm is given by

L(u) :=
m∑

i=0

Li,m(u)qi .
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Lagrange Interpolation

Lemma 189

For m ∈ N, let L be defined for m + 1 parameter values u0 < u1 < . . . < um and m + 1
data points q0, q1, . . . , qm, as given in Def. 188. Then L(uk ) = qk for all
k ∈ {0, 1, . . . ,m}.

Proof : For all k ∈ {0, 1, . . . ,m}, we have

Li,m(uk ) =
m∏

j=0,i ̸=j

uk − uj

ui − uj
= δik =

{
0 if i ̸= k ,
1 if i = k .

Hence,

L(uk ) =
m∑

i=0

Li,m(uk )qi =
m∑

i=0

δik qi = qk .

Corollary 190

For m ∈ N, the Lagrange polynomials L0,m, L1,m, . . . , Lm,m form a basis of the vector
space of all polynomials of degree at most m.

Sketch of proof : Exactly one polynomial of degree m interpolates m + 1 data points!
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Newton Interpolation

Definition 191 (Newton polynomial)

For m ∈ N, consider m + 1 parameter values u0 < u1 < . . . < um and let
i ∈ {0, 1, . . . ,m}. Then the i-th Newton polynomial is defined as

Ii(u) :=
i−1∏
j=0

(u − uj) with, by convention, I0(u) := 1.

Definition 192 (Newton interpolation)

For m ∈ N, consider m + 1 parameter values u0 < u1 < . . . < um and m + 1 data
points q0, q1, . . . , qm. Then the Newton interpolation of q0, q1, . . . , qm is given by

I(u) :=
m∑

i=0

Ii(u)pi ,

with

pi :=

qi for i = 0,
qi−

∑i−1
j=0 Ij (ui )pj

Ii (ui )
for i > 0.
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Newton Interpolation

Lemma 193

For m ∈ N, let I be defined for m + 1 parameter values u0 < u1 < . . . < um and m + 1
data points q0, q1, . . . , qm, as given in Def. 192. Then I(uk ) = qk for all
k ∈ {0, 1, . . . ,m}.

Proof : For all k ∈ {0, 1, . . . ,m}, we have for all i > 1

Ii(uk ) =
i−1∏
j=0

(uk − uj)

{
= 0 if k ≤ i − 1,
̸= 0 if k ≥ i.

We have

I(u0) = 1 · p0 = q0,

and for each 1 ≤ k ≤ m

I(uk ) =
m∑

i=0

Ii(uk )pi =
k∑

i=0

Ii(uk )pi =
k−1∑
i=0

Ii(uk )pi + Ik (uk )pk

=
k−1∑
i=0

Ii(uk )pi + Ik (uk ) ·
qk −

∑k−1
j=0 Ij(uk )pj

Ik (uk )
= qk .
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Limits of Lagrange Interpolation and Newton Interpolation

Sampling of a function f and subsequent Lagrange interpolation may yield an
extremely poor approximation of f even if f is continuously differentiable.

C. Runge: Consider f (x) := 1
1+x2 and n + 1 uniform samples within [−5, 5], with

n := 20.

Similar problems occur for Newton interpolation.

-4 -2 2 4

-1.0

-0.5

0.5

1.0
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UNIVERSITÄT SALZBURG

B-Spline Interpolation

Let k ∈ N0 and suppose that we are looking for n + 1 control points p0, p1, . . . , pn

and a knot vector τ := (t0, t1, . . . , tn+k+1) such that the B-spline curve B of degree
k defined by p0, p1, . . . , pn and τ interpolates q0, q1, . . . , qm, with B(ui) = qi for all
i ∈ {0, 1, . . . ,m} and some given u0 < u1 < . . . < um.
If n = m, then we get the following system of equations: N0,k (u0) · · · Nn,k (u0)

...
...

N0,k (un) · · · Nn,k (un)


︸ ︷︷ ︸

=:N

·

 p0
...

pn


︸ ︷︷ ︸

=:p

=

 q0
...

qn


︸ ︷︷ ︸

=:q

This interpolation problem can be solved if the collocation matrix N is invertible.

Lemma 194 (Schönberg-Whitney)

The collocation matrix N is invertible if and only if if all its diagonal elements Ni,k (ui)
are non-zero.

If the multiplicity of all knots is at most k then Lemma 129 implies the condition
ti < ui < ti+k+1 and that N is a sparse band matrix without negative elements.
Fast and numerically reliable algorithms exist for computing the inverse of N.
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B-Spline Interpolation

Most applications do not require specific parameter values ui .

In such a case, one can fix the knots ti , and choose ui as follows
(“Greville-abscissae”):

ui :=
1
k

k∑
j=1

ti+j for all i ∈ {0, 1, . . . , n}.

Note that ti and ti+k+1 do not enter the definition of ui .

Of course,

ti ≤ ti+1 ≤ 1
k
(ti+1 + · · ·+ ti+k ) ≤ ti+k ≤ ti+k+1,

thus meeting the Schönberg-Whitney condition of Lem. 194. Equality would only
occur if an inner knot has multiplicity k + 1. (But then the B-spline would be
discontinuous!)
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Effects of Parameters and Knots

Since a B-spline has continuous speed and acceleration (for k ≥ 3), it is obvious
that the parameter values ui should bear a meaningful relation to the distances
between the data points. Otherwise, overshooting is bound to occur!

Consider

u0 := 0 and ui+1 := ui +∆i for all i ∈ {1, . . . ,m − 1},

with

∆i := ∥qi − qi−1∥p for some p ∈ [0, 1] and all i ∈ {1, . . . ,m − 1}.

These parameter values are known as uniform if p = 0, centripetal if p = 1
2 , and

chordal if p = 1.

Suitable knots that meet the Schönberg-Whitney conditions (Lem. 194) are
defined as follows:

ti :=
1
k
(ui−k + ui−k+1 + . . .+ ui−1)
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B-Spline Approximation

If m > n, i.e., if there are more data points than control points, then the linear
system Np = q is over-determined and a solution need not exist.

One popular option is a least-squares fit, which is achieved if

NT Np = NT q.

Hence, if NT N is invertible then we get

p = (NT N)−1NT q.

An extension of the Schönberg-Whitney Lem. 194 tells us that the matrix NT N is
invertible exactly if the Schönberg-Whitney conditions are met:

Lemma 195

The matrix NT N is invertible if and only if ti ≤ ui < ti+k+1, for all i ∈ {0, 1, . . . , n}.
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Bernstein Polynomials

Definition 196 (Bernstein polynomial)

For n ∈ N0, a Bernstein polynomial of degree n is a linear combination of Bernstein
basis polynomials of degree n:

Bn(x) :=
n∑

i=0

µiBi,n(x), with µ0, µ1, . . . , µn ∈ R.

Hence, every polynomial (in power basis) can be seen as a Bernstein polynomial,
albeit with unknown scalars for the linear combination.

Can we select µi such that a decent approximation of a user-specified function is
achieved?
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Bernstein Approximation

Definition 197 (Bernstein approximation)

Consider a continuous function f : [0, 1] → R. For n ∈ N, the Bernstein approximation
with degree n of f is defined as

Bn,f (x) :=
n∑

i=0

f
(

i
n

)
Bi,n(x).

Hence, a Bernstein approximation is given by a Bernstein polynomial, with
weights µi := f

( i
n

)
.

Theorem 198 (Weierstrass 1885, Bernstein 1911)

The Bernstein approximation Bn,f converges uniformly to the continuous function f on
the interval [0, 1]. That is, given a tolerance ε > 0, there exists n0 ∈ N such that

|f (x)− Bn,f (x)| ≤ ε for all x ∈ [0, 1] and all n ≥ n0.

Since x := t−a
b−a maps t ∈ [a, b] to x ∈ [0, 1], this approximation theorem extends

to continuous functions f : [a, b] → R.
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Sample Bernstein Approximation

Sample Bernstein approximation of a continuous function:

f : [0, 1] → R f (x) :=
1

1 + (10x − 5)2
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Sample Bernstein Approximation

Sample Bernstein approximation of a continuous function:

f : [0, 1] → R f (x) :=
1

1 + (10x − 5)2
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Sample Bernstein Approximation

Sample Bernstein approximation of a continuous function:

f : [0, 1] → R f (x) := sin (πx) +
1
5
sin
(

6πx + πx2
)
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Sample Bernstein Approximation

Sample Bernstein approximation of a continuous function:

f : [0, 1] → R f (x) := sin (πx) +
1
5
sin
(

6πx + πx2
)
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The End!

I hope that you enjoyed this course, and I wish you all the best for your future studies.

Computational Geometry and Applications Lab
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