
Introduction to OpenGL

Martin Held

FB Informatik
Universität Salzburg

A-5020 Salzburg, Austria
held@cs.sbg.ac.at

5. Februar 2025

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

mailto:held@cs.sbg.ac.at

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Legal Fine Print and Disclaimer

To the best of our knowledge, these slides do not violate or infringe upon somebody
else’s copyrights. If copyrighted material appears in these slides then it was
considered to be available in a non-profit manner and as an educational tool for
teaching at an academic institution, within the limits of the “fair use” policy. For
copyrighted material we strive to give references to the copyright holders (if known).
Of course, any trademarks mentioned in these slides are properties of their respective
owners.

Please note that these slides are copyrighted. The copyright holder(s) grant you the
right to download and print it for your personal use. Any other use, including non-profit
instructional use and re-distribution in electronic or printed form of significant portions
of it, beyond the limits of “fair use”, requires the explicit permission of the copyright
holder(s). All rights reserved.

These slides are made available without warrant of any kind, either express or
implied, including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. In no event shall the copyright holder(s) and/or their
respective employers be liable for any special, indirect or consequential damages or
any damages whatsoever resulting from loss of use, data or profits, arising out of or in
connection with the use of information provided in these slides.

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 2/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Table of Content

1 OpenGL

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 3/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

1 OpenGL
Introduction to OpenGL
Basic OpenGL
Coordinates and Transformations
Event-Handling and Callbacks
Textures
Loading 3D Models

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 4/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

1 OpenGL
Introduction to OpenGL

What is OpenGL?
Compiling and Linking an OpenGL Program

Basic OpenGL
Coordinates and Transformations
Event-Handling and Callbacks
Textures
Loading 3D Models

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 5/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

What is OpenGL?

OpenGL stands for “Open Graphics Library”.
Designed by Silicon Graphics Inc. (SGI) in 1991.
Initial design in 1982 (“IRIS GL”).
For many years, development of OpenGL had been coordinated by an
Architectural Review Board (ARB).
In 2006, the ARB and the Khronos Board of Directors voted to transfer control of
the OpenGL API standard to the non-profit technology consortium Khronos
Group.
As of February 2021, the following companies were promoter members of the
Khronos Group: AMD, Apple, ARM, Epic Games, Google, HUAWEI, IKEA,
Imagination Technologies Group, Intel, Nvidia, Qualcomm, Samsung, Sony,
Valve, VeriSilicon.
The Khronos Group now controls
the adaption/extension of OpenGL to reflect new hardware and software advances,

“. . . to bring advanced 3D graphics to all hardware platforms and operating
systems — from supercomputers to jet fighters to cell phones.”

Official website: https://www.opengl.org.

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 6/83

https://www.khronos.org
https://www.khronos.org
https://www.opengl.org

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

What is OpenGL?

OpenGL is a high-performance system interface to graphics hardware.
It is the most widely used library for high-end platform-independent computer
graphics; de-facto industry standard.
It runs on different operating systems (including Unix/Linux, Windows, MacOS)
without requiring changes to the source code.
Platform-specific features can be implemented via extensions.
OpenGL is a C Library of several hundreds of distinct functions.
OpenGL is not object-oriented.
Several (commercial) versions of an OpenGL library have been implemented.
OpenGL functionality is also provided by Mesa, https://www.mesa3d.org, which
is free. Mesa 20.x implements the OpenGL 4.6 API. (OpenGL 3.3 and Mesa 10.x
would be perfectly fine for this course, though!)

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 7/83

https://www.mesa3d.org

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

What is OpenGL?

OpenGL takes advantage of graphics hardware where it exists; whether or not
hardware acceleration is used depends on the availability of suitable drivers.
OpenGL does not come with any windowing functionality; it has to rely on
additional libraries (such as GLFW).
It ties into standard C/C++; various other language bindings exist, too. In
particular, OpenGL can be used from within

C, C++,
Java,
Python,
Fortran,
Ada.

OpenGL supports
polygon rendering,
texture mapping,
anti-aliasing,
shader-level operations.

OpenGL does not provide or (directly) support high-level graphics like
ray tracing,
radiosity calculations,
volume rendering.

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 8/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

OpenGL 3.x/4.x versus OpenGL 2.x

Note that OpenGL 1.x and 2.x differ substantially from OpenGL 3.x and OpenGL
4.x:

Modern OpenGL is entirely shader-based.
Modern OpenGL no longer relies on tons of state variables.

Be careful . . .
. . . when studying tutorials in the Web! A surprisingly large number of tutorials still
teach old-style “legacy” OpenGL.

Hint: It is old-style OpenGL if you see statements like glBegin or glColor4f.

No GLU anymore
OpenGL 3.0 deprecated the entire Graphics Library Utilities (GLU) of “legacy”
OpenGL 1.x/2.x. It was removed in OpenGL 3.1. This means that GLU will fail to
work in OpenGL 3.x/4.x contexts.
Similarly, GLUT commands like glutSolidSphere() do no longer work.

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 9/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

OpenGL Tutorials

Sample Tutorials
https://open.gl:
Requires a GPU compatible with OpenGL 3.2, CMake; uses GLFW for context
and window creation and GLEW for access to newer OpenGL functions.
https://www.opengl-tutorial.org:
Requires a GPU compatible with OpenGL 3.3. Similar to https://open.gl/.
https://learnopengl.com:
Similar to http://www.opengl-tutorial.org.
https://ogldev.org:
Tutorials that require a GPU compatible with OpenGL 3.3.

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 10/83

https://open.gl
https://www.opengl-tutorial.org
https://open.gl/
https://learnopengl.com
http://www.opengl-tutorial.org
https://ogldev.org

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

OpenGL Libraries

OpenGL proper does not provide any windowing functionality! That is, it does not
support opening a window or getting input from the mouse or a keyboard.
Quote taken from the OpenGL 3.1 Specification (chapter 2, first paragraph):

OpenGL is concerned only with rendering into a frame buffer (and reading
values stored in that frame buffer). There is no support for other peripherals
sometimes associated with graphics hardware, such as mice and keyboards.
Programmers must rely on other mechanisms to obtain user input.

Thus, a link to the underlying windowing system (GLX for X windows, WGL for
Windows, AGL for Macintosh) and an add-on library (e.g., GLFW) is required!

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 11/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

OpenGL Libraries: GLFW

GLFW is a light-weight multi-platform library for OpenGL.
It supports Windows (XP and later), OS X (10.7 Lion and later) and Unix-like
operating systems that run the X Window System.
Its commands start with the prefix glfw. E.g., glfwInit().
It can create and manage windows as well as handle standard input (via
keyboard, mouse or joystick).
It can control multiple monitors and enumerate video modes.
In addition to portability, its single biggest advantage is its simplicity.
Its biggest disadvantage is its lack of menus and buttons.

Xlib, Xtk Frame BufferGLXGL
Program

Application
OpenGL

GLEW

GLFW

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 12/83

https://www.glfw.org

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

OpenGL Libraries: GLEW

The OpenGL Extension Wrangler Library (GLEW) is a cross-platform library that
provides efficient run-time mechanisms for determining which OpenGL
extensions are supported on the target platform.
That is, it makes it easy to access OpenGL extensions that are available on a
particular system.
GLEW commands start with the prefix glew.
Easy to use: Include glew.h and run glewInit().

Xlib, Xtk Frame BufferGLXGL
Program

Application
OpenGL

GLEW

GLFW

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 13/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Compiling and Linking an OpenGL Program

The source code for an OpenGL program has to contain the following directives
for including OpenGL header files:

If GLEW is used:

#include <GL/glew.h>

If GLFW is used:

#include <GLFW/glfw3.h>

Note: When compiling and linking an OpenGL program, the OpenGL header files
and libraries have to be available for inclusion. This means, e.g., using the -lgl

loader flags, and possibly, -L flags for the X libraries.
Better alternative: Resort to cmake!
See the sample files on https:

//www.cosy.sbg.ac.at/~held/teaching/einfuehrung_graphik/cg.html.

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 14/83

https://www.cosy.sbg.ac.at/~held/teaching/einfuehrung_graphik/cg.html
https://www.cosy.sbg.ac.at/~held/teaching/einfuehrung_graphik/cg.html

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

1 OpenGL
Introduction to OpenGL
Basic OpenGL

Basic Program Structure
Creating an OpenGL Window and Context with GLFW and GLEW
Vertex Array Objects and Vertex Buffer Objects
Shaders
Index Buffer Objects
Data Types and Primitives

Coordinates and Transformations
Event-Handling and Callbacks
Textures
Loading 3D Models

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 15/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Basic OpenGL Program Structure

#include <HeadersOpenGL >

int main()

{

CreateWindow(title , width , height);

CreateOpenGLContext(settings);

while (windowIsOpen) { / * e v e n t p r o c e s s i n g & d r a w i n g * /

while (event == GetNextEvent ())

HandleEvent(event); / * e . g . , h a n d l e m o u s e * /

UpdateScene (); / * e . g . , m o v e o b j e c t s * /

RenderScene (); / * g e n e r a t e n e x t i m a g e * /

DisplayGraphics (); / * e . g . , s w a p b u f f e r s * /

}

}

Every real-time graphics application will have a program flow that boils down to
this structure, no matter whether it uses OpenGL or some other library.

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 16/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Creating an OpenGL Window and Context

We use GLFW to create an OpenGL display window.
It comes as no surprise that you need to load the header file and initialize GLFW.

#include <GLFW/glfw3.h>

/ * i n i t i a l i z a t i o n o f G L F W * /

glfwSetErrorCallback(errorCallback);

if (glfwInit () != GLFW_TRUE) {

fprintf(stderr , "Cannot initialize GLFW\n");

exit(EXIT_FAILURE);

}

...

/ * t e r m i n a t i o n o f G L F W * /

glfwTerminate ();

GLFW error callback function:

static void errorCallback(int err , const char* logText)

{

fprintf(stderr , "GLFW err %d: %s\n", err , logText);

}

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 17/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Creating an OpenGL Window and Context

The glfwWindowHint() function is used to set some GLFW options.
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR , 3);

glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR , 3);

glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT , GL_TRUE);

glfwWindowHint(GLFW_RESIZABLE , GL_FALSE);

Window creation:
const GLuint WIDTH = 800, HEIGHT = 600;

GLFWwindow* myWindow = glfwCreateWindow(WIDTH , HEIGHT ,

"OGL Demo", NULL , NULL);

if (myWindow == NULL) {

fprintf(stderr , "Cannot open GLFW window\n");

exit(EXIT_FAILURE);

}

The first two parameters specify the width and height of the drawing area.
The fourth parameter tells GLFW to use the monitor in windowed mode, and the
last parameter would allow to share resources with an existing OpenGL context.
Roughly, a context stores all of the state data associated with an instance of
OpenGL. A process can create multiple OpenGL contexts, and each context can
represent a separate drawing area, e.g., a window in a graphics application.

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 18/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Creating an OpenGL Window and Context

For fullscreen mode:

GLFWwindow* myWindow = glfwCreateWindow(WIDTH , HEIGHT ,

"OGL Demo",

glfwGetPrimaryMonitor (), NULL);

Making an OpenGL context active:

glfwMakeContextCurrent(myWindow);

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 19/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Creating an OpenGL Window and Context: Event-Handling Loop

This should be enough to get an OpenGL window mapped to your screen:

/ * e v e n t - h a n d l i n g a n d r e n d e r i n g l o o p * /

while (! glfwWindowShouldClose(myWindow)) {

/ * p o l l e v e n t s * /

glfwPollEvents ();

/ * S w a p b u f f e r s * /

glfwSwapBuffers(myWindow);

/ * c l o s e w i n d o w u p o n h i t t i n g t h e e s c a p e k e y * /

if (glfwGetKey(myWindow , GLFW_KEY_ESCAPE) ==

GLFW_PRESS)

glfwSetWindowShouldClose(myWindow , GL_TRUE);

}

The event-handling loop always needs to call glfwSwapBuffers() and
glfwPollEvents().
You can ignore events that you do not want to handle. (We’ll learn more on event
handling later . . .)
Do not forget to handle the escape key (or some other key) to return to the
desktop if using the fullscreen mode.

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 20/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Creating an OpenGL Window and Context

One technical issue remains: At runtime a graphics application needs to check
which functionality is supported by a GPU, as specified in the driver provided by
the vendor of the GPU, and needs to link to them.
This is tedious and is best handled by resorting to GLEW:
#include <GL/glew.h>

/ * i n i t i a l i z a t i o n o f G L E W * /

glewExperimental = GL_TRUE;

GLenum glewStatus = glewInit ();

if (glewStatus != GLEW_OK) {

fprintf(stderr , "Error: %s\n",

glewGetErrorString(glewStatus));

exit(EXIT_FAILURE);

}

Make sure to include glew.h prior to other OpenGL-related headers!
Setting glewExperimental forces GLEW to use a “modern” OpenGL method for
checking whether a function is available.
See window.cc on https:

//www.cosy.sbg.ac.at/~held/teaching/einfuehrung_graphik/cg.html.
© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 21/83

https://www.cosy.sbg.ac.at/~held/teaching/einfuehrung_graphik/cg.html
https://www.cosy.sbg.ac.at/~held/teaching/einfuehrung_graphik/cg.html

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Vertex Buffer Object

Classical bottleneck in pre-OpenGL 3.1: Whenever a vertex is specified in a
pre-OpenGL 3.1 application, by means of glVertex, its coordinates need to be
sent to the GPU.
Goal: Increase performance by using the GPU rather than the CPU and by
decreasing the amount of data that is exchanged between CPU and GPU.
Basic idea:

We pack the vertex and attribute data into arrays.
A vertex array is transferred to the GPU and stored in the GPU memory.
Array data that is in the GPU memory can be rendered via a simple call to a
callback function: glDrawArrays()

This leads to vertex array objects and vertex buffer objects.

No object-oriented “object”
OpenGL is fairly liberal in its use of the word “object”! That is, an OpenGL “object” is
not to be understood as an object in the object-oriented programming meaning.
Rather, OpenGL objects tend to be simple arrays of data for which we get a handle
(i.e., an identifier) to interact with.

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 22/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Vertex Buffer Object

OpenGL expects vertices to be stored in arrays.

float vtx[] = {

0.0f, 0.0f, / * x - a n d y - c o o r d s o f 1 s t v e r t e x * /

0.5f, 0.5f, / * x - a n d y - c o o r d s o f 2 n d v e r t e x * /

0.5f, -0.5f / * x - a n d y - c o o r d s o f 3 r d v e r t e x * /

};

A Vertex Buffer Object (VBO) is an array of data, typically floats.
E.g., it may hold data like world coordinates, color, texture coordinates and,
possibly, application-specific data.
It will reside in the high-speed memory of the GPU.

GLuint myVBO;

glGenBuffers (1, &myVBO);

glBindBuffer(GL_ARRAY_BUFFER , myVBO);

Since GPU memory is managed by OpenGL, you get a positive number as a
reference to it.
The glBindBuffer() function turns a VBO into the active buffer.

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 23/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Vertex Buffer Object

Once an VBO is active, we can copy the vertex data to it.

glBufferData(GL_ARRAY_BUFFER , sizeof(vtx),

vtx , GL_STATIC_DRAW);

Depending on the intended type of use, the last argument of glBufferData()
determines the kind of GPU memory (relative to writing and drawing speed) in
which the data is stored:
GL STATIC DRAW: Generated once, no changes, drawn many times.
GL DYNAMIC DRAW: Changed a few times, drawn many times.
GL STREAM DRAW: Changed and drawn many times.
We can store more than just the 2D or 3D coordinates of points in a VBO. E.g.,
store 2D texture coordinates or 3D normals.
Hence, it is likely that most of the VBOs will consist of arrays of two and three
floats.

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 24/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Vertex Array Object

A Vertex Array Object (VAO) is used to tell OpenGL how the VBO is arranged.
E.g., it might be divided into variables of two floats each.
That is, a VAO is not the actual object storing the data, but a descriptor of the
data.

GLuint myVAO;

glGenVertexArrays (1, &myVAO);

glBindVertexArray(myVAO);

Once a VAO has been bound, every call to glVertexAttribPointer() will cause
the attributes associated with a VBO to be stored in that VAO.

Warning
Only attribute bindings performed after binding a VAO refer to it! Thus, make sure to
bind an VAO at the start of your code!

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 25/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Shader Programs

GPU-based rendering is envoked through so-called shader programs.
An application sends data to the GPU, and the GPU does all the rendering.
Starting with OpenGL 3.1, OpenGL is entirely shader-based:

The state model is replaced by a data-flow model.
Several pre-OpenGL 3.1 functions are deprecated, and backwards
compatibility is not required. (At least not in Core Mode.)
No default shaders — but each application has to provide at least a vertex
and a fragment shader.

Vertex Shader:
Processes input vertices (e.g., of triangles) individually.
Influences the attributes of a vertex, e.g., position, color, and texture
coordinates.
Performs the perspective transformation.

Fragment Shader:
Calculates individual fragment colors.
E.g., it might sample a texture or simply output a color.
It may also be used for lighting and for creating advanced effects like
bump-mapping effects.

More shaders (e.g., Tesselation and Geometry Shaders) added with OpenGL 4.1.
© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 26/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Shader Programs: Execution Pipeline

vertex shader shape assemblygeometry shader

rasterization fragment shader tests and blending

vertex data
(arrays)

tesselation shaders

culling, clipping

The geometry shader is optional. It can discard, modify or pass through
primitives, or even generate new ones. E.g., it could generate squares out of
input vertex data.
In the shape assembly, the GPU forms primitives (e.g., triangles, line segments)
out of the vertices. Up to this stage, all operations are carried out on the vertices.
Rasterization converts the primitives into pixel-sized fragments.

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 27/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

OpenGL Shading Language

Shaders are written in the OpenGL Shading Language (GLSL).
The GLSL is C/C++-like with overloaded operators.
New data types (e.g., matrices, vectors) and C++-like constructors.
E.g., vec3 myVec=vec3(1.0,0.0,1.0).
Similar in use to NVIDIA’s Cg and Microsoft’s HLSL.
GLSL code is sent to the shaders as source code.
New OpenGL functions added to compile and link that code and to exchange
information with the shaders.
Shaders can be written inside the C/C++ code, or can be stored in files and
loaded.

We will only discuss vertex shader and fragment shader very briefly.

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 28/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

OpenGL Shading Language: Sample Vertex Shader

Since the triangle in our sample is already given by 2D vertices, a vertex shader
can be fairly simple.

/ * d e f i n e t h e v e r t e x s h a d e r * /

const char* vertexShaderSource = GLSL(

in vec2 position;

void main() {

gl_Position = vec4(position , 0.0f, 1.0f);

}

);

/ * c o m p i l e t h e v e r t e x s h a d e r * /

GLuint vertexShader = glCreateShader(GL_VERTEX_SHADER);

glShaderSource(vertexShader , 1, &vertexShaderSource ,

NULL);

glCompileShader(vertexShader);

Since we deal with homogeneous coordinates, the last argument of
gl Position() will, in general, be 1.0

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 29/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

OpenGL Shading Language: Sample Vertex Shader

Warning
No error will be reported by glGetError() if a shader fails to compile!

Hence, make sure to check explicitly!

/ * c h e c k w h e t h e r t h e v e r t e x s h a d e r h a s c o m p i l e d * /

GLint status;

glGetShaderiv(vertexShader , GL_COMPILE_STATUS , &status);

if (status != GL_TRUE) {

fprintf(stderr , "Vertex shader did not compile\n");

char vertexCompilerLog [512];

glGetShaderInfoLog(vertexShader , 512, NULL ,

vertexCompilerLog);

fprintf(stderr , "%s", vertexCompilerLog);

exit(EXIT_FAILURE);

}

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 30/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

OpenGL Shading Language: Sample Fragment Shader

For simplicity, we’ll draw the triangle entirely red and get the following simple
fragment shader.

/ * d e f i n e a n d c o m p i l e t h e f r a g m e n t s h a d e r : * /

/ * w e ’ l l g e t a r e d t r i a n g l e * /

const char* fragmentShaderSource = GLSL(

out vec4 outColor;

void main() {

outColor = vec4 (1.0f, 0.0f, 0.0f, 1.0f);

}

);

GLuint fragmentShader = glCreateShader(

GL_FRAGMENT_SHADER);

glShaderSource(fragmentShader , 1, &fragmentShaderSource ,

NULL);

glCompileShader(fragmentShader);

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 31/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Creating a Shader Program

We form a shader program by linking the vertex and fragment shader into one
unit.

GLuint shaderProgram = glCreateProgram ();

glAttachShader(shaderProgram , vertexShader);

glAttachShader(shaderProgram , fragmentShader);

glBindFragDataLocation(shaderProgram , 0, "outColor");

glLinkProgram(shaderProgram);

To make the shader program active, we use the following statement:

glUseProgram(shaderProgram);

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 32/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Creating a Shader Program

Again, no error checking is done by OpenGL! Hence, make sure to check
whether linking the shader program worked.

bool checkShaderProgramLinkStatus(GLuint programID)

{

GLint status;

glGetProgramiv(programID , GL_LINK_STATUS , &status);

if(status == GL_FALSE) {

GLint length;

glGetProgramiv(programID , GL_INFO_LOG_LENGTH ,

&length);

GLchar* log = new char[length + 1];

glGetProgramInfoLog(programID , length , &length ,

&log [0]);

fprintf(stderr , "%s", log);

return false;

}

return true;

}

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 33/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Specifying the Vertex Atributes

We obtain a reference to the position input in the vertex shader — in our example
this will be 0 — and then use glVertexAttribPointer() to specify how the input
data is organized:
const char* attrName = "position";

GLint posAttrib = glGetAttribLocation(shaderProgram ,

attrName);

if (posAttrib == -1) {

fprintf(stderr , "Error for attrib %s\n", attrName);

exit(EXIT_FAILURE);

}

glEnableVertexAttribArray(posAttrib);

glVertexAttribPointer(posAttrib , 2, GL_FLOAT , GL_FALSE ,

2* sizeof(float), 0);

The arguments of glVertexAttribPointer() are as follows:
1 Reference to the input.
2 Number of values for that input, i.e., components ot vec.
3 Type of each component.
4 Normalization to [-1.0,1.0] requested?
5 Stride: How many bytes are between every position attribute in the array?
6 Offset: Byte offset for the first component of the first attribute.

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 34/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Drawing the Sample Triangle

Finally, we set the background to black and draw the triangle.

/ * s e t t h e w i n d o w b a c k g r o u n d t o b l a c k * /

glClearColor (0.0f, 0.0f, 0.0f, 1.0f);

glClear(GL_COLOR_BUFFER_BIT);

/ * d r a w t h e t r i a n g l e * /

glDrawArrays(GL_TRIANGLES , 0, 3);

The call glClearColor(0.0,0.0,1.0,0.0) would set the background color to “no
red, no green, maximum blue”. (The fourth parameter pertains to blending, and
can be ignored for the moment.)
Each argument is a floating-point value in the range [0, 1], specifying the amount
of red, green and blue.
The arguments of glDrawArrays() are as follows:

1 Type of primitives to be rendered.
2 How many vertices shall be skipped at the beginning.
3 Number of vertices. (Not the number of primitives!)

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 35/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Cleaning Up in the End

Do not forget to release all resources in the end:

glDeleteProgram(shaderProgram);

glDeleteShader(fragmentShader);

glDeleteShader(vertexShader);

glDeleteBuffers (1, &myVBO);

glDeleteVertexArrays (1, &myVAO);

See drawing.cc on https:

//www.cosy.sbg.ac.at/~held/teaching/einfuehrung_graphik/cg.html.

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 36/83

https://www.cosy.sbg.ac.at/~held/teaching/einfuehrung_graphik/cg.html
https://www.cosy.sbg.ac.at/~held/teaching/einfuehrung_graphik/cg.html

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Drawing a Colorful Triangle

We will now modify the sample code to draw a colorful triangle, by assigning the
RGB values for red, green and blue to the vertices; see colored tri.cc on
https:

//www.cosy.sbg.ac.at/~held/teaching/einfuehrung_graphik/cg.html:
float vtx[] = {

0.0f, 0.0f, 1.0f, 0.0f, 0.0f, / * c o o r d s , r e d * /

0.5f, 0.5f, 0.0f, 1.0f, 0.0f, / * c o o r d s , g r e e n * /

0.5f, -0.5f, 0.0f, 0.0f, 1.0f / * c o o r d s , b l u e * /

};

Modified vertex shader:
const char* vertexShaderSource = GLSL(

in vec2 position;

in vec3 colorVtxIn;

out vec3 colorVtxOut;

void main() {

colorVtxOut = colorVtxIn;

gl_Position = vec4(position , 0.0, 1.0);

}

);

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 37/83

https://www.cosy.sbg.ac.at/~held/teaching/einfuehrung_graphik/cg.html
https://www.cosy.sbg.ac.at/~held/teaching/einfuehrung_graphik/cg.html

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Drawing a Colorful Triangle

Modified fragment shader:
const char* fragmentShaderSource = GLSL(

in vec3 colorVtxOut;

out vec4 outColor;

void main() {

outColor = vec4(colorVtxOut , 1.0f);

}

);

Modified bindings:
GLint posAttrib = glGetAttribLocation(shaderProgram ,

"position");

glEnableVertexAttribArray(posAttrib);

glVertexAttribPointer(posAttrib , 2, GL_FLOAT , GL_FALSE ,

5* sizeof(float), 0);

GLint colAttrib = glGetAttribLocation(shaderProgram ,

"colorVtxIn");

glEnableVertexAttribArray(colAttrib);

glVertexAttribPointer(colAttrib , 3, GL_FLOAT , GL_FALSE ,

5* sizeof(float), (void*)(2* sizeof(float)));

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 38/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Index Buffer Object

Typically, geometric objects will reuse vertices. E.g., the two triangles of a
rectangle share two vertices, and it is a waste of precious GPU memory to store
them twice.
Index Buffer Objects (IBOs) are applied for re-using vertex data:
We model a rectangle formed by five vertices and four triangles:

float vtx[] = {

-0.5f, -0.5f, 1.0f, 0.0f, 0.0f, / * l o w e r - l e f t c o r n e r * /

0.5f, -0.5f, 0.0f, 1.0f, 0.0f, / * l o w e r - r i g h t c o r n e r * /

0.5f, 0.5f, 0.0f, 0.0f, 1.0f, / * u p p e r - r i g h t c o r n e r * /

-0.5f, 0.5f, 1.0f, 1.0f, 1.0f, / * u p p e r - l e f t c o r n e r * /

0.0f, 0.0f, 0.0f, 0.0f, 0.0f / * c e n t e r * /

};

GLuint idx[] = {

0, 1, 4,

1, 2, 4,

2, 3, 4,

3, 0, 4

};

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 39/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Index Buffer Object

Creation of an IBO:
/ * g e n e r a t e o n e I n d e x B u f f e r O b j e c t * /

GLuint myIBO;

glGenBuffers (1, &myIBO);

glBindBuffer(GL_ELEMENT_ARRAY_BUFFER , myIBO);

/ * c o p y t h e e l e m e n t d a t a t o i t * /

glBufferData(GL_ELEMENT_ARRAY_BUFFER , sizeof(idx), idx ,

GL_STATIC_DRAW);

For drawing we use glDrawElements() rather than glDrawArrays() in the
rendering loop:
glDrawElements(GL_TRIANGLES , 12, GL_UNSIGNED_INT , 0);

The arguments of glDrawElements() are as follows:
1 Type of primitives to be rendered.
2 Number of element indices. (Not the number of triangles!)
3 Type of element indices.
4 Offset.

See colored quad.cc on https:

//www.cosy.sbg.ac.at/~held/teaching/einfuehrung_graphik/cg.html.
Note that the square appears to be a quad in the graphics window: distortion!

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 40/83

https://www.cosy.sbg.ac.at/~held/teaching/einfuehrung_graphik/cg.html
https://www.cosy.sbg.ac.at/~held/teaching/einfuehrung_graphik/cg.html

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

OpenGL Naming Conventions

All OpenGL functions have the prefix gl, followed by one or more capitalized
words to denote the function. E.g., glBindBuffer().
GLEW and GLFW use the same scheme for naming their functions.
Recall that OpenGL is C-based and, thus, does not have function overloading.
As consequence, suffixes after the main part of a function name are used for
prodiving information on the specific number and type of arguments that a
function accepts. E.g.:

glUniform2f() indicates that this function takes two parameters (in addition
to its standard arguments) which are of type GLfloat.
glUniform2fv() indicates that these two floats are passed as a
one-dimensional array rather than two individual parameters.

All OpenGL constants begin with GL and use underscores to separate words.
E.g., GL STATIC DRAW.

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 41/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

OpenGL Data Types

Data Type Min. Prec. Description Suffix
GLbyte 8 bits signed integer b
GLubyte 8 bits unsigned integer ub
GLshort 16 bits signed integer s
GLushort 16 bits unsigned integer us
GLsizei 32 bits integer size i
GLint 32 bits signed integer i
GLuint 32 bits unsigned integer ui
GLenum 32 bits enumeration type ui
GLfloat 32 bits floating-point value f
GLclampf 32 bits floating-point value clamped to [0.0, 1.0] f
GLdouble 64 bits floating-point value d
GLclampd 64 bits floating-point value clamped to [0.0, 1.0] d

An OpenGL implementation must use at least the minimum number of bits
specified. It may use more bits than the minimum number required to represent a
GL type.
An OpenGL data type may but need not match the “corresponding” C data type in
a specific implementation.
Thus, use the OpenGL types to assure portability!

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 42/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

OpenGL Graphical Primitives

OpenGL Primitive Description Min. #(vertices)
GL_POINTS 1
GL_LINES 2
GL_LINE_STRIP 2
GL_LINE_LOOP 2
GL_TRIANGLES 3
GL_TRIANGLE_STRIP 3
GL_TRIANGLE_FAN 3

Make sure to pay close attention to how vertices are grouped for the strips and
fans.

0

1

2

3

4

5

0

1 2
3

4

5

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 43/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

1 OpenGL
Introduction to OpenGL
Basic OpenGL
Coordinates and Transformations

OpenGL Coordinate Systems
Coordinate Transformation Pipeline
Handling Transformations within OpenGL
Camera and View Transformation
Projections

Event-Handling and Callbacks
Textures
Loading 3D Models

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 44/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

OpenGL Coordinate Systems

The units of the coordinates of a vertex depend on the application; those
coordinates are called world coordinates.
A standard right-handed coordinate system is assumed for the world coordinates:
the positive x-axis is to your right, the positive y-axis is up and the positive z-axis
points out of the screen towards you.
Internally, OpenGL will convert to camera coordinates and later to window
coordinates.
OpenGL’s camera is placed at the origin pointing in the negative z-direction of the
world coordinate system.
The camera cannot be moved. Rather, one has to apply an inverse
transformation to the scene to be rendered.
OpenGL supports the definition of a viewing volume: Only (those portions of)
objects that are inside this 3D region will be drawn (“clipping”).

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 45/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

OpenGL Coordinate Transformation Pipeline

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Perspective
Division

Viewport
Transformation

OCS

DCS

WCS VCS

NDCS

CCS

CCS

The coordinates of a 3D point p undergo several transformations until eventually
a pixel on the screen corresponding to its 2D equivalent p′ is set.
This sequence of transformations is encoded in the OpenGL transformation
pipeline: from object coordinate system (OCS) to world coordinate system (WCS),
viewing coordinate system (VCS), clipping coordinate system (CCS), normalized
device coordinate system (NDCS), and finally to device coordinate system (DCS).
p′ = Mproj · Mview · Mmodel · p

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 46/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

OpenGL Coordinate Transformations: Modeling Transformation

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Perspective
Division

Viewport
Transformation

OCS

DCS

WCS VCS

NDCS

CCS

CCS

The modeling transformation places an object somewhere in the world. Typically,
this re-positioning of an object is carried out by

1 scaling it,
2 rotating it, and
3 translating it.

pWCS = Mmodel · pOCS, with Mmodel := T · R · S.

It can be as simple as an identity transformation, though.

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 47/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

OpenGL Coordinate Transformations: Viewing Transformation

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Perspective
Division

Viewport
Transformation

OCS

DCS

WCS VCS

NDCS

CCS

CCS

Suppose that position and orientation of a camera are specified in world
coordinates as a frame [p, < a, b, v >], where p is the position and < a, b, v >
form a coordinate system such that a points right and b points up in a plane
parallel to the image plane, and v is the direction of viewing.
The viewing transformation Mview transforms the world coordinate system such
that p becomes the origin, b points into the y-axis and v points into the negative
z-axis. (Recall that the actual OpenGL camera is not moved!)

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 48/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

OpenGL Coordinate Transformations: Model View Transformation

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Perspective
Division

Viewport
Transformation

OCS

DCS

WCS VCS

NDCS

CCS

CCS

Modeling transformation and viewing transformation combined are called model
view transformation.
Older versions of OpenGL forced the user to resort to model view
transformations.

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 49/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

OpenGL Coordinate Transformations: Projection Transformation

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Perspective
Division

Viewport
Transformation

OCS

DCS

WCS VCS

NDCS

CCS

CCS

The projection transformation transforms the world such that the viewing volume
specified by the camera is mapped into an axis-aligned box as a canonical
viewing volume.
This is the earliest time that clipping can be implemented (in hardware) in a
camera-independent manner.

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 50/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

OpenGL Coordinate Transformations: Perspective Division

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Perspective
Division

Viewport
Transformation

OCS

DCS

WCS VCS

NDCS

CCS

CCS

The perspective division maps an axis-aligned viewing box to the axis-aligned
cube [−1, 1]3.
The projection transformation and the perspective division are carried out as one
functional unit by OpenGL, in dependence on the type of perspective.

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 51/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

OpenGL Coordinate Transformations: Viewport Transformation

Modeling
Transformation

Viewing
Transformation

Projection
Transformation

Perspective
Division

Viewport
Transformation

OCS

DCS

WCS VCS

NDCS

CCS

CCS

In the final viewport transformation, OpenGL uses information obtained from the
graphics window or the parameters of

glViewport(x, y, width , height);

where
(x, y) is the location of the lower-left corner of the viewport, and
width and height are its dimensions,

to map NDC to screen coordinates (DC).
All arguments of glViewport() are specified in pixels.

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 52/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Handling Transformations within OpenGL: GLM

OpenGL (internally) uses homogeneous coordinates and 4 × 4 matrices to carry
out transformations.
There are several ways to handle the math related to transformations . . .

I find it easiest to employ GLM, the OpenGL Math library.
It is a headers-only library and provides vector and matrix classes for handling
the math of (likely) all the transformations that you will need, including support for
quaternions.
Since it is based on the GLSL specifications, it ties into GLSL neatly.
Usage:

#include <glm/glm.hpp >

#include <glm/gtc/matrix_transform.hpp >

#include <glm/gtc/type_ptr.hpp >

The second header file provides functions that make the computation of
transformation matrices easy.
The third file is used for converting an GLM matrix into an array of floats (for
usage by OpenGL proper).

Make sure to get a recent version of GLM in order to avoid tons of warnings about
deprecated functions.

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 53/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Handling Transformations within OpenGL: GLM Constructors

If a single scalar parameter is given to a vector constructor, it is used to initialize
all components of the vector to that value:

glm::vec4 Position = glm::vec4(glm::vec3 (0.1), 1.0);

If a single scalar parameter is given to a matrix constructor, then all diagonal
elements will be set to the value, and all other elements will be set to 0.0f:

glm::mat4 Model = glm::mat4 (1.0);

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 54/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Sample Model Transformation

We rotate our colored square by 45◦ (around the z-axis):

/ * d e f i n e a m o d e l - v i e w t r a n s f o r m a t i o n * /

glm::mat4 model = glm::mat4 (1.0);

model = glm:: rotate(model , glm:: radians (45.0f),

glm::vec3 (0.0f, 0.0f, 1.0f));

The first command gives us a 4 × 4 unit matrix, and the second command
multiplies this matrix by a rotation around the z-axis.

Degree vs. radians
Some versions of GLM take the angle in degrees instead of radians. We force radians
by means of #define GLM FORCE RADIANS and use glm::radians(degrees).

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 55/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Sample Model Transformation

The next step is to instruct the shader program to apply this model transformation
to every vertex:

const char* uniformName;

uniformName = "model";

/ * p a s s t h e m o d e l m a t r i x t o t h e s h a d e r p r o g r a m * /

GLint uniformModel = glGetUniformLocation(shaderProgram ,

uniformName);

if (uniformModel == -1) {

fprintf(stderr , "Error: could not bind uniform %s\n",

uniformName);

exit(EXIT_FAILURE);

}

glUniformMatrix4fv(uniformModel , 1, GL_FALSE ,

glm:: value_ptr(model));

The first parameter of glUniformMatrix4fv() is the handle of the matrix, the
second parameter specifies the number of matrices, the third parameter concerns
transposing of the matrix prior to its use, and the glm::value ptr() function in
the fourth parameter converts the matrix into 16 floats.

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 56/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Sample Model Transformation

We do also have to modify the code for the vertex shader:

/ * v e r t e x s h a d e r w i t h m o d e l - v i e w m a t r i x a d d e d * /

const char* vertexShaderSource = GLSL(

in vec2 position;

in vec3 colorVtxIn;

out vec3 colorVtxOut;

uniform mat4 model;

void main() {

colorVtxOut = colorVtxIn;

gl_Position = model * vec4(position.x, position.y,

0.0, 1.0);

}

);

See transformed quad.cc on https:

//www.cosy.sbg.ac.at/~held/teaching/einfuehrung_graphik/cg.html.

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 57/83

https://www.cosy.sbg.ac.at/~held/teaching/einfuehrung_graphik/cg.html
https://www.cosy.sbg.ac.at/~held/teaching/einfuehrung_graphik/cg.html

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Sample Model Transformation

We now make the quad spin around the origin in a continuous fashion by adding
an animation matrix anim in the vertex shader and in the event-handling loop:

const char* vertexShaderSource = GLSL(

in vec3 position;

in vec3 colorVtxIn;

uniform mat4 anim;

uniform mat4 model;

out vec3 colorVtxOut;

void main() {

colorVtxOut = colorVtxIn;

gl_Position = anim * model * vec4(position , 1.0);

}

);

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 58/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Sample Model Transformation

Definition and binding of animation matrix:
/ * d e f i n e a t r a n s f o r m a t i o n m a t r i x f o r t h e a n i m a t i o n * /

glm::mat4 anim = glm::mat4 (1.0f);

uniformName = "anim";

GLint uniformAnim = glGetUniformLocation(shaderProgram ,

uniformName);

glUniformMatrix4fv(uniformAnim , 1, GL_FALSE , glm::

value_ptr(anim));

Animation matrix in the event-handling loop, prior to the actual draw command:
/ * m a k e t h e q u a d s p i n a r o u n d * /

anim = glm:: rotate(anim , glm:: radians (0.1f),

glm::vec3 (0.0f, 0.0f, 1.0f));

glUniformMatrix4fv(uniformAnim , 1, GL_FALSE ,

glm:: value_ptr(anim));

Of course, a suitable value for the angular increment depends on the speed of
your GPU.
And, of course, this is a brute-force way to keep an object spinning . . .

See spinning quad.cc on https:

//www.cosy.sbg.ac.at/~held/teaching/einfuehrung_graphik/cg.html.
© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 59/83

https://www.cosy.sbg.ac.at/~held/teaching/einfuehrung_graphik/cg.html
https://www.cosy.sbg.ac.at/~held/teaching/einfuehrung_graphik/cg.html

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Camera and View Transformation

We now add matrices for the view and projection transformations.
It is easiest to use GLM’s glm::lookAt() function to position the camera:

/ * d e f i n e a v i e w t r a n s f o r m a t i o n * /

glm::mat4 view = glm:: lookAt(glm::vec3 (0.0f, 0.0f, 2.0f),

glm::vec3 (0.0f, 0.0f, 0.0f),

glm::vec3 (0.0f, 1.0f, 0.0f));

Parameters:
the first parameter specifies the position of the camera,
the second parameter specifies a point towards the camera is aiming, and
the third parameter specifies a vector that is pointing up.

In our case, this is a trivial view onto the xy-plane.

Caveat
Re-positioning the camera causes the appropriate reverse transformation to be
applied to the model. (The OpenGL-internal camera always stays at the origin!) This
transformation can cause parts or all of the objects to become invisible if the viewport
is not changed appropriately.

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 60/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Camera and View Transformation

Of course, we do have to pass the view and projection matrices to the shader:

/ * p a s s t h e v i e w m a t r i x t o t h e s h a d e r p r o g r a m * /

GLint uniformView = glGetUniformLocation(shaderProgram ,

"view");

glUniformMatrix4fv(uniformView , 1, GL_FALSE ,

glm:: value_ptr(view));

/ * d e f i n e a c u r r e n t l y t r i v i a l p r o j e c t i o n t r a n s f o r m a t i o n

* /

glm::mat4 proj = glm::mat4 (1.0f);

/ * p a s s t h e p r o j e c t i o n m a t r i x t o t h e s h a d e r p r o g r a m * /

GLint uniformProj = glGetUniformLocation(shaderProgram ,

"proj");

glUniformMatrix4fv(uniformProj , 1, GL_FALSE ,

glm:: value_ptr(proj));

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 61/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Moving to 3D

We now use the following sample setting, see mvp quad.cc on https:

//www.cosy.sbg.ac.at/~held/teaching/einfuehrung_graphik/cg.html:
/ * q u a d c o n s i s t i n g o f f o u r t r i a n g l e s i n t h e p l a n e z = 1 * /

float vtx[] = {

-0.5f, -0.5f, 1.0f, 1.0f, 0.0f, 0.0f,

0.5f, -0.5f, 1.0f, 0.0f, 1.0f, 0.0f,

0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f,

-0.5f, 0.5f, 1.0f, 1.0f, 1.0f, 1.0f,

0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f

};

/ * v e r t e x s h a d e r * /

const char* vertexShaderSource = GLSL(

in vec3 position; / * q u a d i s i n 3 D ! * /

uniform mat4 model; uniform mat4 view; uniform mat4 proj;

in vec3 colorVtxIn; out vec3 colorVtxOut;

void main() {

colorVtxOut = colorVtxIn;

gl_Position = proj*view*model * vec4(position ,1.0);

}

);

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 62/83

https://www.cosy.sbg.ac.at/~held/teaching/einfuehrung_graphik/cg.html
https://www.cosy.sbg.ac.at/~held/teaching/einfuehrung_graphik/cg.html

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Moving to 3D

Of course, with a modified definition of vtx[], we also have to adapt
glVertexAttribPointer() accordingly:

glVertexAttribPointer(posAttrib , 3, GL_FLOAT , GL_FALSE ,

6* sizeof(float), 0);

glVertexAttribPointer(colAttrib , 3, GL_FLOAT , GL_FALSE ,

6* sizeof(float),

(void*)(3* sizeof(float)));

We put the camera at (0, 0, 2):

glm::mat4 view = glm:: lookAt(glm::vec3 (0.0f, 0.0f, 2.0f),

glm::vec3 (0.0f, 0.0f, 0.0f),

glm::vec3 (0.0f, 1.0f, 0.0f));

We will continue with discussing different ways to project our 3D scene to 2D,
again using functions provided by GLM.

Multiplication order
Matrix multiplication is not commutative. Watch the order of your matrices!

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 63/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Orthographic Projection

The viewing volume of an orthographic projection is set up by the following GLM
command:

glm::mat4 proj = glm:: ortho (-2.0f, 2.0f, / * l e f t / r i g h t * /

-1.5f, 1.5f, / * t o p / b o t t o m * /

0.5f, 1.5f); / * n e a r / f a r * /

Camera’s View!
Note that near and far are specified as seen from the camera!

x
y

z

(left,bottom,-near)

(right,top,-near)

(right,top,-far) For a camera positioned at
the origin, a point with world
coordinates (x, y, z) is
rendered if and only if

left ≤ x ≤ right,

bottom ≤ y ≤ top,

−far ≤ z ≤ − near.

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 64/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Perspective Projection: Frustum

The viewing volume of a perspective projection can be set up by the following
GLM command:

glm::mat4 proj = glm:: frustum (-2.0f,2.0f, / * l e f t / r i g h t * /

-1.5f,1.5f, / * t o p / b o t t o m * /

0.9f,1.1f); / * n e a r / f a r * /

Camera’s View!
Note: near and far are positive and specified as seen from the camera!

x

y
z

O rightleft

bottom

top

near
far

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 65/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Perspective Projection: Field-of-View

The viewing volume of a perspective projection can also be specified in a more
intuitive manner (with 1.3 in radians being roughly 75◦):

glm::mat4 proj = glm:: perspective (1.3f, / * a n g l e * /

4.0f/3.0f, / * a s p e c t * /

0.9f, / * n e a r * /

1.1f); / * f a r * /

We have height = 2 · near · tan(angle/2), and aspect = width/height.
Again, near and far both are positive terms that indicate the distance from the
camera!

x

y
z

O height

width

near
far

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 66/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Perspective Projection: Field-of-View

The angle specifies the field-of-view angle in the y-direction.
The availability of the aspect ratio in glm::perspective() makes it easier to
respond adequately to a reshaping of the graphics window.
Decreasing angle without moving the objects or changing the camera position
corresponds to switching from a wide-angle lens to to a telephoto lens, i.e., to
zooming in.
Increasing angle corresponds to zooming out.
Re-positioning the camera causes the appropriate reverse transformation to be
applied to the objects. This transformation can cause parts or all of the objects to
become invisible if near and far are not also changed appropriately.
Recall that distortion may occur if the aspect ratios do not match!

x

y
z

O height

width

near
far

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 67/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

1 OpenGL
Introduction to OpenGL
Basic OpenGL
Coordinates and Transformations
Event-Handling and Callbacks

Keyboard
Mouse

Textures
Loading 3D Models

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 68/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Event Handling: GLFW Callback Functions

As virtually all other graphics APIs, OpenGL/GLFW also handle events (such as
the pressing of a mouse button or a keystroke) by means of callback functions.
Roughly, an OpenGL program runs in a loop, polling the hardware for new
events, and calling callback functions for those events for which callback
functions were declared. (All other events are ignored!)
Each callback function has to be registered. The command

glfwSetXXXCallback(myWindow , YYY);

tells OpenGL to use the function YYY() as callback function for events related to
XXX.
GLFW provides two ways to check for events:

glfwPollEvents() continually checks for events and processes events upon
receipt.
glfwWaitEvents() puts the thread that runs the OpenGL program to sleep
until at least one event has been received.

A decent OpenGL program will always offer a way to terminate it gently, e.g., by
reacting appropriately if “Q(uit)” or “ESC” was pressed by a user.
See GLFW’s documentation of input handling for more details.

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 69/83

https://www.glfw.org/docs/3.0/group__input.html

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Event Handling: Keyboard Input

GLFW recognizes two types of events related to keys — key events and character
events (related to Unicode code) — but we will focus only on key events.
The following callback function instructs OpenGL to close the window if the user
has pressed “Q”, “q” or “ESC”:

static void keyCallback(GLFWwindow* myWindow , int key ,

int scanCode , int action , int mod)

{

if (((key == GLFW_KEY_ESCAPE) || (key == GLFW_KEY_Q)) &&

(action == GLFW_PRESS))

/ * c l o s e w i n d o w u p o n h i t t i n g t h e E S C k e y o r Q / q * /

glfwSetWindowShouldClose(myWindow , GL_TRUE);

}

Here, the scancode is system-specific stuff, and mod is a bit field describing which
modified keys were held down. E.g., GLFW MOD SHIFT, GLFW MOD CONTROL.
We register this callback function by using the following command:
glfwSetKeyCallback(myWindow , keyCallback);

Key and button actions are GLFW RELEASE, GLFW PRESS and GLFW REPEAT. (The
last action means that a key was held pressed until it repeated.)

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 70/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Event Handling: Mouse Input

Whenever the mouse cursor is moved, a callback is triggered and the current
position is passed to a callback function (if registered):

static void cursorPosCallback(GLFWwindow* window ,

double x_pos ,

double y_pos)

{

printf("Mouse is at (%6.1f,%6.1f)\n", x_pos , y_pos);

}

glfwSetCursorPosCallback(myWindow , cursorPosCallback);

The coordinates can be converted to integers with the floor function.
One can also query the cursor coordinates directly:

double x_pos , y_pos;

glfwGetCursorPos(window , &x_pos , &y_pos);

Mouse coordinates . . .

. . . have their origin at the upper-left corner of the window!

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 71/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Event Handling: Mouse Input

An enter/leave callback provides notification when the mouse cursor enters or
leaves a window:

static void cursorEnterCallback(GLFWwindow* myWindow ,

int entered)

{

if (entered) printf("Cursor entered window !\n");

else printf("Cursor left window !\n");

}

glfwSetCursorEnterCallback(myWindow , cursorEnterCallback

);

A scroll callback notifies about scrolling:

static void scrollCallback(GLFWwindow* myWindow ,

double x_off , double y_off)

{

printf("Scrolled by (%6.1f,%6.1f)\n", x_off , y_off);

}

glfwSetScrollCallback(myWindow , scrollCallback);

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 72/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Event Handling: Mouse Input

A mouse button callback provides information on button presses and releases:

static void mouseButtonCallback(GLFWwindow* myWindow ,

int button , int action ,

int mods)

{

if ((button == GLFW_MOUSE_BUTTON_LEFT) &&

(action == GLFW_PRESS)) {

double x_pos , y_pos;

glfwGetCursorPos(myWindow , &x_pos , &y_pos);

printf("Lft mouse button pressed (%6.1f,%6.1f)\n",

x_pos , y_pos);

}

}

glfwSetMouseButtonCallback(myWindow , mouseButtonCallback

);

See callbacks quad.cc on https:

//www.cosy.sbg.ac.at/~held/teaching/einfuehrung_graphik/cg.html.

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 73/83

https://www.cosy.sbg.ac.at/~held/teaching/einfuehrung_graphik/cg.html
https://www.cosy.sbg.ac.at/~held/teaching/einfuehrung_graphik/cg.html

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

1 OpenGL
Introduction to OpenGL
Basic OpenGL
Coordinates and Transformations
Event-Handling and Callbacks
Textures

Loading a Texture
Using a Texture
Adapting the Shaders

Loading 3D Models

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 74/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Loading a Texture Image

OpenGL does not directly support the loading of textures. Rather one has to
resort to third-party libraries.
Up to version 2.0, GLFW allowed to load some types of texture files. However,
this feature has been removed from GLFW 3.0.
We resort to SOIL, the Simple OpenGL Image Library, for loading images:

/ * l o a d t e x t u r e i m a g e * /

GLint texWidth , texHeight;

GLint channels;

unsigned char* texImage = SOIL_load_image("katze.png",

&texWidth ,

&texHeight ,

&channels ,

SOIL_LOAD_RGB);

if (texImage == NULL) {

fprintf(stderr , "Image file could not be loaded\n");

exit(EXIT_FAILURE);

}

SOIL also offers SOIL load OGL texture but this function dates back to 2008 and
uses features that are not supported by modern OpenGL.

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 75/83

http://www.lonesock.net/soil.html

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Generating a Texture

Once the image has been loaded, we can generate the texture:
GLuint textureID;

glActiveTexture(GL_TEXTURE0); / * t e x t u r e u n i t 0 * /

glGenTextures (1, &textureID);

glBindTexture(GL_TEXTURE_2D , textureID);

glTexImage2D(GL_TEXTURE_2D , 0, GL_RGB , texWidth , texHeight ,

0, GL_RGB , GL_UNSIGNED_BYTE , texImage);

SOIL_free_image_data(texImage);

The function glActiveTexture() specifies which texture unit a texture object is
bound to when glBindTexture() is called. (Unit 0 is default.)
Parameters of glTexImage2D:

1 Texture target.
2 Level-of-detail, with 0 being the base image. Can be used for mipmaps.
3 Internal pixel format to be used by GPU.
4 Width of texture image.
5 Height of texture image.
6 According to the specification, it should always be 0 . . .
7 Format of the pixels in the image array.
8 Format of the pixels in the image array.
9 Image array.

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 76/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Using a Texture

Texture coordinates — denoted by s and t for a 2D texture — are, by default,
normalized and range in the interval [0.0, 1.0].
By convention, (0.0, 0.0) corresponds to the lower-left corner of the texture
space, and (1.0, 1.0) corresponds to the upper-right corner.
The simplest approach to supplying texture coordinates is to specify them on a
per-vertex basis, as we did in the case of color for our colored quad
(colored quad.cc):

float vtx[] = {

/ * v e r t e x c o o r d s t e x t u r e * /

-0.5f, -0.5f, 1.0f, 0.0f, 0.0f, / * l o w e r - l e f t * /

0.5f, -0.5f, 1.0f, 1.0f, 0.0f, / * l o w e r - r i g h t * /

0.5f, 0.5f, 1.0f, 1.0f, 1.0f, / * u p p e r - r i g h t * /

-0.5f, 0.5f, 1.0f, 0.0f, 1.0f, / * u p p e r - l e f t * /

0.0f, 0.0f, 1.0f, 0.5f, 0.5f / * c e n t e r * /

};

Note that sharing vertices within different faces becomes problematic once
different texture coordinates are supposed to be used.

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 77/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Using a Texture

Wrapping is needed for texture coordinates that are outside of the unit square.
GL CLAMP TO BORDER: Specified color is used outside of border.
GL CLAMP TO EDGE: Texture values at the border are extended.
GL REPEAT: Texture image is repeated.
GL MIRRORED REPEAT: Texture image is repeated in mirrored fashion.
GL MIRROR CLAMP TO EDGE: One repetition, then clamp to edge.
Texture options/parameters are set by means of glTexParameter():

glTexParameteri(GL_TEXTURE_2D , GL_TEXTURE_WRAP_S ,

GL_CLAMP_TO_BORDER);

GLfloat bdColor [] = { 0.0f, 1.0f, 0.0f, 1.0f };

glTexParameterfv(GL_TEXTURE_2D , GL_TEXTURE_BORDER_COLOR ,

bdColor);

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 78/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Using a Texture

It is unlikely that the resolution of the texture image will match the resolution
required during rendering: Filtering:
GL NEAREST: Take color information from texel closest to query point.
GL LINEAR: Interpolate the colors of the four neighboring texels.
Filters can be specified both for maximizing and minimizing if the pixel maps to an
area smaller (greater, resp.) than one texel:

glTexParameteri(GL_TEXTURE_2D , GL_TEXTURE_MIN_FILTER ,

GL_NEAREST);

glTexParameteri(GL_TEXTURE_2D , GL_TEXTURE_MAG_FILTER ,

GL_LINEAR);

Alternatively, OpenGL can be instructed to use mipmaps. E.g.,

glGenerateMipmap(GL_TEXTURE_2D);

glTexParameteri(GL_TEXTURE_2D , GL_TEXTURE_MIN_FILTER ,

GL_LINEAR_MIPMAP_LINEAR);

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 79/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Adapting the Shaders for a Texture

We need to adapt our shaders to deal with vertices. Vertex shader:

const char* vertexShaderSource = GLSL(

in vec3 position;

in vec2 textureCoordIn;

uniform mat4 mvp;

out vec2 textureCoordOut;

void main() {

textureCoordOut = vec2(textureCoordIn.x,

1.0 - textureCoordIn.y);

gl_Position = mvp * vec4(position , 1.0);

}

);

The inversion of the y-coordinates of the texture image is a technical twist (or
hack) to deal with the problem that images tend to have their coordinate origin in
the upper-left corner . . .

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 80/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Adapting the Shaders for a Texture

Modified fragment shader:
const char* fragmentShaderSource = GLSL(

in vec2 textureCoordOut;

out vec4 outColor;

uniform sampler2D textureData;

void main() {

outColor = texture(textureData , textureCoordOut);

}

);

Texture uniform to be passed to shader:
uniformName = "textureData";

GLint uniformTex = glGetUniformLocation(shaderProgram ,

uniformName);

if (uniformTex == -1) {

fprintf(stderr , "Error: could not bind uniform %s\n",

uniformName);

exit(EXIT_FAILURE);

}

glUniform1i(uniformTex , 0);

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 81/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

1 OpenGL
Introduction to OpenGL
Basic OpenGL
Coordinates and Transformations
Event-Handling and Callbacks
Textures
Loading 3D Models

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 82/83

Computational Geometry and Applications Lab
UNIVERSITÄT SALZBURG

Loading 3D Models

While loading 3D models is not exactly an OpenGL task, you are likely to run into
it as soon as you try to build more complex scenes by resorting to models built by
others.
The Open Asset Import Library (“Assimp”), https://www.assimp.org/ is a
portable Open Source library to import various 3D model formats in a uniform
manner.
More recent versions of Assimp also can export 3D models, thus turning Assimp
into a general-purpose 3D model converter.

© M. Held (Univ. Salzburg) Introduction to OpenGL (SS 2025) 83/83

https://www.assimp.org/

